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1. INTRODUCTION

In this article we discuss the use of Young measures in various minimization problems
drawn from continuum mechanics. Our main application is to Gibbsian thermostatics
of mixtures, but we also touch on recent work on elastic crystals.

The Young measure (v,),_, corresponding to a sequence of functions z9:Q - Rk,
where Q — R", gives the limiting probability distribution as j— oo of values of z(y)
as points y are chosen uniformly at random from a small neighbourhood of x. (This
intuitive description is made precise in Ball (1989).) If /:R*— R is continuous then
whenever the weak L' limit of f(z) exists it is given by the expectation
oo [ = [ f(2) dvo(A).

In recent years the Young measure has become a popular tool for the study of
nonlinear partial differential equations, following the influential work of Tartar (1979)
and DiPerna (1983) on hyperbolic systems. However, the use we make of it here is
the one for which it was originally introduced by L. C. Young (see Young, 1937,
1969; MacShane, 1940, 1978), namely as a device for generalizing the idea of a
minimizer for problems of the calculus of variations and for describing the behaviour
of minimizing sequences.

The plan of the article is as follows:

In Section 2 we outline necessary technical results concerning Young measures.

In Section 3 we prove general results of a classical type for the minimization of
integrals of the form

I(u)=J f(x,u(x))dx (1.1)

in the set .« (a) of integrable maps u:w — R* satisfying the linear constraint

J‘ u(x)dx=a, (1.2)
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where aeR* is given and where f:w x R¥—(— o0, c0] satisfies appropriate continuity
and growth hypotheses. We do not assume that f(x,-) is convex. It is proved that
the minimum of [ in &/ (a) is attained. A generalized problem for Young measures is
formulated, each Young measure minimizer being the limit of a sequence of minimizers
of I. Our choice of proofs makes frequent use of ideas of Berliocchi & Lasry (1973),
and we also apply Aumann’s theorem on set-valued integration.

In Section 4 we apply the results of Section 3 to the problem of minimization of
the free energy of an N component fluid mixture. We treat both miscible and
immiscible mixtures, studying also the effect of gravity on the behaviour of minimizing
sequences.

Finally, in Section 5 we briefly remark on recent research concerning Young
measure minimizers in nonlinear elasticity. This case differs from that for fluid mixtures
in that the minimum free energy is in general no longer attained. Minimizing sequences
generate microstructure as they approach the lower bound for the energy; such
microstructure is a typical feature of crystal morphology.

This article is an updated and supplemented version of unpublished work carried
out several years ago and partially announced in Ball (1984).

2. YOUNG MEASURES

The following version of the fundamental theorem concerning the existence of Young
measures and their relation to weak convergence is given in Ball (1989); the essence
of the result is well known (see, for example, Berliocchi & Lasry (1973), Tartar (1979),
Balder (1984) and the other references in Ball (1989)).

Theorem 2.1 Let Q< R" be Lebesgue measurable, let K = R* be closed, and let
ZD:Q- Rk j=1,2,..., be a sequence of Lebesgue measurable functions satisfying
z¥(-)- K in measure as j— o0, i.e. given any open neighbourhood U of K in R*

lim meas {xeQ:z9(x)¢U } = 0.
j— o

Then there exists a subsequence z* of z” and a family (v,), xeQ, of positive measures
on R, depending measurably on x, such that

@) vyl dzerj : dv,<1 for ae. xeQ,
R
(ii) suppv, <K for a.e. xeQ, and

(i) (%) = (v f> = J S(2)dv(h)
Ri
in L*(Q) for each continuous function f:R*— R satisfying
lim f(1)=0.
|A]= 0

Suppose further that given any R > 0 there exists a continuous nondecreasing function
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gr:[0, 00) = R, with lim, , _ gg(t) = oo, such that

supj ar(|2*(x)]) dx < o0, (2.1)
I QnNBr

where B = B(0, R). Then [|v, || = 1 for a.e. xeQ (i.e. v,e P(R¥) = {probability measures
on R*} a.e.), and given any measurable subset 4 of Q

fE) =<, f>  inLY(A4) 22)

for any continuous function f:R*—R such that {f(z"’)} is sequentially weakly
relatively compact in L'(A).

Brief sketch of proof

Denote by C,(R¥) the Banach space of continuous functions f:RF— R satisfying
lim; ., f(4) = 0, with the norm || f ||co = sup;.g«| f(4)|. By the Riesz representation
theorem the dual space C,(R¥)* of C,(R¥) is isometrically isomorphic to the Banach
space M(R*) of bounded Radon measures on R*. We identify z” with the mapping
v9: Q - M(R¥) defined by

v(x) = 52(1)(x)' (2.3)

Then v is a bounded sequence in the Banach space L*(Q; M(R*)) of essentially
bounded weak* measurable mappings u:Q— M(R¥). Since C,(R¥) is separable,
L®(Q; M(R*)) is isometrically isomorphic to the dual space of L'(Q; Co(R*)), and
hence there ex1sts a subsequence v* of v and an element v = (v,) of LZ(Q; M(RY))
such that v Xy in LZ(Q; M(R¥)). This is easily seen to imply (iii), and (i) follows by
weak* lower semicontinuity of the norm. It is not hard to prove that v, >0,
suppv, < K, v inheriting these properties from the sequence v". The remaining
assertions of the theorem may be proved via approximations of 1 and feC(R¥) by
functions from C,(R¥). For the details see Ball (1989). O

