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1. Introduction 

Solid-solid phase transformations often lead to certain characteristic micro- 
structural features involving fine mixtures of the phases. In martensitic transforma- 
tions one such feature is a plane interface which separates one homogeneous phase, 
austenite, from a very fine mixture of  twins of the other phase, martensite. In 
quartz crystals held in a temperature gradient near the or transformation 
temperature, the o~-phase breaks up into triangular domains called Dauphin6 
twins which become finer and finer in the direction of increasing temperature. 
In this paper we explore a theoretical approach to these fine phase mixtures 
based on the minimization of  free energy. 

In simplified terms the idea is the following. Suppose that for energetic reasons, 
a body prefers to be deformed, say, in three states specified by three constant 
deformation gradients 1, F -  and F+. Assume that conditions of geometric com- 
patibility are satisfied across an interface separating regions deformed with 
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gradients F + and F- ,  i.e. that there are vectors a and n such that 

F + - - F - : a  |  

but that compatibility cannot be maintained across an interface separating 1 
and F + or 1 and F-, i.e. 

F J: -- 1 ~= a rank-one matrix. 

Thus, while it is possible to construct a continuous piecewise affine deformation 
consisting of layers having deformation gradients F+/F-/F§ -,  . . . ,  it is not pos- 
sible to construct a continuous piecewise affine deformation using all three matrices 
1, F -  and F +. However, we show that it is possible (for certain choices of F + and 
s to arrange a very fine mixture of the layers F+/F-/F+/F - . . . .  , on one side of 
an appropriately oriented interface so that the "average" deformation gradient 
of  these layers does approximately satisfy conditions of compatibility with 1. 
The approximation gets better as the distribution of layers gets finer and finer. 
We argue that this is the essential reason for fineness in some martensitic transfor- 
mations. 

The energetic interpretation of these configurations is in terms of minimizing 
sequences rather than minimizers. In fact, each of the minimizing sequences we 
study converges weakly to a deformation which is not itself a minimizer of the 
total free energy. Thus, the total free energy functional is not lower semicon- 
tinuous with respect to weak convergence in the Sobolev space W~'P(Q, R3), 
p ~ 1. Our calculations in Section 5 show that this failure of lower semicontinuity 
is a typical property of free energy functionals for solids which change phase 
and results from a failure of ellipticity of these functionals. From the point of 
view of comparison of  theory with experiment, the detailed structure of mini- 
mizing sequences appears to be as important in these problems as the minimizers. 

In fact, it is well known from the pioneering work of L. C. YOUNG [52] that, 
in the absence of ellipticity conditions, integrals of the calculus of  variations 
do not attain a minimum among ordinary functions, but can be thought of as 
attaining a minimum in a space of "generalized curves". Such generalized curves 
are the limits of  minimizing sequences that necessarily oscillate more and more 
finely. The finely twinned configurations of martensite described above can be 
viewed as approximations of  generalized curves. Another example from elasti- 
city is the "infinitesimal wrinkling" of  membranes studied by PIPKIN [38]. 

Our calculations are related to those involved in what is known as the crys- 
tallographic theory of  martensite in the metallurgical literature and to emerging 
methods of homogenization theory in the mathematical literature. Treatments of  
the crystallographic theory of  martensitic transformations are found in the books 
by CHRISTIAN [15], NISHIYAMA [35], and WAYMAN [49]. The theory was first put 
forth by BOWLES & MACKENZIE [11] and WECHSLER, LIEBERMAN • READ [50]. 
Our calculations of Section 5 are similar to those of the crystallographic theory. 
However, by developing the theory on the basis of a free energy minimization, 
we achieve several advantages. First, by looking at minimizers and minimizing 
sequences, we predict both the twinned martensite interface, with the observed 
twin planes, and the austenite/finely twinned martensite interface. Along the 
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way, we clarify the role of  fineness in energetic terms. Also, since our free energy 
accounts for general three-dimensional changes of  shape, it can be used in con- 
junction with various loading potentials to study the effect of  multiaxial loads on 
transformation temperatures. 

There is some similarity between the observed geometrical configurations 
of  martensite and the arrangement of  constituent materials used to achieve opti- 
mal bounds and designs in homogenization theory*. For  a striking example of 
this similarity, compare Figure 1 of a recent paper by MILTON [32] with the photo- 
graphs of a "mishandled" crystal of InT1 shown by BASINSKI &:; CHRISTIAN 
[10, plate Ill]. Our problem is different in that the material itself makes the "com- 
posite". Another major difference is that compatibility does not play an essential 
role in homogenization theory, while the fineness in our configurations is a conse- 
quence of the material striving to achieve compatibility. 

We conclude the paper with some different examples of  fineness in energy 
minimizers. In Section 7a we give an example which, while not applying directly 
to martensitic transformations because it does not satisfy the appropriate in- 
variance requirements, suggests strongly that fine twinning can be initiated by 
a temperature or concentration gradient, this leading to a minimization problem 
which when interfacial energy is neglected only has a minimizer in the sense of 
generalized curves. In Section 7 b we give an example of  a strongly elliptic material 
which has potential wells and which supports configurations with very fine bound- 
ary wrinkles. In the Section 7 c we return to the observations of  Dauphin6 twinning 
in quartz. We give an example of  a configuration involving five deformation gra- 
dients in which compatibility is achieved by a self-similar mixing of  smaller and 
smaller triangles on one side of an interface. We believe that this configuration 
is related to fine triangular domains in quartz observed by VAN TENDELOO, VAN 
LANDUYT & AMELINCKX [48], but our example is based on a simplified free 
energy function and therefore we are not able to make a quantitative comparison. 

2. Internally Twinned Martensite 

Our approach in Section 2 through Section 5 is suggested by observations 
of  internally twinned martensite. One of the most studied of  the alloys which 
form internally twinned martensite, because of  its accessibility to low power 
optical microscopy and its simple crystal structure, is Indium-Thallium. The 
alloy consists of a substitutional solid solution of T1 in a crystalline matrix of  In 
which at high temperature is a face-centered cubic. 

I f  a single crystal of  InTl is cooled to its transformation temperature (105 ~ 
for In-18.5~ T1, 25 ~ for In-23% TI), it undergoes a diffusionless reversible change 
from a face-centered cubic to a face-centered tetragonal structure. The trans- 
formation is made evident by the movement of  one or more interfaces across the 

* See, for example, KLosowicz 8r LURIE [27], KOHN & STRANG [28], LAVROV, 
LURIE & CHERKAEV [29], LURIE, CHERKAEV • FEDEROV [30], MILTON [32], MURAT & 
TARTAR [33], RAITUM [40] and TARTAR [45, 46]. 
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specimen. A typical observation at the transformation temperature, redrawn from 
the photomicrograph of BASINSKI & CHRISTIAN [10, Figure 5], is shown in Figure 1. 
The cubic austenitic phase (to the right in Figure 1) is stable above the transfor- 
mation temperature while the tetragonal martensite is stable below the transfor- 
mation temperature. The twin spacing in the martensite is on the order of 20 ~tm. 

Sometimes the transformation produces a more complicated arrangement of 
the phases; a fairly common observation is the X-shaped interface in Figure 2 a 
(BAsINSKI & CHRISTIAN [10, Figures 11-t5], BURKART & READ [13, Figure 3]). 

Martensite 
Fig. 1. Single interface transformation in InTl 

u b i ~  
~ ~ ~  Twinned 

a ~ t r a g ~ 1 7 6  

Fig. 2a. Transformation by an X-interface; b Curved martensite/martensite interface 

At the bottom of Figure 2 a is a single crystal of martensite. The single and X- 
interfaces are planar, but intriguing curved interfaces which separate twinned 
martensite from twinned martensite also are seen (BURKART & READ [13, Figure 3 
and Figure 2b]). If  the temperature is lowered further the phase boundaries 
move so as to eliminate all the austenite, often leaving a twinned crystal of mar- 
tensite. Austenite and martensite co-exist in a crystal over a temperature range of 
about 3�89176 so actually there is not a single transformation temperature.* 

In all cases the twin planes arise from the (1 1 0} family of planes in the austen- 
ite. That is, if we adopt a reference configuration interpreted as the undistorted 

* We return to this observation in Section 6. 
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austenite just above the transformation temperature, the six planes in the reference 
configuration with normals (1 1 0), (1 0 1), (0 1 1), (1 --1 0), (--1 0 1), (0 1 --1) 
relative to a basis parallel to the cubic axes are deformed into the twin planes by 
the transformation. Within each twin band the material is a tetragonal single 
crystal, but neighboring bands are oriented differently. Also, all the interfaces 
separating austenite from finely twinned martensite are observed to be very nearly 
{1 1 0} planes. Where the austenite/martensite interface meets the boundary of 
the body, this boundary bends sharply through a small angle. 

Below the transformation temperature, the body is a single or partly twinned 
crystal of martensite. A partly twinned crystal is extremely flexible in that small 
applied loads easily change the spacing of  the twinned layers. Below the transfor- 
mation temperature, the general tendency of uniform loads on the faces of a crystal 
is to drive the twins out and leave a single crystal of martensite. 

If  an unloaded crystal of martensite, either twinned or not, is heated to the 
transformation temperature, the austenite/martensite interfaces reappear. Further 
heating to above the transformation temperature causes the crystal to return to a 
single untwinned crystal of austenite. 

3. The Free Energy Functional and Minima 

We now propose a free energy for materials which undergo reversible mar- 
tensitic transformations and work out the details for InTl. 

The change in crystal structure associated with the transformation in InT1 
is from face-centered cubic to face-centered tetragonal. Consider a regular re- 
ference configuration g2 ~ R a which is interpreted as the undistorted austenite 
at the transformation temperature 0o = const. For  later use we assume o be- 
longs to the interior of  g2. The change of  shape in going from fcc to fct can be 
described by a deformation y ----- Uox, x E .(2, Uo being the constant positive- 
definite symmetric matrix given by 

Uo = rh l  + 0/2 -- ~x) e ~) e (3.1) 

le[---- 1, for some positive constants r/1 =#r/2 (BURKART & READ [13]). For  
InTl ~/i -- 1 -- e, ~/2 -- 1 + 2e with e -- .013 for concentrations near 20% T1. 
We refer to Uo as the transformation strain. 

Since the transformation leads to a change of shape at a certain temperature, 
we are led to assume the existence of a free energy ~b which depends on the change 
of shape, measured by the deformation gradient F, and the temperature 0. Thus 
at a certain temperature 0 let a deformation y :  .Q --~ R 3 with gradient F = Dy(x) 
have a free energy per unit volume in g2 given by 

~b(F, 0). (3.2) 

Assume ff is defined and continuous for all F C ~- - - - (FE M3• [ det F > 0} 
and for all 0 in a neighborhood of the transformation temperature 00. Here M "• 
denotes the set of  real m • n matrices. 
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We assume that the free energy is Galilean invariant: for all F ~ ~ ,  all 0 
near 0o, and each orthogonal R with det R = 1 (we call such R rotations), 

~p(RF, O) = dp(F, 0). (3.3) 

The restriction (3.3) implies that 

~b(F, 0) = 4~(U, 0)[ v=(urF)�89 (3.4) 

Let ~ be the subset of @ consisting of positive definite symmetric matrices. 
Since we have interpreted s as undistorted austenite at the temperature 0o, 
we assume that there is a finite group of rotations P" of  order ~,, representing the 
symmetry of austenite, such that 

qb(RUR r, O) : oh(U, O) (3.5) 

holds for all U E ~ ,  all R E P~ and all 0 near 0o. For the InT1 alloy v : 24 
and p24 consists of  the 24 rotations which map a cube into itself. Also, one of 
the 4-fold rotations in pz4 has the axis e of  (3.1). 

