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1. Background

Let Q (:Rm be a bounded open set. Let MV ™ denote the set of real
n xm matrices and suppose that W: M"™™ . R is Borel measurable and bounded
below. (Here R denotes the extended real line with its usual topology.) We are

interested in the problem of minimizing

I{u) = [ W(Du(x))dx (3:1)
Q

among functions u e Nl’l(n;R") satisfying appropriate boundary conditions. An
important application is to nonlinear elasticity, when W = W(A) 1is the stored-
energy function of a homogeneous material and u(x) 1is the deformed position of
the particle at x € 2 1in a reference confiquration; in this case we usually take
m=n =3, but the cases 1 <m <n <3 are also of interest and cover certain
string and membrane problems. It is convenient to allow W to take the value +e«
so as to include various constraints. In compressihle nonlinear elasticity
(m = n = 3), for example, we may set W(A) = +« for det A < b, where b > 0 is
a constant, to reflect the fact that infinite energy is required to make a reflec-
tion of the body or to homogeneously compress it to b times its original volume.
Similarly, for an incompressible material it is convenient to set W(A) = += if
and only if det A # 1.

Connected with the existence and properties of minimizers for (1.1) are cer-

tain convexity conditions on W. Two of these conditions are rank-one convexity

and quasiconvexity, and as we shall see the question raised in the title amounts
roughly to asking whether they are the same. This has been an open problem since

quasiconvexity was introduced by Morrey [21] over 30 years ago.



Most of the material in the paper is drawn from the existing literature,

though the remarks in &6, §8(b), (c) are perhaps new.

2. Definitions

noan
Let A eM . We say that W is rank-one convex at A if

W(A) < tW(Al) + (1 - t)N(AZ) (7.1)

whenever t € [0,17, A= tA + (1 - t)A, and A,A, ¢ MM ith AL - EEY-Y

12 2

n m
for some vectors X e R, p e R'. We say that W is rank-one convex 1if it is

n 2 3
rank-one convex at every A e M xm; equivalently, W 1is convex along all line

noan . .
whose end-points differ by a matrix of rank one.

A

segments in M

Replacing A by {:? in (2.1) we see that W is rank-one convex at A if
and only if
HA) CtH(A + A @) + (1 - (A - T A @) (2.2)
for all t ¢ (0,1), X € Rn, b€ R™. If W s finite in a neighbourhood of A and
differentiable at A it follows easily that W s rank-one convex at A- if and
only if
WA + A @ u) > WA) + DH(AY (X ® u) (2.3)
for all X e Rn, TR R™. If in addition W is twice differentiable at A then
(2.3) implies that the Legendre-Hadamard condition
2 2A(A) i L]
DUW(A)Y(A @A @ u) = — Ap Mp, >0
J a B
3A A
a B
(2.4)
for all A eR", y e R"

holds. Conversely, suppose that

dom W:= {A & MM W(A) < =)

js a rank-one convex set (i.e. tAl + (1 - t)A? e dom W whenever Al’A? e dom W,

A, - A = 2@y t el0,17) and open, that W e c%(dom W) and that (2.4) holds

2
for all A e dom W. Then by integrating ﬂ-; W(A + tar @ p) twice we see that W
dt

is rank-one convex.

For 1 <p <= and E (:Rm a bounded open set we denote by wl'p(E; Rn)

the Sobolev space of all weakly differentiable mappings wu:E + R" such that

. 1,p(e.pN 1,p . pN
wi po oMUl B o € and by W, (E;R") the subset of W °"(E;R)
LY (E;RY) LE(EsM )
consisting of those u vanishing in the usual sense (cf. [9, p. 2277) on the
3E of E.

Let A eM"™.

boundary

We say that W s wl’p-guasiconvox at A if

[ W(A + Do(x))dx > [ W(A)dx = (meas E)YW(A) (2.5)
E E

for every bounded open set EC R™ with meas o€ = 0 and all ¢ € Né'p(E;Rn).
and that W is Hl‘p-guasiconvex if it is Nl’p-quasiconvex at every A e M,
If p = = we abbreviate Hl‘"-quasiconvex to quasiconvex.

