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ABSTRACT

We prove under various fairly weak assumptions that if a sequence of functions u" converges to a
function u, and if each u" solves some appropriate fully nonlinear partial differential equation, then u
solves the limit equation.

1. Introduction

In this paper we establish some convergence theorems for solutions of fully
nonlinear partial differential equations of first and second order, having the general
forms

F(Du(x),u(x),x) = 0 a.e. xeQ, (1.1)
and

F(D2u{x), Du{x),u{x),x) = 0 a.e. xeQ, (1.2)

respectively, where fi is a bounded open subset of Um (m ̂  1).
Our most substantial results concern elliptic equations of the form (1.2), and a

simple case exhibiting the essential difficulties occurs when (1.2) has the form

F(D 2 u (x ) )= / (x ) , (1.3)

where F : Smxm -> U, Smxm denotes the space of real symmetric mxm matrices, and /
is measurable. In this situation we say that F is elliptic if F is nondecreasing on S"lxm;
that is, if A ^ B implies F{A) ^ F{B) for A, B e S"1*"1. It is easily shown (Proposition
1) that should F be C1 this definition is equivalent to the more familiar condition

| (A)^: ^ 0 for all A e S'
dru

One typical convergence theorem proved by our techniques is the following.

THEOREM 1. Let F : Smxm -*• U be continuous and elliptic. Suppose u" e W2-p(Q)
(for some p > m) solves

F(D2u"(x))=f"(x) a.e.xeQ(n= 1,2,...) (1.4)
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and
(i) M" - • u weakly in W2'P{Q);

(ii) / " ->/ a.e. into.

Then
F(D2u{x)) = / ( x ) flaxen.

Theorem 1 is a special case of a more general convergence theorem, Theorem 3,
stated and proved in Section 2. A weaker version of Theorem 1 (requiring that
u" -> u weakly in W2'P(Q), p > m, and / " - > / uniformly on Q) was proved by
completely different methods in Evans [6]; some additional applications of the
techniques from [6] are presented in Evans and Friedman [8], Evans [7], and
P. L. Lions [15]. N. V. Krylov in [11] has used techniques from stochastic
differential game theory to prove theorems like ours in the case where / " - > / in
£"(Q), u" -*• u weakly in W2'm(Q) and F(D2u) is expressible as the min-max of affine
elliptic operators (see also [7; §2] concerning this last idea). Also relevant are
Krylov's papers [12-14].- Although Theorem 3 partially generalizes the above
results, the main interest of it lies in the method of proof, which is in the spirit of the
maximum principle for elliptic equations and is thus independent of stochastic
differential game theory.

Theorem 1 is a local result, in that the functions u" are not required to satisfy any
boundary conditions. Note also that for a nonlinear function F, the fact that u" -> u
weakly in W2'P(Q) does not in general imply that F{D2u") -» F(D2u) in any sense. In
particular, the only functions F having the property that (for suitable p) u" -*• u
weakly in W2'P(Q) implies that F{D2u") -*• F(D2u) in the sense of distributions are
given by

F(A) = affine combination of minors of A , (1-5)

(so that, for example, if m = 2 the only nonlinear sequentially weakly continuous
function F{D2u): W2'2{Q) -»• 2'(Q) is uV|V1 uX2X2- (uXiX2)I

2). This result is proved in
Ball, Currie and Olver [3]. Thus hypothesis (ii) in Theorem 1 cannot be replaced by
/ " - * / weakly in I3(Q). On the other hand, if F has the form (1.5), if u" -> u weakly
in W2'P(Q.) (p sufficiently large), and if / " -*• f weakly in L}(Q), then we can pass to
the limit in (1.4) using the results of [3]; since such F are not elliptic this raises the
question of finding necessary and sufficient conditions on F for Theorem 1 to be
valid.

A variant of the above results in which it is assumed that u", u are C2, that / " - > /
uniformly, but only that u" -* u uniformly, is also presented as Theorem 2 in Section
2. The reader is advised to read the proof of this first, since it illustrates our method
in its simplest and most instructive form.