3. AN ABSTRACT MINIMIZATION PROBLEM

Let w = R" be a bounded domain. We study the problem of minimizing

= J f(x,u(x))dx (3.1)

in the set .</(a) of integrable maps u: w — R* satisfying the linear constraint

f u(x)dx = a, (3.2)

where aeR* is given. We suppose that f: @ x R¥—(— oo, c0] is a normal integrand,
that is

(@) f(x,-) is lower semicontinuous (ls.c.) for a.e. xew, and
(b) there exists a Borel measurable function f:w x R*—~[0,00] such that
f(x )= f(x,*) for a.e. xew.
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We also assume that f satisfies the growth condition
f(x,v)=¢(|v]) for ae. xew and all veR¥, (3.3)

for some function ¢:[0, 00)—(— o0, 00] which is bounded below and such that
lim,, ,, ¢(t)/t = co. Without loss of generality we suppose that ¢ is convex,
nondecreasing and ls.c. Under these hypotheses I(u) is well defined (either finite or
+ o0) for every measurable u: w — R*. Finally we suppose that

inf I < o0, (3.4)
A (b)
for every b in some neighbourhood of a.

We denote by f** the lower convex envelope of f with respect to v. Then
f**: 0 x R¥—(—o0, 0] is also a normal integrand satisfying the growth condition
(3.3) with the same ¢ (see Berliocchi & Lasry (1973, p. 159), Ekeland & Temam (1974,
p. 229)). The first approach to the study of minimizing sequences for the problem
(3.1), (3.2) is encapsulated in the following theorem, which is a special case of a result
of Ekeland & Temam (1974, p. 266):

Theorem 3.1 The minimum of

I**(u) = J J**(x, u(x)) dx (3.5)
in ./(a) is attained, and
inf I** = inf I. (3.6)
oA (a) .o (a)

Given any minimizing sequence u'” of I in .o/(a), there exists a subsequence u
converging weakly in L!(w; R¥) to a minimizer u** of I** in .o/(a). Conversely, given
any minimizer u** of I** in .¢/(a) there exists a minimizing sequence u™ of I in .</(a)
converging weakly in L'(w; R¥) to u**.

Remark 3.2 In fact more than this is true. The minimum of I in .&/(a) is itself attained
(see Theorem 3.3; for other existence assertions ‘without convexity’ see Olech (1970),
Aubert & Tahraoui (1979), Marcellini (1980), Cesari (1983)), and the minimizing
sequence u™ can be taken to be a sequence of minimizers (see the proof). However
these facts are due to special features of our variational problem, and the
corresponding statements are not in general true for other problems of the calculus
of variations.

Theorem 3.1 can be criticized on the grounds that it does not give optimal
information about the values in R* taken by minimizing sequences of I. In fact the
theorem does not distinguish between different f having the same lower convex
envelope f**. More precise information can most conveniently be expressed using the
Young measure. This leads to a second approach to the study of (3.1), (3.2), in which
a new minimization problem among Young measures is introduced.

Let X = LZ(w; M(RY)), M = {veX:v,eP(R*) a.e. xew}. Given veM we define

Iv) = J vy, f(x,7)pdx,
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= J f f(x,v)dv, (v)dx. (3.7
o J Rk

The map v I (v)is well defined, affine, and weak* 1.s.c. from M to (— oo, oo] (Berliocchi
& Lasry, 1973, p. 143). Note that if u: @ — R* is measurable then

1(0,)) = I(w).
Let /(a) denote the set of those ve M such that (v, v) = [»vdv,(v)isintegrable and

J (v, vydx=a. (3.8)

The new variational problem is to minimize I in .2/(a).
Given meR¥, define f,,: w x R*—(— 0, 0] by

Sm(x,0) = f(x,0) —m-v. (3.9)
We denote by S,,(x) the set of minimizers of f,,(x,-). Note that
Sm(x)=0f(x,") " " (m), (3.10)

where we recall that if F:R*—(— o0, 0] then the subdifferential dF(v) of F at the
point veR* is defined to be the set

OF (v) = {meR*: F(w) = F(v) + m*(w — v) for all weR*}.

Theorem 3.3 o
(i) The minimum of I in ./(a) is attained.
(i) inf I=infI. (3.11)

(a) ()
(iti) The minimizers of I in .27(a) are precisely those v e\ (a) such that
supp v, < S,,(x) a.e. XEW, (3.12)

for some meR*.

(iv) The minimum of I in .o/(a) is attained. The minimizers are precisely those ie.o/(a)
such that

u(x)€eS,, (x) a.e. Xew. (3.13)

(v) Given any minimizing sequence u'” of I in .%/(a), there exists a subsequence u
such that 5,‘(",( , converges v weak* in X to a minimizer v of I in .«7(a).

(vi) Given any minimizer v of I in .2Z(a), there exists a sequence u™ of minimizers of I
in .o/(a) such that 9 .., converges weak* in X to v.

