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1. Introduction

In this paper we collect together a number of examples from mechanics and
physics which can be formulated as the minimization of a strictly convex func-
tional subject to a convex constraint, and show how they fit into a common ab-
stract framework. The principal feature of the examples is the occurrence of a
critical value of the constraint above which the minimum is not attained, and of
a corresponding critical minimizer that acts as a fake minimizer for larger values
of the constraint.

Perhaps the easiest of the examples to visualize is the problem of equilibrium
of a given volume p of a homogeneous incompressible fluid above a given surface
S. We suppose that the equation of S is

(1.1) z3 = f(z1,22)

where f : R? — IR is continuous, and where (z1,2,73) denote coordinates with
respect to fixed Cartesian axes, the r3-direction being vertical. We suppose, solely
for simplicity, that at infinity the surface has the form of a horizontal plane, so
that

(1.2) £(2) = 0 as |z — oo,

where z = (zy,z3). If the height of the liquid surface above § is denoted by h(z)
then the total potential energy of the liquid (taking z3 = 0 to be the zero energy
level) is given by

J(2)+h(z)
s vim= [ (] srn )z =g [ (@m + johe7ies
2 2 R?

where g is the acceleration due to gravity, assumed constant, and where the fluid
is taken to have unit density. We seek to minimize V(h) among functions h > 0
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satisfying the volume constraint H(h) = p, where

(1.4) _ H(h) := /n’ h(z)dz.

The volume of the region f(z) < z3 < 0 is given by

(15) b= [ e,

where [t]~ = max{—t,0}. If 0 < p < p,, p < o0, then it is intuitively clear that
the minimum of V is attained by a unique function h? such that

(1.6) k() =0 or f(z)+ h*(z) = —d(p)

for all z, where d(p) > 0, i.e. the fluid surface is part of the plane z3 = —d(p). If,
however, p, < p < oo then the minimum is not attained, but minimizing sequences
for V tend in an appropriate sense to the function

(1.7) h?*(z) = [f(2)]”

that does not satisfy the constraint. The excess volume p — p, of fluid disperses
to infinity. This simple example is discussed in detail in Section 3.

The abstract analysis in Section 2 is based on the idea of replacing the equal-
ity constraint by an inequality. This is the method used by Lieb & Simon [8] in
their treatment of the Thomas-Fermi problem, the relevant results from their work
being recovered from the theory in Section 5. The treatment of the behaviour of
minimizing sequences was motivated by the analysis in Ball, Carr & Penrose [3]
of coagulation-fragmentation equations, their results for the equilibrium problem
being deduced in Section 6. The theory is also applied in Section 4 to a well
known model predicting a finite height for the atmosphere ; a related example
from one-dimensional nonlinear elasticity is treated in [1]. In the example dis-
cussed in Section 4 the loss of the constraint occurs because minimizing sequences
concentrate at a spatial point, while in the other examples there is a loss of the
constraint ‘at infinity’ ; these two possibilities are analyzed by P.-L. Lions [9][10],
whose theory of concentration-compactness has applications to a large class of
problems of the type considered here.

Although there are some minor new remarks in the analysis of the examples,
the main aim of the paper is to draw attention to their common variational struc-
ture and make this structure more accessible for other applications. One such
application to Bose-Einstein condensation appears in van den Berg & Lewis [12].



LOSS OF THE CONSTRAINT IN CONVEX PROBLEMS 3

2. Minimization of convex functionals subject to a convex
constraint.

Let X be a Hausdorff topological vector space, and let K C X be sequentially
closed and convex. Let V : K — IRU {+oco} be convex, with V strictly convex
ondom V :={u € K : V(u) < co}. Let H : K — [0,00] be convex, sequentially
lower semicontinuous (sisc) and take every value in [0,00). Given p € [0, c0) and
M € R we set

K,={ueK:H(u)<p},

Ko ={u€ K : H(u) < oo},

Ko = {u€ K : H(u) < p,V(u) < M},
S,={u€ K : H(u) = p}.

We suppose that there exists M, such that, for any p > 0 and M > M,, K, s is
nonempty and sequentially precompact with V restricted to K, ar slsc.

Given p € [0, 00) let

(2.1) 9(p) = ig’fv.