In an unloaded body the austenite is observed above and the martensite 
below the transformation temperature. We shall therefore presume an exchange 
of stability, in the sense that for all U in @s which are unequal to 1, Uo or any 
matrix of the form R Uo Rr, R E pv, 

~(U, 0o) > ~b(1, 0o) : 4~(Uo, 0o). (3.6) 

For 0 > 0o, we assume that some symmetric matrix Ua(O ) near 1 minimizes 
~ . ,  0), whereas for 0 < 0o, we assume that some symmetric matrix Urn(O) near 
Uo minimizes 4~(', 0). Here, nearness means that I Ua - -  11 <~ [U o - -  11 and 
I U,, --  Uo] ~ ] Uo --  1[. We use the notation I AI = (tr AAr) �89 for any 
A ~ M m • See JAMES [23] for a fuller discussion of these kinds of  energy functions. 
Note that this assumption means that the symmetry group offf  is smaller than that 
considered by ERICI~SEN [16] and FONSECA [20], and, in particular, does not contain 
certain nontrivial shears. 

In general, we have assumed that 4~(', 0o) has (up to) v + 1 potential wells 
with minima at the matrices 1, R1UoR ~ . . . . .  R, UoRT, in which R1, . . . ,  R,. is 
an enumeration of the point group PV. Each distinct potential well with minimum 
of  the form R iUoR'f is associated with a variant of the martensite. For  Uo of  
the form (3.1) with ~/~ @ ~72, there are only three variants because some of the 
matrices of  the form R i UoR ~ coincide. 

The condition Uo = RiUo R f  in lnT1 is 

7 1 1 + ( 7 2 - -  71) R i e |  711 + ( 7 2 - -  rh) e |  (3.7) 

or simply 
Rie = +_e (3.8) 

which is satisfied by eight members of p24 (three rotations with axis e, four 180 ~ 
rotations with axes perpendicular to e and the identity). Since p24 is a group, there 
are precisely 24/8 = 3 distinct matrices of the form RiUo RT, and it is easily seen that 
these are r / l l  + ( 7 2 - -  71) e |  6 being a4-fold axis of P24. 
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To make a connection with calculations of the effect of stress on transformation 
temperatures in [25], we observe that 1 can be written as the convex combination 

Uo q- } RUoRT q- } RZUo R2T, (3.9) 

R being any 3-fold rotation in pz4. Thus, in the notation of [25], 1 E 6~o. 

We define the total energy functional by 

J [ y ]  = f ~b(Dy(x), 0o) dx. (3.10) 
l /  

(We shall only be concerned with stable configurations at the transformation 
temperature.) A deformation will be termed stable if it minimizes the total free 
energy. In precise terms the deformation 

is stable if 

E ~ = (Y E W"1(~, R 3) I Dy E ~ a.e.} 

Y[~] =< J [ y ]  Vy E d .  (3.11) 

This stability criterion is appropriate for an unloaded body at the transformation 
temperature. Here and below W1'P(O, R m) denotes the Sobolev space of  mappings 
y :  . Q - + R  m such that IlYlh.p< o0, where 

[ ( f ( l y l P + l D y [ " ) d x )  '/p, l _ < p < ~ ,  

Lly[h,. J 
/ ess sup (ly(x)l + IDy(x)l), p = oo. 
L x:~-Q 

See ADAMS [1] for information on these spaces. We write W1'~(Q) for WJ'~(O, R1). 
We now describe all stable deformations. A necessary and sufficient condition 

that .~ be stable is that D~(x) minimize the integrand 4~(', 00) for almost every x. 
Because of the property (3.6), D~(x) minimizes the integrand if and only if for 
almost every x in .(2, the function defined by 

takes on one of the values 

U(x) : (D~(x)r D~(x)) �89 (3.12) 

1, R, UoR~', ... , R~UoRr~ . (3.13) 

A geometric characterization of all ~ E d satisfying the preceding condition 
does not appear to be available in the literature. Thus, we focus first on smooth 
interfaces separating austenite from itself, martensite from itself or martensite 
f rom austenite. 

Let ~ be a stable, continuous and piecewise differentiable deformation and 
suppose a smooth interface separates two regions on which D~ has constant 
values F+ and F- .  It is well known that if F+ =F F -  then the interface is a plane 
(with say reference normal n, In I=  1) and that for some nonzero vector a 

F + --  F -  : a | n .  (3.14) 



20 J. M. BALL & R. D. JAMES 

Let F+ = R + U + and F -  = R - U -  be the polar decompositions of F + and F-.  
Since ~ is stable, U § and U- must each take on one of the values given in (3.13). 
We work out the possible interfaces below for Uo given by (3.1). 

(i) Austenite/Austenite Interfaces. These are governed by the condition 

R + - R - : a  |  a ~ 0 ,  (3.15) 
which implies that 

R = 1 + a' | n ,  (3.16) 

where R = R - r R  + and a' = R-ra. Equation (3.16) shows that R has two 
linearly independent axes ( /  to n) which in turn implies that R - =  1 and 
R + = R-. Thus, there are no austenite/austenite interfaces. According to a theo- 
rem of RESHEI'NYAK [41, Corollary of Lemma 3], if y E WI'~ R 3) is such that 
Dy(x) is a rotation for almost all x E ~ then Dy is necessarily a constant rotation. 
This implies the stronger result that the body cannot be inhomogeneously deform- 
ed in the austenite phase. Obviously, this result is independent of the choice of 
point group or transformation strain. 

(ii) Martensite/Martensite Interfaces. These are governed by the equation 

I~+UoRi -- I~-UoRj : a ~) / ' t ,  (3.17) 

with f i # 0  and Ir~]= 1. 

Premultiply (3.17) by /~-7" and postmultiply by Rf. Then, (3.17) becomes 

RUoR -- Uo ---- a | n, (3.18) 

where /~----RiR]'EP24, R = [ ~  ~[~+, a = [ ~  rh=~O, and n = R j t i .  Let 
{e, e~, e2} be an orthonormal basis with el and e2 also four-fold axes of rotation 

in p24./~e equals one of the vectors ~ e l ,  -}-e2 or -4-e because of the structure of 

p24. The case /~e = •  yields no solutions of(3.18) by a quick calculation using 

the fact that z~-rU0/~ = Uo. (This would correspond to an interface between 
one variant of martensite and itself.) There are various strategies for completing 
the calculation. The methods of ERICKSEN [18] and GURTIN [22] can be applied 

to the remaining cases /~e = ~e~  or ~e2 .  Alternately, our Proposition 4 of 

Section 5 can be used with C =  UolRrU~RUo 1. The results are: 

Twins 

1 
. = + e )  

V 2  

V2-(v  - a -  q' 

R =  - - l + 2 n  |  

2 
R : --1 + 7S-y7 q2 | q2 

it/21- 

(3.19) 
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in which 

and 
q2-----~2e-]-~le, 

(3.20) 

C {e l ,  - - e l ,  e2, --ez}. (3.21) 

The equations (3.19) through (3.2l) give all solutions of the equation (3.18) with 

Uo given, Inl = 1 and /~E p24 in the sense that a and n are given by (3.19)1,2 

up to the replacement a--> - - a  and n--> --n.  The expressions for R and R 

are not unique. The various values of R and /~, which give rise to the a and n 
of  (3.19) are associated with Type I and Type II twins (normal and parallel twins 
in the terminology of GURTIN [22]). The twins given by (3.19) are so-called com- 
pound twins, which means that they can be represented as both type I and type II 

twins. The expressions of R and R in (3.19) correspond to the type I description. 
All solutions of the original equation (3.17) are obtained by reversing the argument 
which leads from (3.17) to (3.18). The twin planes are all of the {1 1 0} family and 
agree exactly with the observed twin planes described in Section 2. Solutions* 
of  (3.18) for general Uo andf or a more general family of groups than point 
groups are given by ERICKSEN [17]. 

(iii) Aus ten i t e /Mar tens i t e  Interfaces.  These are governed by the equation 

R U o R  k - -  1 = a | n ,  (3.22) 

with a @ O, In = 1, which implies that 

r 2 = ( l + n  + a  | (3.23) R k UoR k | a) (1 n) ,  

which in turn implies that a vector perpendicular to both a and n is an eigen- 
vector of r z R k UoR k with eigenvalue equal to 1. But this is impossible unless one 
of the eigenvalues ~h or r/2 of Uo equals 1. In particular, there are no austenite/ 
martensite interfaces. 

The latter conclusion does not agree with observations like those shown in 
Figure 1, which clearly show some  k i n d  of  austenite/martensite interface. 

4. Compatibility, Almost Compatibility, and Minimizing Sequences 

In this section we explore the idea that the austenite/finely twinned martensite 
interface is modelled by certain minimizing sequences for the total free energy 
(3.10). The corresponding deformations are essentially piecewise affine, but a small 
correction is necessary close to the interface so as to render the deformation 
gradients compatible. 

* It would be necessary to consider the more general groups to describe martensitic 
transformations involving slip, which does not occur under small loads in the internally 
twinned martensites. 
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We begin by giving a version of the Hadamard  jump condition for deformations 
whose gradients take only two values, there being no assumption on the structure 
of  the sets where these values are taken. 

Proposition 1. Let 12 E R" be open and connected. Let  y E W j'~176 R ' )  satisfy 

Dy(x) = A,  a.e. x E 12A, 

Dy(x) -= B, a.e. x E 12n, 

where A, B E M m• 
meas g24 > 0, meas 12B > 0. Then 

for  some 

(4.1) 

and 124, 12B are disjoint measurable sets with 12 ~-- •4 U 12B, 

A - - B  = c |  (4.2) 

c E R  m, h E R  n, [n] = 1, and 

y(x)  : Yo + Bx  + O(x) c, x E 12, (4.3) 

where Yo E t~ m, Yo " c ---- O, 0 E W1'~(12) satisfies DO(x) : zA(X) n a.e., and 
Z~ denotes the characteristic function o f  124. 

Proof.  Let z ( x ) = y ( x ) - - B x ,  C - - A - - B ,  so that D z = z , 4 C .  Since Za 
is not constant, there exists ~ E C~(12) such that 

def 

n =  f De dx = f z4 De dx 
D 4 D 

is nonzero, and clearly we may suppose that In I ---- 1. But 

0 -- f (zf=e,8 -- z~ae,~) dx 

- -  c ~ . ~  - C~n~,  

and hence (4.2) holds with c ---- On. To obtain (4.3) we note that if b �9 c ---- 0 
then D(z(x) �9 b) ~- 0 a.e., so that z(x) -- Z(Xo) is parallel to c for a.e. x E 12, 
where Xo E 12 is fixed. Assuming without loss of  generality that c @ 0, it follows 
f rom (4.3) that DO(x) ----Z4(x)n a.e., completing the proof. [ ]  

From (4.3) we see that, on any convex subset E of 12, y has the form 

y(x)  ~ Yo + Bx  + f e ( x  " n) c,  (4.4) 

where f e  is Lipschitz with derivative 0 or 1 a.e.. Thus 12A /5 E and 128/5 E 
consist of  parallel layers normal to n. However, if 12 is not convex, there may be 
no representation (4.4) with fE independent of  E; for example, 12A could have 
the form of the shaded set in Figure 3. 