Proof

(i) Let v be a minimizing sequence for I in .«(a). Since v is bounded in X, there exists
a subsequence v converging weak* to some ve X. It follows from general results of
Berliocchi & Lasry (1973, pp. 150, 153) that ve.o/(a); however, for completeness we give
a proof. First, from the definition of weak* convergence it is easily shown that v, >0
a.e. Next,since || V|| <lim,,_, || v* | x = 1, it follows that |v,| < 1 a.e. Using (3.3), (3.4)
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we have that for all sufficiently large u and all k> 1,
1¢(k)f J |v]dv( u)dx<J W (|])ydx < C < o0, (3.14)
{lv] =k}

for some constant C. Define $eC,(R™) by

1 for |v| <k,
Fw)=<1+k—|v] fork<|v|<k+1, (3.15)
0 for [v| = k+ 1.

Then from (3.14)

J (K7, 9()> — Ddx| =

lim J v, 9 () —1)dx

p—o

< lim J V([k, 00))dx < Co(k)~ 1. (3.16)

p— o

Letting k— oo in (3.16), it follows from the monotone convergence theorem that

J (1—1|7,])dx =0. (3.17)
Hence |7,| =1 ae., so that v e P(R¥) a.e. Let g*(v) = ¥(v)v. Then

J (e, g“()>dx—a

limJ v g*()ydx —a

o

< limJ v, g v) —v)dx

p—=w

< Cke(k)™ ',

where we have used (3.14). Letting k — co we deduce from the monotone convergence
theorem that jw< Vy,v)dx =a,and thus ve <(a) as clalmed

Since I(-) is weak* Ls.c. it follows that I (v) =inf ;, I, so that v is a minimizer.
(i) Suppose vesz/( ) satisfies (3.12) for some meRX. Then for ae. xew,

fx,w)= f(x,v) + m-(w—v) forall vesuppv,, weRk (3.18)
Let ve./(a). Integrating (3.18) with respect to ¥, and v, we obtain
s [(x,)) 205, (%)) + me (v, ) — <V, 0)) A€ xew. (3.19)

Integrating over @ we deduce that 1(v) = I(9), proving that v is a minimizer.

Conversely, let ¥ minimize I in Jai(a). Consider the function G(b)‘j=efin£ ;iu,)i- G is
obviously convex, and, by a minor adaptation of the proof of (i), G is l.s.c. From
(3.4), aeint {G < w0 }. Hence dG(a) is nonempty (cf. Ekeland & Temam, 1974, pp. 12,
22). Let medG(a). Then

J {ve—V,, f(x,0)—mv)dx >0 forall ve M. (3.20)
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Let z: @ — R* be measurable and such that

Jm(x, 2(x)) = min f,,(x, v).

ve Rk

Such a z exists (cf. Ekeland & Temam, 1974, p. 220). Let v, = 6,,,. By (3.20),

J [minfm(x, ) — Vg, frul(x, -))] dx>0. (3.21)
o L veRk

But the integrand in (3.21) is nonpositive. Hence, for a.e. xew, supp v, is contained
in the set of minimum points of f,,,(x ), which gives (3.12).

(ii), (iv) Let 7 be a minimized of [ in /(a), and let m be such that (3.12) holds.
Consider the set-valued function S,(-). By (a) and (3.12), for ae. xew, S,(x) is
nonempty and closed. Also, on account of (3.4) there exists veL!(w; R¥) such that

def

a() = f,,(,v(-))eL*(w). Hence

(x) mlnf (x,z) <a(x) ae.xew.
ze Rk

By (3.12) there exist d >0 and ¢ such that f,(x,z) > c +d|z| for a.e. xew and all z.
Hence

|z| <d ™ '[a(x) —c] for all zeS,(x), ae. xew,

and thus S,,(*) is integrably bounded. In particular, S,,(x) is bounded for a.e. xew
and hence its convex hull co S,,(x) is closed (Rudin, 1973, p. 72). Further, since y()
is measurable (Ekeland & Temam, 1974, p. 220), f,.(*;) — y(*) is a normal integrand,
and hence without loss of generality may be assumed Borel measurable. So for any
open set E — R*, the set

{(x,v)ew X E: f(x,0) = 7(x)} = {(x, v): vES ,(X) " E}

is Borel measurable. Its projection onto w is {xew:S,,(x)N E is nonempty}, which is
therefore Borel measurable. Hence S,,(¢) is measurable. Since S,,(-) is measurable,
closed, nonempty and integrably bounded, by Aumann’s theorem (Aumann, 1965;
Berliocchi & Lasry, 1973, p. 164; Clarke, 1983)

J SLix)dx= J co S,,(x)dx. (3.22)

(The integral of a measurable, nonempty and closed set-valued function F from o
to subsets of R* is the nonempty set

J F(x)dx = {J‘ z(x) dx: ze L' (w; R¥) such that z(x)eF(x) a.e. xew}.)

Now since by (iii) supp v, = S,,(x) a.e., and since co S,,(x) is closed a.e., it follows that
{v,,vyecoS,(x) a.e. Therefore aejw co S,(x)dx, and thus by (3.22) there exists a
ueo/(a) such that u(x)eS,(x) ae By (i) J;, is a minimizer of [ in
</(a),and since inf c,,(a)l <inf I it follows that u mlmmlzes I in ./(a) and that (3. 11)
holds. Because of (3.11), 5,,()mm1mxzesl in .o/ (a) for any minimizer # of I in /(a), s
that (3.13) follows from (iii).