The definition of quasiconvexity was introduced by Morrey [217; the generali-
zation to Hl'p-quasiconvexity was made in [9]. The definition is independent of
E in the following sense; if (2.5) holds for one nonempty hounded open set
EIC Rm, some A € Hn”“ and all & € N%’D(E;R") then W is Nl'p-quasiconvex at
A (see [20, 9 Prop. 2.31). Clearly if 1 <p <q < = and W is
lep-quasiconvex at A then W is Nl’q-quasiconvex at A,

The open question posed in the title can now he stated precisely: 1is every

rank-one convex function W quasiconvex? Alternatively one can modify the

question by adding the hypothesis that W be continuous (or finite and

continuous). Whether adding such regularity hypotheses could affect the answer is

not obvious.

3. Quasiconvexity Implies Rank-One Convexity

Suppoée that in (2.5) we take the function ¢ to be piecewise affine, so

that E s the disjoint union of a finite number N of open simplices Ei and a

A, e Mnxm

set of measure zero and Dg¢(x) = Ai - A for a.e. X € Fi' where



Ax + <

o

is constant. An example with m =n =2 s illustrated in Figure 3.1 above. Let

Figure 3.1

meas Ei N
)\.i ’-‘m , S0 that ]'Zl X_i = 1. Then
1 N
A= [ D(Ax + ¢(x))dx = .f 3R (3.1)
E i=1
and (2.5) becomes
N N
W( izl AiAi) < izl xiW(Ai)- (3.2)

Conversely, for a polyhedral domain E and any ¢ € Né’"YE;Rn) there exists a
bounded sequence ¢(j) € Né’"(E;Rn) of piecewise affine functions such that
o) & 4 uniformly and De9)(x) + De(x) a.e. in E (cf. [14, Chap. X]).
Therefore, for W finite and continuous, quasiconvexity at A 1is equivalent to the
convexity condition (3.2) holding for all piecewise affine functions.  If the
matrices A, were independent then (3.2) would be equivalent to convexity of W
at A. They are not independent, however, because together they form the gradient
of a mapping; to understand the resulting compatibility conditions we recall an
observation of Hadamard.

Let S be a smooth (m - 1)-dimensional surface with normal , at the point
x ¢ S. Let N be a neighbourhood of x in 2" and suppose that u:N + R" s
continuous across S and C! on either side of S. Let A, B denote the limits

at x of Du from either side of S. Equating the tangential derivatives at x

we find that

B-A=2Qu (3.3)

for some A eR". Thus for a piecewise affine function the gradient jumps by a

matrix of rank < 1 across the faces of adjoining simplices.
By choosing E to be a rectangular paralielpiped, considering piecewise
affine functions with just one interior node, and using the argument of Morrey

(21, p. 45], we obtain the following result.

Theorem 3.1

Let A e MV, Suppose that W is quasiconvex at A, that W(A) < = and

that W 1is continuous at A. Then W 1is rank-one convex at A.

As observed in [9, p. 232], it follows that if W is continuous (with values
in R) and quasiconvex then W 1is rank-one convex. Thus for continuous W
quasiconvexity is equivalent to convexity when m =1 or n = 1. Without some
continuity assumption Theorem 3.1 is false, as shown by the example (see [9, p.

2321)
W(0) = Wa ®b) =N, W(A) = += otherwise,

where a e Rn, b e R" are given nonzero vectors and m > 1. As discussed in [9]
the moral of this example is perhaps that for general W taking infinite values
some other version of the quasiconvexity condition (for example, one based on weak
lower semicontinuity or that in [[7]) should be taken as the basic definition.
However this issue is not crucial for the main problem discussed in this paper

which is unresolved even for smooth integrands.