In Section 3 we consider first order equations of the form (1.1). Again the
essential difficulties are exhibited by the special case of equations having the form

F(Du(x))=f(x), (1.6)

where F: Um -> U is continuous and / is measurable. Here our methods give a
surprising result; namely, if u", u e Cl(Q), un -> u in C(fi), / " - • / in C(Q), and

F(Dun{xj) = f"(x) for all x s Q ,
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then u satisfies (1.6), there being no extra hypothesis on F. If u", u are supposed to be
Lipschitz, rather than C1, this result is true if and only if

for some a e U" and some nonincreasing or nondecreasing function g.

Notation. We write x = (xl 5 . . . , xm), Du = (uV|, ...,uxj, D2u = ({uXjX)),

B(x, r) = {y e Um : \y — x\ ^ r}; and 4 udx = udx = average of u over A.
J meas A J
A A

The letter "C" denotes various constants depending only on known quantities. We
employ the summation convention throughout.

2. Second order elliptic equations

We first show that our definition of ellipticity coincides with the usual one if F is
C1.

PROPOSITION 1. Let F: Smxm -• U be C1. Then F is elliptic if and only if

-^{A)U: ^ 0 for all A E Smxm, QEW". (2.1)
drdr

u

Proof. Let F be elliptic. Then A + tt, ® t, ^ A for t ^ 0, and so

d dF

dt

Conversely, let (2.1) hold and suppose that A ^ B. Then

f dF
F(A)-F(B) = —(sA + (l-s)B)ds(Aij-Bij) = trace(C(A-B)) ,

where

and

Changing bases so that A — B is diagonal, say A' — B' = diag(Al5..., Xm), A, ̂  0
(i = 1,..., w), we calculate

i = 1

F(A)-F(B) = trace(C(A'-B')) =

since C = ((CJj-)) is similar to C and therefore nonnegative definite.

The following theorem and its corollary exhibit our method in its simplest form.
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THEOREM 2. Let F": 5 m x m x Um x U x Q ->• U be continuous functions satisfying
these hypotheses for n = 1,2, . . . ;

(a) F"( •, p , z , x) is elliptic for all p , z , x ;

( b ) F" -> F uniformly on compact subsets of Sm*mxUmxUxQ.

Let u", u e C2(Q), assume u" -> u uniformly in 0 , and suppose that

Fn(D2un(x), Dun(x), un(x), x) = 0 for all x e Q, n = 1, 2 , . . . .

F(Z)2u(x),Du{x),u(x),x) = 0 /or allxsQ.

COROLLARY. Let F:5m x m->IR be continuous and elliptic, let
u", u E C2(Q), fn,fe C(Q), and suppose that

F (D2u"(x)) = f"(x) for all x e Q, n = 1,2,....

/ / ( i) M" -• u uniformly in Q, and (ii) / " - • / uniformly in Q, then

F(D2M(X)) = f{x) for allxeQ.

Note carefully that we do not assume here that D2un -+ D2u in any sense.

Proof of Theorem 2. Choose any point x0 £ fi. Fix s > 0 and then choose N(e)
so large that

sup |M"(X)-M(X)| ^ E for n ^ JV(e). (2.2)
xeCl

Set re = 2e1/4 and define, for n ^ N(s) fixed, the auxiliary functions

v±(x) = -£ 1 / 2 | x -x 0 | 2 ± (u" (x ) -u (x ) ) + 2e.
Then

v + (x0) = un(x0)-u(x0) + 2e ^ e,
while

v+{x) = -2e + (un(x)-u(x)) ^ - £

if x e dB(x0, rr). Thus v+ attains its maximum on B(x0, rE) at some interior point xE,
where

(xe)-D
2w"(x£) ^ 0 .

By (a),
F"(D2u(xr) + 2B1'2 I, Du(xc) + 2ell2(xE- x0), u"(xE), x.)

