Nonlinear Evolution Equations

Finite Time Blow-Up in Nonlinear Problems
J. M. Ball

1. Introduction.

It is well known that solutions of ordinary differential
i 4
" 5 1-t
is a solution of the equation x = x~. Furthermore, for or-

equations may blow up in finite time; for example, x(t) =

dinary differential equations of the form
(1.1) x= f(x,t), xeR, teR ,

with f:R"x R-> R" continuous, a standard existence and con-
tinuation theorem (cf Hartman [11].) asserts that finite time
blow-up is equivalent to global nonexistence. More precisely,

i (XO’tO) ¢ BR® x R there exists a solution x(t)Y wof (1.1)

with x(to) = Xq defined on a maximal interval of existence
[to,tmax), where t0 < tmaX £ =, ‘and if tmax < o then
lim  |x(t)] = = .
o
max

The situation for infinite-dimensional initial value problems,
such as those arising from partial differential equations, is
more complicated and it is not possible to make any general
statement relating blow-up and nonexistence. In part this is
due to the coexistence of nonequivalent norms each of which
may serve as a measure for the size of a solution.

In recent years, much experience has been gained in the
use of differential inequalities for the study of global non-

existence for infinite-dimensional problems. The reader is
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190 J. M. Ball

referred to the papers [6], [8-9], [12-15], [18-21], [24],
[29-30] for some of this work. The idea is to derive a dif-
ferential inequality for a real valued functional F(u(t)) of
the solution u of the problem under consideration. The in-
equality is then solved, subject to appropriate initial condi-
tions at t = to, so as to obtain a lower bound for F(u(t))
that blows up at some finite time ty > ty- If the definition
of solution requires F to be finite for all time then global
nonexistence has been established. It cannot in general be
concluded, however, that F(u(t)) itself blows up at some
finite time, since the maximal half-open interval of existence
of the solution may be [to'tmax)’ where tmax < tl. (See
Figure 1.) An example of this phenomenon for a backwards non-

linear heat equation is described in Ball [1].

NF(u(t)) i

Figure 1.

Once it is known that tmaX < @ then blow-up of u follows
if a continuation theorem analocgous to that described above
for ordinary differential equations holds. Such a theorem
will imply that some norm of u blows up, though not neces-
arily that F(u) does. To obtain blow-up of F(u) or other
measures of u arguments based on more detailed structure of
the problem may be needed.

The interpretation of blow-up theorems in physical pro-
blems often poses difficulties; blow-up may indicate either a
real phenomenon or a failure of the physical model. 1In con-
tinuum mechanics, for example, hypotheses concerning the be-
haviour of constitutive functions for unbounded arguments may

be necessary to establish blow-up, yet such values of the
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arguments may not be physically realistic. In such cases
careful quantitative estimates are needed to decide on a
valid interpretation. In some problems a solution may blow up
in finite time with respect to one norm, yet be continuable as
a solution in an appropriately weakened sense; this situation
occurs for nonlinear hyperbolic equations, for which spatial
derivatives of a globally defined weak solution can blow up in
finite time due to shock formation (Lax [17,18]).

The preceding remarks are illustrated in this paper
through the discussion of two examples. In Section 2 we con-
sider an initial boundary value problem for a nonlinear elas-
tic body subjected to constant pressures applied to its sur-
face. The boundary conditions are, for example, appropriate
to the case of inflation of a hollow shell under a maintained
internal pressure. The stored-energy function of the elastic
material is assumed to satisfy a special case of the 'concav-
ity inequality' of Knops, Levine and Payne [13]. This assump-
tion is interpreted as a precise statement about the weakness
of the material for large strains. The concavity method [13]
is adapted to show that for suitable initial conditions and
pressures no weak solution can exist for all time, and that
the L2 norm of the solution possesses a lower bound which
blows up in finite time. It is possible that for certain ma-
terials this result is connected with the onset of rupture.
The lack of a suitable existence theory for nonlinear hyper-
bolic systems unfortunately prevents us from making any defi-
nite assertion concerning blow-up of the solution.