(v) This follows immediately from (ii) and the proof of (i).
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(vi) Let 7 be a minimizer of [ in .#/(a), and let m be such that (3. 12) holds. Let

A= {5,,(.): ieL'(w; R¥), a(x)eS,,(x) ae., j idx = a},

Nz{ﬁeM:suppﬁch,,,(x) a.e.,J‘ <\7x,v>dx:a}.

We prove that N is the weak™® closure of A in X. The result then follows from (iii),
(iv) and the metrizability of the weak* topology of X when restricted to M. The proof
of (i) shows that N is weak™ closed, so we just need to prove that N = weak* closure (A).
Suppose not. Then there exist ve N and a weak* open neighbourhood U of v disjoint
from A. We may assume that U consists of those veX such that

<ég, = Lssin il (3.23)

J <‘7x Vo lpi(x’ U)>dX

where ;e L' (w; Co(R¥)), &; > 0. Since each y; is a normal integrand we may assume
without loss of generality that = (,...,¥ ) is Borel measurable. Define

T(x) = {(Y(x, ), v):0€8,,(x)} = R¥*E.
Then I'(") is closed, nonempty, and integrably bounded (since S,,(‘) is). To show that

I'(*) is measurable it suffices to show that the set

T‘i—e-f{xew:(zp(x, v),v)eE, x E, for some veS,,(x)}
is measurable for any given open subsets E; = RY, E, = R*. But T is the projection
onto w of the set

{(x,0):v€S,,(X) N E; } n{(x,v):¥(x,v)eE, }. (3.24)

The first set in (3.24) is Borel measurable as shown in the proof of (ii), (iv) above,
while the second is Borel measurable since ¥ is. Thus T is measurable.

We apply again Aumann’s theorem to I'(+). Since ({V,,¥(x,v)),{v,,v))ecol(x)
a.e., it follows that there exists e L!(w; R¥) with ii(x)eS,,(x) a.e. such that

J Vi(x, u(x))dx = J {Vy, Yi(x,v) ydx, i=1,...,L,

j a(x)dx=J (v,vydx=a.

But then v=20_.,eUNA, a contradiction. 0

()
Proof of Theorem 3.1 Applying Theorem 3.3 to f**, we see that the minimum of
I** on o/(a) is attained (this could of course also be proved directly via standard
lower semicontinuity results). Let u** be a minimizer. By Berliocchi & Lasry (1973,
Lemme 3, p. 161), there exists ve M such that

f**(x, u**(x)):j Vg, f(x,)>dx, (V,v)=u**(x), ae. xew. (3.25)

«
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Hence ve./(a) and I(9) = inf ,,, I** <inf ,, I. By (ii) ¥ is 2 minimizer of I in Z(a) and
(3.6) holds. Furthermore, by (vi) there exists a sequence u™ of minimizers of I in
</ (a) such that J,.,, converges weak* in X to v. Since by (3.3) and the de la Vallée
Poussin criterion u™ is sequentially weakly relatively compact in L'(w; R¥), this
implies in particular by Theorem 2.1 that u™ converges weakly in L'(w;R*) to
{V,,v) =u** Similarly, given any minimizing sequence u'” of I in .«/(a), by (v) there
exists a subsequence u* such that §,w , converges weak* in X to a minimizer v of
Tin o(a); thus u® converges weakly in L!(w; R¥) to <7,,0> = u**, and by convexity
(3.25) holds, showing that u** is a minimizer of I** in A(a). d

4. EQUILIBRIUM OF FLUIDS

In this section we apply Theorems 3.1, 3.3 to the problem of the equilibrium of single
and multicomponent (heterogeneous) fluids, in the spirit of Gibbs (1873).

A. Minimization of the free energy for miscible mixtures

We consider first the case of an N component homogeneous miscible fluid mixture
filling a bounded open container w = R®* whose boundary is held at a constant
temperature 3. By miscible we mean that each of the N fluid components can be
present at every point x = (x,, X,, x3)ew. Physically, one can think of the mixing in
a miscible mixture as taking place at a molecular length scale. Continuum theories
of immiscible mixtures typically also have the property that each component can be
present at every point, but the viewpoint we will adopt in subsection B for the
modelling of immiscibility will be different.

We denote by pi(x),i=1,..., N, the specific mass densities of the fluid components
at the point xew. The state of the fluid is the vector field p:w — RY given by

pxX)=(p1,---, pN)(x). 4.1)

The mass density of the mixture is given by

N
M(p)(x) = Y. pix) (4.2)

We suppose that at the temperature 3 the specific Helmholtz free energy y(x) of the
fluid is given by the constitutive relation

Y=vspi,--.. pn) =Y o(p), 4.3)

where 1 g:RY - (— o0, c0] is bounded below, lower semicontinuous, and satisfies the
following conditions:

H1) DY {peRN:y4(p) < o0} consists of an open subset U of the positive orthant

RY = {peR":p, >0} together with part of the boundary dU of U, and 4 is
locally bounded above in U,
(H2) 0y 4(p) is empty for all peDNaU,

(H3) Lim [p|™"¢4(p) = o0.

lpl=
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Example 4.1 For a van der Waals fluid the free energy has the form (with N =1)

—sp*+ kp910g<5p—> —cpYlog 3—dp3+ep if pe[0,b),
Volp) = 3 4.4)

+ oo otherwise,

where s >0,b>0,c>0,k>0,d and e are constants (cf. Landau & Lifschitz, 1970).
In this case D =[0,b),U =(0,b) and 4(0) = 0, 3(b) = co. Clearly s 4(*) is ls.c. and
satisfies (H1), (H3), while (H2) holds since limp_.(H Y e(p)/op=— 0.