We are interested in whether or not the minimum in (2.1) is attained, in the
behaviour of minimizing sequences, and in how 0(p) depends on p. Since the level
sets S, are not in general closed, it turns out to be easier to consider first the
problem of determining

(22) plp) = infV
and the corresponding minimizers.

Proposition 2.1

The function ¢ : [0,00) — R is continuous and conver. For each p € [0,0)
the minimum in (2.2) is attained by a unique u” thatl varies continuously with p,
and every minimizing sequence converges to u?. There ezists p, € [0, 00) such that
@(p) is strictly decreasing and strictly convezr for 0 < p < p, and constani for
ps < p < oco. The case p, < co occurs if and only if infg__ V is attained, and then
the corresponding unique minimizer is u?* and u? = u?* for allp > p,.

Proof

Our hypotheses imply that the sets I{, s are sequentially closed, so that any
minimizing sequence for V in K, has a subsequence converging to some mini-
mizer u”. Since V is strictly convex u” is unique, and since X is Hausdorff every
minimizing sequence converges to u”.

It is obvious that ¢ is nonincreasing, and our convexity hypotheses imply that
@ is convex ; in particular ¢ is continuous on (0,00). If p; — p then u’* — v,
v € K for some subsequence {p,} of {p;}, and V(v) < liminf, .o V(u*),
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H(v) < liminf, .o py = p. Thus ¢(p) < V(v) < liminf,_o ¢(p*). Applying
this with p = 0 we deduce that ¢ is continuous on [0, 00). The continuity implies
that in the above argument v = u”, and since X is HausdorfT it follows that u” is
continuous in p.

From the above properties it follows that there exists p, € [0, 00] such that
@ is strictly decreasing for 0 < p < p, and constant for p, < p < co. If p, < 00
then, since ¢(p) > ¢(ps) for all p > 0 and V is strictly convex, u”* is the unique
minimizer of V on K. If p, = oo then V cannot attain a minimum on Ko,
since the infimum is less than ¢(p) for every p < co. Finally, since ¢(p) is strictly
decreasing for 0 < p < p,, each u” is different for 0 < p < p,. Therefore, by the
strict convexity of V, ¢(p) is strictly convex for 0 < p < p,. o

Clearly 8(p) > ¢(p) for all p. Equality does not hold in general (take, for
example, K = [0,00), V(u) = (u— 1)?, H(u) = u), but we always have the
following result.

Proposition 2.2
If0 < p < p,, p<oo, then H(u?) = p and thus 0(p) = p(p).

Proof

Clearly H(u°) = 0. Suppose for contradiction that H(u?) < p for some
p € (0,p,], p < 0o. Then H(u?) < p — ¢ for some ¢ € (0, p). Hence

elp) = V(u*) > plp—¢),
which is impossible since ¢ is strictly decreasing on [0, p,). a

The next result gives a useful method of calculating u” and p, via Lagrange
multipliers. For A > 0 define V) : K — RU {+o0} by

(2.3) Vau) = V(u) + AH (u).
If p > 0 we define the subdifferential dp(p) by
p(p) = {n € R:p(p) > p(p) + p(p — p) for all > 0}.
(This is the usual definition of the subdifferential provided ¢ is set equal
to +oo on (—00,0) ; note that if the right derivative D* 5(0) exists then

9p(0) = (=00, D*(0)].)

Proposition 2.3

If A > 0 then V) attains an absolute minimum on K, 1f and only if - €
dp(p) for some p > 0, and then the unigue minimizer 1s u”.
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Proof

Suppose —A € dyp(p) for some p > 0. Let u € Koo and Hu)=p1. lfp> p,
then A = 0. Hence by Proposition 2.2

Va(u) = Va(u?) = V(u) — o(p1) + (p1) — #(p) + A(pr — p)
> ¢(p1) = (p) + Ap1 — p)
>0,

and hence u? minimizes Vy. Conversely, if @ minimizes Vi on Ko, and H(u)=p
then for any py >0

0 < Va(u?) — Va(id)

@4 < plo) = V(@) + Mo - p).