In Section 3 a model problem is considered for which an
existence and continuation theorem leads to a proof of blow-
up for certain solutions. The problem consists of the semi-

linear wave equation

=
B = AU o4 lulY"™ u, t>0, xec0 ,

with boundary conditions

u‘ag =0, >0 ,

where Q 1is a bounded domain in R and Yy > 1. Blow-up of
weak solutions in various norms is established for suitable
initial conditions and under stated hypotheses on Yy and n.

The results improve those in Ball [1].
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Other blow=up theoremg for semilinear equations have
been proved by Ball [1l] for the parabolic problem

u, = Au + |u|Y_lu, €=y & e 0

Ulag = 0, €t >0 ,

(see also Weissler [31] for some relevant continuation re-
sults), and by Glassey [9,10] for the nonlinear Schrodinger

equation

iwt = Aw + leY_lw 5 B NS e Rr" .

In both cases strong hypotheses are made concerning the size
of Yy relative to n.

2. Dynamic behaviour of an elastic body under pressure.

Consider a nonlinear elastic body which occupies the
bounded open set Q cim3 in a reference configuration. We
suppose that the boundary 980 of Q 1is the disjoint union of
piecewise smooth closed surfaces aQr(r=1,...,M).

In a typical motion the particle occupying the point
X €  1in the reference configuration is displaced to wu(x,t)

at time t. (See Figure 2.)

Reference confiauration Deformed configuration
Figure 2.
Let Mix3 denote the set of real 3x3 matrices with

positive determinant. The material properties of the body are

characterized by a smooth stored-energy function

W:Q x Mix3 + IR, in terms of which the total stored eneray of

the body is given by

v = [ W(x,Vu(x,t))dx .
Q

Consider the initial boundary value problem
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W (x,Vu(x,t))

(2.1)  pg(x)u , = div — ova ¢ t>0, xeQ
(2-2) E(}Elt) = 'Pr{‘l(i(,t) ’ & = OI }5 € BQr, (r=l, II'I) ’
(2.3)  u(x,0) = uy(x), v (x,0) = u;(x), xe ,

where Py € Lm(Q) is the density in the reference configura-
tion, t 1is the Cauchy stress vector, n is the unit outward
normal to the deformed surface, pr(r=1,...,M) are constant
pressures, and 4,4, are sufficiently smooth given initial

functions. We assume that ess inf 00(3) > 0. The hypotheses
Xe€Q

on 0 imply the existence of a function ©p ¢ cE(m?) which

takes the values p. on BQr.

Let T > 0, and suppose that u is a smooth solutionof
(2.1)- (2.3) on the time interval [0,T]. Suppose further that
u(*,t) 4is invertible on Q with smooth inverse for each
t € [0,T]. Multiplying (2.1) by a smooth function v(x) and
integrating over { we obtain

d f oW i W _ i
= ppu, v dx = | —v' N ds - [ d dx |,
%o WG RO g o g L

r r

where N denotes the unit outward normal to 232 and where
we are using the summation convention for repeated suffices.
Applying the definition of t, the boundary conditions (2.2),

and the divergence theorem, we obtain

3? leadS = i t.v'ds
a2 du u ()
QO .
= - f pvlnids
du (Q)
i
a(pvi) du
u(f) 3du
i ax”
= -] (pvH) , 5 det Vu ax
Q s o
Hence
(2.4) jl-f u Sy edx = = f (pvi) (adjyu) ¢ dx - f i Vi dx
. at 3 PoZp i 'EX : ,a o S LN
Q Q Q du”,
r

where adjVu is the transpose of the matrix of cofactors of
Vu.
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Using the facts that 90, is closed and p_ is constant
for each r one can prove (cf Sewell[28], Ball [3]) the
following

Transport Lemma

é% [ » u'n ds = 3 [ P u,n ds
du () du(Q)

(The coefficient 3 is not a misorint; u(Q) and n depend
on -t)

Multiplying (2.1) by u it follows from the lemma that

tl
the energy identity

(2.5) E(t) = E(0), t e[t &

holds, where

def 1 2 1 i . a
(2.6) E(t) 9E é [Foglug |” + Wix,vu) + 3 (pu’), (adjvu) ldx .