Example 4.2 For a mixture of N noninteracting and infinitely compressible fluids
we can take

N
Ylp)= 2. ¥'(py), (4.5)
i=1

where, for each i,y/(t) = oo if t <0,y is finite and continuous on [0, o), '(0)= 0,
lim,_,, ¥'(t)/t = — oo,lim,_,  §'(t)/t = oo. In this case D = RY, U = (0, c0)", and it is
easily verified that 4 is 1.s.c. and satisfies (H1)-(H3).

We suppose the body force to be gravitational with potential energy density
gM(p)(x)x5, where g >0 is a constant. The volumetric heat supply is assumed zero.
A well known argument (see, for example, Duhem, 1911; Ericksen, 1966; Coleman
& Dill, 1973; Ball, 1984; Ball & Knowles, 1986) based on the existence of a Lyapunov
function, the availability or ballistic free energy, for the dynamical equations, then
suggests that states of the fluid approaching equilibrium will be associated with
minimizing sequences for the free energy functional

I(p)= f ¥ s(p(x)) + gM (p)(x)x;] dx, (4.6)
subject to the mass constraint

J p(x)dx =a, (4.7)

where a =(a,,...,ay)eU.

We are now in a position to apply Theorems 3.1, 3.3 to the minimization problem
(4.6), (4.7) with f(x, p) =Y o(p) + gM(p)x;. It is easily seen that f is a normal integrand.
The growth condition (3.3) follows from (H3) since @ is bounded, while (3.4) holds
taking p(x)=beU. Hence both theorems apply. In particular, by part (iii) of
Theorem 3.3 ve.o/(a)is a minimizing Young measure of I'in </(a) if and only if there
exists an meR" such that supp v,  S,,(x) a.e. Suppose for simplicity that  3eC*(U).
Then by (H2)

¥ s(p) +gM(p)xs —m:p =7y(x3), (4.8)
DY 4(p) =m— gxst, (4.9)
for all peS,,(x), where y(x3) = min, [ 4(p) + gM(p)x; —m-pJand t =(1,..., 1). Define
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the pressure p = p(p) and the vector of chemical potentials p= pu(p) by

p=p-D,Yslp)—s(p),  n=Dhyp) (4.10)
Then it follows from (4.8), (4.9) that

p(p)= —y(x3), wp)=m—grxy  for all peS§,,(x). (4.11)
In particular,

(e p()) = —7(x3), {V,u())=m—gtx;  ae Xeo, (4.12)
for any minimizer v.
We split the discussion into two cases:

Case 1 (g=0, ie. zero gravity)

Here the set S,, = S,,(x) is independent of x and may contain more than one point,
and in general v, is not a Dirac mass. For example, for a van der Waals fluid with
free energy given by (4.4) with sb > (3)’kJ the graph of Y 4in [0, b) is not convex and
has a common tangent with end-points p'", p® satisfying 0 < p" <3b < p® and
slope m* (see Fig. 1). If (meas w) ™ 'ae(p, p?) then a = (meas w)(Ap™ + (1 — A)p®)
for some 4e(0, 1), and thus

Ve =240, + (1 = 2) 0 (4.13)

p(1)

Yo

M 0®

A=y TS Y <

S
-
S~
-

Fig. 1. The graph of 4 for a van der Waals fluid.
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satisfies suppv,<S,. and |,(V,,p)dx=a. Hence by Theorem 3.3(iii) v is a
minimizer.

Case 2 (g>0, ie. positive gravity)

We suppose first that there is more than one component to the mixture (i.e. N > 1).
This case is similar to Case 1 in that S,,(x) may contain more than one point a.e.,
and v, need not be a Dirac mass. To construct an example, suppose that N =2 and
that f is such that

fp1p2)=f**(p1.p2)=(p1 +p,—2)* if (pr— 12 +(p,— 1) g%-
Let w < {xeR3:|x3| <2g~'}. Then the line segment

={(p1,P2):p1 + P2 =2—39%3,(p1 — 1)* +(p2 — 1)’ < i

is contained in S,,,(x) for m =0, and so any v such that supp v, = K a.e. is a minimizer
of I'in </(a) for some a.