4. Quasiconvexity as a Necessary Condition Satisfied by a Minimizer

Let Xg € Q. We say that u e wl’l

at Xg if there are numbers p > 0, € > 0 such that I(v) » I(u) whenever v e

(Q;Rn) is a strong local minimizer of 1

Nl‘l(n;Rn) with v(x) = u(x) for a.e. x e 2 satisfying |x - x0| > p and
|[v(x) = u(x)] < e for a.e. x € Q.

A version of the following result was first proved hy Meyers [207 (see also



Busemann & Shephard [117).

Theorem 4.1

Assume W is continuous on dom W. Let X, €9 and let u be a strong

1

local minimizer of 1 at x Suppose further that u is C in a neighhourhood

0°
of X, with Du(xn) = A and W(A) < «. Then

J WA + De(x))dx > [ W(A)dx (4.1)
E E

for all bounded open subsets FEC R™ and all ¢ € UA’"(F;R") such that

ess sup W(A + D¢(x)) < o,
x eE

Idea of proof

We 'blow up' the minimization problem in a neighbourhood of Xqs SO that u

becomes linear. This is done by defining, for € > 0 sufficiently small,

X - X
uc(x) = u(x) + e3( ——E~—Q

),

where ¢ is ¢ extended by zero outside E, making the change of variables

>
1

>
|

= ey, and letting € + 0 1in the inequality 1(u€) > I(u). ]

Refinements of Theorem 4.1, including treatment of the case when x. e 3,

0
are given in [8]. The condition (4.1) says roughly that W is quasiconvex at A,
and this follows if W does not take the value +w. The proof of Theorem 3.1

still applies and gives the following result.

Corollary 4.2 (Graves [16])

Let the hypotheses of Theorem 4.1 hold. Then W is rank-one convex at A.

In view of the above discussion it would be very interesting (i) to give use-
ful necessary and/or sufficient conditions for W to be quasiconvex at A, and
(i1) to identify quasiconvexity at the values of Du(x) as one of a set of suf-

ficient conditions for u to be a local minimizer of 1 in, say, wl'p(n;R").

5. Other Ré]es Played by Rank-One Convexity and Quasiconvexity

Quasiconvexity was introduced by Morrey in connection with the direct method

of the calculus of variations. 1In [21] he showed that if W 1is finite and con-

tinuous then quasiconvexity of W is a necessary condition for 1 to be sequen-

o n &
tially weakslower semicontinuous on Wl (Q;R7). (The same argument shows in

general [9, p. 230] that Nl’p-quasiconvexity of W 1is necessary for 1 to be

. 1 n
lower semicontinuous on W ’p(Q,R ).) He

sequentially weakly (weak * if p = )
then showed that quasiconvexity is sufficient for 1 to be sequentially weakly
lower semicontinuous on Nl’l(n;Rn) provided W also satisfies certain growth

conditions. Extensions of this result can be found in [20,1,197, but unfor-

tunately they cannot be used to prove the existence of minimizers for I in
At present

nonlinear elasticity since they assume that W 1is everywhere finite.

the only existence theorems applying to elasticity [3,7,91 allow W to be singu-
lar at the expense of assuming that W is polyconvex, i.e. W can be written as
a convex function of minors of A of all orders r, 1 <r <min(m,n).
Polyconvexity implies quasiconvexity, but the converse is false [21,25,23,61.
Quasiconvexity is necessary for the existence of minimizers to certain per-

turbations of I. In fact the following result is proved in [9, Thm 6.17.

Theorem 5.1

h i n 1,P/0.p"
let 1 <p <o Ace MM and Xp = {ueW p(ﬂ;R )i u - Ax e Wy (a;R)}.

Let ¢:[0,=) + R be bounded and continuous with ¢(0) = 0, ¢(t) > 0 for t >0,

and set  y(x,u) = ¢(|u - Axlz). Assume meas 30 = N. If
J(u) == J [W(Du) + ¢(x,u)Tdx (5.1)
Q

. 1, :
attains an absolute minimum on XA then W is W p-quas1convex at A.