We next consider deformations whose gradients to a good approximation 
take only two values. 
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Fig. 3. Distribution of the sets t2 A and -QB consistent with the hypotheses of 
Proposition 1 

Proposition 2. Let [2 Q R" be bounded, open and connected. Let p > 2, and let 
A, BE M m• be distinct. Let y ( ~ ) ~ y  in WI'P([2,R ")  and suppose that for 
every e > 0 

lim meas {x E [2: I DyO)(x) -- A I > e and I DYO)(x) - -  B I > e) : 0. (4.5) 

Then 
By(x) : 2(x) A + (1 --  2(x)) B, a.e. x E [2, (4.6) 

for some measurable function 2 satisfying 0 <:- 2(x) ~ 1 a.e., and one of the follow- 
ing possibilities holds: 

(i) 2(x) = 1 a.e. and DyO)(x) ~ a in measure, 

(ii) 2(x) = 0 a.e. and DyO)(x)-+ B in measure, 

(iii) 2 equals neither 0 a.e. nor 1 a.e. and 

A - - B = c |  (4.7) 

for s o m e  c E E~m, n ~ ~2~n, Ill I = 1. 

Proof. Let  [2~ = (x C [2: I Dy~ - -  A I ~ e}, [2~ = (x E -(2: I Dy(J)(x) - B I 
s), and let Z~f, Z~" denote  the characteristic functions o f  [2~i ", [2~ respectively. 

Then  for  e sufficiently small that  [2~i ~, [2~' are disjoint, 

Dy(J)(x) = Z~(x) (A + OJ,~(x)) + Z~(x) (B + ~vi,~(x)) 

+ (1 --  Z~(x) - -  Z~*(x)) DyO)(x), a.e. x E ~2, (4.8) 

where Oj,~(x ) dr Dy(J)(X) __ A, ~p:'~(x) d~f DyO)(x ) __ B. Since X~ ~, X~ ~ are 
uniformly bounded there exists a subsequence, again denoted yO), such that  

X~ ~ -~ 2~, Z~ ~ -~ 2~ in L~176 Since, by (4.5), j-~oolim / (1 --  Z~ ~ - -  Z~ ~) dx = O, 
it follows that  

0 ~ 2~(x) = 1 --  A~(x) ~ 1, a.e. x E .(2. (4.9) 
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Also 

f (1 - z )  ~ - z~ ~) [Dy~J)(x)l dx 
.q  

�9 \ l i p  

( f f  (I- ZJ"-- Zj')dx) '/p" ( j  I Dy<')(x) IP dx) , 

where lip + lip' = 1, so tha t  the last te rm in (4.8) tends to zero as j - +  
strongly in L I. Passing to the limit j - +  cx~ in (4.8) we obtain  

Dy(x) = 2](x)  A + (I - -  2~(x)) B + / P ( x ) ,  a.e. xE  $2, (4.10) 

where I H ' (x )  l ~ e a.e..  F r o m  (4.9) there exists a subsequence e k ~ 0 such that  

2A k ~ 4(-) in L~176 where 0 _<_ 2(x) ~ 1 a.e..  Passing to the limit in (4.10) we 
obtain  (4.6). 

Suppose that  2(x) ---- 1 a.e.. We claim that  Dy~J)-+ A in measure.  I f  not, 
there would exist e > 0 and a subsequence y0,) such tha t  meas  ~ ' ~  = f 
dx ~ 6 > 0. Applying  the preceding a rgument  to y0,) gives 

Dy(x) = -2(x) a + (1 - -  2(x)) B, a.e. x E O ,  

where f (1 --  ~(x)) dx >= ~, contradict ing (4.6). A similar a rgument  shows that  
O 

if  2 ( x ) =  0 a.e., then Dy~J)-+B in measure.  
Suppose tha t  2 equals neither 0 a.e. nor  1 a.e.. I f  2 takes only the values 0 

and 1 a.e., then (4.7) follows f rom Proposi t ion  1 applied t o y .  Hence  we need only 

consider the case when 0 < 2(x) < 1 on a set ~ of  posit ive measure.  Since (4.7) 
says nothing if  m =  1 or  n =  1, we suppose also that  m ~ 2 ,  n ~ 2 .  I f  
M E  M m• we denote  by J(M) some 2 •  minor  of  M.  Since p > 2, we have 
that  

J(Dy ( j ) -  A ) ~  J(Dy -- A) in LPlZ(Q) (4.11) 

(see RESHETNYAI( [41], BALL [4], BALL, CURRIE • OLVER [5]). But, since Zj  ~ and 
Z~" are characterist ic functions o f  disjoint sets, 

J(Dy~J)(x) --  A) = Zj~(x) J(OJ'~(x)) + Z~(x) J(B --  A + WJ,~(x)) 

§ (1 - -  Xj '(x) - -  Z~'(x)) J(Dy~J)(x) -- A), a.e. x E s 
(4.12) 

Using a similar a rgument  as for  (4.8), we deduce f rom (4.11) and (4.12) that  

J(Dy - -  A) : (I  - -  2(x)) J(B -- A), a.e. x E  -(2, 

and hence f rom (4.6) that  

2(x) (1 - -  2(x)) J(B - -  A) = 0 a.e. x E ~2. 

Since f2 has positive measure  it follows tha t  J(B - -  A) = 0. Since a matr ix  all 
o f  whose 2 • 2 minors  vanish is o f  r ank  one, this completes  the proof .  [ ]  
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Remarks: 

1. The argument using the minors J is only needed to handle the case when 
2(x) E (0, 1) is constant. If  2(x) is not constant a.e. then (4.7) follows from 
(4.6) using an argument similar to that in Proposition 1. 

2. In case (i) (respectively (ii)) it is easily shown that yO)---~y o + A x  (re- 
spectively y(J)--~ Yo + Bx) strongly in Wl'q(12, R m) for 1 <= q < p, where 
YO E Rrn- 

3. We do not know if Proposition 2 holds for I ~ p ~ 2. 

4. Suppose for simplicity that y ( ~ ) ~ y  in W~'~176 Then the proof  of 
Proposition 2 can be adapted to show that y(J) converges in the sense of  
generalized curves (cf  TARTAR [46, Section 4]), so that for any continuous 
function f :  M m• ---~R 

f (DY (i)) * (vx , f )  in L~176 

and that the Young measure v, is given by 

% = 2(x) 6a -k (1 -- 2(x)) 0B a.e. x E 12, 

where 6A, 6B denote Dirac masses at A, B respectively. See Ct-UPOT & KINDER- 
LEHRER [14] and KINDERLEHRER [26] for further remarks in this direction. 

5. By applying Proposition 2 we can strengthen the statement made in Section 3 
concerning the nonexistence of  austenite/martensite interfaces to the assertion 
that there is no sequence of deformations yCJ) ~ y in W~'P(12; R3), p > 2, 
which, in the sense of Proposition 2, have gradients taking to a good approxi- 

mation only the two values R and R UoRk, where R, R are rotations and 

R k E P~', unless Dy (j)--+ R in measure or Dy tj) ~ R UoRk in measure. 

We can now address the case of deformations whose gradients to a good 
approximation take only two values on one side of an interface 5O, and a third 
value on the opposite side. Here one goal is to understand why the austenite/ 
finely twinned martensite interface is flat. 

Theorem 3. Let m ~ 2, n ~ 2, p :> 2. Let 12 ~ R n be bounded, open and con- 
nected, and suppose that 12 can be written in the form 12 = 12A,B kJ 12c kJ 50, 
where 12A,B and 12c are disjoint, open and connected, and where 5 ~ = b12A,B /% 12 

~12c • 12. Assume either that meas 5O ~-- 0 or that p > n. Let A, B, C E M m • n 
be distinct, and suppose that neither C -  A nor C -  B is of  rank one. Let 
y O ) ~  y in W1'P(E2,R ") satisfy for every e > 0 

lim meas (xE 12A,B: IDy~ - AI  > e and ]DytJ)(x) -- B[ > e} = 0, (4.13) 
j---~ oo 

and 
lim meas {xE 12c: [DY~ -- C] > e} ~-- 0. (4.14) 
j-~oo 

Then the interface 5 ~ is necessarily planar, i.e., there exists a unit vector m E R ~ 
and k E H with 

50 C {x E R": x .  m ---- k}, (4.15) 
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A - - B = c |  (4.16) 

C - - B = - - b  |  |  (4.17) 

where n E R" is a unit vector that is not parallel to m ,  where b, c E I{ m are not 
parallel, and where 0 < 2 < 1. Furthermore, each point x o E 5 a has an open 
neighborhood N(xo) such that 

Dy(x)  = B + 2c |  xE  f2Amf~ N(xo) , (4.18) 

Dy(x)  = C, xE  D c A  N(xo).  (4.19) 

Conversely, suppose that 5 ~ A,  B and C have the forms  (4.15) through (4.17). 
Then there exist sequences yO) converging weak * in W1'~(D, R m) to some y and 
satisfying (4.13) and (4.14). I f  m = n, d e t A  > 0, d e t B  > 0 and det C > 0, 
then y(J) can be chosen so that detDy(J)(x) > ~ > 0 a.e. xE  f2, f o r  some 
constant ~ > O. 

Proof .  Applying Proposi t ion 2 to s we see tha t  one o f  the fol lowing three 
possibilities holds a.e. in f2A.B: 

(i) y(x )  = Yo + A x  

(ii) y(x )  = Yo + B x  

(iii) A - - B = c |  

and 

for  some Yo E R m, 

for  some Yo E R m, 

for  some c E W", n E R", L nl = 1, 

Dy(x)  = B + ;t(x) c | n ,  (4.20) 

where 0 <: 2(x) ~ 1 and 2(x) equals neither 1 a.e. nor  0 a.e. ; in this case, we have, 
using the a rgument  at the end of  the p r o o f  of  Proposi t ion 1, that  

y(x )  = Yo + B x  + O(x) c, (4.21) 

Wl'~ t f2  ~ DO(x) 2(x) n.  where Yo E p m and 0 E t A,BJ, ---- 

Similarly, we have 

y(x)  = Yl  § Cx, a.e. x E -Qc, (4.22) 
for  some Yl E R m. 

I f  p > n then an appropr ia te  choice of  representat ive y is cont inuous on D, 
and the same holds if meas  6 e = 0 since then y E WI'~176 Rm). Pick Xo and 
suppose for  contradict ion tha t  (Xo § ri)E "9 ~ for  n linearly independent  vectors  
ri. We suppose (4.21) holds in s the cases (i) and (ii) are handled similarly. 
Since c =t= o, by (4.21) 0 has a cont inuous extension, again denoted 0, to OD~,n A f2. 
By the continuity of  y we therefore have 

( C  - -  B)  Xo = Yo - -  Yl -1- O(xo) c ,  

(C -- B) (Xo + rO = Yo -- Yl  + O(xo -}- ri) c, i = 1, . . . ,  n. 

Subtracting,  we find that  (C - -  B) ri is parallel to c for  i = 1 . . . . .  n, contradict ing 
our  assumpt ion  tha t  C -  B is not  o f  rank  one. Hence  (4.15) holds for  some 
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m and k. In  the cases (i) (ii), (4.15) and Propos i t ion  1 imply that  either C - -  A 
or C --  B is o f  rank  one;  thus these cases are impossible and (4.21) holds in 

~A,B" 
Given  x o E 5", choose r ~ 0 sufficiently small tha t  the open ball B(xo, r) 

with center x o and radius r is contained in ,Q. Let 

B+(xo, r) = {x E B(xo, r): x .  m > k) ,  

B-(xo,  r) = {x ~ B(xo, r): x .  m < k}. 