Next we suppose that N = 1. We claim that, for any meR, S,,(x) is a singleton for
a.e. xew. In fact, let p,eS,,(x), p,€S,.(y) with x5 < y;. Then

Y s(pp) —mpy + gppxs = Y g(p,) —mp, + gpaxs, (4.14)
Yo(pa) —mp,+gpays =Y o(ps) —mpy + gpsys, (4.15)

so that adding (4.14), (4.15) gives (p, — p,)(x3 — y3) =0, whence p, < p,. Thus if p_,
Pa ESH(X), P, Py €SW(y) With p. <p,p, <p,” and x5 <ys, then the open intervals
(ps,pS).(p, ,p, ) are disjoint. Thus there are at most countably many values of
x3 such that S,,(x) consists of more than one value of p, proving the claim. It follows
from Theorem 3.3 (iii) that if ¥ minimizes I in </ (a) then v, is a Dirac mass ¢, for
a.e. xew, where p is a minimizer of I in .o/ (a). (This kind of reasoning is due to Aubert
& Tahraoui (1979); see also James (1979), Mascolo & Schianchi (1987).) An interesting
conclusion is that, although I is sequentially weakly Ls.c. in L*(w) if and only if y 4(-)
is convex, I is always Ls.c. with respect to weak convergence in L'(w) of minimizing
sequences. This follows because any minimizing sequence p” of I generates a
minimizing sequence 0 ,; of I; by the proof of Theorem 3.3 there is a subsequence
converging weak™® in X to a minimizer v of I, and by the above v = 05, for a minimizer
p of I.

We summarize. In all cases the minimum of the total free energy I subject to (4.7)
is attained, minimizers p being characterized by the Weierstrass condition

Y o(p) —m-p + gM(p)x3 = Y 4(p(x)) — mp(x) + gM(p)(x)x; (4.16)

for all p, a.e. xew. (Note that in particular (4.16) and (H2) imply that p;(x) >0 for
a.e. x, so that all components are present everywhere and vacuum states are excluded.)
If g=0 or g>0 and N >1 then there are minimizing sequences, consisting of
minimizers, which mix the phases more and more finely, converging to a nonclassical
Young measure minimizer. In the case g >0, N =1 all Young measure minimizers
are classical, and the aforementioned fine phase mixing of minimizing sequences does
not occur.

The appearance of the lower convex envelope of /4 in Theorem 3.1 implies that
the minimum total free energy is a convex function of a; this is consistent with results
of statistical physics for infinite volumes. For discussion and references see Thompson
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(1972). Penrose & Lebowitz (1971), on the other hand, give an interesting
interpretation within the context of equilibrium statistical physics of metastable
portions of the graph of .« 4 for a single component fluid, i.e. parts where y g is convex
but not equal to §* The Weierstrass ‘stability’ condition (4.16) shows that only
values of p where Y g=y%* can occur in minimizers (and, in the sense of Young
measures, in minimizing sequences).

If hypothesis (H2) is dropped, then we may still apply Theorems 3.1, 3.3, but
minimizers may take values on dU. In particular, vacuum states may occur. For
example, in the case N = 1, the problem of minimizing

I(p)= f [kp” + gpx3] dx, (4.17)

subject to the constraints p >0 a.e. and

j pdx=a, (4.18)

where k>0, y > 1 are constants, corresponds to that of equilibrium of a fixed mass
of an adiabatically deforming polytropic gas under gravity. The minimizer is unique,
and in the case w = E x (0, H), where E c R? is bounded and open with area A, is
given for H > h by

30) = {[(kv)*g(h~x3)]1/w-1> if xy <h
g 0 if x3>h,

" :< ay )(7—1)/v<ky>1/y. 430
A(y—1) g

This can be verified by showing that p(x)eS,,(x) a.e. For the same problem treated
in material coordinates see Ball (1988).

We could also contemplate applying Theorems 3.1, 3.3 to the Gibbs problem of
maximizing the total entropy

(4.19)

where

I(e,p)= f file(x), p(x)) dx, (4.21)
of a miscible mixture subject to given energy
J g(x)dx =, (4.22)
and given mass densities w
f p(x)dx =a. (4.23)

Here ¢ = &(x) denotes the specific internal energy of the mixture and the specific entropy
n(x) is assumed to be given by the constitutive relation n = (e, p). This problem
corresponds to the case of a thermally insulated boundary dw. However, for the
existence proofs of Theorems 3.1, 3.3 to apply directly, it would be necessary to
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assume the growth condition

—h(e,p) = (el +[p])  for all eeR, peR”, (4.24)

for some function ¢:[0, c0)—(— oo, 00] which is bounded below and such that
lim, ,  ¢(t)/t = oo. This growth condition is unrealistic since we want the temperature
9= 07/ 0¢ to be positive. Analogous results could probably be proved by exploiting
the positivity of & (cf. Lin, 1989), but we do not explore this further here. The
characterizations (3.12), (3.13) of maximizers do not require (4.24).

For (3.13), which corresponds to classical results of Gibbsian thermostatics, see,
for example, Dunn & Fosdick (1980), Fosdick & Patifio (1986). Particular mention
should be made of the work of Noll (1970), which roughly speaking concerns Young
measure maximizers that are independent of x; this work also investigates the Gibbs
phase rule (see also Man, 1985b). For later work in the same spirit we refer to Patifio
(1987).

A further extension would be to include as a new variable the velocity, together
with appropriate constraints corresponding to additional constants of motion (see
Man, 1985a; Ball, 1984; Lin, 1989).

