Lyapunov Functions for Thermomechanics with Spatially Varying Boundary Temperatures

J.M. Ball \& G. Knowles
Dedicated to James Serrin on the occasion of his $60^{\text {th }}$ birthday

1. Introduction

Consider a continuous body subjected to conservative body and surface forces, with a part $\partial \Omega_{2}$ of the boundary maintained at a temperature $0=0_{0}(X)$ and with the remainder of the boundary thermally insulated. A calculation of Duhem [1911] shows that if θ_{0} is constant then the equations of motion possess a Lyapunov function, the equilibrium free energy, given in a standard notation (see Section 2) by

$$
\begin{equation*}
E=\int_{\Omega} \varrho_{\mathrm{R}}\left(\frac{1}{2}|v|^{2}+U+\psi-\theta_{0} \eta\right) d X-\int_{\partial \Omega \mid \partial \Omega_{1}} t_{\mathrm{R}} \cdot x d A \tag{1.1}
\end{equation*}
$$

The purpose of this paper is to show that for certain cases when the reference heat flux vector $q_{\mathrm{R}}=\hat{q}_{\mathrm{R}}(X, \theta, \operatorname{Grad} \theta)$ there is a corresponding equilibrium free energy function, namely

$$
\begin{equation*}
E=\int_{\Omega} \varrho_{\mathrm{R}}\left(\frac{1}{2}|v|^{2}+U+\psi-\phi(X) \eta\right) d X-\int_{\partial \Omega \mid \dot{\partial} \Omega_{\mathrm{t}}} t_{\mathrm{R}} \cdot x d A, \tag{1.2}
\end{equation*}
$$

that is nonincreasing along solutions even when θ_{0} depends on X.
In (1.2) ϕ denotes the solution of the stationary heat equation

$$
\begin{equation*}
\operatorname{Div} \hat{q}_{\mathrm{R}}(X, \phi, \operatorname{Grad} \phi)=0, \quad X \in \Omega, \tag{1.3}
\end{equation*}
$$

with boundary conditions

$$
\begin{equation*}
\left.\phi\right|_{\partial \Omega_{2}}=\theta_{0},\left.\quad \hat{q}_{\mathrm{R}}(X, \phi, \operatorname{Grad} \phi) \cdot N\right|_{\partial \Omega \mid \partial \Omega_{2}}=0 \tag{1.4}
\end{equation*}
$$

In Section 2 we give a formal argument showing that if ϕ is any function satisfying $\left.\phi\right|_{\partial \Omega_{2}}=\theta_{0}$ then, for motions satisfying the Planck inequality we have in general that

$$
\begin{equation*}
\dot{E}+I \leqq 0, \tag{1.5}
\end{equation*}
$$

where

$$
\begin{equation*}
I=\int_{\Omega} \operatorname{Grad}\left(\frac{\phi}{\theta}\right) \cdot q_{\mathrm{R}} d X \tag{1.6}
\end{equation*}
$$

The argument applies in particular to thermoelasticity, when equality holds in the Planck inequality.

In Section 3 we make a detailed study of the dissipation integral (1.6) with ϕ given by (1.3), (1.4), showing that $I=I(\theta) \geqq 0$ for all temperature distributions $\theta(\cdot)$ satisfying the boundary conditions in the two cases
(a) $\hat{\boldsymbol{q}}_{\mathrm{R}}=-k(\theta) \operatorname{Grad} \theta$, where $\log k(\theta)$ is a concave function of $\log \theta$,
(b) $\hat{q}_{\mathrm{R}}=-K(X) \operatorname{Grad} \theta$, where K is a uniformly positive matrix.

In case (a) we show that if $\log k(\theta)$ is sufficiently convex in $\log \theta$ on some interval then $I(\theta)$ can be negative, and hence E is not a Lyapunov function.