For a given W and boundary conditions I may or may not attain a minimum.

In either case it is of interest to study the behaviour of minimizing sequences of
I, and it has been shown by Acerbi & Fusco 1], Dacorogna [12] (see also

. . 1,1,..0n
(2,17,13]) that they possess subsequences converging weakly in W *"(Q:R) to



minimizers of the relaxed functional
T(u) := [ QW(Du(x))dx, (5.2)
Q
where OW denotes the supremum of all quasiconvex functions less than W. Again

these results do not apply to elasticity on account of the strong growth hypothe-

ses made.

The Euler-Lagrange equations for 1 are given by

aql axj (Du) =0, §=1,...,n. (5.3)
X 3
a

By definition, these equations are strongly elliptic if (?.4) holds for all A
with equality only if X @® u = 0. The slightly weaker condition of strict rank-
one convexity (i.e. rank-one convexity with equality in (2.1) only if X@u =0
or t =0,1) is necessary, and nearly sufficient, for there to be no piecewise
¢! weak solution of (5.3) whose gradient jumps across a smooth (m-1)-dimensional
surface (for the details see [47). Neither strong ellipticity nor strict quasi-
convexity are sufficient to prevent weak solutions having other types of singu-
larities, such as that occurring in cavitation [5]. However, recently Evans [15]
has proved a partial regularity result for absolute minimizers of I under a
strict quasiconvexity hypothesis. Although he assumes W is everywhere finite,
his theorem offers the first hope of a regularity theorem applying to nonlinear

elasticity.
6. Rank-One Convexity at A Does not Imply Quasiconvexity at A
Let m> 1, n > 1. Then the closed cone

A= (A @u: A eR", e R™)

is a proper subset of MM et A e M™™ and let B be an open ball contained
in MO \ (A + A). Let W e C‘(Mnxm) be negative in B and zero otherwise.
Since W is zero on A + A it follows that W 1is rank-one convex at A.

However, by choosing ¢ € Né’m(E;Rn) such that A + D¢(x) ¢ B on a set of posi-

T TIPSR S

tive measure we can violate (2.5),
cimple remark chows that in general

dition than that of Graves.

The above example is easily ada

elasticity with m =n > 1.

so that W is not quasiconvex at A. This

Theorem 4.1 provides a stronger necessary con-

pted so as to apply to isotropic nonlinear

The isotropy is expressed by the requirement that

e (6.1)
W(A) = o(vl,...,vn), AeM
i = v, A (the
for some symmetric function ¢ of the sinqular values Vv, v1(A) of (
3 t
igenvalues of (ATA)LQ). let A=1,e=(1,1,...,1) eR, y>1,¢€? 0, and le
e 2

¢ ¢ C™(R") be such that o(v) < 0

claim that for e sufficiently small,

not, there would exist a sequence
matrices O(r), R(r), and vectors

1+ Mg u(

Extracting convergent subsequences

for some A,p € R" and orthogonal

impossible (for example, by evalua

for ¢ > 0 sufficiently small W
ments as before shows that W is
a term ¢, where &> 0

any desired growth conditions as

js sufficiently small, we can arrange that W

for v - yel <& ov) =0 otherwise. We

n
(1 + 2 @yp) =0 forall Xue R. 1
V(r) converging to ye in Rn, orthogonal

x(r),u(r) ¢ R" such that
r) = ol (diag NI (6
and passing to the 1imit we find that

1+2x@p=Y0

matrix 0. This is easily seen to be

f

.2)

(6.3)

ting OOT and OTO). We have thus shown that

is rank-one convex at 1, and the same argu-

not quasiconvex at 1. Note that by adding

to

satisfies

|A] + =, det A + 0+, and that W be strictly

rank-one convex, but not quasiconvex, at 1.

