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1z INTRODUCTION.

Minimizers of integrals of the calculus of variations
typically possess singularities. For problems arising from
mechanics, such singularities may represent physically inter-
esting instabilities. We explore this here in the context of
elasticity theory, for which a complete classification of pos-
sible singularities is not known. Certainly, as will be des-
cribed below, singular minimizers exist that model aspects of
solid phase transformations and certain modes of fracture.

But it remains to be seen if certain singularities encountered
elsewhere in the calculus of variations can occur in elastic-
ity, or whether these are eliminated as a consequence of low
spatial dimensions and invariance requirements. Perhaps some
such singularities are already in the experimental literature
for those with the eyes to see them.

The plan of the paper is as follows. In §2 the basic
problem of energy minimization in elasticity is described,
together with a bare minimum of information concerning prop-
erties of the stored-energy function. In each of the subse-
quent sections a particular type of singularity is discussed,
the order being roughly that of increasing degree of singular-
ity
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indifference condition
W(x,QA) = W(x,A) for all Q € sO(n), (2.3)

which asserts that the elastic energy of a body is unaffected
by a rigid rotation. In addition W may satisfy material

symmetries, such as the isotropy condition
W(x,AQ) = W(x,A) for all Q € SO(n). (2.4)

It is well known (see [6] for a discussion and the classical
references) that (2.3),(2.4) together imply that

W(x,A) = & (x; vl,...,vn), (2.5)

for some function ¢ that is invariant to permutations of the

eigenvalues By - vi(A), 1 <4is<n, of ATA. These eigen-

values are usually called the principal stretches. Elastic

crystals are not in general isotropic, but satisfy more com-
plicated symmetry conditions related to their lattice struc-
ture.

In order to set up the minimization problem more precise-
ly it is necessary to introduce a function space of admissible
deformations. The choice of this function space involves in
particular a choice for the meaning to be attached to Du, for
a nonsmooth deformation u, which can dramatically affect the
predictions of the model. The rationale for preferring one
function space to another warrants further study. In this
paper we consider the problem of minimizing I in the set

J4 = {u € wP: yu = f}.
P 00,

Here and below, for 1 < p < o, Wl’p = Wl’p(Q;Rn) denotes the
usual Sobolev space of mappings u: Q — R™.

Note that minimizers u of I in L}ip formally satisfy
on 3N\ 391 the natural boundary condition

%(X,DU) N(x) = O, (2. 5)

where N(x) denotes the unit outward normal to 232 at x.
This expresses the fact that the surface traction on 23Q at
X 1is zero.
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(b) smooth non-affine minimizers

For realistic models of elastic materials with W smooth
no examples of absolute minimizers of I in , or even of
'strong relative minimizers' (cf Ball & Marsden [11]), that
are smooth but not affine are known to the author. (The exam-
ple described in §4 below could perhaps be thought of as of
this type, but the properties of the stored-energy function
necessary for the example have not been correlated with those
of any real material, and the stress distribution is in any
case trivial.) Although such smooth minimizers presumably
abound their existence is hard to establish for two reasons.
First, although the existence of nontrivial absolute minimiz-
ers can be proved via the direct method of the calculus of
variations, no regularity theory for minimizers is available
even under the mathematically most favourable realistic hypo-
theses; the most that is known is the partial regularity
theorem of Evans [23] (see also Evans & Gariepy [24]), which
still needs improvement to accommodate singular behaviour of
W(A) as detA— O+. Second, although smooth non-affine
solutions of the equilibrium equations (i.e. the Euler-Lagrange
equations for (3.1l)) are known, no extension of the field
theory of the calculus of variations to dimensions n > 1 is
available that might apply to elasticity (see Morrey [39 pl5],
Ball & Marsden [11l]) and enable one to show that a particular

solution is a minimizer.

4. MINIMIZERS SINGULAR ONLY ON THE BOUNDARY.

The work in the section is taken from Ball & James [9].

We consider a stored-energy function of a type analyzed in [5
§6.4] and Ball & Marsden [11]. To construct it let 1 <o <n,
0< A< pu<o and let ¢: (0, — (0, satisfy (i) ¢ is
smooth, (ii) ¢' >0, ¢" >0, and (iii) ¢(v) = v* for

A S v Sy, Now choose h: (0,%) — R satisfying (i) h is

smooth, (ii) h" >0, (iii) h(1r) = -nt*® for A <t <@,
and (iv) h(t) > —n¢(11/n) for T & [A",u™. Such functions
h exist because (Ta/n)" <0 for A<t <yt
Define
n n
Q(Vl,...,vn) = _E ¢(vi) + h(_H Vi), (4.1)

i=1 i=1
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study of regularity up to the boundary of linear elliptic
systems.

Turning to the case n 2 3, the conformal transformations
are now characterized by Liouville's theorem as products of
inversions. Under our regularity assumptions (i.e. u € wl’m,
using (4.4)) an appropriate version of Liouville's theorem has
been proved by Reshetnyak [ 42]. For n odd an example is

given by

ulx) = - —=— . (4.5)

2
x|

If 0% 2 then u satisfies (4.4) with v(x) = |x|_2. Note
that when § 1is convex this furnishes an example of a non-
trivial deformation which is an absolute minimizer of the
energy for a strictly polyconvex isotropic material with zero
traction boundary conditions, and thus bears on a conjecture
of Noll [41] (see also Truesdell [50]) to the effect that for
rubber-like materials the absolute minimizer is homogeneous
and unique up to rigid-body translation and rotation.