In cases when E is a Lyapunov function it is natural to conjecture that successive states of the body at a sequence of times $t_{j} \rightarrow \infty$ will generically realize, in an appropriate sense, a minimizing sequence for the functional E. Consider, for example, a thermoelastic material. If the boundary conditions allow conserved quantities these should be considered as constraints, and it may then happen (cf. MAN [1985]) that the velocity fields of minimizing sequences do not tend to zero as $t \rightarrow \infty$. Otherwise, however, the preceding motivation leads to consideration of minimization problems for

$$
\begin{equation*}
\hat{E}(x)=\int_{\Omega} \varrho_{\mathrm{R}}(X)[W(X, D x(X))+\psi(X, x(X))] d X-\int_{\partial \Omega \mid \partial \Omega_{1}} t_{\mathrm{R}} \cdot x d A \tag{1.7}
\end{equation*}
$$

where $W(X, F) \stackrel{\text { def }}{=} U(X, F, \phi(X))-\phi(X) \eta(X, F, \phi(X))$. Under appropriate hypotheses the study of such minimization problems falls into the framework given in Ball [1977] (see Ball \& Murat [1984] for developments and additional references). For further discussion concerning the relationship between thermodynamics and minimization of \hat{E} see Ball [1984], where the results in this paper were announced, and Ball \& Knowles [1985].

It would be interesting to find Lyapunov functions for some cases when q_{R} depends also on mechanical variables and allowing spatially varying boundary temperatures. A Lyapunov function applying to the case when the spatial heat flux vector q is given by

$$
q=-k(\theta) \operatorname{grad} \theta
$$

the gradient being with respect to x, could be relevant for the study of Bénard convection, for example.

2. Equilibrium Free Energy

Consider a continuous body occupying in a reference configuration the bounded open subset $\Omega \subset \mathbb{R}^{n}$. At time t the particle occupying in the reference configuration the point $X \in \Omega$ has position $x(X, t) \in \mathbb{R}^{n}$ and temperature $\theta(X, t)>0$. Assuming the external volumetric heat supply to be zero, the governing equations are

$$
\begin{gather*}
\varrho_{\mathrm{R}} \dot{v}=\operatorname{Div} T_{R}+\varrho_{\mathrm{R}} b, \tag{2.1}\\
\varrho_{\mathrm{R}} \dot{U}-\operatorname{tr}\left(T_{\mathrm{R}} \dot{F}^{T}\right)+\operatorname{Div} q_{\mathrm{R}}=0, \tag{2.2}
\end{gather*}
$$

where $v=\dot{x}$ is the velocity, $\varrho_{\mathrm{R}}(X)$ is the density in the reference configuration, T_{R} is the Piola-Kirchhoff stress tensor, b is the body force density, U is the internal energy density, $F=D x(X, t)$ is the deformation gradient and q_{R} is the (reference) heat flux vector. (Here and below, Div, D and Grad all refer to differentiation with respect to X, dots to differentiation with respect to t.)

We make the thermodynamic assumption that motions of the body satisfy the Planck inequality (see Truesdell [1984 p. 112])

$$
\begin{equation*}
\varrho_{\mathrm{R}} \theta \dot{\eta} \geqq-\operatorname{Div} q_{\mathrm{R}} \tag{2.3}
\end{equation*}
$$

where $\eta(X, t)$ denotes the specific entropy. We recall that the Clausius-Duhem inequality

$$
\begin{equation*}
\varrho_{\mathrm{R}} \dot{\eta} \geqq-\operatorname{Div}\left(\frac{q_{\mathrm{R}}}{\theta}\right) \tag{2.4}
\end{equation*}
$$

follows from (2.3) and the Fourier inequality

$$
\begin{equation*}
\dot{q}_{\mathrm{R}} \cdot \operatorname{Grad} \theta \leqq 0 \tag{2.5}
\end{equation*}
$$

For nonsmooth solutions (2.1)-(2.3) must be interpreted in an appropriate weak or distributional sense ($c f$. Dafermos [1983]). We suppose that the body force is conservative, so that

$$
\begin{equation*}
b(X, t)=-\nabla_{x} \psi(X, x(X, t)) \tag{2.6}
\end{equation*}
$$

for some potential $\psi(X, x)$.
We impose the following boundary conditions:

Mechanical: $\quad x=x_{0}(X), \quad X \in \partial \Omega_{1}$,

$$
\begin{gather*}
T_{\mathrm{R}} N=t_{\mathrm{R}}(X), \quad X \in \partial \Omega \backslash \partial \Omega_{1} \tag{2.7}\\
\theta=\theta_{0}(X), \quad X \in \partial \Omega_{2} \\
q_{\mathrm{R}} \cdot N=0, \quad X \in \partial \Omega \backslash \partial \Omega_{2} \tag{2.8}
\end{gather*}
$$

Here $\partial \Omega_{1}, \partial \Omega_{2}$ are given subsets of the boundary $\partial \Omega, N=N(X)$ is the unit outward normal to $\partial \Omega$ at X, and $x_{0}, t_{\mathrm{R}}, \theta_{0}$ are given functions.