7. The Evidence Against

We collect together some rem

does not imply quasiconvexity.

arks which might suggest that rank-one conve

xity

¢



(a) The inequalities (3.2) arising from writing down the quasiconvexity conditi |

g - | - ‘0”& 8. The Evidence in Favour
pilecewise affine functions ¢ do not obviously follow from rank-one convexityg

(for example, in the case discussed in [3, p. 3557, where there are 3 interior i TVl el RIS Blaiel il ety Eogrentiy Soen Towila

nodes). A possible riposte to this, suggested by the results of Tartar [247 on quasiconvexity.

separately convex functions, is that to derijve (3.2) from rank-one convexity it i

(a) If W 1is guadratic, that is

may be necessary to use values of the deformation gradient other than those taken
by A + D¢(x). " I
M(A) = cSfalad (8.1)

(b) The analogous statement to 'rank-one convexity implies quasiconvexity' for . for constants c?f, and rank-one convex then W 1is quasiconvex. The only proof

integrands depending on higher derivatives of u is false. It is shown in [7 D % that seems to be known for this fact (see [26,227) is to show that

1461 that if m =2, n=3 and ' B i 4
? o) = [cff o ¢l dx >0
g 13 Na B

2 i j k 1,2 n : . . .
W(D = g J K

(D%u) E1JkU 111U s qpu 209 (7.1) for all ¢ € NO' (E;R7) by extending ¢ by zero outside E, taking Fourier

transforms and using Plancherel's formula. Functions W formed by combining

polyconvex and quadratic functions seem to he the only known examples of quasiconvex

where eijk is the usual permutation symbol, then the map
functions.

t+HA+ A @®uB
(b) For isotropic nonlinear elasticity, rank-one convexity implies that the

is affine for every A = (ALB)’ Ae R3, woe RZ’ where (A @ u ® u)i . A1'“ . butd quasiconvexity inequality holds for radial deformations.
. af ’ a B’
W does not satisfy the quasiconvexity condition . 3
Taking m = n = 3, for example, with B = {x ¢ R®: |x| < 1}, a radial deformation

u: B + R s one having the form

2
,{ W(A + D%(x))dx > [ W(A)dx (7.2)
. 52
ux) = S, R = i), (8.2)
2, 3
for all ¢ e W *"(E;RY), for any A. j ) 1, 3 :
where r: [0,1] + [0,=). If u e W *(B;R) with det Du(x) > 0 a.e. x e B
(c) Rank-one convexity does not foplly Nl’p-quasiconvexity 15 gereral. For then r e wl.-(o,l) with r(0)= 0, r'(R) > 0, a.e. R ¢ (0,1) and
5 R 3x3
example, if m=n >3 and . ?gpl) I%Tl'( = (cf. [5, p. 5661). If the stored-energy function W ¢ CI(H:xa).
€ 3
3x3 i
where M+x = {A e M3‘3: det A > 0}, then there exists a symmetric function
W(A) = tr(a'A) + (det A)?2, (7.3)
b ¢ = °(V1.v?,v3), defined and continuously differentiable for positive arquments,
Th ( [3.97) of the singular values vl,vz,v3 of A. For a radial deformation (8.2) these
en (see [3,9 W is polyconvex, and thus i i
3 quasiconvex, bhut is not singular val i d r(R) r(R)
] values are given by r'(R), - and < Hence

1 :
W 'p-quas1convex if 1 <p<n.




(c) We present a plausibility argument that rank-one convexity implies quasicon-
2 nxm .
r i ici that W e C°(M ). The arqument 1s
For simplicity we suppose
[ W(Du(x))dx = 4x [ R%e(r', & )dR. (8.3) e
B 0

vexity in general.

based on the following interesting result of Knops & Stuart [187.

