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SYNOPSIS

We present a model for predicting the detailed three dimensional
microstructure .of a crystal whlich undergoes a diffusionless phase
transformation involving a change of symmetry. The model is not restricted
to states of zero stress or to small strains and rotations. Any such
model has the property that in many cases stable domain patterns
necessarily involve fine mixtures of the phases. Mathematically, these
patterns emerge as minimizing sequences which make the total free energy
smaller and smaller but which do not in general converge to minimizers. We
work out the details of this for martensite, relating the results to the
crystallographic theory.

Our model does not place any a priori geometric restrictions on the
shapes or arrangements of the regions in which the new phase forms; this
is necessary to determine microstructures which occur in complex stress
fields, or to explore the possibility of new and unusual microstructures

which may occur for special values of the material parameters.

§1. INTRODUCTION

The general aim of this work is to develop mathematical models
capable of predicting the detailed microstructure of a crystal which
undergoes a diffusionless solid-solid phase transformation involving a
change of symmetry. A principal motivation is the well known mathematical
fact that 'non-elliptic' integrals of the calculus of variations do not in
general attain a minimum, while the corresponding minimizing sequences
develop finer and finer oscillations reminiscent of a finely twinned
microstructure. A standard and elementary illustration (cf. L.C. Young

[8]) is afforded by the problem of minimizing

1w = [1()? - 1) + u?ldx (1)
)
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among real-valued functions u(x) satisfying u(0) = u(1) = 0. In (1) u’

denotes the derivative of u with respect to x. 1In this problem
I(u) > 0 and the sequence ul) shown in Figure 1 satisfies I(ul)) - 0 as
j = =. But there is no u satisfying the end conditions and I(u) = 0, so
that there is no minimizer of I(u). (In multidimensional problems it is
not necessary to have dependence of the energy on u as well as on u' to
get this phenomenon.) This suggests that microstructure such as that
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Figure 1
observed in a reglon containing a finely-twinned martensite/austenite

interface (see Christian [2] and Figure 2) can be modelled by temporarily
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Figure 2
ignoring the phase-boundary energies and looking for minimizing sequences
of a corresponding bulk elastic energy whose minimum is not in general

attained.

§2. THE MODEL
In adopting an appropriate expression for the buik elastic energy it is
important to use nonlinear elasticity theory; indeed, for the rotations
with respect to the austenite phase occurring in Figure 2 use of linear
elasticity would predict grossly inaccurate stresses. Following Gibbs' [5]
chapter on solids in contact with fluids we take for the bulk elastic
energy the expression

To(y) = [o(vy(x),0)dx, (2)

2}
where y(x) denotes the deformed position of the particle occupying the

position x in a reference configuration @, Vy(x) the gradient of vy
Wwith respect to x and @ the temperature. The stored-energy function
® = &(F,8) 1is assumed to be defined for 3x3 matrices F satisfying
detF > 0, and satisfies for any crystal the frame-indifference
condition

¢(RF,8) = ®(F,8) for all rotations R. (3)
The Born analogy between molecular and continuum theory gives the
condition

®(FR,8) = ®(F,8) for all R e P, (4)
where PV denotes a finite group of rotations of order v. (Larger
symmetry groups are considered by Ericksen [3]). 1In the case when the
symmetry in the reference configuration is cubic, for example, v = 24

and PV is the group of rotations which map a cube into itself.

Let U = JFTF. Necessary and sufficient conditions for (3) and
(4) to hold are then that
®(F,8) = (U,8) = &(RTUR,8) for all RePV. (5)

To model a cubic-tetragonal transformation, for instance, we take for the
reference configuration the undistorted cubic phase at the transformation
temperature 8., and suppose that, as a function of the positive symmetric

matrix U, ¢(U,8,) has precisely the minimizers 1, corresponding to
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austenite, and ETU ﬁ, E € PY, corresponding to the varliants of

martensite, where Uj = diag(n,,n,,n) 1is the transformation strain. In
fact there are only three such variants, namely U, diag(nl,nz,nl) and
diag(n ,n,n,). As © passes through 8, these minimizers change so
that the austenite has lower energy for © > 8, and the martensite has

lower energy for 8 < 8,.

§3. MAIN RESULTS

From noWw on we consider an unloaded crystal at temperature 8,. An
interface Wwith normal n corresponds to deformation gradients Ft,F~ which
have corresponding strains ut,u” that are minimizers of ¢(U,8,) and
are such that FF-F = aen for some a. An analysis shows that there
are no austenite/austenite or austenite/martensite interfaces, while (cf
Ericksen [4], Gurtin [6]) the martensite/ martensite Interfaces correspond
to  compound twins. A partial analysis  of the minimizing
sequences yW of I eo(y) is given in Ball & James [1] together with
a discussion of related mathematical issues. Such a minimizing sequence
possesses a subsequence converging in an appropriate sense (that of weak
convergence) to a configuration y that is typlcally not a
minimizer of Ieo, just as for the example (1). The theory 1is related

to the crystallographic theory of martensite by means of the following
result, a more precise description of which is given in [1]. Let

consist of two disjoint connected regions Qy and Q, separated by an interface

S of arbitrary geomelry. Then a minimizing  sequence y(j) of

Ig exists with  the properties that in Oy Vy(j) takes more and more closely the
o

iwo values FY,F~ corresponding to a given twin, while in 0, Vy(j) tends to 1, if

and only if (i) S is part of a plane {x -m=const}, Iml=1, and (ii)
sFf+ (1-2)F = 1 +bem for some 0<Xx<1 and b. The possible

solutions for the normal m of the habit plane, the relative proportion X
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of the twins, and the amplitude b are precisely those given by the
crystallographic theory [7]. (Necessary and sufficient conditions for the
existence of solutions are also presented in [1] for the case when the
transformation strain U, is a general positive symmetric matrix.) The
theory presented here has, however, the advantages that (a) it delivers
both the twins and the habit plane simultaneously on the basis of an
explicit energy calculation, (b) that it assumes liess geometry, and (c)
that it shouid be capable of predicting other microstructures even when
part of the boundary of the crystal is acted on by loads which may vary
from place to place or when the crystal is subjected to a temperature
gradient. Note that for the case of an unloaded crystal at the
transformation temperature 8, the minimum energy is in fact attained,
e.g. by y(x) = x (pure austenite), or by y(x) = Ffx (pure nartensite).
However, in the presence of small temperature or concentration gradients,
or of other inhomogeneities, we expect that the bulk energy would not in
general attain a minimum, leading to minimizing sequences with finer and
finer twinning as above. An example of this type is given in [1, section
7al.

Other topics discussed in [1] are the effect of surface energy on
limiting fineness, fine wrinkling at the boundary of a body, and fractal
triangular domain patterns similar to those observed for Dauphine twins in
quartz. HWe believe that many such finely oscillating phase mixtures are
associated with minimization problems which have minimizing sequences

which do not converge to minimizers.
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