Let $\phi=\phi(X) \geqq 0$ be a given function satisfying

$$
\begin{equation*}
\phi(X)=\theta_{0}(X), \quad X \in \partial \Omega_{2} \tag{2.9}
\end{equation*}
$$

It follows from (2.1)-(2.3) that

$$
\begin{equation*}
\frac{\partial}{\partial t}\left[\varrho_{\mathrm{R}}\left(\frac{1}{2}|v|^{2}+U+\psi-\phi \eta\right)\right] \leqq \operatorname{Div}\left[v^{T} T_{\mathrm{R}}\right]+\left(\frac{\phi}{\theta}-1\right) \operatorname{Div} q_{\mathrm{R}} \tag{2.10}
\end{equation*}
$$

Using (2.10) and the boundary conditions (2.7), (2.8) we obtain

$$
\begin{equation*}
\dot{E}+I \leqq 0 \tag{2.11}
\end{equation*}
$$

where

$$
\begin{equation*}
E=\int_{\Omega} \varrho_{\mathrm{R}}\left(\frac{1}{2}|v|^{2}+U+\psi-\phi \eta\right) d X-\int_{\partial \Omega \mid \partial \Omega_{1}} t_{\mathrm{R}} \cdot x d A \tag{2.12}
\end{equation*}
$$

and

$$
\begin{equation*}
I=\int_{\Omega} \operatorname{Grad}\left(\frac{\phi}{\theta}\right) \cdot q_{\mathrm{R}} d X \tag{2.13}
\end{equation*}
$$

Thus E will be nonincreasing along solutions provided

$$
\begin{equation*}
I \geqq 0 \tag{2.14}
\end{equation*}
$$

An important special case is when $\theta_{0}>0$ is independent of X. Choosing $\phi \equiv \theta_{0}$ we find that

$$
\begin{equation*}
I=-\theta_{0} \int_{\Omega} \frac{q_{\mathrm{R}} \cdot \operatorname{Grad} \theta}{\theta^{2}} d X, \tag{2.15}
\end{equation*}
$$

so that (2.14) holds provided (2.5) does. In fact in this case $I \geqq 0$ if we assume that (2.4) holds instead of (2.3). This result is well known (see Duhem [1911], Ericksen [1966], Coleman \& Dill [1973], for example). The corresponding function

$$
\begin{equation*}
E=\int_{\Omega} \varrho_{\mathrm{R}}\left(\frac{1}{2}|v|^{2}+U+\psi-\theta_{0} \eta\right) d X-\int_{\partial \Omega \dot{\partial} \Omega_{1}} t_{\mathrm{R}} \cdot x d A \tag{2.16}
\end{equation*}
$$

is commonly called the equilibrium free energy, and we carry over the same terminology to E given by (2.12) whenever ϕ is chosen so that (2.14) holds.

As an example we consider a thermoelastic material, whose constitutive relations are given in terms of the Helmholtz free energy function $A(X, F, \theta)$ by

$$
\begin{gather*}
T_{\mathrm{R}}=\varrho_{\mathrm{R}} \frac{\partial A}{\partial F}, \quad \eta=-\frac{\partial A}{\partial \theta}, \quad U=A+\eta \theta \tag{2.17}\\
q_{\mathrm{R}}=\hat{q}_{\mathrm{R}}(X, F, \theta, \operatorname{Grad} \theta) .
\end{gather*}
$$

By (2.2), (2.17) we see, as is well known, that equality holds in (2.3) and that (2.4) reduces to (2.5).

3. The Dissipation Integral

In this section we discuss the positivity of the dissipation integral

$$
\begin{equation*}
I(\theta)=\int_{\Omega} \operatorname{Grad}\left(\frac{\phi}{\theta}\right) \cdot \hat{q}_{\mathrm{R}}(X, \theta, \operatorname{Grad} \theta) d X \tag{3.1}
\end{equation*}
$$

given by (2.13) when $q_{\mathrm{R}}=\hat{q}_{\mathrm{R}}(X, \theta, \operatorname{Grad} \theta)$. In (3.1) the admissible functions $\theta>0$ satisfy the boundary conditions (2.8). We choose ϕ to be a solution of the stationary heat equation

$$
\begin{equation*}
\operatorname{Div} \hat{q}_{\mathrm{R}}(X, \phi, \operatorname{Grad} \phi)=0, \quad X \in \Omega \tag{3.2}
\end{equation*}
$$

subject to the same boundary conditions

$$
\begin{gather*}
\phi=\theta_{0}(X), \quad X \in \partial \Omega_{2} \\
\hat{q}_{\mathrm{R}}(X, \phi, \operatorname{Grad} \phi) \cdot N=0, \quad x \in \partial \Omega \backslash \partial \Omega_{2} \tag{3.3}
\end{gather*}
$$