) e i, )

Taking A = d1ag(v1,v2,v3), A, p parallel to the x -axis (i = 1,2,3), it follows

from (2.3), as is well known, that W rank-one convex implies that & is convex:
. Theorem 8.1

in each v; separately. Hence
et aC R™ be a bounded, star-shaped domain with smooth boundary. Let W

£ T rrr v o F r rr 2(q-R" Li:R" -
or'sgzog) > egagog) t (' -l ap g ) te rankone convex, let A ¢ H"™ and let u e C3(@R") Nc'(a;R") be a solu
. tion to the Euler-Lagrange
a.e. R e (0,1). (8.4) i )
equation
We now note that ) 3 3? () = 0, x €9 (8.8)
. ax® aA
r ror 2 ,F T T e. T rror
aﬁ'[ Ea @(ﬂ',ﬁ',ﬁ )1 =R [Q(ﬁ'.—'.ﬁ ) + (r' - ® ) ol(§~.§-.ﬁ ),
satisfying
a.e. R ¢ (0,1). (8.5) » dlx) = A, x & 8 (R.9)
Combining (8.3)-(8.5) we deduce that for a radial deformation u e wl‘“(R;R3)
Then
with det Du(x) > 0 a.e. x e B and satisfying
(8.10)

I(u) < 1(Ax).

u(x) = ax, x e B, (8.6) !
S e Suppose that W is rank-one convex but not quasiconvex. Then there exist
1 nxm - 1, q.g"
[ W(Du(x))dx > 4= [ RZe(x,2,2)dR = [ W(al)dx, (8.7) | AeM and § € Wy*T(:R7) such that
B 0 B )
) ‘ — B (8.11
which is the required quasiconvexity inequality. For related results see [5, i HAx +9) < 1(A)
6.3, 18]. §
) ! i Define, for € >0,
The above argument can be thought of as an application of the field theory of
W (A) = W(A) + e tr (ATA)- (8.12)
the calculus of variations [107, the extremal T(R) = AR being regarded as €
embedded in the global field of extremals r(R) = R, , > 0. The slope function i 1) = J W (Du(x))ex. (8.13)
. . : . t Q
of this field is given by p(R,r) =r/R and (8.4) expresses the positivity of the
: : : L Th
corresponding Weierstrass excess function. =
It is instructive to note that in (8.4) rank-one convexity is applied at I (Ax + @) < lc(Ax) (8.14)
: €
matrices whose choice is not at all evident a priori, and which do not form the .
provided € is sufficiently small. With ¢ so chosen, and assuming as we may
gradient of a deformation.




that g

is star-shaped with smooth boundary, we note that by the arqument in (a

the second variation

d2

2 .
) Ie(Ax)(¢,¢) =y

Ic(Ax + t¢)l1=n

> 2¢ | ng|2x.
Q

Hence [26,8] the linear map Ax minimizes I5 locally in wl'm(n;Rn)
the boundary condition (8.9). If we could apply an approximate 'mountain-pass’

lemma we could conclude from (8.14) that there exists a critical point

u of

with IE(u) > XC(AX). If we could also assert that had sufficient reqularity

for Theorem 8.1 to hold then we would have a contradiction to Theorem 8.1, applie?
to the rank-one convex function Hc.

Examination of the proof of Theorem 8.1 shows that, as in (b), the rank-one

convexity of W

is applied in the ahove

H

whose choice was not evident a priori.

9. Concluding Quotations

We end by quoting two passages from the work of Morrey concerning the problem

discussed in this paper; the terminology has been altered to conform with ours.

(From Morrey [21]) 'It would seem that there is still a wide gap in the general

case between the necessary and sufficient conditions for quasi-convexity which the

writer has obtained. In fact, after a great deal of experimentation, the writer

is inclined to think that there is no condition of the type discussed, which

involves W and only a finite number of its derivatives, and which is hoth

necessary and sufficient for quasi-convexity in the general case'.

1

(From Morrey [22]) ‘It

an unsolved

problem to prove or disprove the theorem

of Du is quasi-convex'.

that every rank-one convex fucntion

_—

subject to

1
€

argument at some matrices, A and NDu(x),
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