Taking p; = p we deduce that i = u?, and from this and (2.4) it follows that
—X € 8p(p). The uniqueness of the minimizer is a consequence of the strict
convexity of Vy. o

It follows from Proposition 2.3 that V} attains an absolute minimum on Koy
with corresponding minimizer @()), if and only if A belongs to a semi-infinite inter-
val J C [0,00). If $(X) = H(ii(A)) then $(A) = (8¢)~(—A), ¥ is nonincreasing,
lima—oco $(A) = 0 and sup, ¥ = p,. Furthermore p, < co if and only if J = [0, 00),
and then p, = ¥(0).

We now give a criterion for 8(p) to equal ¢(p) for all p > 0.

Theorem 2.4

A necessary and sufficient condition that 6(p) = ¢(p) for all p > 0 is thai
there ezists a number § > 0 such that, given any @ € Ko and any € > 0, there
exists u € Koo with H(u) > H(it) + 6 and V(u) < V(4) +e.

Proof

Necessity. Let @ € Ko and suppose H(#) = po. Let & > 0 and choose
p > po+6. By assumption, given ¢ > 0, there exists u € S, with V(u) < ¢(p) +e¢.
Thus H(u) > H(it)+ 6 and V(u) < ¢(p,) +€ < V(2) +¢, as required.

Sufficiency. By Proposition 2.2 it suffices to show that 6 is nonincreasing.
Let 0 < p < py < oo and let @ € S,. By applying the condition in the theorem
a finite number of times we deduce that given ¢ > 0 there exists u € Ko with
H(u) > py and V(u) < V(ii) +¢. Define, for 0 <s <1, u, =su+ (1 —s)u. Then
H(w) = p, H(u,) > p1 and the function s — H(u,) is finite, convex and Isc, and
thus continuous. Hence there exists s € [0, 1] such that u, € S,,. But

Vi) < s V(@) + (1 —s)V(u) < V(@) +e,

and since € is arbitrary, 8(p1) < 0(p). a
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Various other necessary and sufficient conditions that 8(p) = ¢(p) for all
p > 0 can be established in a similar way ; one such condition is that there exists
a sequence u;j € K with H(uj) — oo and V(u;j) — infy50 ¢(p).

If X = R" and H has an extension to a convex function H : R® — IR then H
is necessarily continuous, and thus the level sets S, are closed for every p € [0, ).
Consequently the minimum in (2.1) is always attained and hence 8(p) > ¢(p) for
ps < p < co. The following example shows, however, that when p, < oo the case
8(p) = ¢(p) for all p > 0 can occur even in finite dimensions.

Example

Let X =R?, K = {(z,y) : £ > 0}, V(z,y) = 2> + ¢*, and H(z,y) = y*/z* if
z >0, H(0,0) = 0, H(z,y) = +oo otherwise. Then H is convex and Isc. For any
p>0,e>0, H(e, p'/*e'/?) = p and V (e, p/*e'/?) = € + p'/%. It follows that
ps = 0 and that 8(p) = p(p) = 0 for all p > 0.

Finally we note that extra equality constraints can sometimes be handled
using the above results by redefining K. Suppose, for example, that the problem
to be studied is to minimize V on S, subject to the extra constraint G(u) = v,
where G : K — RU {+o0} is convex and slsc. Assume further that y € R is such
that, given any p € [0,00) and u € S, with G(u) < v there exists @& € S, such that
G(@) = v and V(i) < V(u). Then the problem is equivalent to that of minimizing
Von S,NK, where K = {u € K : G(u) < 7).

3. Equilibrium of an incompressible fluid above a surface.

So as to fit this example into the framework of Section 2, we set X = L'(IR*)N
L2(IR?) endowed with the weak topology of L*(IR?), K = {h € X : h > 0}, and
we define V, H by (1.3), (1.4) respectively. Since f is bounded and

a V(R 2 ol gl + (min 1)) (A,

it follows that V : K — IR. Furthermore, for each p > 0, M > 0 the set K, 5
is nonempty and sequentially precompact. If h; € K, ar with h; — h in L*(IR?)
then for any R > 0

fhjdz :/ fh; dz+/ fh; dz,
R? lzl<R 2128

and the first integral on the right-hand side tends to fM(th dz as j — oo,
while the second is bounded above by pmax,|>r|f(z)|- By (1.2) we thus have
lim; oo f“, fhj dz = fR, fh dz, and hence that V restricted to Sy ar is slsc. It is
easily shown that K is sequentially closed and convex, that H is convex and slsc,
and that V is strictly convex. Thus Propositions 2.1-2.3 hold. The minimizers
h(X) of the functional (cf. (2.3))

(3.2) Va(h) = g/m(%hz + fh)d=z + A/m hdz
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on K are easily calculated by minimizing the integrand for each z. Thus we find
that

(33) FO)(:) =) +97AT,

and that

@4 ¥ = HEO) = [ 76) 4970 ds,
and hence

(35) p = /ﬂ @) ds.