Then K2A,B A B(xo, r) = B+(xo, r), O c / ~  B(xo, r) ~ B-(xo ,  r) or vice versa, 
and 5e A B(xo, r) = (x  E B(xo, r) : x .  m =- k}. Since DO(x) ~- 2(x) n in -Qa,n 
it follows that  

O(x) = f ( x .  n)  for  all x E 12A,B A B(xo, r), (4.23) 

for  some f E  W1'~(R). Fo r  x E B(xo, r) denote by x'  the or thogonal  project ion 
o f x  ontooW. Then  x ' = - x + ( k - - ( x . m ) ) m  and 

so that  

(C --  B ) x '  = y o - - y l - } - f ( x ' ' n )  c ,  

(C - -  B) x = Yo - -  Yl  + f ( x '  �9 n)  c -}- ( ( x .  m )  - -  k)  d ,  (4.24) 

where d = (C - -  B ) rn .  Tak ing  the derivative of  (4.23) with respect  to x, we 
find, using the chain rule for  Lipschitz maps  ( c f  M a R c u s  & MIZEL [31, L e m m a  2.1 ]) 
that  

C --  B = d @ m + f ' ( x '  . n )  c | [n - -  ( r e . n )  m ] ,  (4.25) 

a.e. in B(x0, r). Since C - -  B is not  o f  rank  one, m is not  parallel to n, ( m  �9 2 
1, and c 4= o. Tak ing  the inner p roduc t  o f  (4.25) with n,  we thus deduce 

that  f ' ( x '  �9 n) = 2 - -  constant  a.e. in B(xo, r). Since m is not  parallel to n,  it 
follows that  f ' ( t )  = 2 for  t in a ne ighborhood  of  Xo �9 n and hence f rom (4.20), 
(4.21) and (4.23) tha t  2(x) = 2, 0 < , t <  1, for  x ~  f2A,B#~ N(xo), where 
N(xo) is some open ne ighborhood  of  Xo, possibly smaller  than  B(xo, r). The 
relat ion (4.17) follows f rom (4.25), b not  being parallel to c since C - -  B is not  
o f  rank  one. 

Conversely,  suppose tha t  6t', A, B and C have the forms (4.15) th rough  (4.17). 
We suppose without  loss of  generali ty that  k = 0. Let  0: R ~ R be the l -per io-  
dic funct ion satisfying 

O(t) --- 

Let /z ~> 0 and 

( 1 - - 2 ) ( t + 2 )  for  - - 2 ~ t < 0 ,  
(4.26) 

- - 2 ( t - -  1 + 2 )  for  0 ~ t <  1 - - 2 .  

D • C +  ( b ~  2 ( 1 - 2 )  ) = - - c  |  (4.27) 
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For  x E R ~ define 

z(x)= 

O(x. n), (2A + (1 --  2) B) x § O(x. n) c for ix .  m l > ,~(l - z-------j 

# 
D+x for 0 ~ x .  m ~ - - O ( x .  n) ,  

- z ( ~  - ~) 

# 
D - x  for - -  O ( x . n ) ~  x . m  ~ O. 

~ ( 1  - 4 )  

(4.28) 

| ,OO n m It  is easily verified that z E Wjoc ( R ,  R ), that Dz takes almost everywhere 
only the four values A , B ,  D +, D -  and that z ( x ) : C x  for x . m - - - - 0 .  For  
j : 1, 2 . . . . .  define for x E g2 

j -a z ( j x )  for xE OA,n, 

y(J)(x) = Cx otherwise, 
(4.29) 

(see Figure 4b). Since y(J) is continuous, y~J)(0) : 0 and Dy (j) takes almost 
everywhere only the five values A, B, C and D • it follows that y(J) is a bounded 
sequence in WJ'~(f2, Rm). Since also 

DyCJ)(x) = 2A + (1 --  2) B + O'(jx.  n) (A -- B) 

P:0 

Fig. 4a. The orthogonal projection of R n onto the (m, n) plane, showing the values 
taken in various regions by Dz when z is given by (4.28); b Possible two-dimensional 
cross sections of ,r parallel to the (m, n) plane, showing the division of ~2 into regions 

where Dy (j) takes different values when yO) is given by (4.29) 
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for a.e. xEY2a,, satisfying Ix.m I > j - l / z ,  
in WI'~176 Rm), where 

[ (2A+(1--2)  B)x 
y(x)  

i Cx 

it is easily shown that yCJ)*_, y 

for x E DA,,, 
(4.30) 

otherwise, 

and that (4.13) and (4.14) hold. Finally, if m = n and de tA > 0, de tB  = 0, 
det C > 0, then by (4.16) 

d e t ( 2 A + ( 1 - - 2 )  B) = 2 d e t A + ( 1 - - 2 )  de tB .  
Since 

d e t D  ~: det (2A + (1 2 ) B 4  - 2(1 - 2 )  ) = --  - - c |  , 
tz 

it follows that det D • > 0 i f / t  is chosen sufficiently large, and in this case 
det Dy(J)(x) >= rain {det A, det B, det C, det D} > 0 a.e. for all j. [ ]  

Remarks." 

1. Let m = n, det A > 0, det B > 0, det C > 0 and let/z be chosen sufficiently 
large that det D -L > 0. Then for domains .c2 such as those in Figure 4b (ii) 
and (iii), the deformation y given by (4.30) need not be invertible, and hence 
yO) given by (4.29) need not be invertible. Sufficient conditions for ytj) to 
be invertible are that - Q A . B ~ { x E R " : x ' m > k }  and - Q c C { X E P ~ : x "  
m <  k}. 

2. It follows from the proof  of  Proposition 2 that 

lim lim meas{xE N(xo) : lDy(J)(x) - -  a l  < e} = 2, 
,-*o j-,~ meas (N(xo) A QA.B) 

meas (x E N(xo): ] Dy(J)(x) - -  B[ < e} 
l iml im : 1--2, 
~-.0 j-~oo meas (N(Xo) A DA,B) 

so that 2, 1 -- 2 denote the asymptotic proportions of A and B respectively 
in N(Xo) A Dx,n. 

We now return to the minimization problem (3.11) with the free energy func- 
tion described in Section 3, not necessarily specialized to InTl. Assume that F + 
and F -  satisfy for some rotations R + and R-  

F ~= = R • Uo. (4.31) 

Recall that q~ is a Galilean invariant, that Uo is at the minimum of a potential 
well and that r 0o) = ff(Uo, 0o) = 0. We apply Theorem 3 with m = n = 3, 

A = F +, B = F -  and C = 1. Let ytJ) be a minimizing sequence for J in ~r 
so that 

lim J(ytJ)) = 0, (4.32) 
j - + ~  

and suppose that the hypotheses of the necessity part of Theorem 3 holds. (The 
condition that a minimizing sequence is weakly convergent in WI'P(D;R 3) is 
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satisfied for some subsequence of that sequence provided 4~ satisfies an estimate 
of the form 

4~(F) ~ Ko I F f  + K~ for all FC ~ (4.33) 

for some constants Ko > 0, K~.) From Theorem 3 we deduce that the interface 
is flat and, by (4.16) and (4.17), that 

F + =  1 - k ( 1 - - 2 )  c |  b |  
(4.34) 

F -  : 1 - - 2 c  |  + b | m ,  

for nonparallel vectors b, c E 1%a, nonparallel unit vectors m, n 6 1% 3 and some 
;rE (0, 1). Conversely, if the conditions (4.34) hold and 5g has the form (4.15) 
then the y(J)constructed in the theorem and satisfying (4.13) and (4.14) will be a 
minimizing sequence for J in ~t, since 4~ is continuous, Dy (j) bounded in L ~ and 
det Dy(J)(x) >= ~ ~ 0 a.e. in f2. In fact, since F + and F -  are at the minima of 
potential wells, 

f dp(Oy (i), 0o) dx = f 4)(D +, 0o) dx -k f oh(D-, 0o) dx 
~2 (xlDy(J)(x) = D +} { x lDy(J)(x) = D-}  

-+ 0 as j - +  oo. (4.35) 

That is, the only contribution to the total energy of y(J) is from the layer of tri- 
angular prisms pictured in Figure 4b whose total volume tends to zero as ]--~ co. 
The existence of rotations R + such that F • given by (4.31) satisfy (4.34) will be 
established for InT1 in Section 5. 

Simple examples show that if we drop the hypothesis in Theorem 3 that 
the open set ~QA,~ is connected, then 5 p need not be contained in a plane. The 
X-interface in Figure 2a provides an example where the finely twinned region 
is a disconnected open set and the austenite/martensite interface 5 p is not con- 
tained in a plane. Note, however, that the deformation gradient in this configu- 
ration takes to a good approximation four values. The X-interface is easily under- 
stood by patching together two deformations of the type given by Theorem 3. 
The curved martensite/martensite interface shown in Figure 2b is obviously 
not covered by Theorem 3. In principle, it should be possible to relate the orienta- 
tion of this interface to the local twin concentrations 2(x) and ;t'(x) on each side 
of the interface. 

Of course the weak limit y of a minimizing sequence y(J) is not in general 
a minimizer; for example, with y(J)~ y as above, (4.18) becomes 

Dy(x) = 2F + -k (1 -- 2) F - ,  (4.36) 

and ~.F + § (1 -- 2) F -  : 1 -k b | m does not in general, or in particular for 
InTl, yield one of the stretch matrices 1, R i UoR T, i ---- 1 . . . . .  ~. Hence J is gener- 
ally not sequentially weakly lower semicontinuous (swlsc) in wl'q(s for any 
q _>_ 1. This typical feature of multidimensional phase change problems results 
from the failure of strong ellipticity of  4~ (el ERICKSEN [16], BALL [4]) and contrasts 
with certain models of rubber-like materials for which J is swlsc and for which 
the direct method of the calculus of  variations can consequently be applied to 
establish the existence of minimizers (BALL [3]). When (h is not Wm-quasiconvex, 
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a condition closely related to strong ellipticity, an argument of  BALL 8r MURAT 
[8, Theorem 5.1 ] in fact shows that for appropriate boundary conditions and body 
forces the total free energy does not attain a minimum (see also the examples in 
Section 7). 

5. Materials Which Can Form Internally Twinned Martensite 

Given a transformation strain and a family of  energy minimizing twins, we 
now consider the algebraic problem of whether the equations (4.34)1,2 can be 
satisfied. I f  so, we can construct minimizing sequences by the methods given 
in Section 4. The critical physical question is whether the austenite/martensite 
planes work out correctly. These calculations are closely related to those of  the 
crystallographic theory of martensite, although necessary and sufficient conditions 
for the existence of solutions of  (4.34)1,2 in the case of  a general transformation 
strain and point group appear to be absent from the literature. We restrict atten- 
tion to the case m : n : 3 throughout this section. 

According to the analysis of  Section 3, all classical interfaces between mini- 
mizing deformation gradients are martensite/martensite twins. The deformation 
gradients associated with these twins, F+ and F--, have the forms 

F + : R + U o R i ,  

F -  : R -UoRj ,  (5.1) 

with Ri and R~ in P~. I t  is sufficient* for our purposes to take Rj = 1 and to 
rewrite (5.1) in the form 

F + : /~R UoR, 

where 
F -  : /~Uo, 

(5.2) 

F + - -  F -  : c | n,  c : /~a. (5.3) 

For  InT1, the values of  R, R, a and n satisfying the equations (5.2) and (5.3) 
are obtained from (3.19) with rll = 1 - -  e and ~/2 = 1 q- 2e, e - -  .013. In this 
section we allow Uo to be an arbitrary positive-definite symmetric matrix and the 
twins in (5.2) to be general in that they are subject only to (3.18), that is 

R Uo/~ = Uo + a | n ,  (5.4) 

where R, R are rotations, a =4= 0 and In I= 1. We note the relations 

Uola  �9 n = 0, (5.5) 

2Uoa .  n -[- ]al 2 = 0, (5.6) 

2Uo2a �9 Uo ln - [ Uo-~al21Uo ln] 2 = 0, (5.7) 

* The twins represented by (5.1) can be obtained from those represented by (5.2) 
and (5.3)by replacing F+ and F - i n  (5.1) byRTF+Rj and RTF-Rj. Note that these re- 
placements do not alter th.e forms of (4.34)2, 2. 
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which follow from (5.4) by taking determinants and by calculating tr (RU~R r) 
and tr (RUo2RT"). 

