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1. Introduction 

We study in this paper the decay to zero of solutions of the equation 

ii +i~ + f ( u ) = 0 ,  (1) 

where f is a nonlinear C 1 function satisfying f(0) = f '(0) = 0, rf(r)  > 0 for r 4: 0, and 
r 

~f(s)  ds ~ oo as Irl ~ oo. These conditions ensure that every solution of (1) tends 
o 
to zero as t --* c~. Under quite mild additional assumptions o n f w e  give a reasonably 
complete description of the asymptotic behaviour of all solutions of (1). Because 
f '(0) =0  the rate of decay of solutions cannot be determined by linearization. Our 
assumptions are satisfied, for example, by 

f (u )=  luJ ~-1 ]log lullPu, 

where ~ > 1 and fl are constants, and by finite sums of functions of this type. 
The results are typified and motivated by the case f ( u ) = u  3, which may be 

regarded as the special case a =0 of the damped Duffing equation 

tt W it + au + u3 =O; (2) 

in the introduction we concentrate on this example. One application where (2) 
arises is in damped motion of an extensible elastic rod with hinged ends; a crude 
model of this has been studied by BALL [1-3] and consists of the initial-boundary 
value problem 

w=wxx=0 at x=0 ,  1, (3) 

w(x,  O) = Wo(X), r O) = wl (x). 

In (3) w(x, t) is the transverse deflection and fl is a constant proportional to the 
tensile axial load induced when the rod is constrained to lie straight. If w o and wl 
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are scalar multiples of sin rcx, the solution of (3) has the form w(x, t)=u(t)sin ~zx, 
where u satisfies (2) with a = rt2(rc2 +/3). It follows that a < 0, a = 0, a > 0 according 
as /3<  - r t  2,/3= - r t  2,/3> - re  2. The critical case a = 0  in which we are interested 
corresponds to the situation when the axial load is compressive and exactly 
equal to the Euler load of the rod. In Fig. 1 are shown the (u, ~) phase plane 
diagrams for (2) corresponding to the values a =  -0 .5 ,  a =  -0.16,  a=0 ,  a=0.125, 
a =0.25 and a = 5. When a <0  there are 3 equilibrium points, namely u = + ( - a )  ~ 
and u = 0, the first two being stable and u = 0 being unstable. The stable manifold 
of u =0  forms a separatrix, the unstable manifold consisting of two Lyapunov 
stable orbits connecting 0 to ___ ( - a ) <  Convergence to each equilibrium point 
is exponential. When a > 0  the only equilibrium point is u - 0 ,  convergence to it 
again being exponential. The local phase portrait is easily obtained by lineariza- 
tion. For  0 < a < � 8 8  u = 0  is a node with two asymptotic directions, namely the 

1 + ] , / ] - - ~  These directions coincide when a = �88 lines ~ = m e  u, where m e = 2 " 

For a >�88 u =0  is a focus. (Most of these facts are proved in [3].) 
In the case a = 0 we show that u = 0 is a node with two asymptotic directions, 

exactly as for the case 0<a< �88  There are precisely two solutions approaching 
zero with slope - 1 ,  convergence being exponential. These two solutions corre- 
spond to the stable manifold of u = 0 in the case a < 0, and for 0 < a <�88 they corre- 
spond to the two solutions approaching zero with slope m_. All other solutions 
approach zero tangential to the u-axis, and have asymptotic form 

u( t )=+ - 4 ~ t - ~ l o g t + O ( t  -~) . 

In particular every nonzero solution satisfies u/~<0 eventually (this may be 
proved also for 0 < a  =<�88 by the method of Theorem 2.2). 

For general f the situation is qualitatively the same. Under our assumptions 
there are two exponential solutions, while all other solutions have asymptotic form 

u(t) = U(t)+ f(U(t))log If(u(t))l +O(f(U(t))), 
where U satisfies 

O+f(U)=O,  U(0)= +1. 

Finally we note that, among other applications, equation (1) governs the decay 
of travelling wave solutions u(r r  c>0,  to the nonlinear diffusion 
equation u, = uxx + f (u). 

HI.  
H2. 
H3. 