If p, = co (resp. p, < 0o) then V) attains a minimum on K for all A > 0 (resp.
A > 0). Since ¢ : [0, —g mings f] — [0, p,] is strictly decreasing and continuous, it
has an inverse 3 ~!. The minimizer h* of V on K, is therefore given by

(3.6) h(z) = [f(2) +d(p)],
where

_ o) if 0<p<p,p<o0
@7 dle) = {0 if p,<p<oo.

Thus where h?(z) > 0 the fiuid surface is given by z3 = —d(p) = constant. To
check that h? is also the minimizer of V on S, we need to verify the condition in
Theorem 2.4. To do this define for j =1,2,.. .,

ey {r‘ ifj<|z|<j+1
0 otherwise.

Then it is easily shown that for any he Koo
lim H(h+ ;)= H(h) + 27, lim V(h+0;)=V(h),
j—o0 j—oo

as required. From (3.6) we thus have that for all p > 0

(38) )=o) =g0 [ - e

Other formulations of the problem treated in this section are possible. For
example, one can minimize the potential energy of a given volume of fluid given
that it occupies a subset of the region above the surface S, without assuming
initially that this subset has the form f(z) < z3 < f(z) + h(z), as done here ;
a material (Lagrangian) description is also possible. Although these formulations
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may in some ways be preferable they do not have the same convex structure as

(1.3), (1.4).

It is interesting that in the problem considered here, and despite its convex
structure, there are configurations that can be regarded as metastable, such as
that represented by a lake in the mountains. In the latter case the total potential
energy can be reduced by transferring a drop of liquid to a lower level, so that the
configuration is not a local minimizer with respect even to small C,‘,"’(IR,Z) pertur-
bations. This raises questions pertaining to the appropriate choice of metric and
role of dynamics in metastability similar to those arising in problems concerning
solid and fluid phase transitions.

4. A simplified model of the atmosphere.

Consider a vertical column of height p > 0 and unit cross-sectional area of
an ideal gas with constant specific heats. We use a one-dimensional Lagrangian
description with respect to a reference configuration [0, 1] in which the gas has
constant density r, > 0 and constant pressure p, > 0, the material point at
z € [0, 1] in the reference configuration being dispiaced to the point with vertical
coordinate z(z), where z is increasing and *

(4.1) 2(0)=0, =z(1)=p.

The gas is assumed to deform adiabatically, so that the pressure p and density r
satisfy

(4.2) prt=por;7,
where 7 > 1 is a constant. (The adiabatic assumption, while capturing some

features of the lower atmosphere, is a considerable oversimplification : see, for
example, Houghton [6].) The potential energy of the column is given by

(4.3) I(z) = /01 [(_7_—7)_(1;717)7:7 + rogz(z)] dz,

which we write in the form
! k ue .
(44) I(Z):ToyA [W+(l —Z)Z (I)]d},,

—————_ We seek to minimize I(z) subject to the boundary condi-
rog(y — 1)

tions (4.1). To fit this problem into the framework of Section 2 we set
that the problem becomes to minimize

9
' =u”, so

1 k .
(4.5) V(u) = r,,y/ [“,,_”—_” +(1- J:)u'(.c)]tl.t
0



LOSS OF THE CONSTRAINT IN CONVEX PROBLEMS 9

subject to the constraint

1
(4.6) H(u) = /0 u(z)?dz = p.

We set X = L?(0, 1) with the weak topology, and K = {u € L? : u > 0}. Standard
methods show that the hypotheses of Proposition 2.1-2.3 hold. The minimizers
@(A) of Va(u) = V(u) + AH(u) are easily calculated by minimizing the integrand
for each z. Thus

1/2y
(4.7) u(A)(z) = [m]
and
(48) YO = HEO) =~ ‘:"/; (A4 709) 5" =A%),
[ence
(1.9) pr = = [2)"7 < oo,

y—1're9

and the minimizer u” of V on K, is given by

B 1/2y
T o= [mrrisaal
whe.re

vl p) il 0<p<p,
(1.11) ppi=d F 8 T IS

To check the condition in Theorem 2.4 define for j =1,2,...