> F"(D2u"(xe), Du»(xe), u"(x£), x£) = 0 .

Now let £ \ 0, n -+ oo, n ^ N(E). Since u e C2, x£ -• x0, and u"(x£) -• u(x0), we
obtain using (b) the inequality

F(D2u(x0), Du(x0), u(x0), x0) > 0 .

The opposite inequality follows by considering v~.



336 JOHN M. BALL AND LAWRENCE C. EVANS

Remark 1. If each u" is only a subsolution for F", that is,

F"(D2u"{x), Du"(x), u"{x), x) ^ 0 for all x £ Q ,

then the proof shows that u is a subsolution for F. An analogous remark holds for
supersolutions and applies also to Theorem 3 below.

Remark 2. Suppose in the corollary that F is C1, that

dF

for some constant A > 0, and that u"\CQ = u\eii for each n. Then hypothesis (i) in fact
follows from (ii). To see this note that ai}(u — u")x.x. = f—f" for

i

f dF
fly(x) = — (sD2u(x) + {\ -s)D2u"{x))ds

J "rU

and recall the estimate ||M — u"||Lx(n) ^ C\\f — /"||Lx(n) (cf. Gilbarg and Trudinger
[9; p. 35]).

Remark 3. The corollary is false if (ii) is weakened to read / " - » / a.e. in Q. We
give a one-dimensional example. Let

x y

u"(x)=[[fn(s)dsdy,
0 0

1/n

where / " is smooth, periodic on U with period 1/n, f"{x)dx = 0, / " ^ 1, and
m)

0

meas{x e (0, 1/n) :/"(x) = 1} > ( l /n)-( l /n2) . It is clear that / " -»• 1 in measure, so
that a subsequence, again denoted /", converges to 1 a.e. Also

I I

\f"(x)\dx=

0 0
But

>• l / n

[f"(s)ds \f"(s)\ds ^ -
n

0 0

(in fact, / " -> 0 in ^'(0,1)). Taking F as the identity, we thus have that
F(u"xx) = un

xx = / " - * ! a.e., u" -> 0 uniformly, but F(0) f 1. Note also that u" is
uniformly bounded in W2 1(0, 1).

Our main result is the following.
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THEOREM 3. Let F,F": Smxmx U'"x U x f i -• U (« = 1,2,.. .) satisfy these
hypotheses:

(a) F , F" are Caratheodory j u n c t i o n s , t h a t is, for each ( r , p , z ) e S ' " x m x Um x U the
Junctions F ( r , p , z , - ) , F"(r, p , z , - ) are measurable, and for almost all x e Q the
f u n c t i o n s F( •,-,-, x), Fn( • ,• ,• , x ) are continuous;

( b ) for almost all x e f i , as n -+ oo

F"(r,p,z,x) -> F(r,p,z,x),

uniformly on compact subsets ofSmxm x Um x U;

(c) for almost all xeQ and every (p,z)eUm xU the function F"(-, p,z,x) is
elliptic.

Let u e W2'1(Q) and suppose that u" — u -> 0 weakly in W2>P(Q) (for some p > m)
as n -> co, where u" satisfies

F"{D2u"(x), Dun(x), u"(x), x) = 0 a.e. x e Q, n = 1, 2 , . . . . (2.3)
Then

F{D2u(x), Du{x), u(x), x) = 0 a.e. x e Q . (2.4)

Remark. Theorem 1 is clearly a special case of Theorem 3.

Our proof of Theorem 3 requires two lemmas. For h e Zi(Q) we extend h to be
zero in Qc, and then define

M\K\{x) = sup 4 \h(y)\dy, xeM"', (2.5)
r>0 J

the maximal function of h.