In the examples treated below (3.2) is elliptic and ϕ unique. Proceeding formally for a moment, we observe that the Euler-Lagrange equation for I can be written

$$
\begin{align*}
\frac{\partial}{\partial X^{\alpha}}\left(\operatorname{Grad}\left(\frac{\phi}{\theta}\right) \cdot \frac{\partial \hat{q}_{\mathrm{R}}}{\partial \theta_{, \alpha}}-\frac{\phi}{\theta^{2}} \hat{q}_{\mathrm{R}}^{\alpha}\right)= & \operatorname{Grad}\left(\frac{\phi}{\theta}\right) \cdot \frac{\partial \hat{q}_{\mathrm{R}}}{\partial \theta} \\
& +\hat{q}_{\mathrm{R}} \cdot\left(\frac{2 \phi}{\theta^{3}} \operatorname{Grad} \theta-\frac{1}{\theta^{2}} \operatorname{Grad} \phi\right) \tag{3.4}
\end{align*}
$$

It is easily seen that $\theta=\phi$ is a solution of (3.4), and since $I(\phi)=0$ we are faced with a classical question in the calculus of variations, to decide if the given solution ϕ is a global minimizer of I. The problem is not straightforward since ϕ is only known implicitly and the integrand may be negative.

For the remainder of this section we make the technical assumptions that Ω has a sufficiently regular boundary (it is enough that Ω is strongly Lipschitz in the sense of Morrey [1966 Section 3.4]) and that $\partial \Omega_{2} \subset \partial \Omega$ is closed with positive ($n-1$)-dimensional measure. We suppose further that $\theta_{0}: \partial \Omega_{2} \rightarrow \mathbb{R}$ is sufficiently regular, specifically that θ_{0} is the boundary value on $\partial \Omega_{2}$ in the sense of trace of some function $\tilde{\theta} \in H^{1}(\Omega)$, and that there are constants m, M such that

$$
\begin{equation*}
0<m \leqq \theta_{0}(X) \leqq M<\infty \quad \text { for a.e. } X \in \partial \Omega_{2} \tag{3.5}
\end{equation*}
$$

We define a set \mathscr{A} of admissible functions by

$$
\begin{gathered}
\mathscr{A}=\left\{\theta \in H^{1}(\Omega) \cap L^{\infty}(\Omega): \underset{X \in \Omega}{\operatorname{ess} \inf } \theta(X)>0\right. \\
\left.\left.\theta\right|_{\partial \Omega_{2}}=\theta_{0} \quad \text { in the sense of trace }\right\}
\end{gathered}
$$

We consider first the case

$$
\begin{equation*}
\hat{q}_{\mathrm{R}}=-k(\theta) \operatorname{Grad} \theta \tag{3.6}
\end{equation*}
$$

where the thermal conductivity $k(\theta)$ is real-valued, continuous and strictly positive for all $\theta>0$. By (3.1), (3.6)

$$
\begin{equation*}
I(\theta)=-\int_{\Omega} k(\theta) \operatorname{Grad}\left(\frac{\phi}{\theta}\right) \cdot \operatorname{Grad} \theta d X \tag{3.7}
\end{equation*}
$$

Writing $\chi(\theta)=\int_{1}^{\theta} k(s) d s, g(X)=\varkappa(\theta(X))$, we see that (3.2), (3.3) become

$$
\begin{align*}
\Delta g=0 & \text { in } \Omega \\
\left.g\right|_{\partial \Omega_{2}}=\chi\left(\theta_{0}\right), & \left.\frac{\partial g}{\partial n}\right|_{\partial \Omega \partial \partial \Omega_{2}}=0 \tag{3.8}
\end{align*}
$$