0 if 0<z<l—jt

(L.12) "i(”:{j if 1-jl<z<l.

Then if u € K,

lim H((i* + 0;)"/?) = H(a) + 1, I_Iim V(@ + ;)% = V(a),
Jj—oo =00

as required. Hence, for all p > 0, 8(p) = ¢(p) and u” minimizes V on S,.

From (4.9) we see that the adiabatic model predicts a finite height h = p, for
the atmosphere. The corresponding pressure, density and tempemtnre prorles are
easily obtained from (4.10) with p = p, using the formulae rz’ = r,, p= cp(lT-)ﬂr
where @ denotes the absolute temperature and c, the specific heat at constant
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pressure. If p, ¥ denote the values of the pressure and density respectively at the
earth’s surface z = 0 we find that

) . S 4
(4.13) h=-1F,
(4.14) pz) = B(1 - )77,
(4.15) r(z) = 7#(1 - i)#?
(4.16) 0(z) = ——(1 B —)

These well known formulae can be found, for example, in Sommerfeld [11, pp
49-55).
5. The Thomas-Fermi model

In the Thomas-Fermi theory of atoms and molecules one is led to the problem
of minimizing the energy functional

6.1y V()= :51”./“’ r(z)s/:’dx—/n! y(z)r(z)dz + %/n’/n wdr dy

s e -yl

subject to the constraint

(5.2) H(r):= / r(z)dz = p
“J
Here r(z) > 0 is the electron density,
k z~
(5.3) AWz =Y
parl ]

is the Coulomb potential conespondlng to k > 1 nuclei of charges z; > 0 Ior ated
at the distinct points a; € IR? and v is a positive constant.

To apply the results of Section 2 we let X = L'N L% endowed with the weak
topology of L3, and we let
(5.4) K={reX:r>0}.

(Here LP denotes LP(IR®).) The convexity, semicontinuity and other hypotheses of
Propositions 2.1-2.3 are easily verified (see Lieb & Simon [8], Lieb [7]). To prove
the condition in Theorem 2.4 we let n € C2(IR®), > 0, and for 7 € Ko, € > 0,
define (cf. Benguria, Brezis & Lieb [4])

(5.5) fe(z) = 7(z) + >n(ez).
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Then it is not hard to prove that
lim Vir) - V(i) — (/ #(z)dz — Z)/ "_(I_)d:
€ R we Izl

e—0+
(5.6)
1 n(z)n(v)
" 2/n=/n= le—yl

x 5
where Z = 3}"._, z;. In particular,

limH(R) = Hr)+ H(), lmV(FE)=V(),

as required.

From (5.6) we see also that if # € Ko with H(F) < Z then for a suitable n
and € > 0 we have that H(7,) > H(F) and V(7)) < V(F). Hence p, > Z. In
fact, by showing that the Lagrange multiplier for the minimizer rZ of V subject
to H(r) = Z is zero we find (see the above references and the work of Benilan
& Brezis reported in Brezis [5]) that p, = Z. Since the second term in (5.1) is
sequentially continuous on X, while the first and third terms are slsc, it follows
that any minimizing sequence r; for V in K, satisfies limj_o ||rj||zs/s = ||7?||Ls/s,
so that r; — r? strongly in L%/3, and hence strongly in L? for 1 < p < 5/3. If
0 < p< Z, and if rj is a minimizing sequence for V in S,, then we also have that
JgoTidz = [gs rPdz, from which it is easily proved that r; — r* strongly in L.
Combining these remarks with the results of Section 2 gives the following version
of the basic result of Lieb & Simon (8].

Theorem 5.1

(i) If 0 < p < Z then V atlains an absolute minimum on K subject to H(r) = p
at a unique r?, and every minimizing sequence converges strongly to r? in LP for
1<p<5/3

(11) If Z < p < oo then the infimum of V on K subject to H(r) = p equals
V(r?) and is not attained. Every minimizing sequence converges to r2 strongly in
L for 1 < p < 5/3, but not strongly in L'.