LEMMA 1. Let {h"} be a bounded sequence in L!(Q). Then for each 3 > 0 there
exists a constant Ks and a measurable subset Qs c: Q such that

(i) measQ^ < 3;

(ii) for each x0 e Q\Q$ there exists a subsequence nk = nk(x0) -> oo with

Jt[hnk](x0) < Ks (k = 1, 2,...). (2.6)

Proof. We make use of the classical estimate (cf. Stein [2; p. 5]):

meas{x:^/[/j"](x) ^ e} ^ — |^fl|dx, e > 0 . (2.7)

For 3 > 0 we set
C C

Ks = -± max \h"\dx .
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Define S" = {xeQ:i / [ / i " ] (x) ^ K5}. By (2.7) measS" ^ 5 (n = 1,2,...). Now
define

Q& = liminfS" = (J f) Sk;

we have measO6 ^ 5. If x0 G Q \ Q 6 , then x0 G (S")C for infinitely many values of n.
This proves (2.6).

LEMMA 2. Let F, F" satisfy hypotheses (a), (b) of Theorem 3. Then for every
S > 0 there exists a measurable subset Es c: Q, w/tfr meas(Q\£,5) ^ 6, such that
F, Fn are continuous on S5 = Smxm x IRm x U x Es and F" -*• F uniformly on compact
subsets of Sd.

Proof We identify Smxmx Um x U with Rs, s = Jm(m + l) + m + l , so that
F, F": (Rs x Q -» R. Define g{a, t, x) on (Rs x R) x Q by

g{a,t,x) =

F{a,x)

It is easily checked that as a consequence of (a), (b) g is a Caratheodory function on
(1RS x R) x Q. By the Scorza-Dragoni theorem (cf. Ekeland and Temam [5; p. 218])
there exists for every 5 > 0 a measurable subset Es c: Q, with meas(n\£,5) ^ <5,
such that g is continuous on {Usx xEs. The result follows.

Proof of Theorem 3. The principal idea in the proof is first to choose a typical
point x0 e Q, consider then some collection of balls B{x0, rE) (re \ 0 as e \ 0), and
next to show by a comparison argument that u 'almost solves' (2.4) at some point
x,. G B{x0, rF). We finally let e \ 0 to prove that (2.4) holds at x0. This was the
technique used in the proof of Theorem 2; but in the present case, since the various
hypotheses hold only a.e. and \D2{u" — u)\ is only in U(Q) and not necessarily
bounded, we need to arrange things more carefully to ensure that the points x0 and
xr mentioned above lie in the 'good' subset of fi where the assumptions hold. For this
define

v" = u"-u (2.8)

Fix <5 > 0. Now there exists a measurable subset G = Gs c Q with

meas(f i \G) ^ <5, (2.9)
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such that

(i) D2u"(x), Du"{x), un{x), D2u{x), Du{x), u(x) are defined and )
F"{D2un(x), Dun{x), un{x), x) = 0 (n = 1, 2,...) for all x e G,

(ii) Fn, F are continuous on Ss = Smxm x Um x U x G and F" -+ F
uniformly on compact subsets of Ss (Lemma 2),

(iii) D2u, Du, u are continuous on G (Lusin's theorem),

(iv) there is a sequence nk -> oo for which v"k -> 0, Dv"k -* 0, uniformly
on G (Sobolev embedding theorem),

(v) for each rj > 0, xoeG there is a further subsequence
nkj — nk,{r\'< xo) ~* °° s u c n that

(2.10)

(/ = 1,2,...)

(Lemma 1).

Now select x0 e G to be some point of density of G; that is.

n , „ , — = ! • (2.11)
K_O measB(xo,i?)

Fix 77 > 0, and for ease of notation reindex so that (2.10) (iv), (v) hold for the whole
sequence n = 1,2,....

These preliminaries aside, we describe now our principal observation:

there exist fi > 0, rr > 0 such that

(a) rr -> 0 as e -> 0 ,

meas{xeB(xo,re):D
2v"(x) ^ r,!} >

measB(xo,rJ ""

for all e > 0 and n ^ N{e).