To decide whether the twins (5.2) can participate in an austenite/finely twinned 
martensite interface, we consider the algebraic problem of whether F+ and F -  

given by (5.2) can assume the forms (4.34)1,2 for some choice of/~. We view Uo, 
a and n as given, consistent with (3.18). Since (4.34)1 follows immediately from 
(4.34)2 and (5.3), we only need to consider (4.34)2 which becomes 

F - : / ~ U o :  1 - - 2 / ~ a  |  |  (5.8) 
or equivalently, 

U o + 2a | n = /~r(1 + b | m),  (5.9) 

which is to be solved for 2 E (0, 1), b, the unit vector m and the rotation /~. 
Let Co(2) be defined by 

def 
Co(A) ----- (Uo -k 2n | a) (Uo 4- 2a | n).  (5.10) 

According to the polar decomposition theorem, the basic equation (5.9) with 
det (U o 4- 2a | n) > 0 is equivalent to 

Co(4 ) : (1 4- m | b) (1 4- b | m) ,  (5.11) 

together with the restriction that det (1 4- b @ m) = 1 4- b �9 m > 0. Hence, we 
begin with a characterization of b and m satisfying (5.11). 

Proposition 4. Necessary and sufficient conditions for a symmetric 3 • 3 matrix C 
with eigenvalues 41 ~ 42 ~ 43 to be expressible in the form 

c = (1 + m | b) (1 + b | m) (5.12) 

for nonzero b and m are that 4t ~ 0  (i.e., C ~ 0 )  and 42 = 1. 
The solutions are given by: 

a) C ~ I ,  

- ) 
b : Q \ V  2 3  - -  4 1  el q- ~ V 43 -- 41 e3 ' (5.13) 

r 41 el-F-~l/2-aa-- 1 ea) , j(- l 
where Q 4= 0 is a constant, and el, e3 are normalized eigenvectors of  C correspond- 
ing to 41, 23 respectively, and where each o f  z, -~ can take the values :~1. For these 

solutions 1 + b �9 m : ~ 1/4143. 

b) C =  

b =  

m~- - -  

where ~ 

oe, (5.14) 

- - 2 Q  - I  e~ 

0 i s a  constant and ]el = 1. For these solutions 1 - k b ' m = - - l .  
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Proof. Necessity. Let  p be perpendicular  to b and m.  Then Cp ---- p so that  
one eigenvalue of  C equals 1. I f  b and m are linearly dependent,  then the eigen- 
value 1 has a multiplicity o f  at least two, so 22 = 1. Suppose that  b and m are 
linearly independent.  Consider 

x . c x -  Ix12 = 2 ( x ' b )  

= (x" m)  

(x .  m)  4- (x .  m) 2 Ib[ 2 

[2(x.  b) + ( x .  m ) l b l 2 ] .  
(5.15) 

I f  we choose x �9 b > 0 and x �9 m > 0, the expression (5.15) is positive. I f  we 
choose x �9 b ----- --1 and x �9 m small and positive, the expression (5.15) is nega- 
tive. Hence 3.t < 1 < 3.3. Finally, 3.13.3 : det C : (1 4- b .  m)  2 ~ 0, so that  
2 t _ > 0 .  

Sufficiency. First suppose that  C =~ 1, so that  b =~ 0, and suppose tha t2 :  > 0. 
I f  b and m satisfy (5.12), we have 

Cb = (1 -4- m | b) b(1 4- b - m ) ,  
(5.16) 

= ~ ( d e t  C) 1/2 (b 4- [b[ 2 m) .  
Hence,  

m = [ ~  (det 

In view of  (5.17) a necessary and 
and m satisfy (5.12) is that  b ~= 0 

b | b Cb | Cb 

C ---- 1 Ib[ -------q- + 1012 det C"  (5.18) 

In the or thonormal  basis o f  eigenvectors {et, e2, e3}, we have say b = (bl, b2, b3) 
and CO ---- (3.~ba, b2, 2363). Then  (5.18) is equivalent to 

i i0010 0 0 
0 0 3 .3 - -1  

1 
Ibl 2 

c)-'~c- l ]  ~ . (5.17) 

sufficient condit ion that  nonzero vectors b 
satisfies 

Since by assumption ;t~ and 23 are not  bo th  1, (5.19) holds if and only if b2,= 0 
and 

b, = 3.3(1 - -  3.,) b] ~(3 .3  - -  1) 
Ibl 2 3.3 --3.t ' ]bl 2 3.3 --3.x (5.20) 

blb2('+ ) 0 [ 

blb2(l+ )  5,9, 
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The equat ions (5.20) are consistent and so (5.18) holds if  and only if b has the fo rm 
(5.13)~ with Q ~ 0. Then  we get (5.13)2 f rom (5.17) as required. 

I f  C = 1 then (5.12) is satisfied by nonzero  vectors  b and m if  and only if 

b = 3 m  with 2 3 + 3 2 1 m [  2 = 0 ,  (5.21) 

so that  the nonzero  solutions of  (5.12) are given by (5.14). 
I f  3.1 ----0, then f rom (5.16), which holds without  the restriction 21 > 0, 

we have Cb = 0, so b = ~e~. I f  we write m = m~e~ 6- m2e2 6- mse3, we can 
write (5.12) in the fo rm 

( i o o)(2mlm2i3 t "l m mlm mlm3  
0 0 = ~  m2 0 + ~ 2  | m 2 m  1 m~ m2m31 

0 3.3--1 m3 0 \ m 3 m  I mam 2 m 2 / ,  

(5.22) 
tha t  is, 

(1 6- Qml) 2 = 0 ,  

Qm2(1 6- pro1) = 0, 

pm3(l -k pml)  = 0, 
(5.23) 

Q2m2 = O, 

~2m2ma = O, 

2m] ~---3.3 - -  1, 
with solutions 

1 + r  
ml = - - - - ,  m e = 0 ,  m 3 ---- , (5.24) 

Q 

which are already covered by (5.13). [ ]  

Remarks. 
1. Consider  solutions of  (5.12) with 1 6- b �9 m ~ 0. I f  2~ < 22 ---- 1 < 23, then 

there are two essentially distinct such solutions b -  | m -  and b + @ m +, 
consistent  with the analysis o f  [24, Appendix  1]. These are related by a 

ro ta t iow ] / i n  the ~ sense that  1 + b + | m § = / ~ ( 1  6 - b -  @ m - ) ;  this follows 
f rom the polar  decompos i t ion  theorem in the case 2~ > 0 and by an explicit 
calculat ion if 25 = 0. I f  2~ or 23 equals l, there is only one solution. I f  25 
and 3. 3 both  equal f, there is no solut ion.  

2. No te  that  if m • is perpendicular  to m then 

m ;  . Cm • = Imll2, (5.25) 

so that  m is normal  to an "und is to r ted"  plane fo r  C. Similarly, if  b I is perpen-  
dicular to b, then 

b • . C-~ b I = i b• (5.26) 

so that  b is no rma l  to  a n  "und is to r ted"  plane for  C - L  
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3. The formula for b can be written 

b - -  9 (r -1 - -  1 e l  q- u ~/1 - -  3.3 'l e3) (5 .27 )  
i/3.i-I - 3.31 

which has the same form as the formula for m. 

Proposition 4 makes it clear in particular that in order to solve the basic equa- 
tion (5.11) we must show that Co(2) has an eigenvalue equal to 1 for some 3., so 
we consider the following proposition: 

P r o p o s i t i o n  5. Let the 3 • 3 nonsingular matrix Uo = U~, the vector a, the unit 

vector n and rotations R and R be given subject to the twinning relations (5.4). 
Let Co(3.) = (Uo q- 3.n | a) (Uo + 3.a | n) and let 

g(3.) = det (Co(3.) -- 1). (5.28) 

Then g(3.) is a quadratic function of  3. which satisfies g(3.) = g(1 --3.). 

P r o o f .  To show that  g(3.), which appears to be a sixth order polynomial, is in fact 
only quadratic, note that by (5.5) 

det (Uo q- 3.a | n) = det Uo =[: 0. 
Hence 

g(3.) = det [(Uo -]- 3.n | a) (U o -[- 3.a | n) -- 1] 

(5.29) 

----- det Uo det [(Uo + 2a | n) -- (Uo q- 2n | a) -1 ] (5.30) 

= det U o det [(U 0 -- Uo 1) -l- 2(a | n q- Uoln | Uola)]. 

Since the matrix multiplying 3. is singular, the right-hand side of (5.30)3 is at 
most quadratic in 2. 

Since 

g(1) : det (Rr(U~ -- 1) R) = d et (U 2 --  1) : g(0), 

if follows that g(3.) : g(1 -- 3.). [ ]  

From Proposition 5 we can see how to make one eigenvalue Of Co(2)equal 
to 1 at some 3. so as to satisfy part of the conditions in Proposition 4. For  the 
remaining part we need to show that the other two eigenvalues of  Co(2) bound 1 
above and below, using the following proposition: 

P r o p o s i t i o n  6. Suppose that for some 2, Co(2 ) has the unordered triple of  eigen- 
values 1, 21, 23. Then .... 

(1 --3.1)(3.3 --  1) tr Uo2~ det Uo2 ~'~2,+ (3.2 _ 2) [ a l  2. (5.31) 
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Proof. Using (5.6) we obtain 

Since also 

1 + 2 1  + 2 3 = t r C o ( 2  ) 

= tr Uo 2 + 22(Uoa. n) + 22 [ a l 2 

= t r U o  z + ( 2 2 - 2 ) 1 a 1 2 .  

2123 : det Co().) = det U~, 

(5.32) 

(5.33) 

the result follows. [ ]  

We now combine Propositions 4 through 6 to get an existence theorem for 

the original equation (5.9). For  the purpose of Theorem 7 a triple (/~, 2, b | m) ^ 
consisting of a rotation R, a scalar 2 E (0, 1) and a rank-one matrix b | m such 
that 

Uo + 2a | n = / ~ r ( 1  + b | m) (5.34) 

will be termed a solution of (5.34). 

Theorem 7. Let the positive-definite symmetric matrix Uo satisfy the twinning rela- 
tion 

R Uo/~ : Uo + a | n (5.35) 

for some pair o f  rotations R and R and for vectors a ~ 0 and n, In I : 1. 

I. Assume Uo does not have an eigenvalue equal to 1. Necessary and sufficient 
conditions that (5.34) has a solution are that 

1 + �89 b* ~ 0 (5.36) 
and that 

1 
tr Uo ~ --  det Uo 2 -- 2 + T~-  lal2 ~ o, (5.37) 

where 
~* = a .  Uo(Ug -- 1) -1 n .  (5.38) 

I f further 
1 + �89 ~* < 0, (5.39) 

then strict inequality holds also in (5.37) and there are exactly four distinct solutions 
of  (5.34), these having the form 

( l l ,  2",  bl + ~) ml+),~ 

(R2, 2", b( | m?), 
(5.40) 

(R3, 1 - 2", b~ | m~+), 
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where 

so that 0 < 2 " <  1/2. I f  

2 " = � 8 9  ~ 1 + 2 . ) ,  (5.41) 

1 + �89 ~* ---- 0, (5.42) 

then all solutions have 2 ---- 1/2; i f  strict inequality holds in (5.37) then there are 
exactly two distinct solutions, while i f  equality holds in (5.37) there is just one solu- 
tion. 