With the above as motivation we make the following

Definition
Let D c (Wl’l(Q))3. A function wu:[0,7] > D is a weak
solution of (2.1) - (2.3) if

(1) u e cr(r0,71; (2(2)3) and satisfies (2.3);

(ii) For any v ¢ D the integrals on the right-hand side of
(2.4) exist and belong to C([0,T]),
[ Pgu Y ax e cl(ro,71), and (2.4) holds;
4 ¥

(iii) E(t) is well defined for all t ¢ [0,T] and satisfies

the energy inequality

E(t) iE(o)l t e [OIT] H
(iv) For each t ¢ [0,T]

det Vu(x,t) > 0 for almost all x ¢ Q@ .

Remarks: Property (iii) is consistent with the use of entro-
py conditions in the theory of nonlinear hyperbolic conserva-
tion laws; energy may be dissipated by shock waves. Property
(iv) could be strengthened by requiring that u be invertible,
but we do not assume this.

We suppose that for each x ¢ 9, F ¢ Mix3, W satisfies

W (x,F) > 29 (x,F)FL .
. ) &
(o5
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We write this constitutive inequality in the abbreviated form

3W (F) 3%(F)'F : (C)

Condition (C) is a special case of the 'concavity inequality'
of Knops, Levine and Payne [13]. It is also in a certain
sense the opposite of a condition studied in Ball [4]. Con-
sider a homogeneous cube of material of side 4 . PFix

A
F € M3X3 and consider a uniform deformation of the cube with

+
deformation gradient Vu = AF. The shape and size of the de-
formed cube is independent of ). The total stored eneray of

the deformation is given by

(2.7) gy = AR
A

Thus the property
(2.8) g(A) > as A > »

can be viewed as characterizing a material which is 'strong'
for large strains. This was the condition proposed in Ball
[4]. If we also suppose that

(2.9) W(F) - » as det F - 0

(i.e. that infinite energy is required to effect a compres-
sion to zero volume) then clearly g()) tends to infinity as
A > 0+. Hence the graph of g for a strong material has the

general form shown in Figure 3(a).

~

——a

g Mg

it A
(a) (b)

Fiqure 3
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A condition which might be satisfied by a 'weak' material is
that g'(A) < 0 (see Figure 3b). Differentiating (2.7) it is
clear that this condition is equivalent to (C). Condition (C)
is satisfied, for example, by stored enercy functions of the
form

W(F) = tr(FFT) + h(det F) ,
where sh'(s) < h(s) for all s > 0; such W can satisfy
(2.9)
Theorem 2.1
Let W satisfy condition (C). Let E(0) < 0, or
E(0) = 0 and é Pglp u;dx > 0. Let u be a weak solution

of (2.1) - (2.3) on [0,1], and define
F(t) = | oolg(g,t)lzdg ;
Q
Then
Flt) > —2 o
(1-kt)

where a and k are positive constants depending on

2 . .
é p0|g0| ax, é P0Y%0 gldg and E(0). In particular, if
[O’tmax) is the maximal half-open interval of existence of

a weak solution wu, then

t <t e
max —

Proof
Differentiating F(t) twice with respect to t and
using (2.4) we obtain

(2.10) F(t) = 2 [ pgu-u,dx

F(t) = 2 [ pglu,|%ax -
Q

(233 . :
2 [ (puh), (adj vu) fdx - 2 [ ® ot oax .
a ~TiTR i o =~
Q Q@ Juy,

Substituting for the second integral in (2.11l) from the energy

inequality gives

F(t) > 5 [ oglu, |Pax +
Q

(2.12) -

2 [ 13W(x,Ve) - 2 (x,vw)ul 1ax - 6E(0)
Q AU,y R L
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Suppose that E(9) < 0 and [ pju,-u;dx > 0. By condition (C)
and (2.12), R
. 2
F(t) > 5 [ pplu. | ax
Q

Multiplying by F(t) and using (2.10) and Schwarz's in-

equality we get

(2.13) F(OF(E) - 2F(8) >0 .
1
Let g(t) = F %(t) . Then (2.13) becomes
g(t) <0
3
But &(0) = -5 F "(0)F(0) < 0. Since

g(t) < g(0) + a(0)t

the result follows with

2 2
a = [ vglugl™ais = [0, -8 dx/2] pglu,l dx
Q Q Q

In the case E(0) < 0 it follows from (2.12) that f(tl) >0
if t, > F(0) /6E(0). Then g(tl) 2 Oy E(tl) < 0 so that the
previous argument applies. ]

Remarks

1. The pressure term in (2.6) may be written in the form

M
I »p, grn ds
r=1 u(39,)
Thus if f 4,0 ds # 0 for some «r it is possible to

u(30,)

satisfy the condition E(0) < 0 by a suitable choice of
pressures.