For more information concerning the minimizers r#, and for other results, the
reader is referred to the papers by Lieb & Simon and Lieb. The results of Section 2
also apply to the Thomas-Fermi-von Weisacker theory treated in Benguria, Brezis
& Lieb [4].

6. Coagulation-fragmentation equations

The discrete coagulation-fragmentation equations

r—1 ol
1
(6.1) ¢ = EZ[U,-_,',C,-_,L‘, — by e ] — Z[a,v,c,c, —brserys), T=1,2,...,
s=1
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(where the first sum is absent if r = 1) are a model for the time evolution of the
expected numbers c,(t) > 0 of r-particle clusters in a system of a large number of
clusters of particles that can coagulate to form larger clusters or fragment to form
smalier ones. We suppose that the coagulation rates a, , and fragmentation rates
b, are nonnegative constants satisfying for each r,s > 1

(6.2) B =8y b =baiey 800 Qr @y =501,

where the @, are strictly positive constants with Q; = 1, and we confine altention
to the physically interesting case when

(6.3) 0< 2z, <oo,

where

(6.4) 27! = limsup Q.
r—+00

Formal calculations show that for solutions ¢ = (c,) of (6.1) the density

o0

(6.5) H(c) = Z re,

r=1
is a conserved quantity, and that the function

0o

(6.6) E(c) = Zcr(ln(é—') -1)

r=1

is nonincreasing with time. For these and other reasons it is natural to consider
the problem of minimizing E subject to H(c) = p. Following Ball, Carr & Penrose
[3] we study the equivalent problem of minimizing, in the notation of (2.3), the
functional

(6.7) V(c) = E(c) — tnz, H(c),

which has advantageous continuity properties. We introduce the Banach sequence
space

o0

(6.8) Y={c=(c):llell <00k, el =Y rlel,

r=1

and denote by X the space Y endowed with the weak star topology (see [3, p 672]);
a sequence c¢(/) converges to ¢ in this topology if and only if the norms |[c(3)]| are

uniformly bounded and cg) — ¢, for each r.
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Welet K = {c€ X : ¢, > 0 for all r}. Since

oo oo
Vie) =Y erltn(c) = 1)+ verer,
r=1 r=1
where v, = —ln(Q:/' z,), and since liminf, . 7, = 0, it follows using the methods

in [3, pp 680-682] that V is slsc on K. The other hypotheses of Propositions 2.1-2.3
also hold. To check the condition in Theorem 2.4 we let {r;} be a sequence such
that limj_o 7, = 0 and define ¢(/) by

o e {r;‘ ifr=r
0 otherwise.

Then for any ¢ € K, it is easily checked that
lim HE+ o) = H@)+1, lim V(E+o9)=V(e),
j—oo j—o0

as required.

Defining V) as in (2.3) (a different notation is used in [3]) we find by mini-
mizing the summand for each r that the minimizers &(\) of V) on Ko have the
form

(6.9) EN)r = Qr(ez,).

Therefore

00

(6.10) P(\) = HEN) =Y rQ.(e 2.
r=1
Let
(6.11) F(z) =) rQ,z".
r=l

By (6.4) this series has radius of convergence z,. Thus

o

(6.12) P = 1Qrz,

r=1

and il 0 < p < p,, p < o0, the unique minimizer of V (and hence of E) on S, is
given by

(6.13) e =Q,z(p)
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where F(z(p)) = p.

In terms of the original free energy functional E the conclusion of Theorem
2.4 implies that if p, < p < oo then

(6.14) ipf E = B(e”) + tnz,(p - p.),

and by Proposition 2.1 every minimizing sequence of E on S, converges weak star
toc?s. If 0 < p < p,, p < oo then every minimizing sequence of E on S, converges
strongly in Y to ¢? ; this follows from Proposition 2.1 and from [3 Lemma 3.3].
These and the remaining conclusions of Section 2 were established in [3 Proposition
2.3, Theorem 2.4] in the context of the Becker-Doring equation, a special case of
(6.1). Results for (6.1) are reported in Ball & Carr [2]. The reader is referred to
these papers for the relevant physical background, a discussion of the validity of
density conservation, and a dynamical analysis of the approach to equilibrium.
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