2. General Behaviour of Solutions 

We consider equation (1) under the following hypotheses on f :  

f is continuously differentiable. 
i f(r)  ~ 0 for all r, with f(r) = 0 if and only if r = 0. 
F(r)-~ ~ as Irl-~ ~ ,  where 

r 

F(r )=  S f(s)ds. 
0 

For  ~b, qJe~  we define V(~, q~)=�89 +F(t~). 
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Theorem 2.1. For any real Uo, ul there exists a unique solution u(t) to (1) which 
is defined for all t ~ ~l, is three times continuously differentiable, and satisfies u(O)= u o , 
ti(0)=ul. Furthermore u and ix tend to zero as t ~ oo. 

Proof. Local existence and uniqueness follows from standard theorems on 
ordinary differential equations. If u satisfies (1) locally in t then 

V(u, / , )  = - / , 2 ,  

so that by H3 both u and h are bounded for t >0. Standard results now imply 
that u exists for all t > 0. Existence for all t < 0 follows similarly from the inequality 
12 > - 2  V. For the last assertion of the theorem see HALE [5, p. 298]. 

Next we show that u does not oscillate. 

Theorem 2.2. Let  f '(O) = O. Then either u - 0 or u h < 0 for large enough t. 

Proof. Let v = e'12u and suppose that u is not identically zero. Then 

\4 u ] v=O'  

so that, by Theorem2.1, / J r>0 for large enough t. Hence vO has only finitely 
many roots, so that u is eventually strictly positive or negative. But (1) implies 
that / i  has the opposite sign to u when/~=0. Since u--*0 as t ~ o o  it follows that 
u f i<0  for large enough t. 

From now on we assume that u > 0  for large enough t; in particular u is not 
the zero solution. In the rest of the paper we will make certain assumptions on 
the behaviour of f ( r )  for positive r. Analogous assumptions on the behaviour 
of f ( r )  for negative r lead to corresponding results for solutions u of (1) satisfying 
u <0  for large enough t. If f is odd the behaviour of these solutions can be obtained 
trivially from that of the eventually positive ones. 

Lemma 2.3. Let  f '(O) =0. Then ii/it tends either to 0 or to - 1 as t -~ oe. 

Proof. Let q =/i//~. Differentiating (1) with respect to t we obtain the Riccati 
equation 

//+ q + q2 = g(t), (4) 

where g(t)= - f ' ( u ( t ) )  tends to zero as t ~  oe. By Theorem 2.2, q(t)> - 1  for large 
enough t. Also q(t) is bounded for t>0 ,  since if not there would exist a sequence 
t , ~ o e  with q( t , ) - ,  oe, //(t,)>0, which contradicts (4). It is also clear from (4) 
that if C # 0 ,  1 the equation q(t)= C has at most finitely many positive roots. 
It follows that q tends to a limit, which by (4) must be 0 or - 1. 

Theorem 2.4. Let  f ' ( 0 )=0 ,  and let U denote the solution o f  the initial-value 
problem 

t) + f (U)  =0 ,  U(O) = 1. (5) 
Then as t--, oe either 

log u(t) 

t 
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o r  

U '(u(t)) 
~ 1 .  

t 

Proof. By Lemma 2.3, / i / / i - - . -  1 or 0. In either case, by L'Hospital's rule, 

lira /i = lira u-- = lira log u = lira log u (6) 
t o ~  /i t - ~  u t - ~  t t ~ o  t 

But if/i//~ ~ 0, then i l / f (u)-- ,-  1, so that again by L'Hospital's rule 

u 1 

lim ! ~ - ~ d r _  -1 .  
l ~ c o  t 

u(t) 1 
Since V-l(u(t))= - I " ~ d r ,  the result follows at once. 

1 f ( r )  

3. T h e  E x p o n e n t i a l  S o l u t i o n  

In this section we establish the existence of a solution u (which is unique up 
to parametrization) satisfying the first possibility of Theorem 2.4, namely such that 

lim--=/~ lim l o g u = _ l .  
t~oo  U t ~ c r  t 

Theorem3.1. Let f ' (0)=0.  There exist numbers 6>0,  61>0 such that for 
any yoe [-6~,  O) there is a unique solution u(t)=u(t, Yo) to (1), which is defined 
for t ~ ,  satisfies lu(t)l+l/~(t)l<O for all t>0,  and is such that /i(0, yo)=y o and 

du 
lim /~ - 1 .  Furthermore u(O, yo)eC1[-61,0), ~-yo (0,yo)---,-1 as y o - - ' 0 - ,  
t ~ o v  U 

and there exists a number cr(yo)> 0 such that, for any 7 > O, u has the asymptotic form 

u(t)=o e-t[1 +o( t -  ~)] 
(7) 

/~(t) = - t r  e- ' [1 +o(t-~)]. 