It is easily checked that $x\left(\theta_{0}\right)$ is the boundary value of an $H^{1}(\Omega)$ function (for example of $x(\tilde{\psi})$, where $\tilde{\psi}=\max \{m, \min \{M, \tilde{\theta}\}\}$. It follows by standard theory that (3.8) has a unique weak solution g, i.e. $g \in H^{1}(\Omega),\left.g\right|_{\partial \Omega_{2}}=\varkappa\left(\theta_{0}\right)$, and

$$
\begin{equation*}
\int_{\Omega} \operatorname{Grad} g \cdot \operatorname{Grad} v d X=0 \tag{3.9}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$ with $\left.v\right|_{\partial \Omega_{2}}=0$. Defining $\phi=\varkappa^{-1}(g)$ we have that

$$
\begin{equation*}
\int_{\Omega} k(\phi) \operatorname{Grad} \phi \cdot \operatorname{Grad} v d X=0 \tag{3.10}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$ with $\left.v\right|_{\partial \Omega_{2}}=0$. By the maximum principle (for an appropriate version see Chicco [1970])

$$
\begin{equation*}
m \leqq \phi(X) \leqq M \quad \text { a.e. } X \in \Omega \tag{3.11}
\end{equation*}
$$

Also $\phi \in C^{1}(\Omega)$.
Theorem 3.1. Let $\log k(\theta)$ be a concave function of $\log \theta$. Then $I(\theta) \geqq 0$ for all $\theta \in \mathscr{A}$.

To prove the theorem we need some elementary lemmas.
Lemma 3.2. Let Q be an open interval (finite, semi-infinite, or infinite) of \mathbb{R}. Let $h: Q \rightarrow(0, \infty)$. Define $f: Q \times \mathbb{R}^{n} \rightarrow \mathbb{R}$ by

$$
f(w, y)=\frac{|y|^{2}}{h(w)} .
$$

Then f is convex if and only if h is concave.
Proof. Let $t \in[0,1], w, \bar{w} \in Q, y, \bar{y} \in \mathbb{R}^{n}$. Then

$$
\begin{aligned}
\delta f \stackrel{\text { def }}{=} & f(t w+(1-t) \bar{w}, t y+(1-t) \bar{y})-t f(w, y)-(1-t) f(\bar{w}, \bar{y}) \\
= & \frac{1}{h(t w+(1-t) \bar{w})}[[t h(w)+(1-t) h(\bar{w})-h(t w+(1-t) \bar{w})] \\
& \left.\times\left(\frac{t|y|^{2}}{h(w)}+\frac{(1-t)|\bar{y}|^{2}}{h(\bar{w})}\right)-\frac{t(1-t)}{h(w) h(\bar{w})}|h(\bar{w}) y-h(w) \bar{y}|^{2}\right] .
\end{aligned}
$$

If h is concave then clearly $\delta f \leqq 0$, hence f convex. If f is convex the concavity of h follows from $\delta f \leqq 0$ on choosing $\bar{y}=\frac{h(\bar{w})}{h(w)} y$.

We introduce the change of variable

$$
\begin{equation*}
w=\int_{i}^{\theta} \frac{k(s)}{s} d s \tag{3.12}
\end{equation*}
$$

Let $\theta=\theta(w)$ denote the inverse function; thus $\theta(\cdot): Q \rightarrow \mathbb{R}$, where

$$
Q=\left(-\int_{0}^{1} \frac{k(s)}{s} d s, \quad \int_{1}^{\infty} \frac{k(s)}{s} d s\right)
$$

Lemma 3.3. $k(\theta(\cdot))$ is concave on Q if and only if $\log k(\theta)$ is a concave function of $\log \theta$.

Proof. Suppose $\log k(\theta)$ is concave in $\log \theta$. Then $\log k(\theta)$ is locally Lipschitz in $\log \theta$ on \mathbb{R}, and hence $k(\theta)$ is locally Lipschitz in θ on $(0, \infty)$. In particular k is differentiable a.e. on $(0, \infty)$ with locally bounded derivative. By the chain rule the locally Lipschitz function $k(\theta(\cdot))$ has derivative

$$
\begin{equation*}
\frac{d k(\theta(w))}{d w}=\frac{d \log k(\theta(w))}{d \log \theta(w)} \quad \text { a.e. } w \in Q \tag{3.13}
\end{equation*}
$$

Since $d \log k(\theta) / d \log \theta$ is a.e. nonincreasing in $\log \theta, d k(\theta(w)) / d w$ is a.e. nonincreasing in w. Hence $k(\theta(\cdot))$ is concave.