(2.12)

Our proof of (2.12) incorporates an idea of Bony [4] (cf. also Pucci [18]). For e > 0,
let N(e) be so large that

IKIlLMn) ^ £ for n ^ N(e).

Fix n ^ N(B) and set

v= -hx-xo\
2 + vn + 2e, rE = (SE/TJ)112 .

Then
v(x0) ^ e, u(x) ^ -e i{xedB(xo,rE). (2.13)
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Set

A = {xj G B{x0, rt): there exists a supporting hyperplane pV|(x) =
Dy(x1)-(x —xj + ^ x j such that u(x) ^ p.V|(x) for all
xe£(x o , r e )} ,

£ = {Du(x,):x,e/1} c. RM.

We first show that

( n ) (2.14)

Let z G B 0, - rr and define
\ 8 7

^f^XJ ^ Z ' ^X XQ

Tj^en for x G d£(x0, rc),

qr(x) ^ - | z | | x - x o | + e > ~orr2 + e = 0 > - £ > y(x),
o

where we have used (2.13). Thus q{x) + c for some c ^ 0 is a supporting hyperplane
from above, at some point xl e B{x0, rr). So Xj e A, and hence z = Dv(xx)e B\ this
proves (2.14). It follows immediately that

measfl ^ C^, Cl > 0 . (2.15)

Now since r G W2p(Q) {p > m) we have

measJS =

^ C

hence (2.15) implies that

0 < Cy ^ — ||D2u(x)|mrfx

( ^

j by(2.10)(v).

Therefore meas/1 ^ j8meas£(x0, /-,.), for some )3 > 0. If xx eA, then r(x) ^ p.v,(x)
for all x G £(x0, re), and hence D2v{xl) = D2v"{xi)-rjl ^ 0. This proves (2.12).
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In view of (2.11), (2.12) there must exist some point

provided that e is small enough and n ^ N(e). At this point we have by (2.10) (i), (ii)
and the definition of ellipticity

, Du"(xF), u"(xF), x j > F"{D2u"(xr), Du"{x,), u"(xf), x j = 0

Now let £ \ 0, n -* oo, n ^ JV(e). By (2.10)(ii), (iii), (iv),

F(D2u(x0) + riI, Du{xo),u{xo),xo) ^ 0 ,

and so, letting n -»• 0,

F(D2u(x0), Du(x0), u(x0), x0) ^ 0 .

Applying the above argument with the new auxiliary function

v = - ^ | x - x o | 2 -

gives the opposite inequality. Since x0 was any point of density of G, we have
therefore proved that

F(D2u(x0), Du{x0), u{x0), x0) = 0 a.e. x0 e G .

Since <5 was arbitrary it follows from (2.9) that (2.4) holds.

3. First order equations

THEOREM 4. Let F": IFT x U x Q -> U be continuous (n = 1, 2,...) and let Fn -* F
uniformly on compact subsets of Um x U x Q. Let u", u e Cl{Q) with un -> u uniformly
on Q, where u" satisfies

F"(Dun{x), u"{x), x) = 0 for all x e Q, n = 1, 2,... ;

F(DM(X), M(X), X) = 0 for all xeQ.

Proof. This is the same as that of Theorem 2. As before we find a point
xre B(x0, rr) such that

2ell2{xe- xo) + Du(xJ- Du"(xr) = 0 .
Thus

( /2(x-xo),un(x,),x(;) = 0 ,

so that, letting e \ 0 , /?~->oo, n ^ N{e), we obtain

F(Du(x0), u(x0), x0) = 0
for any x0 e Q .
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COROLLARY. Let u" e Cl(Q) satisfy

F(Dun{x)) =/"(*), for all x e fi, n = 1, 2 , . . . ,

where F : Um -> IR is continuous, f" is continuous, and f" -*f uniformly on fi. / /
u" -> u uniformly on fi then

F{Du{x)) = / ( x ) for all x e£l.