Proof. Let x=/L, y=u+i~, so that (1) reduces to the system 

5c= - x - f  ( y -x ) ,  

) =  - f ( y - - x ) .  (8) 

The theorem is then a consequence of a result of HARTMAN [p. 296, Corollary 8.1, 
p. 313] and Theorems 2.1, 2.2. 

If f satisfies extra conditions then more terms in the asymptotic expansion 
of u may be obtained. For example, if f(r) = O (r ~) as r ---, 0 + for some e > 1, then 

u(t) = o [e-' + O(e- ~')] (9) 

4. A s y m p t o t i c  F o r m  o f  O t h e r  S o l u t i o n s  

We now consider solutions u satisfying the second possibility given by 
Theorem 2.4, namely that U- ~ (u(t))/t--, 1 as t---, or. Before rigorously establishing 
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an asymptotic representation for these remaining solutions, we indicate briefly 
why this representation is to be expected. We seek a solution to (1) of the form 
u = U + g .  Substituting this into (1), expanding the term f ( U + g )  in a Taylor 
series, and neglecting ~ and powers of g greater than 1, we obtain the equation 

which has solution 

~+ f'(U) g=f'(U)f(U), 

g(t) = C f(U) + f(U) log f(U) 

(lo) 

where C is an arbitrary constant. We thus expect [ u - U - f  (U)logf(U)]/f(U) 
to tend to a limit as t ~ m.  

We now list various extra hypotheses on f(r) as r --* 0 + which we will need to 
establish this behaviour. 

H4. l o g f ( r ) ~ 0  as r ~ 0 +  for a l l e> 0 .  

H5. f(r) r ~(s) ; 

H6. feC2(O, 6) for s o m e 3 > 0  and 

r2 f"(r) . . . .  
~ (~  = oil).  

H7.  -"  "J(kr)-~l  as r ~ 0 + ,  k ~ l .  
f(r) 

Remarks. I. Suppose that f satisfies f '(0) = 0, the hypothesis H 6, and the con- 
dition (weaker than H 7) 

limksu p f~-~-<f(k r) oo. 
r~O+ 

Then f satisfies H 7, and in addition 

rf'(r) 
f(r) 

- - = O ( 1 )  (11) 

as r ~ 0 +.  This follows from the representation 

f(k r) 1 + ( k - ' "  rf'(r) 
f (r) - 1}--]~-r  - -  

( k -  1) 2 (k r)Zf"(k r) f~c r) 
2 ~2 f(k r) f(r) 

where I k - l l 6 l k - l [ .  

2. I f f  satisfies 

rf'(r)f(r) " 1  > C > O  
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for small enough r > 0, where C is a constant, then f satisfies H 5. To prove this 
it is sufficient to note that for large enough to we have that 

t -  to 1 

(U/ ( s  1 -(UCJ/(_]2)(t *) ' 
where t o _< t* < t. 

3. Examples of functions f satisfying all the hypotheses H 1-H 7 are given by 

f ( r )  = Ir] ~-1 Ilog Ir[lP r, 

where e >  1 and fl are constants, and by finite sums of terms of this type: this is 
easy to verify using Remark 2. 

Lemma4.1. Let  f satisfy H5, and suppose that U-l(u( t ) )  , 1 as t ~  oo. Then 
u(t) t 

- - - *  1 a s  t ~ o o .  
u(t) 

Proof. Let t , ~  oo and let s ,=  U-X(u(t.)). Then s .  1 and we have to show that 
t, 

U(s,) . 1. Let 
u(t.) 

(s .  : ~ - 1 ) ,  
~.=max ~1 t. I' 

so that en--+O. For fixed n, if s n ~ t .  then U ( s . ) : U ( t . ) + E / ( : . ) ( s . - t . )  for some 
: .Gr t . ,  sn]. Therefore 

U(s.)_ f(u(~.))~, t . s ._ l  <c~., 
u(t.) u(~.) ~ ~ u(t.) = 

where C is a constant and we have used H 5. If t, => s, we obtain by transposition 

u(s.) _ 1 <__ u(s.) 
u(t.) c ~. u(t.~' 

which implies that U(s,) U(s.) ~ is bounded, the bound being independent of n. Thus 

- - - - ' ) "  1, 
U(t,) 

Next we prove a boundedness result for solutions of a second order linear 
ordinary differential equation. Although the result can be obtained from one of 
BELLMAN [4] via a transformation, this procedure is very involved. We therefore 
give a simpler proof. 