The converse is proved similarly.
Remark. By making the identification $h(t)=k\left(e^{t}\right), t=\log \theta$ and using a similar proof one can show that a necessary and sufficient condition for a function $h: \mathbb{R} \rightarrow(0, \infty)$ to be such that $\log h(\cdot)$ is convex (respectively concave) is that h be locally integrable and for each $s \in \mathbb{R}$ there exists $\lambda(s) \in \mathbb{R}$ with

$$
h(t) \geqq h(s)+\lambda(s) \int_{s}^{\dot{b}} h(\tau) d \tau \quad \text { for all } t \in \mathbb{R}
$$

(respectively \leqq).
Proof of Theorem 3.1. Let $\theta \in \mathscr{A}$. Then $w=w(X)$ defined by (3.12) belongs to $H^{1}(\Omega) \cap L^{\infty}(\Omega)$ with $G r a d w(X)=(k(\theta(X)) / \theta(X)) \operatorname{Grad} \theta(X)$ a.e. $X \in \Omega$. Thus $I(\theta)=J(w)$, where

$$
\begin{equation*}
J(w)=\int_{\Omega} \hat{f}(X, w(X), \text { Grad } w(X)) d X \tag{3.14}
\end{equation*}
$$

and

$$
\begin{equation*}
\hat{f}(X, w, y) \stackrel{\operatorname{def}}{=} \frac{\phi(X)}{k(\theta(w))}|y|^{2}-y \cdot \operatorname{Grad} \phi(X) \tag{3.15}
\end{equation*}
$$

It follows from Lemmas 3.2, 3.3 that $\hat{f}(X, \cdot, \cdot)$ is convex on $I \times \mathbb{R}^{n}$. Define

$$
\bar{w}(X)=\int_{i}^{\phi(X)} \frac{k(s)}{s} d s
$$

Note that $\hat{f}(X, \cdot, \cdot)$ is differentiable at (w, y) unless $y \neq 0$ and $\theta(w)$ belongs to the set S of points where $k(\cdot)$ is not differentiable. Since $\log k(\theta)$ is concave in $\log \theta$, it follows easily that S is countable. If $\phi(X)=s \in S$ on a set M of positive measure then (Morrey [1966 p. 69]) Grad $\phi(X)=0$ a.e. $X \in M$. Thus $\hat{f}(X, \cdot, \cdot)$ is differentiable at ($\bar{w}(X)$, Grad $\bar{w}(X)$) for a.e. $X \in \Omega$, and by the convexity we have

$$
\begin{equation*}
(\hat{f} X, w(X), \operatorname{Grad} w(X)) \geqq \hat{f}(X, \bar{w}(X), \operatorname{Grad} \bar{w}(X))+r_{w}(X), \quad \text { a.e. } X \in \Omega, \tag{3.16}
\end{equation*}
$$

where

$$
\begin{aligned}
r_{w}(X)= & \frac{\partial \hat{f}}{\partial w}(X, \bar{w}(X), \operatorname{Grad} \bar{w}(X))(w(X)-\bar{w}(X)) \\
& +\frac{\partial \hat{f}}{\partial y}(X, \bar{w}(X), \operatorname{Grad} \bar{w}(X)) \cdot(\operatorname{Grad} w(X)-\operatorname{Grad} \bar{w}(X)) \\
= & -\frac{k^{\prime}(\phi)}{k(\phi)}|\operatorname{Grad} \phi|^{2} \int_{\phi}^{\theta} \frac{k(s)}{s} d s+\operatorname{Grad} \phi \cdot \operatorname{Grad}\left(\int_{\phi}^{0} \frac{k(s)}{s} d s\right),
\end{aligned}
$$

since $\theta(\bar{w}(X))=\phi(X)$. Setting $u=\int_{\phi}^{\theta} \frac{k(s)}{s} d s, c v=\frac{u}{k(\phi)}$ and noting that since $k(\cdot)$ is Lipschitz, $v \in H^{1}(\Omega)\left(c f\right.$. Marcus \& Mizel [1972]) with $\left.v\right|_{o \Omega_{2}}=0$, we deduce from (3.10) that

$$
\begin{equation*}
\int_{\Omega} r_{w}(X) d X=0 \tag{3.17}
\end{equation*}
$$

Integrating (3.16) we thus have $I(\theta) \geqq I(\phi)=0$ as required.
Remark. The proof in fact shows that $I(\theta) \geqq 0$ for all $\theta \in \mathscr{A}_{1}$, where $\mathscr{A}_{1}=$ $\left\{\theta \in W^{1,1}(\Omega): \theta>0\right.$ a.e., $w=\int_{1}^{0} \frac{k(s)}{s} d s \in H^{1}(\Omega)$ and $\left.\theta\right|_{\partial \Omega_{2}}=\theta_{0}$ in the sense
of trace $\}.$