Remark. Theorem 4 and the corollary are false if the u" take values in Us, s > \.
For example, let m = 1, s = 2, let F : IR2 -» R be smooth with F(0) = 0, F = 1 on

the unit circle, and let M"(X) = - (sin nx, coswx). Then F(u"x(x)) = 1 for all x, u" -> 0
uniformly, but F(0) = 0 =/= 1. n

The next result shows in particular that Theorem 4 and the corollary are false if
the u" are Lipschitz rather than C1, or if the hypotheses F" -> F, f" ->f uniformly
are weakened only slightly.

THEOREM 5. Let F : Um -* U be continuous, such that either

(i) ifu" —!U M vvea/c * m PV1-00^) and, for some keU, F{Du"{x)) = k for all
x e fi, n = 1, 2,... , r/7e« F(Du(x)) = fc/or all x e fi, or

(ii) ifu", u e C°°(fi), u" -^— u weak * in Wl^{Q) and F(Du"{x)) = /"(x) ->/(x)
a.e. x G fi, f/ien F(Du{x)) = / ( X ) a.e. x e fi.

Then there exists a e IRm and a continuous function g;U -+ U, which is neither
nonincreasing or nondecreasing, such that

F(y) = g(a • y) for all yeUm .

Let F satisfy (i). Let b, ceUm with F(fc) = F{c), and consider the

uB(x) = c • x + - /j(n(fo-c) • x), n = 1, 2 , . . . ,

sequence

where f?: IR -> !R is continuous, /J' is periodic with period 1, and

( 0, 0 < r < 0,
J»'(0 =

11 , 6 <t < 1,

where 0 e (0,1) is fixed. Then Du"(x) takes the values b or c a.e., and u" > u in

Wlx{Q) (that is, u" -^u,Du"-^u in ^(fi)), where M(X) = {0c + {\-0)b) • x.
By assumption

F(0c + ( l - 0 )6 ) = F(b) = F(c), (2.16)

and hence F~x(k) is convex for every k e U.
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If F satisfies (ii), we 'round off the corners' of h to obtain a sequence v" e C^iQ)
such that v" -±-> u in Wl>m(Q) and

F{Dvr{x)) = fr{x) -> F(b) a.e. xeQ.

Therefore (2.16) again holds. The result now follows from the following proposition.

PROPOSITION 2. Let F: Um -> U be continuous and such that i 7 " 1 ^ ) is convex for-
ever y keU. Then there exist aeUm and a continuous function g:U-*U which is
either nonincreasing or nondecreasing and such that

F(y) = g{a • y) for all y€Um .

Proof. The proof is quite similar to that of a result of Ball and Tartar (Tartar
[21; p. 196]) and Jensen [10] and proceeds by considering successively the cases in
which m = 1, m = 2 and m > 2. If m = 1 the result is obvious; in this case F itself is
nondecreasing or nonincreasing. Let m = 2. By the first case F is nondecreasing or
nonincreasing along every line. Given x0 e Um, take any line through x0 and rotate it
continuously through an angle it; since the end result of such a rotation is to reverse
the orientation of the line it follows by the continuity of F that there exists some line
lxo through x0 on which F is constant. If F is not identically constant then /vo is
parallel to /V| for any x o ,x l 5 since otherwise there would be two such lines which
intersected and on which F had different constant values. Hence F~1(k) is a strip
— oo ^ c(k) ^ x • a ^ d(k) ^ oo for each k, and the result follows since F is
nondecreasing or nonincreasing on the line {ta : t e U}.

Let m > 2. We show that for any keU, F~1(k) contains a hyperplane (that is,
an affine subspace of dimension m —1). Since any two nonparallel hyperplanes
intersect the result then follows as for the case when m = 2. We may suppose
that F is not identically constant, so that the closed convex set F~l(k) contains a
boundary point x0. Let n = {x e Um : (x — x0) • a = 0} be a supporting hyperplane
to F~1(k) at x0, and suppose without loss of generality
that F'^k) (^ n_ = {x€Um:{x-x0)-a ^0} and that F(x) > k for
xen+ = {xeMm :(x — x0)-a > 0}. Clearly n+ cannot contain both points where
F > k and F < k. Let / be any line in n passing through x0 and let 7 be the line
through x0 parallel to a. By the case in which m = 2, F~\k) n span {/, 7) is a strip.
Since F(x0) = k, F~l(k) c: TT_, it follows that / is one of the bounding lines of the
strip, and hence / c: F~l(k). Since / is arbitrary, n c: F~1{k) as required.