B. Minimization of the free energy for immiscible mixtures

An immiscible mixture is one for which the components remain separate on a length
scale that is sufficiently large with respect to molecular dimensions. An extensive
review of theories of immiscible mixtures is given by Bedford & Drumbheller (1983).
Our purpose here is to illustrate how at the level of thermostatics Theorems 3.1, 3.3
can make a link between a theory in which at each point x there is only one component
present, and one in which all components may be present.

We model immiscibility by imposing the constraint that at most one of the densities
pi(x) can be nonzero for a.e. xew. Equivalently, the function

0 if, forsomej, p; = Ofori#j,p; >0

H(p) = { (4.25)

+ oo otherwise,

which is the indicator function of the nonnegative coordinate axes, is zero for a.e. xew.
We suppose for simplicity that the fluid components are infinitely compressible,

and that at the temperature 9 the ith component of the mixture has the free energy

function ¥'=yi(p;), where Yi(t)= oo if t<0, ' is finite and continuous on

[0, o0), ¥ (0)= 0, and lim, ,_/(t)/t = co. We consider the problem of minimizing

t— o0

N
J(p)= J < _Z Yi(pi(x)) + H(p(x)) + gM(P(X))Xa) dx, (4.26)
subject to

f b i 4.27)

where ¢; >0 foralli=1,...,N.

We apply Theorems 3.1, 3.3 to the minimization problem (4.26), (4.27) with
f(x,p) =N ¥ (p;) + H(p) + gM(p)x;. Since H is Ls.c., f is a normal integrand. The
growth condition (3.3) and hypothesis (3.4) are also easily verified. So both theorems
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apply. Since H is not convex, the computation of f**(x, p) is not immediate even
when the ' are themselves convex. What is clear, however, is that f**(x, p) < oo for
all peRY, so that the relaxed problem in Theorem 3.1 takes the form of that for a
miscible mixture.
Define F:RY —(— o0, 0] by
F(p) =

def

Z ¥i(p:) + H(p). (4.28)
=1

Theorem 4.3

N

N
F**(p)=min{ Y AW)*F*(m;):4; >0, _Z A= I,Am,—p,}, (4.29)

f**(x, p) = F**(p) + gM(p)x;. (4.30)

Proof. We denote by Y; the ith semi-axis {te;:t > 0} of RY, where e; is the unit vector
in the ith direction. Since evidently F**(p) = (/')**(p) for peY;, we may assume
without loss of generality that each ' is convex.

We have that (cf. Ekeland & Temam, 1974, p. 260)

N+1 N+1
F**(p)=min{ Z 1 F(p®): =0, Z =1, Z up""—p} (4.31)

Let peRY, and let w, p* realize the minimum in (4.31). If g, >0, then since
H(p®) < oo it follows that p® belongs to some Y;. Let Py = {k:y, >0, p®eY,} and
P, = {kip, >0, p""eYi,p""7&0},1':2,'...,N. If P; is nonempty let 4, =Y p py, 1 =
A7 X p i p™; otherwise set A, =0, r?=0. Then XV, 4,=1,3~ 1/lr“’ =p, and

N N

Y AFGN)< Y A Y 4 mF(p®) = F**(p), (4.32)
i= i=1 P

where 3 p, is zero if P; is empty. Let m; =r{". Then i,m; = p;. Since by (4.31) the
left-hand side of (4.32) is not less than F**(p), we obtain (4.29). Since M(*) is linear,
(4.30) follows.

O

Remark 4.4 1If peY; then F**(p)=(J')**(p;). In fact by the theorem F**(p)=
min_{/l(z//")**(m) Am; 'p,,/e[O 17}, and since (¥")**(0) = 0 we have that (y/')**(p;) <
AW (mg) + (1 = 2)()**(0) < F**(p).

The expression (4.29) may be easily computed in some special cases using Lagrange
multipliers:

Example 4.5 Let y(t) = k;t% k; > 0,a > 1. Then
F**(p ( 3 klep > . 433)
Example 4.6 Let /'(t) = k;tlog t,k; > 0,2 > 1. Then

F**(p ( Y kip; )log( Y. kip; >— i p:k;logk;. (4.34)

i=1
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The numbers 4; in (4.29) may be interpreted as volume fractions, which are used as
extra variables in theories of immiscible mixtures.

Comments on theories incorporating density gradients and dynamics

In all the above discussion we have ignored surface energy. This is often modelled
by adding a term such as ¢|Vp(x)|? to the integrand in (4.6), where ¢ > 0 is constant,
following the ideas of van der Waals (1893) and Cahn & Hilliard (1958). For the
study of such problems and the taking of the limit ¢ —0 see, for example, Gurtin &
Matano (1988), Modica (1987), Fonseca & Tartar (1989), and Baldo (1989). Adding
such a term imposes strong conditions on the geometrical structure of minimizers,
even in the limit ¢ -0, and prevents minimizing sequences from mixing the phases
infinitely finely, thus converging to a Young measure minimizer that is not a Dirac
mass.

Of course, there may nevertheless be dynamic mechanisms, consistent with
thermodynamics, that induce finer and finer phase mixing down to a length scale at
which surface energy takes over and prevents further mixing; such behaviour would
lend interest to Young measure minimizers. Another possibility is that of fine mixing
induced by negative surface energy. The rigorous study of such questions is in its
infancy; for discussion and examples see Ball (1986), Pego (1987).