The condition that $\log k$ be concave in $\log \theta$ is satisfied, for example, by the functions

$$
\begin{gathered}
k(\theta)=\mu \theta^{x}, \quad \mu>0, \quad \alpha \in \mathbb{R} \\
k(\theta)=\mu(\log \theta)^{x}, \quad \mu>0, \quad \alpha>0
\end{gathered}
$$

the first example (for applications see Kath \& Cohen [1982], Larsen \& Pomraning [1980], Zeldovich \& Raizer [1969]) being critical in that $\log k$ is affine in $\log \theta$. Clearly products of k 's satisfying the condition also satisfy it. If k is C^{1} on $(0, \infty)$ the condition takes the form that $\theta k^{\prime}(\theta) / k(\theta)$ be nonincreasing in θ.

To investigate how close the condition is to being necessary for I to be nonnegative on \mathscr{A} we compute the second variation. Suppose k is C^{2} on $(0, \infty)$. Let $u \in W^{1, \infty}(\Omega)$ with $\left.u\right|_{\partial \Omega_{2}}=0$. Then

$$
\begin{align*}
\delta^{2} I(\phi)(\phi u, \phi u) & \left.\stackrel{\text { def }}{=} \frac{d^{2}}{d \varepsilon^{2}} I(\phi(1+\varepsilon u))\right|_{\varepsilon=0} \\
& =2 \int_{\Omega} \operatorname{Grad} u \cdot \operatorname{Grad}(\phi k(\phi) u) d X \\
& =\int_{\Omega}\left[2 a|\operatorname{Grad} u|^{2}-\Delta a \cdot u^{2}\right] d X, \tag{3.18}
\end{align*}
$$

where $a \stackrel{\text { def }}{=} \phi k(\phi)$ and where we have used (3.9). Note that

$$
\begin{align*}
\Delta a & =\left[\left(\frac{\phi k^{\prime}(\phi)}{k(\phi)}+1\right) k(\phi) \phi_{, \alpha}\right]_{, \alpha} \\
& =\left(\frac{\phi k^{\prime}}{k}\right)^{\prime} k(\phi)|\operatorname{Grad} \phi|^{2} \tag{3.19}
\end{align*}
$$

In particular, if $\log k(\theta)$ is concave in $\log \theta$ then $\Delta a \leqq 0$ and $\delta^{2} I(\phi) \geqq 0$, consistent with Theorem 3.1. The Jacobi equation, that is the Euler-Lagrange equation for (3.18), is

$$
\begin{equation*}
\operatorname{Div}(2 a \operatorname{Grad} u)=-\Delta a \cdot u \tag{3.20}
\end{equation*}
$$

We now let $n=1, \Omega=(0,1), \partial \Omega_{2}=\partial \Omega$, so that

$$
\begin{equation*}
k(\phi) \phi_{X}=c, \quad X \in[0,1] \tag{3.21}
\end{equation*}
$$

where we assume $c=x\left(\theta_{0}(1)\right)-x\left(\theta_{0}(0)\right)$ is nonzero. We seek a function $u(X)=$ $z(\tau), \tau=\log \phi$, making (3.18) negative. Note that for such a function, by (3.19), (3.21),

$$
\delta^{2} I(\phi)(\phi u, \phi u)=J(z),
$$

where

$$
\begin{equation*}
J(z)=2 c \int_{\log \theta_{0}(0)}^{\log \theta_{0}(1)}\left[z_{\tau}^{2}-\frac{1}{2} p(\tau) z^{2}\right] d \tau \tag{3.22}
\end{equation*}
$$

and

$$
\begin{equation*}
p(\tau)=\frac{d^{2}}{d \tau^{2}} \log k\left(e^{\tau}\right) \tag{3.23}
\end{equation*}
$$

Also, (3.20) becomes

$$
\begin{equation*}
z_{\tau \tau}+\frac{1}{2} p(\tau) z=0 \tag{3.24}
\end{equation*}
$$