Our final theorem shows that the necessary conditions on F established in
Theorem 5 are sufficient.

THEOREM 6. Let g, g": U x U x Q -> U (n = 1,2,. . .) satisfy these conditions:

(a) g,g" are Caratheodory functions, that is, for each (p,z)eUxU the junctions
g{p,z,-), g"{p,z,-) are measurable, and for almost all xeQ. the functions
g( •, •, x), g"( •, •, x) are continuous;

(b) for almost all x EQ, as n -> oo

gn(p,z,x) ->g(p,z,x)

uniformly on compact subsets ofU x U;
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(c) for almost all x e Q the functions g"(-,z,x), zeU, n = l , 2 , . . . are all

nondecreasing or all nonincreasing.

Let u" -*• u weakly in Wlyl(Q), where u" satisfies

gn(a" • Dun(x), u"(x), x) = 0 a.e. x e Q, n = 1, 2 , . . . ,

and \a"\ = 1, a" - • a e Um. Then

g(a • Du{x), u(x), x) = 0 a.e. xeQ.

Proof. Let S = {x eQ: g"{ •, z, x) is nondecreasing for all n,z}\ S is
measurable. By redefining g" for X G Q \ S to be g"{ — p,z,x) we may and shall
without loss of generality suppose that g"{ •, z, x) is nondecreasing for all n, z and
almost all xeQ.

Given 5 > 0, there exists a measurable subset G c Q with

meas ( Q \ G ) ^ 5 , (2.17)

such that

(i) Du"{x), u"(x), Du{x), u{x) are defined and

gn(a"-Du"(x\un(x),x) = 0 (w = 1,2,...)

for all x G G,
(ii) #", # are continuous on S& = U x U x G and g" -> ^ uniformly on compact

subsets of S(5 (Lemma 2),

(iii) Du, u are continuous on G (Lusin's theorem),

(iv) there is a subsequence nk -> oo for which u"k -»• u uniformly on G, (Sobolev
embedding theorem, Egorov's theorem).

Let K be any closed measurable subset of G. We employ the well-known device of
Minty, and for notational simplicity reindex so that (iv) holds for the full sequence
n = 1,2,.... For any v e WlA{Cl) such that Dv is bounded on G we have that

f
\_g"{a" • Du"{x), u"(x), x)-gn(an • Dv(x), u"(x\ x)~]a- (Dun{x)-Dv{x))dx ^ 0 .

j

K

Since g"{a" • Dv{x), un{x), x) -* g(a • Dv{x), u(x), x) uniformly on G we obtain

f
g{a • Dv{x), u{x), x)a • (Du{x)-Dv{x))dx ^ 0 .

J
K

Setting v(x) = u(x) + ta • x, dividing by t and letting t -*• 0, we deduce that

f
g(a • Du{x), u{x), x)dx = 0 .

J
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Since K was arbitrary it follows that

g(a • Du(x), u(x), x) = 0 a.e. x e l ,

as required.

Remark. It would be interesting to characterize the F such that u" -> u weakly
in Wl'l(Q),fn ->/a .e . in O and F(Du"(x)) = /"(*) a.e. xeQ, n = 1,2,..., imply
that F(DU(X)) = f(x) a.e. x G O, in the case when the u" take values in W, s > 1. For
information on the related problem when the / " are required only to converge
weakly to / (in some suitable IF space) see Ball [1 , 2], Reshetnyak [18, 19]; for
generalizations see Murat [16], Tartar [21].
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