Lemma 4.2. Let  e > 0 and let g = g(t) satisfy the equation 

+ (1 + a(t))~, + b ~  g = h(t), (12) 

where a ,b ,h  are continuous functions satisfying a ( t ) ~ 0 ,  b ( t ) ~ O  as t ~  oo, and 

t 1 - z ~ h 2 (t) d t < oe. Then is bounded for  large t. 
1 
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Proof. Let E(t) = t-  2e It ~2 § • g2]. Then 

g2 
t 2~/~(t) = [ 1 - 2  e - 2  t(1 +a)]  ~2 - 2  e 2 - - +  [2 

t 
Using the inequalities 

and 

e - 2 b(t)] g ~, + 2 t h(t) ~,. 

g2 
2 g ~(e - b)~ t ~2(1 § Ib]) §  (e2 § Ibl) 

h(t)~,<h2(t)+~ - 

we see that, for large enough t, 

/~(t) < 2  t 1-2~ hE(t) 

from which the lemma follows. 

Remark. Even if h--0, g need not be bounded for t > 0, as the example a - 0 ,  
b(t) = (1 - t ) / t  log t, g(t)= log t shows. 

Theorem 4.3. Let f satisfy the hypotheses H1-H7.  Let U-l(u(t)) ~ 1. Then as 
t ~ 0o we have t 

[ u -  U - f  (U) logf (U)] / f (U)-o  L 

for some constant L. Conversely, given any real constant L there is a solution u 
which has the above asymptotic form. 

Proof. Let u satisfy U-l(u(t)) ~ 1, and write 
t 

u =  U -  0 log 101+ 0g .  (13) 
Then for large enough t 

f(u(t))=f(U(t))+(O(t)  g( t ) -  0 (0  log I(J(t)l)f'(U(t)) 
(14) 

+ (U(t )g( t ) -  t)(t)log I(J(t)l)Ef"(u*(t))/2, 

where IU(t)-U*(t)l < lu(t)-U(t)l.  (Note that U*(t)>0 by Lemma 4.1.) Substitut- 
ing (13) and (14) into (1) we obtain 

~(t) + (1 § ~,(t) + fl(t) g(t) +?(t) gE(t) = h(t), (15) 
where 

2 0  U . 
a =  0 ' f l = ~ - -  U log IOIf"(U*), ~ = Of"(U*)/2, 

(16) 
tO~ 2 0 OloglUI (J(logl(Jl)2f,,(U,). 

h= IU-) + - ~ §  (J 2 

We next estimate the behaviour as t ~  oo of the coefficients in (15). First, since 
a ( t ) = - 2 f ' ( U ( t ) )  it follows from H4  that 

a(t)--*O. (17) 
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Next 
/~ = f"(U)  f (U)  + f '(U) 2 + f (U)  log f (U)  f "(U*) 

f (U)  \ f (U)  

d fZ(U)u  21~ ( f~U*2f"(U*) ] ~ - ( ~ W )  ] f(U*) U 2 

_u(t) 
By Lemma4.1, U*(t) ~ 1  as t ~  o% so that by H7, f(U*(t)) + 1  as t ~  oo. Also, 

f(U(t)) 

by H5, tf(U(t)) is bounded. It then follows from H4, H6 and (11) that for any g>0 
U(t) 

t 2-e fl(t) --~ 0. (18) 

Similarly it can be shown that 

? (t) [ U(t)/f(U(t))] 2 (19) 

is bounded and that for any g>0 

t 2-~ h(t) -~ O. (20) 

From (13), H4 and Lemma 4.1 we have 

f(U(t)) 
U(t) g(t)-~0. (21) 

Now let b(t)=t[fl(t)+y(t)g(t)]. By (18), (19), (21), H4 and H5 we see that b(t)~O. 
Therefore by (17), (20) and Lemma4.2 

g(t)/t ~ is bounded as t ~ or. (22) 

Substituting (22) back into (15) we find (using (18), (19) and (20)) that 

~(t) + (1 + a(t)) ~(t) = H(t), (23) 

with H(t) a continuous function satisfying t z-~ H( t )~  O. 
Solving (23) shows that g(t) tends to a limit as t - ,  0% which completes the 

proof that [ u - U - f ( U ) l o g f ( U ) ] / f ( U ) - - , L  as t---,m for some constant L. 
We now show that, given any L, there is a solution u which has the above asymp- 
totic form. Ifg satisfies 