II. Assume Uo has an eigenvalue equal to 1. A necessary and sufficient condition 
that (5.34) has a solution is that 

/z* d~ftr U 2 -- det U 2 -- 2 > O. (5.43) 

All solutions are given as follows: 

I f / z *  ~ ~ then for each 2 E (0, 1) there are exactly two distinct solutions 

(i~ +, 2, b + | m+), 
(5.44) 

a, b; | m;) .  

I f  0<~* < ]or= 4 '  and ~dor:�89 ( I - -  V 1  -- [al21'4/~*],, so that 0<2<�89 then 

for each 2E (0, 2-)kJ (1 --2", 1) there are exactly two distinct solutions of the 

2 = , ~  or 1 - - 2  witheither 2~- �89 (i.e., / t * < - ~ )  form (5.44), while i f  o r  

= �89 and det U o =~ 1, then there is one solution (Ra, 2, ba | m~). 

In all the cases above, formulas for b | m associated with a solution (R, 2, 
b | m) are given by (5.13) evaluated at the ordered eigenvalues of Co(2). 

Proof. By Proposition 4 and the polar decomposition theorem, necessary and 
sufficient conditions that the basic equation (5.34) has a solution with 2 ---= 2* 
are that the eigenvalues 0 <  21 ~ 2 2  =<23 of Go(t*) satisfy 22 ---- 1 and 
(2~ -- 1) 2 + (;% -- 1) 2 =t= 0. (The condition 2~ > 0 is automatically satisfied 
because det (Uo + 2a | n) ----- det Uo > 0 for all 2.) 

Part L By Proposition 5, g can be written in the form 

g(2) = a(2 -- �89 + b, (5.45) 

for some constants a and b with b = g(�89 and 

g(0) = �88 a + b, g'(0) = --a .  (5.46) 

The condition that Co(2") has an eigenvalue equal to 1 for some 2* E (0, 1) is 
that g(2*) ----- det (Co(2") -- 1) = 0 for some 2" E (0, 1), which holds if and 
only if g(0) g(�89 =< 0 with strict inequality if 2* =~ �89 
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By direct calculation, 

g(0) ---- d e t ( U  2 - -  1), 
(5.47) 

g'(0) ----- 2 a .  Uo adj (U  2 --  1) n ,  

so that  by (5.46) the inequality g(0) g(�89 <~ 0 is equivalent to (5.36). I f  g(2.*) ---- 0, 
2.* E (0, 1), then by (5.45) through (5.47) 

1 
2..2 _ 2., _ (5.48) 

2~* '  

with 8" defined by (5.38). Hence, by Proposi t ion 6, the eigenvalues of  Co(2") 
satisfy 2.~ ~ 22 = 1 ~ 2.3 if and only if (5.36) and (5.37) hold. The eigenvalues 
o f  Co(2") are not  all 1, since Co(2.*) = 1 implies that  Co(2.* ) e ----- U2e ~ e 
for  e perpendicular  to n and Uoa, and U 2 does not  have an eigenvalue 1. 

I f  (5.39) holds then g(0)g(�89 < 0, so that  g has the two roots  2.*, 1 - -  2.* 
with 2.* given by (5.41). By Proposi t ion 6 equali ty holds in (5.37) if and only if 1 
is a double eigenvalue of  Co().*). But this is impossible, since there would then 
exist a corresponding eigenvector e with e �9 n = 0, so that  

Uoe -+- 2.*(Uoa �9 e) n = e ,  (5.49) 

which with (5.47) implies that  

g(O) (Voa  . e) ---- --�89 2.*g'(0) (Uo a . e) .  (5.50) 

The quanti ty Uoa.  e does not  vanish because of  (5.49) and the assumption 
that  U o does not  have an eigenvalue equal to 1. Hence (5.50) implies that  

g(0) = --�89 2.*g'(0), (5.51) 

which immediately gives 2.* = �89 a contradiction.  Hence, by Proposi t ion 4 there 
are four  distinct solut ions of  (5.34) as claimed. 

I f  (5.42) holds then by (5.48) 2.* ---- �89 and by Proposi t ion 4 there are two 
solutions if strict inequality holds in (5.38) and only one otherwise. 

Part II. I f  Uo has an eigenvalue equal to 1, then g(0) = g(1) = det (U 2 --  1) 
= 0. Hence, if there is a solution of  (5.34) with 2 = 2* (which means that  
2* E (0, 1)), then g(2) = 0 for  all 2. Hence, one eigenvalue of  Co(2) equals 1 for  
each 2. E (0, 1) and it remains to examine the other  two eigenvalues. Let 

0(2) = tr Uo 2 --  det U 2 --  2 q- (22 - -  /~.)]a] 2. (5.52) 

A necessary and sufficient condit ion that  0(2.)~: 0 for  some 2 E (0, l) is that  
#*  > 0. If  0(2) > 0, 2 E (0, 1), by Proposi t ion 6 the eigenvalues o f  Co(2) satisfy 
~.t <~ 2.2 = 1 ~ 23 and hence there are two distinct solutions of  the form (5.44); 

thiscase occurs i f  #*  ~ lalZ/4 o r i f  0 ~ #* ~ la12/4 and 2.E (0,2)  kJ (1 - -  ~., 1). 

If  0(2.) = 0, that  is if 2. = ~. or 1 - -  ~., there is a single solution (Ra, 2, bz | rna) 
if and only if Co(2.) @ 1. But Co(2) ~ 1 implies by (5.5), (5.6) that  

0 : U o ' a "  Co(2.) n = (2. - -  �89 2 (5.53) 
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and  hence that  2 = �89 Hence  there is a single solution if 2 - ~  �89 I f  2 - =  �89 then 

Co(~. ) = 1 implies det Uo = (det Co(2-)) I/2 = 1, while det Uo = 1 implies by 

(5.32) and 0(2) = 0 tha t  t r  Co(,~) = 3, which together  with the fact  tha t  Co(X) 

has two eigenvalues equal to 1 gives Co(2) = 1. Hence  there is a solution if 
and  only if det Uo is not  equal to one. [ ]  

R e m a r k s :  

1. An alternative me thod  to that  in Proposi t ion  5 for  evaluat ing g(2) is to write 

g(;t) = det (Co().) - -  1) 
(5.54) 

= det Co(;t) - -  tr adj Co(). ) -[- tr  Co(2) - -  1 
and note tha t  

tr  adj Co(2) = det Co(2) tr  Co1(2) 

= det U02tr (1 - - 2 U o l a  | n)  Uo2(1 - - 2 n  | U o l a )  (5.55) 

---- det uE(tr Uo 2 + (22 - -  2) [ Uo la [  2 [ Uo~n]2), 

where we have used (5.7). Thus,  f rom (5.32), 

g(2) ---- Oct ( U  2 - -  l )  + (22 - -  2)([ a [2 _ (det U2o)[Uola [ 2 1 U o l n  [2), (5.56) 

and hence 
det u ~ l u o l a l E I U o ' n ?  - [al E 

8" = (5.57) 
2 det (U  g - -  1) 

2. A different way of  writing the necessary and sufficient condit ions in Theo rem 7 
that  there be a solution of  (5.34) with 2 @ 1/2 can be obta ined by  not ing tha t  
if  Co(2) has the unordered  triple of  eigenvalues 1, ).1, 23, and i f e  is any eigenvec- 
tor  o f  Co().) corresponding to the eigenvalue 1, then 

(1 - -  2 , )  0.3 - -  1) ( e .  n) 2 
(5.58) 

: tr Co(A) - -  n �9 Co(~.) n - -  n �9 adj Co(2) n - -  1. 

Since t r C o ( ) . ) - - n - C o ( A ) n : t r U  2 - n . U 2 n  and n . a d j C o ( A )  n : n .  
adj U2on, we have that  

(1 - -  21) ().3 - -  1) ( e - n )  2 : tr  U~ - -  n .  UZn - -  n .  adj UZn - -  1. (5.59) 

Since, as is shown in the p r o o f  of  Theorem 7, e �9 n can vanish only if  ). : 1/2, 
it follows that  necessary and sufficient condit ions that  (5.34) has a solution 
with 2 @ 1/2 are that  (5.39) holds and 

tr U 2 -  n . U2n - -  n . adj Uo n - -  1 > 0. (5.60) 

F r o m  the physical  point  o f  view, it is rare to have a mater ial  whose measured  
t rans format ion  strain has an eigenvalue equal  to 1 within experimental  error.  
We have not  been able to find any such examples*  in the l i terature after an ex- 
tensive search, a l though even in some relatively c o m m o n  alloys the t rans forma-  

* See Notes added in proof. 
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tion strain has not been measured. Nevertheless, the transformation strain is 
generally a continuous function of composition and while the composition of  
an alloy does not change during the martensitic transformation, it can be adjusted 
when the crystal is originally grown. Thus, it seems possible that for very special 
compositions, alloys could be made that have an eigenvalue of  Uo equal to 1 
in addition to the property (5.43). Such alloys would be interesting because of 
the great variety of austenite/martensite interfaces possible, i.e., those given by 
(5.44). However, austenite/martensite interfaces in a cubic-to-tetragonal transfor- 
mation are only possible when U o does not have an eigenvalue equal to 1, as is 
evident from (5.43) applied to (3.1) with either ~/t = 1 or ~/2 = 1. The possibility 
mentioned above can occur in cubic-to-orthorhombic transformations, for 
example. 

We now specialize the calculations to the cubic-to-tetragonal transformation 
and then to the specific case of InTl. Let Uo have the form (3.1) with ~2 4= 1 and 
~/1 4= 1 and let a and n be given by the twinning formulas (3.19)1,2. Since Uo 
in this case does not have an eigenvalue equal to 1, we turn to Part I of Theorem 7. 
There is a solution of the basic equation (5.34) with 2* =~ 1/2 if and only if 
(5.39) and (5.37) are satisfied with strict inequality. This pair of inequalities is 
equivalent to the two conditions 

1 1 
~ t <  1<~72 and ~h z + ~ < 2 ,  or 

~/2 (5.61) 

~2 < 1 < r h and ~7 2 -t- ~2 < 2. 

The inequalities (5.61) delineate the hatched region of Figure 5. There are also 
solutions for which k = 1/2 that occur when the conditions (5.37) and (5.42) 

r/2 

V~ 

r/ 
V 

\ I1/ )fi 
77~+r]22:2 

Fig. 5. Values of ~1 > 0 and 72 > 0 for which a solution of(5.34) exists with it 4= 1/2 
are contained in the hatched region, not including its boundary. Solutions of (5.34) with 

it = 1/2 exist for ~/1 and r/2 on the dashed curve, not including the point (1, 1). 
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are satisfied. These condit ions are 

921 < 1 and 
1 1 

92--7 q-~-~ = 2, or 
(5.62) 

921 > 1 and 922 + 922 2, 

which are satisfied on the dashed curves of  Figure 5. No  solutions are possible 
when either 921 = 1 or 922 = 1. We now give formulas for the solutions under  
the conditions (5.61). The value of  2* is given by (5.41), which becomes 

2" = �89 [1 -- (2(9222 --  1) (922 _ 1) (922 + 9222) (92~ --  922) -2 + 1)'121 �9 (5.63) 

To complete the calculation we need to find the eigenvalues and eigenvectors 
of  Co(2"), according to the last s tatement of  Theorem 7. Once these are found,  
the vectors b~ and m ~  of  (5.40) are determined by (5.13). To  find the eigenvalues 
21 =< 22 = 1 ~ 23 of  Co(2"), it is helpful to note that by (5.32) and (5.33) 

2 2 1 + 2 1 + 2 3 =  1 +92~+921922, 
2123 = 92~922. (5.64) 

Hence {21, 23} = {922, 92~922}. Let {e, ~,, e} be the or thonormal  basis introduced in 
(3. I) and (3.19) to (3.21). To find the eigenvectors of  Co(2"), notice that  by a direct 
calculation e is an eigenvector of  Co(2") corresponding to the eigenvalue 922. The 
remaining two eigenvectors are found by a brute force computat ion which is 
simplified by the identity 

(292~r/22 --  922 --  9222) (922 + 9222 --  2) = 2(922 --  1) (922 --  1) (922 + 922) + (9222 _ 922)2. 