2. Some results in the case E(0) > 0 can be obtained using
methods of Knops, Levine and Payne [13].

3. If W satisfies

3W -

for some constant k, then W - % satisfies condition

(C), so that Theorem 2.1 may be applied.
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4, Some information concerning the stability of equilibrium
solutions for certain pressure boundary value problems is

contained in Coleman and Dill [5].

3. Blow-up for a semilinear wave equation.

Consider the problem

=1
u., = du + |u]Y u, £ >0, Xe @
(3:1)
ulaq 0, t > 0; u(x,0) = uo(x), ut(x,O) = ul(x), % € 0%
where Q is a bounded domain in R" with smooth boundary
92, and where Yy > 1 is a constant satisfying vy < nEZ
if n > 3s
Let X = Wé’z(ﬂ) x LZ(Q) and define =<2 g) with
2
D(A) = (Wé’z(Q) n WZ’Z(Q)) x W%’“(Q). I+ is well known that
A generates a strongly continuous group T(+) of bounded
linear operators on X. Let £ 3) = 3_1 >. We write
(3.1) in the form lul b
(3.2) w=2w + £(w), w(0) = ¢ ,
u
where w = ll). We assume that ¢ = 0> belongs to X. A
e !

weak solution w of (3.1) is by definition a solution of the
integral equation

t
(3.3) w(t) = T(t)e + é T(t-s) f(w(s))ds .
The corresponding function u satisfies (3.1) in the sense
of distributions. The hypotheses on vy imply that f:X > X
and is locally Lipschitz. Therefore a standard argument (cf
Segal [27]) gives the following existence and continuation
theorem.

Proposition 3.1

There exists a unique maximally defined weak solution

_ u =
W = (ut>’ W € C([O,tmax),x), oax 7 0, ©of (3.1). If
t < o then

lim [lw(t)|[,= > .

tAt
max
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It can be shown (cf Reed [26], Ball [2]) that the solu-
tion wu in Proposition 3.1 satisfies the energy equation

(3.4) E(u('rt) Iut(.lt)) = E(uorul)r t e [Oltmax) ’

where E:X » R is defined by

1j.12°, Lio.j2 _ 1 +1
E(v,y) = sfz [ly]° + F|vv| —Y+—1|v|Y lax

Notation: | and denote the norms in L°(Q) and

[P
Wl’p(Q) respectively. The inner product in LZ(Q) is

written ( , )

Global nonexistence results for (3.1) have been proved
by Glassey [8], Levine [20] and Tsutsumi [30]. Following the
work of these authors we prove

Theorem 3.2,

If E, dgt E(uo('),ul(°)) < 0, or if E, = 0 and
(Uolul) > 0, then T and
1
(3.5 lim [u(®)]l ;= lim [[[Ta@]3+ Ju (0|21 % = =
trt Y %
max max

Proof
In view of (3.4) and Proposition 3.1, it suffices to

show that t < o, Suppose t = o, Let
max max

F(t) = ||u(t)H§ . Using (3.1) and (3.4) we obtain the differ-

ential inequality

T > kplYt) /24y _ 4E, ,

(3.6) F(e) > 20D p oy ey - gp
2

where k > 0 1is a constant. Solving this inequality under
the given initial conditions leads to a contradiction. For
the details the reader is referred to Ball [1]. O

In order to sharpen the blow-up result (3.5) we will
make stronger hypotheses on .
Theorem 3.3