~(t) + (1 + 2 0 / 0 )  ~(t) = Q(g(t), t) (24) 

/ d  d 2 
where OQ(g, t)= - U f ( U -  0 log [0[ + O g ) -  ~ + ~ I  ( U -  0 log [0D, then u 

satisfies (1), where u is defined by (13). It will be sufficient to prove that (24) has a 
solution g(t) with g ( t ) ~ L  as t ~ o o .  Let C[to,OV ) be the set of bounded con- 
tinuous functions on [-to, oo) with the supremum norm. For g~ C[-to, oo) define 

t oO 

(Tg)(t) = L - V(t) S es Uz(s) Q(g(s), s) ds - ~ V(s) e s (JZ(s) Q(g(s), s) ds, 
to t 
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cx) 

where V(t)= S e -~ t) 2(s)ds. A straightforward but tedious argument shows 
t 

that there is a constant C such that Tis a contraction on {ge C [t o, oe): Ng -L[[  < C} 
for large enough to, that the fixed point g satisfies (24), and that g(t) ~ L as t -+ oe. 

We now present an alternative proof of the first part of Theorem 4.3 which 
Professor P. HARTMAN communicated to us and has kindly allowed us to use 
here. Assume initially that H1-H3 ,  H5 and H7 hold and that 

f '(r) 2 . 

H8. ~ - f ~ - a r  < oe, 
O+ 

H9. I I f " (r ) ldr< oe, 
0+ 

these two new conditions being implied by H4, H6 and H 7. 
In what follows C denotes a generic constant and T is chosen so that u(T) = 1. 

Integrating the equation 
- / t  fi 

= l + - -  
f (u)  f (u)  

over [T, t], integrating by parts, and using the condition iU f (u ) - - , -  1 as t ~ o% 

we deduce that 

U-l (u( t ) )=t  + C +  
fi(s) ds 

,, f(u(s)) 
t 

Since 

we obtain 

B ut  

f i f  /t /t/i 
= f(u)  f=(u) 

it 
U _ l ( u ( t ) ) = t + C + o ( 1 ) _ l o g f ( u )  - f '(u)/t  fi 7' f2(u ) ds. (25) 

t t 
f '(u)/t / i  C + o ( 1 ) - � 8 9  f"(u)/~a f'(u)/~3 ds (26) 

. 

Both integrals in (26) are absolutely convergent by H8 and H9, since, for example, 

Thus 

i f" (u)  fi3 , .(r) 
r fZ(u ) d s =  - 7"~(l+~ ,r ( l+o( l ) ) [ f" (r )[dr .  

u(t) = U(t + C -  log f (u( t)) + o(1)), 

and so by Lemma 4.1 and H7 we obtain the representation 

u (t) = U(t + C - log f(U(t)) + o (1)). (27) 
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It follows from (27) that 

u (t) = U(t) + ( C - log f (U( t ) )  + o (1)) f ( U( t ) )  

+ � 8 9  f ( U(t)) + o(1))2 f ( U (t*)) f ' (  U (t*)), 

where t*e[t ,  t+ C-logf(V( t ) )+o(1)] .  By using H4, Hh, H7 and (ll)  it can now 
easily be shown that [ u - U - f  (U)logf(U)]/ f (U) tends to a limit as t---, co. 

In the special case f(r)=lr] ~-1 r, cr we obtain from Theorem4.3 the 
asymptotic form 

U(t) : a 1(0 0 t 1/1 ~ - -  a 2 (o 0 t ~/1 ~ log t + t ~/1 - ~(C + 0(1)) 

where a1(~)=(~-1) m ~, a2(~)=~(~-1) <2~--1~/" -~1, and C is a constant. 
Further terms in the asymptotic expansion may be obtained in an essentially 

similar way. In the case f(r) = r a, for example, it can be shown that 

u ( t ) -  t ~ 3t ~ logt+Ct--~ ~27t-~ 9 t -~  
1/2 4 ] / 2  + 3 2 ] / 2  (l~ t ) 2 - -  l~ t 8 ] /~  

[ 15 + 1 5 C  3 C 2 \  
+ 

Only one free parameter C appears in this and similar expansions. The other free 
parameter anticipated in a second order equation parametrizes exponentially 
small terms. 
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