(5.65) 
It is also helpful to change to the variables 6 and 3 defined by 

= [(92=: + 922 - -  2) (1 --  922)-q '~2, 
(5.66) 

3 = [(292292~ - 922 - 92==) ( I  - 9 2 = ) - , ] , / ~ .  

Then, in the basis {e, ~, e}, the other two eigenvectors are 

1 
(2(32 + ~2))1/2 (3 4- ~, 3 qz ~, 0). (5.67) 

Therefore, by Proposi t ion 4 with ~ chosen to make the third component  of  m ~  
equal to 1 for  simplicity, we get the formulas 

b, ~ = (T�89 r + 3), 4-�89 r --  3),/3), 
(5.68) 

m ~  = (qz�89 (~ _}_ 3), 4-�89 (~ - -  3), 1) 

where 6 and ~ are given by (5.66) and 

~- = (1 - 922) (1 + ,72) - 1 ,  
(5.69) 

fl-~-- 922(922--  1)  (1 - -  922) - 1  . 
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The signs are taken in parallel (either all upper or all lower). The expressions for 
b~ and r n f  associated with (1 -- 2*) are obtained by changing the signs just 
before T on the right-hand sides of (5.69)1.2. 

The expressions (5.68) are equivalent to the formulas given by WECHSLER, 
LIEBERMAN & READ [50] and summarized elsewhere as the crystallographic theory 
of martensite, which is not based on energy considerations as here. The formulas 
(5.63) and (5.68) simplify considerably in the case tr U02 = 3 and have been given 
by ERICKSEN [19]; this case arises naturally from his theory of constrained 
crystals. With z/1 = 1 -- e and ~/2 : 1 § 2e, all quantities become functions 
of e and as e -+ 0, 2* ~ 1/3 and mi ~ -+ (:[:1, 0, 1). For  InT1, with e : .013, 
we get 

2" -- .338, 
(5.70) 

m~ " (q:.993, ~:.0265, 1). 

This expression for each m~ differs by about 1 ~ from a member of the (1 1 0} 
family of  planes. Note that the acute angle between n and m~ is very nearly 
60 ~ which can be seen from the pictures of BASmSKI & CHRISTrAN [10]. Finally, 
if we go back and use the full set of symmetry related twins represented by (3.17), 
we get 2 4 ( :  6 • 4) distinct austenite/finely twinned martensite interfaces. 

6. Surface Energy and Sealing 

The analysis of the minimizing sequences yields the observed austenite/mar- 
tensite interfaces but otherwise has an obvious flaw. That  is, the sequences suggest 
infinite fineness whereas the spacing of the observed twins is small but nonzero. 
In this section we explore the idea that interfacial energies, which have been ex- 
cluded from our total free energy, can account for limited fineness without nullify- 
ing the overall conclusions we have reached. 

Twin boundaries contribute a small free energy, not accounted for by our 
~b, which is most simply introduced as an energy per unit area assigned on twin 
boundaries (GIBBS [21, p. 314-328]). For  simplicity, we assume that the inter- 
facial free energy per unit area is a constant a. This assumption is open to question 
near places where the twin boundaries meet the boundary of the body or the 
austenite/martensite interface. Whether or not an interfacial energy should be 
assigned to the austenite/martensite interface is debatable. (Recall that our 
calculation of Section 4 does assign a bulk energy to this interface of O(j-1), cf 
equation (4.35).) An electron micrograph of an austenite/martensite interface 
by NAKANISHI [34] does not suggest a surface of discontinuity of the deformation 
gradient, so we omit the interfacial energy there. 

Since the twin boundaries are essentially plane and parallel, we do not expect 
that the introduction of interfaeial energy will change our expressions for the 
bulk deformation gradients, stresses or energies. Hence, we assume F+ and F -  
are given by the equations (4.34)i.2, and we repeat the construction in Theorem 3, 
except that now we assume that the total free energy is 

f[y(J)] = f ~Dy  'j), 0o) dx + aA(j), (6.1) 
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A(j) being the total area of  twin boundaries in y~J)(12). Here we al lowj to take any 
nonnegative real value, defining y~J) by (4.29) for j > 0 and yt0) = y given by 
(4.30). A(j)  implicity depends on .(2 and the deformation y~J). In any case, 

/ ---- const, at j = 0, 
A( j )  { (6.2) 

---~ o o  a s  j - - > - o o .  

With a suitable choice of  D, A( j )  is continuous. The first term in (6.1) tends to 

zero as j ~ oo and is a continuous function of j. Thus j[yCJ)] attains its min- 
mum at some Jo < ~ .  A quantitative calculation o f j o  based on linear elasti- 
city is given by BURKART t~ READ [13]. 

In this calculation we have assumed a certain interpolation of the austenite/ 
martensite interface involving the deformation gradients D + and D-  (see Figure 4). 
This choice was made so as to simplify the task of  showing that each y~J)(x) is 
invertible. It appears that this particular interpolation does not have any special 
physical significance. Other interpolations might lead to a uniformly lower value 
of  the bulk energy and therefore a higher value ofjo. It appears that with any fixed 
interpolation and realistic free energy functions we would always get limited fineness 
by this calculation. 

It is interesting to speculate on the reasons why some materials that are very 
similar to InT1 do not form internally twinned martensite. The high temperature 
A-15 superconductors (see ERICKSEN [16]) undergo a reversible cubic to tetra- 
gonal transformation,* the martensite is found twinned on the {1 1 0} planes, 
but the austenite and martensite do not co-exist at equilibrium as in InTl. In this 
connection we note that the deformations found in this section are at best meta- 
stable with regard to the total energy given by (6.1) since any of the linear defor- 
mations y = F+x, y = F - x ,  y = x have less energy than twinned deformations. 
Whether the twinned deformations can really be some kind of relative minima 
of a total energy, which includes interracial energy in a general way, appears to 
be a delicate matter. 

Another possibly significant fact is that any single crystal of an alloy in solid 
solution, which is grown from the melt, inevitably contains a slight concentration 
gradient due to segregation during growth. Also, it is impossible to eliminate 
completely temperature gradients in a heat bath. Both concentration and tempera- 
ture gradients can be modelled by explicit dependence of the free energy on x. 
We explore the consequences of this in Section 7(a), where we show that it is a 
possible mechanism for the initiation of fine twinning. 

The reasoning summarized by the total energy (6.1) suggests that places in Q 
where the cross-section 

{','~ E ~F+F : X "  n = const.) (6.3) 

has a small area should contain a larger twin density than in regions where this 
area is large. To explore this suggestion via a heuristic calculation, we consider 
a specimen with uniform length and width but with a variable thickness and 
suppose an austenite/martensite interface divides the specimen perpendicular 
to the thickness direction. Assume rn / ,  n is parallel to the width. We use the 

* However, it is not clear that this transformation is really of 1 st order (Uo 4= 1). 
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calculation of bulk energy given in Section 4 directly and therefore ignore the fact 
that with limited fineness the boundary of the body will not quite be free of trac- 
tion. The bulk energy per unit length is given approximately by (const . j  -1) while 
the surface energy per unit length is given approximately by (const. jA), A being 
the area of the set given in (6.3) and the constants being positive. The total energy 
per unit length is therefore 

const. 
- -  + const. Aj (6.4) 

J 
which is minimized among all j > 0 at 

j = const. A -1/2. (6.5) 

Since j - t  is proportional to the twin spacing (see Figure 4), equation (6.5) gives 
an inverse square root relation between the fineness and the cross-sectional area. 
Apparently, experiments to test this relation are not available. 

OTSUKA & SHIMIZU [37] observe that "the reason for the absence of internal 
twins in 'small' martensites is not known presently". In the spirit of  the calculation 
just above, consider a cube of  side L divided by an austenite/martensite interface 
which is parallel to a pair of faces. Again by use of  expressions from Section 4 and 
the total energy (6.1), the bulk energy in this situation is approximately (const. 
L2j -~) while the surface energy is approximately (const. L3j), the constants being 
positive and independent of L. The total energy is minimized as a function of 
j > 0 when 

j = const. L -112. (6.6) 

The twin spacing is therefore proportional to L Z/2. However, the cube is of 
side L. Hence, if L is sufficiently small the twin spacing will be larger than a side 
of  the cube, suggesting that small crystals containing both austenite and marten- 
site will not be stable, as is observed. 

7. Other Similar Phenomena 

a. Fine twins in a problem with no absolute minimizer 

The minimization problem we have studied so far has linear absolute minima 
in addition to the minimizing sequences described in Section 4. By allowing the 
free energy 4~ to depend explicitly on x, we now construct a similar example in 
which the total free energy does not have an absolute minimizer in Wl'I(g2, R3). 

One way to think of doing this is to put the body in a temperature gradient 
so as to introduce dependence on x through the composition r O(x)). Within 
the context of a thermodynamic theory based on the Planck inequality and a 
Fourier Law of heat conduction, BALL & KNOWLES [9] justify the criterion of 
stability 

min f cb(Dy(x), O(x)) dx (7.1) 
Y t2 

as appropriate for an unloaded body having a steady temperature distribution 
o(x). 
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To avoid technicalities, we ignore the Galilean invariance of the free energy 
and consider a linear temperature distribution. Specifically, let a smooth function 

~ : ~ •  satisfy for each 0 < 0  

~(F, 0) > ~(F +, 0) = ~(F-, 0) for F =t= F • , (7.2) 

while for 0 > 0 ,  let 

~(F, 0) > 4~(1, 0) for F @ 1. (7.3) 

Assume F ~- are given by (4.34) for appropriate choices of the vectors. As done 
there, assume F + -- 1 is not a rank-one matrix. Suppose o E O. Let 

~(F, x) : ~(F, x" m) (7.4) 

and consider the total free energy 

J [y ]  : f 6(Dy(X), x) dx. (7.5) 
D 

As before let ~r : (y E Wl'l(g2, R 3) : Dy E ~ a.e.). Then 

inf J [ y ]  = f ~ F  J:, x . m)  dx + f .  6(1, x . m)  dx, 
yE~ t~f~{X.m <0} O&{x.m~ 0} 

and examples of minimizing sequences are given by the family of functions y~)(x) 
constructed in Theorem 3. 

We claim that the absolute minimum of  J in ~ '  is not attained. This in fact 
follows from Theorem 3. That is, any absolute minimizer y E ~r must have the 
property 

Dy : F+ or F -  a.e. on ~2 #~ {x. m < 0) (7.6) 

and the property 
Dy : 1 a.e. on .(2 A {x. m ~ 0}. (7.7) 

Any such y belongs to W l'~(12, R 3) and is therefore continuous on 12. Let B be 
an open ball with center o and contained in .(2. On .(2 #~ {x �9 m _> 0} any such y 
satisfies 

y(x) : x + c l ,  (7.8) 

c t = c o n s t . ,  while on E = D A ( x . m ~ 0 } y  is given by the ex- for some 
pression 

y(x) = c o + F - x  + fE(x" n) c (7.9) 

according to (4.4), wherefe is Lipschitz with derivative 0 or 1 a.e. and Co = const. 
However, it is easily seen using (4.34) that no continuous y satisfies both (7.9) 
and (7.8) on ~Q f~ (x .  m = 0}. Hence there are no absolute minimizers of J 
in ~ .  