Let the hypotheses of Theorem 3.2 hold.
(i) Let

if m

=
A
-2
| A
=
+
=l
Il
N
W
<

Y
=)
N
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Then

|
8

lim (u,ut)(t)
t Tt
max

(ii) Let 1 <p <Yy + 1, and

1 ey <1428

n
Suppose also that Y £ 597 if n >3 .
Then
lim  Jju(t)|] . = = .
t P
max
Proof
(ii) Since E0 < 0, (3.4) implies that
2 2 +1
(3.7) £2|Vu| dx < o g fQIu|Y dx
on the interval [0,t : I
max

An interpolation inequality of Gagliardo [7] and
Nirenberg [23] (see also Ladyzhenskaya, Solonnikov and
Ural'ceva [16]) implies that

i= 1 52
(3.8) Hqu & KHva aHVvH; : for all v e Wy'"(Q)

where

I

1 1 )
(1‘3)5 + a(f = H) ’

g~ Q-
N[ =

1

8|

= >

1
q

and where the constant K depends only on p, g and

J: M. Ball

n.

Applying (3.8) with g = y + 1, noting that by hypothe-

sis

No| =
1
=R

1
v 2

and using (3.7), we obtain

| A

1- a
lall, g < Kllull;™2 (1 vall3

| A

1-a . (Y+1)a/2
cllally " llally4y 6

where here and below C denotes a generic constant. But
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(y+1)a/2 <1 if and only if vy < 1 + %?.

from (3.5).

(i) We first suppose that n > 1. Note
4

201

The result follows

that if

s I B -~ then the result follows from (ii) with p = 2,
and from the fact that F(t) is convex by (3.6). Thus for

n > 1 we need only consider the case Y
to show how the number 1 + % arises we

case of general Y.

Since ||T(t)]|| < M it follows from
3.1 that
max
7 lleenllas = =
0
Thus
Cnax 9 %
(3.9) [ (] |lul®Yax)“at = =
0 xR

By (3.6) it suffices to prove that

tmax Y+1
(3.10) [ [ |Jul""ax at = «
0 @

Clearly (3.10) will follow from (3.9) if
satisfies the estimate

b (y+1)

(3.11) lall}, < cllull®y

with 0 < b < 1. Applying (3.8) with g
noting that

1

1
v Rl

N| =
1
=1

and using (3.7), we obtain (3.11) with
i

4
=1 + o However,

shall consider the

(3.3) and Proposition

we show that u

= 2y and p = y+1,

b = (l-a)y + ay(y+1)/2]

Zs

But b <1 if and only if a < VT?gTT'
tion shows that this holds provided

2 4y _ 4
Y === fle ) 50

The result for n > 1 follows.

and a short calcula-
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Finally we consider the case n = 1. Let

1 .
¥ = Wo’l(Q) X Ll(Q). It is well known that A generates a
strongly continuous group T(t) on Y. (This follows imme-

diately from D'Alembert's solution of the wave equation; it

is false for n > 1 (cf Littman [22]).) It is easily veri-
fied that f:Y » Y and is locally Lipschitz. Hence there
exists a unique maximally defined solution w = (3 e
t
W e C([O,tl);Y),tl > 0, of (3.1). Clearly t > tmax' But
by (3.4)
lim [|u(£)]] = @
trt s
max
Hence
lim [lu(e)]| = o ,
t7t bl
max
so that t, =t 5
1 max
As before we deduce that
t £
max max
(3.12) [ llEwen]l gae = [ [ Julax at = = .
0 0 Q
It follows immediately that
tnax
[ [ JulYax at = »
0 Q
so that (i) holds. O

Remarks
1. Equations (3.9), (3.10) and (3.12) may be inter-
preted as statements about rate of blow-up. By integrating

the inequality in (3.6) one may also obtain the upper bound

luted]ly & by = &2/ 27T

2. Similar results to Theorems 3.2 and 3.3 can be ob-
tained by exactly the same methods for the problem

U, = Au + f(u)

u|39= 0 ; u(x,0) = uy(x), u (x,0) = u (x) ,

under suitable polynomial growth hypotheses on f.
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3. Little seems to be known about the global behaviour
of all solutions of (3.1), although some results have been
obtained by Payne and Sattinger [25] based on the study of
potential wells. For example, is it true that every solution
either blows up in finite time or remains bounded for all

time?
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