5. REMARKS ON YOUNG MEASURE MINIMIZERS IN
NONLINEAR ELASTICITY

Consider a homogeneous elastic body occupying in some reference configuration the
open set Q  R3. Configurations of the body are described by mappings y:Q— R>.
At some constant temperature we consider the problem of minimizing the total free
energy

1(y) =J ¥(Dy(x)) dx .1

of the body subject to some boundary conditions, for example that
Yloq, is given, (5.2

for some subset 0Q, of the boundary 0Q. Here Dy(x) denotes the deformation gradient
and Y = /(A) the free energy function of the material, and we have ignored all other
energy contributions.

In recent years it has emerged that there are materials for which (5.1), (5.2) provide
a good mathematical model but for which the minimum is not attained. This has
been established rigorously for certain models of elastic crystals by Ball & James
(1987, 1989) (see also Chipot & Kinderlehrer, 1988; Fonseca, 1987, James &
Kinderlehrer, 1989). The idea of investigating such possibilities has its roots in
suggestions of Ericksen (see, for example, Ericksen, 1981).

In cases when the minimum is not attained, minimizing sequences form finer and
finer microstructures, consisting, for example, of parallel layers in which the
deformation gradient alternates between two essentially constant values. Such
microstructure is frequently observed in both optical and electron micrographs of
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crystals, and can have a period of as little as a few atomic spacings (see, for example,
the remarkable electron micrograph of microtwinning in NiMn of Baele et al., 1987).
Careful study of the minimization problem can lead to predictions concerning the
geometry of such microstructures. As for the case of fluids, extra geometrical regularity
is to be expected if surface energy is taken into account (see Parry, 1987; Fonseca,
1989); for example, this might be expected to give fine twinning a periodic structure
(for a suggestive one-dimensional analysis see Miiller, 1989).

If y is a minimizing sequence for (5.1), (5.2), then under mild supplementary
hypotheses there will be by Theorem 2.1 a subsequence y'* such that 6, w converges
weak* in X = L*(Q; M(R®)) to a Young measure v = (v_). Note that v, is a probability
measure on 3 x 3 matrices M>*3 ~ R’ for a.e. x. One could envisage analysing a
generalized minimization problem among Young measures, in the spirit of (3.7), but
this is made difficult by the fact that no characterization of Young measures that
may be obtained as weak* limits of gradients is known. The properties of these Young
measures that are used in Ball & James (1987, 1989) are those that result from the
weak continuity of Jacobians (cf. Reshetnyak, 1968; Ball, Currie & Olver, 1981); more
precisely, we have that if Dy is bounded in L?(Q; R®) for some p > 3, then

{v,cof Ay =cof (v ,A),{v,detA)=det{v  ,A), ae xeQ, (5.3)

where cof A denotes the matrix of cofactors of A. However, it is known that the
relations (5.3) do not characterize Young measures coming from gradients.

Rather than describe in detail here the results that have been obtained for crystals,
we confine ourselves to discussing a simple model example which shows how
minimizing sequences are forced to have more and more microstructure in a way
strongly resembling fine twinning in martensites. Let Q = (0, 1)?, and consider the
problem of minimizing

I(u) = J [ —1)* +u}]dxdy, (5.4)
0

among scalar functions u = u(x, y) satisfying the boundary condition
ul,_o=0. (5.5)

In (5.4), u,,u, denote the weak partial derivatives of u. We claim that the infimum
of I subject to (5.5) is zero, but that it is not attained. To prove the former statement,
define u#:R x (0, o0) > R by

o xely) if0<
“(x’y)“{(l—x)qs(y) ift<

where ¢(y)=yif 0<y<1, =1if y> 1, extended as a 1-periodic function of x to the
whole of R x (0, o0). Then define u'”(x, y)=j~ "i( jx, jy). Now Du(x, y) =i, i,)(jx, jy)
is uniformly bounded and so

2
5.6
1 (5.6)

jmw j=w®

lim I(uY) = lim J [P —1)* + u_(‘,j’z] dxdy=0. (5.7
on{y<j~ 1}

Hence the infimum of I subject to (5.5) is zero. It is not attained because any minimizer
u would satisfy u, =0, which together with (5.5) implies that u =0 and hence that
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I(u) =1, contradicting inf I = 0. The microstructure induced by u" consists of bands
of width (2j)~! parallel to the y axis in each of which Du? is constant, together with
a boundary layer 0 < y <j ' to allow compatibility with the boundary condition (5.5).
We now determine the Young measure v = corresponding to Du' for any
minimizing sequence u'”. We assume that a subsequence has already been extracted

so that the Young measure is defined. In particular, Du'” — Du in L'(Q) for some u
def

satisfying (5.5). Since clearly Du” - K = {(—1,0),(1,0)} in measure, by Theorem 2.1

we have that suppv,_ <K ae, ie.

(x,)
Ve = Alx, Y)é(— 1.0t (1 —Alx, .V))é(l‘o,» (5.8)

where 0 < A(x, y) < 1 a.e. Then Du(x, y)=<v, 4> = (1 — 24(x, ),0), which by (5.5)
implies that u =0 and hence that i(x, y) =} a.e. We have thus proved that

Voo =301,0) T 30(= 1,09 (5.9)

In particular the Young measure is unique.
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