5. LIPSCHITZ MINIMIZERS.

The work in this section is also taken from Ball & James

[9]. We are interested here in minimizers u € Wi’" (i.e. u
Lipschitz) which are not smooth in Q. The simplest such

minimizers are piecewise affine. A piecewise affine deforma-

tion u is one for which
Du(x) € {Al,...,AM} a.e. x € Q,
with meas S; > 0 for i=1,...,M, where
S; = {x € Q: Du(x) = Ai},

M>2 and the A; € Mﬁx“

elastic crystals that are to a good approximation piecewise

are distinct. Deformations of

affine are commonly observed. The matrices Ay in a piece-
wise affine deformation are not arbitrary, and in this direc-
tion we record without proof two results. First, if M = 2

then necessarily

A) - A =2ey (5.1)

for some A,u € R". This is a generalization of the jump
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to b and of width 1/j, and such that

lim T(u )y = Wix,Ay)dx + Wi, A dx.  (5.3)
R ha anix’<0} QN {x>> 0}
Hence inf I is given by the right-hand side of (5.3), and
p y .
such sequences u(J) are minimizing. The finely layered

deformations in these minimizing sequences are similar to
those observed, for example, by Saburi & Wayman [43] in shape
memory martensites and by Burkart & Read [15] for indium-
thallium twins. They are also reminiscent of layering in the
theory of optimal design of composite materials (cf Francfort
& Murat [25], Kohn & Strang [34], Lurie & Cherkaev [35],
Milton [37]). We claim that the absolute minimum of I in

is not attained. If it were then any minimizer u would

satisfy in a neighbourhood of the origin
3

u(0) + x + A(bex)a for x~ >0
ufx) = 3 3 (5.4)
u(0) + x + x°c for x5 K -0y
where A € Wr'®(R) with A(0) = O and A'(t) = *1 a.e..
Applying the continuity of u on x3 = 0 gives a contradic-

tion.

6. CONTINUOUS MINIMIZERS WITH UNBOUNDED DERIVATIVES.
It is not known whether continuous minimizers u with

Du unbounded can occur for realistic models of elastic mater-
ials. If such minimizers exist, they would be of importance
as a mechanism for the initiation of fracture or dislocations.
The existence of such singular minimizers is suggested by the
one-dimensional examples of Ball & Mizel [12,13] of regular
(i.e. elliptic) integrals whose minimizers among appropriate
classes of absolutely continuous functions have unbounded de-
rivatives, and do not satisfy the usual weak form of the Euler-
Lagrange equation. One of these examples is the integral

1
I(u) =J[(us-x4)21u'|s+s(u’)zldx, (6.1)
-1
where s > 27 and € > 0 is sufficiently small. The abso-
lute minimum of I in VA( = {u € wl'l(_l,l); u(-1) = -1,

u(l) = 1} is attained, and every minimizer uy satisfies
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quasiconvex at every A € Mix3 if and only if 3 < p S >,
For 1 < p <3 the situation is different, as can be shown by

considering radial deformations, that is deformations of the

form

u(x) = r§$)x i (7:2)
where R = |x| and r: [0,1] — [0,®) is increasing. Denot-
ing by R the set of such radial deformations in ¥
it can be shown [5] that there exists a number Aor > 0 such
that if 0 < X < Aoy  then u(x) = Ax 1is the unique absolute
minimizer of I in ;ad for 1 < p <, but that if

A > kcr then ﬁhere exists a function rx(-) with rA(O) >0
such that the corresponding u 6 given by (7.2) is the unique
absolute minimizer of I in Rl e 1 & p < 3. The
nontrivial minimizers in d4rad pfor x> Acr and 1 <p <3
have a point discontinuity at the origin corresponding to the
formation of a hole, or cavity, of radius rx(o). This is a
multi-dimensional example of the Lavrentiev phenomenon (see
(6.2)). For developments of these results see Sivaloganathan
[46,47] and Stuart [ 48]. (An analysis in two dimensions
along similar lines gives rise to the existence of cavitating
radial minimizers for appropriate strictly polyconvex stored-
energy functions; when considered as plane strain deformations
of three-dimensional bodies these minimizers have a line
discontinuity.) It is not known whether for 1 < p < 3 the
absolute minimum of I in is attained, and if so
whether there exists a radial minimizer. If for some XA the
minimum is attained by some u ¥ Ax then by rescaling and
patching together u one can construct infinitely many such
minimizers, with more and more finely distributed patterns of
holes (see Ball [7], Ball & Murat [14]).

Cavitation is a well known fracture mechanism in both
polymers (Gent & Lindley [27], Denecour & Gent [19], Gent &
Park [28]) and metals (Hancock & Cowling [32], Needham,
Wheatley & Greenwood [401).

There is a large literature concerning examples of singu-
lar minimizers in the multi-dimensional calculus of varia-

tions, inspired by the examples of de Giorgi [18], Giusti &
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