Similar arguments show that for appropriate boundary conditions of place, 
say y(x)  = x + b (x .  m)  for x E 8.(2, x .  m < 0, a minimizer of the original 
problem (3.11) fails to exist. 
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b. Strongly elliptic energies with minimizers having fine boundary wrinkles 

We now consider free energy functions for isotropic, n-dimensional elastic 
materials of  the type analyzed by BALL [6, Section 6.4] and BALL & MARSDEN 
[7]. Let  l < o r  0 < 2 < # < c x ~ .  Let  4,1:(0, c x ~ ) - + ( 0 , ~ )  be a smooth 

funct ion satisfying 
4,'1 > 0, 4,'1 t > 0,  (7.10) 

and 
4,x(7) = ~, ~ , 2 ~ ~, ~ / ~ .  (7.11) 

Now choose a smooth funct ion 4,2: (0, c o ) - +  R with the properties 

4,~' > 0, 

4,2(3) = --nz ~/", z E [2", #"],  (7.12) 

4,z(V) > --n4,1(z1/"), z ~ [~", l~"]. 

There are functions 4,2 satisfying (7.12) because ( z~ / " ) "<  0 
Define 

i = 1  i = 1  

and 

for  z E [2", #"]. 

(7.13) 

(7.14) ~ F )  : 4,30', . . . . .  ~',), 

where 7s = yi(F), i = 1, .. . ,  n, are the eigenvalues of  (FrF)  1/ �9 
F rom (7 ,10) i t  follows that  61 is strictly convex  in log ~,, and hence that  the 

minimum of  2 4,,@i) subject to ~'i > 0, f i  7i = z, is at tained exactly when 
i = 1  i = 1  

)'1 = ~'2 . . . .  = ~', = zl/". Since by construct ion the nonnegative funct ion 
n4,i(z 1i") -[- 4,2(z) is zero only when z E [2 n, #"], we have shown that  the absolute 
minima of  4, subject to det F > 0 are given precisely by F with 

~'~ = ~'2 = ,. .  = ~', = ~,E [;t,#]. (7.15) 

We have thus constructed a free energy function 4' for  an isotropic nonlinear 
elastic material which has a cont inuous line of  absolute minimizers at dilatations. 
Surprisingly, 4, is also strictly polyconvex (see BALL [6]) a n d  s t rongly elliptic, 
unlike' our  energies for  crystals. Fur thermore ,  by suitably choosing 4,1 and 4,2, 
4,(F) can be chosen to grow as fast as desired as IF I ---> ~ .  

Consider the problem appropriate  to an unloaded body,  

min j 4,(Dy(x))dx, (7.16) 

where -(2 Q Rn is bounded  and open and d = (y E WI"(O, R"): det Dy(x) > 0 
a.e. x E -(2}. The absolute minimizers for  this problem are those y E ~r having the 

proper ty  that  ~ - - 
(Oy(x))rDy(x) = ~,(x) 2 1 a.e. xE  .Q, : (7.17) 
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where y(x) E [2,/~] a.e.. Equivalently, 

Dy(x) : y(x) R(x) a.e. x E/2 ,  (7.18) 

for some rotation-valued measurable function R(x). The condition (7.18) says 
that y is conformal. 

We first consider the case n ~- 2. The conformal mappings are representable 
by analytic functions w = f(z)  with the correspondence y(xl,  x2) = If'(xl § ix2) l. 
Thus any function analytic in O and such that 2 =< If '(z) l < # generates an ab- 
solute minimizer of the problem (7.16). We first take the example 

f ( z )  = y Z  § eo~ e izle , (7.19) 

with s = (0, 1) 2 and ~, E (2,/~). We pick ~ > 0 sufficiently small that 7 E [2 § Q, 

/ z - -~ ] ,  and take e > 0 .  Since l e iz/'] =le-X2/~e'Xl/ ' l~ 1 for x 2 ~ 0  we 
have that 2 ~ [f'(z)[ ~ # in /2. Note that f is invertible for Re z ~ 0, since 
] e i Z - - e i W [ ~ l z - - w ]  for Rez ,  R e w ~ 0  and y > e .  The mapping y~ cor- 
responding to (7.19) is given by 

y] = ~'xl § e0e -x2/' cos (xl/e), 
(7.20) 

y~ = 7x2 § eQe -x2le sin (xx/e). 

As e -~ 0, y" has finer and finer oscillations near x2 ---- 0. Note that y~ -~ 7x 
as e -+  0 strongly in WI'P(/2, R 2) for 1 ~ p ~ ~ ,  but that y~lx2=o only con- 
verges weakly to ~,x in WI'P((0, 1), R 2) (weak * if p = c~). As a second example, 
we let 

f (z)  ---- z 1 +i, (7.21) 

taking the principal value, with ~ the unit disc centered at z = i. Thus with 
suitable choices of  3.,/z we obtain a minimizer y E WI'~ R 2) which is smooth 
except at o E Q where there is a spiral singularity with Dy discontinuous. It 

is easily shown that y is invertible on ~ .  It is probably significant that the equi- 
librium equations, when linearized about the deformation y = 7x, ~'E [2,/~], 
fail to satisfy the complementing condition of AGMON, DOUGLiS & NIRENBERG 
[2] with respect to boundary conditions of null traction. SIMPSON & SPECTOR [43] 
discuss in detail exactly this linearized problem within the context of elasticity 
theory. See also SIMPSON & SPECTOR [44] for a discussion of the complementing 
condition in the context of  nonlinear elasticity. 

We turn to the case n ~ 3. The conformal transformations are now charac- 
terized by Liouville's theorem as products of inversions. Under our regularity 
assumptions (i.e., y E W1'~ R a) by (7.18)) an appropriate version of Liouville's 
theorem has been proved by RESHETNYAK [42]. For  n odd an example is given by 

X 

y(x) ---- Ix 12. (7.22) 

I f  o E ~ ,  then y satisfie s (7.18) with 7(x) = [ x 1-2. Note that when/2  is convex 
this furnishes an example' of  a nontrivial deformation which is an absolute mini- 
mizer of the total energy for a strictly polyconvex isotropic unloaded material, 
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and thus bears on a conjecture of NOLL [36] (see also TRUESDELL [47]) to the effect 
that for rubber-like materials, the absolute minimum is homogeneous and unique 
up to rigid-body translation and rotation. 

c. Minimizers of  energy having a finer and finer mixture of phases 
as an interfaee is approaehed from one side 

VAN TENDELOO, VAN LANDUYT • AMELINCKX [48, Figure 8] show ar rays  o f  
triangular Dauphin6 twins in quartz which get finer and finer in the direction of 
increasing temperature. This suggests another phenomenon whereby compatibility 
at an interface is achieved by mixing different deformations in triangles which them- 
selves get finer and finer as the interface is approached from one side. 

We choose a simplified free energy function which is not intended to model the 
behavior of  quartz. Also, we ignore the temperature gradient. A free energy 
function which accounts for the o~-fl transformation and Dauphin6 twinning 
has been given by JAMES [23]. 

Let {el, e2, ca} be an orthonormal basis and consider a Galilean invariant 
free energy function ~(F) whose point group contains a 180 ~ rotation about el.  
That is, for all F with det F > 0, assume 

~(F) ---- ~( U)I U=(FTF)I/2 = .  cb(R UR T) (7.23) 

with R = - - l + 2 e l  |  Let eC(0 ,1 )  and 7 @ 0  be given constants. As- 
sume that ~(U) has absolute minima at the three positive symmetric matrices 
Ul, U2, U3 where 

Uf : (1 E2) e l  | e l  _~_ (�89 E) (e I | e e + e2 | el)  -[- 1, 

U 2 ~- (�88 E 2) e I | e 1 -~- (�89 E) (1 - -  E) (e I | e 2 -~- e 2 (~) e l )  -~- e(e - -  2) e2 | e2 -I- 1, 

U 2 : ) ' ( e l  | e2 + e2 | el)  + 72e2 | e2 + 1. (7.24) 

Referring to Figure 6(a), consider a deformation ~(x) defined on the indicated 
reference configuration Q by 

x at circled nodes, 

x + 2-~ at uncircled nodes x satisfying 
~(x) = (7.25) 

x ' e 2 = ( 1 - - 2 - i ) ,  i = 0 ,  1,2 . . . . .  

x + 7el[(x �9 e2) -- 1] for x .  e2 > 1, 

and which is linear in each triangle. Assume also D~e3 ---- e3. Constructed in 
this way D~ has a.e. only the five distinct values 

FI = 1 + ) ' e l  | e 2 ,  

F 2 = 

F a = 

r , =  

F 5 = 

l + � 8 9  |  

1 - - � 8 9  |  

l + � 8 9  |  @e2,  

1 - -  �89 ee 2 | e I --  ee2 | e2. 

(7.26) 
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e2 

a 

0 

b T 

Fig. 6a and b. Compatibility at an interface achieved by a fine mixture of five deformation 
gradients, a Reference configuration; b Deformed configuration 

The subscripts on the deformation gradients in (7.26) correspond to the numbered 
regions in Figure 6a. Clearly ~(x) is in W1,~(Q, R a) and is globally invertible. 

The function ~ we have constructed is an absolute minimizer of the total free 
energy 

in the class W1,1(12,B, 3) because 

f cb(Dy) dx (7.27) 
D 

However, 

FTFI = U~, 

F~F 2 = RTF~F3 R = U~, (7.28) 

FTF4 = RTF~F5 R = U~. 

it fails to satisfy the classical conditions of compatibility because 

F1 -- Fi =4= a rank-one matrix, i = 2 . . . . .  5. (7.29) 

As in the example of finely twinned martensite, here compatibility is achieved 
by mixing a fine distribution of "phases" near an interface. However, here the 
minimum is achieved in WI'~(~, R 3) by the fine phase mixture rather than merely 
approached by a minimizing sequence. 

The example raises the question of what are the conditions of compatibility 
at an "interface". In this regard we note that both the example presented in this 
section and the one involving fine twins have the property that 

Dy(x2) -- Dy(xl)  = a rank-two matrix (7.30) 

for almost every xl and x2 on opposite sides of what one would think of as the 
interface. We also note that in the example of this section 

(�88 i_~ 2 Fi) -- F 1 = a rank-one matrix, (7.31) 
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an analog o f  the equation 

(2F+ + (1 - -  2) F - )  - -  1 ---- b | m (7.32) 

found  in Section 4. 
The example also raises the question o f  what  are the fewest number  o f  defor- 

mat ion  gradients o f  a function in W],~(.c2, R 3) such that  at least one o f  them does 
not  differ f rom any o f  the others by a rank-one matrix. We conjecture that  the 
answer is four  and we are pursuing this and related questions in a further study 
o f  fine phase mixtures. 
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Note 1 added in proof. Professor J. W. CHRISTIAN has shown us an example of a cubic 
to orthorhombic transformation in titanium-tantalum alloys which exhibits an exact 
interface between cubic and orthorhombic phases (K. A. BYWATER & J. W. CHRISTIAN, 
Martensitic transformations in titanium-tantulum alloys, Phil. Mug. 25 (1972), p. 1249- 
1272). To get the exact interfaces, these authors adjusted the concentration oftantulum 
during preparation of  the alloy in order to make one eigenvalue of the transformation 
strain equal to 1, while maintaining the condition that the other two eigenvalues are 
greater and less than 1. 

Note 2 added in proof. By Proposition 4 the conditions in Part II of  Theorem I 
that U0 have an eigenvalue equal to 1 and that #* > 0 are also sufficient that there be 
an exact austenite/martensite interface. 
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