Suppose that we can find a solution $\bar{z} \neq 0$ of (3.24) on an interval $[\alpha, \beta]$ with $\bar{z}(\alpha)=\bar{z}(\beta)=0$. Let

$$
\begin{equation*}
\theta_{0}(0)<e^{\alpha}, \quad \theta_{0}(1)>e^{\beta} \tag{3.25}
\end{equation*}
$$

Employing classical reasoning ($c f$. Bolza [1904]) we set

$$
z_{1}(\tau)=\left\{\begin{array}{cl}
\vec{z}(\tau), & \tau \in[\alpha, \beta] \\
0 & \text { otherwise }
\end{array}\right.
$$

and note that by (3.24)

$$
\begin{aligned}
J\left(z_{1}\right) & =2 c \int_{\alpha}^{\beta}\left[\bar{z}_{\tau}^{2}-\frac{1}{2} p(\tau) \bar{z}^{2}\right] d \tau \\
& =\left.2 c \overline{z z_{\tau}}\right|_{x} ^{\beta}=0
\end{aligned}
$$

But z_{1} cannot be a minimizer of J among $W^{1, \infty}$ functions vanishing at $\log \theta_{0}(0)$, $\log \theta_{0}(1)$ since by standard arguments z_{1} would then be a smooth solution of (3.24) on $\left[\log \theta_{0}(0), \log \theta_{0}(1)\right]$. In particular we would have $\bar{z}_{\tau}(\alpha)=0$, and hence
$\bar{z} \equiv 0$ by uniqueness of solutions to the initial-value problem for (3.24), a contradiction. Thus $J(z)$ takes negative values and so

$$
\begin{equation*}
\inf _{\theta \in \mathscr{A}} I(\theta)<I(\phi)=0 \tag{3.26}
\end{equation*}
$$

We give two ways of constructing an appropriate solution \bar{z}. First, suppose $\log k(\theta)$ convex in $\log \theta$ but not affine, equivalently $\theta k^{\prime}(\theta) / k(\theta)$ nondecreasing in θ but not constant. Then $p(\tau) \geqq 0$ and $p\left(\tau_{0}\right)>0$ for some τ_{0}. Let \bar{z} be the solution of (3.24) with initial data $\bar{z}\left(\tau_{0}\right)=1, \bar{z}_{\tau}\left(\tau_{0}\right)=0$. Since $\bar{z}_{\tau \tau} \leqq 0$ where $\bar{z} \geqq 0$ and since $\bar{z}_{\tau \tau}\left(\tau_{0}\right)<0$ it follows that \bar{z} has two roots α, β with $\alpha<\tau_{0}<\beta$. Second, suppose that $p(\tau) \geqq 2 \varepsilon^{2}>0$ on an interval of length greater than π / ε. If τ_{0} is the mid-point of the interval and \bar{z} is the solution of (3.24) with $\bar{z}\left(\tau_{0}\right)=1$, $\bar{z}_{\tau}\left(\tau_{0}\right)=0$ then \bar{z} has at least two zeros in $\left[\tau_{0}-\pi / 2 \varepsilon, \tau_{0}+\pi / 2 \varepsilon\right]$; this follows from Sturm's first comparison theorem (Hartman [1964] p. 334) using the comparison solution $w=\cos \varepsilon\left(\tau-\tau_{0}\right)$ of $w_{\tau \tau}+\varepsilon^{2} w=0$.

If $n>1$ and either of the above two conditions on k holds then by choosing $\Omega=(0,1) \times \Omega^{\prime}$, where Ω^{\prime} is a bounded open subset of \mathbb{R}^{n-1}, and $\partial \Omega_{2}=\{0,1\} \times \Omega^{\prime}$ we can find a function $\theta=\theta\left(X^{1}\right)$ in \mathscr{A} satisfying (3.26). We have thus proved

Theorem 3.4. Let $n \geqq 1$. Suppose k is C^{2} on $(0, \infty)$ and satisfies either
(i) $\log k(\theta)$ is convex in $\log \theta$ but not affine, or
(ii) $\frac{d^{2} \log k(\theta)}{d(\log \theta)^{2}} \geqq 2 \varepsilon^{2}>0$ on an interval of length greater than $\frac{\pi}{\varepsilon}$.

Then we can find $\Omega, \partial \Omega_{2}, \theta_{0}$ such that

$$
\inf _{\theta \in \mathscr{A}} I(\theta)<0
$$

As an example satisfying both (i) and (ii) one can choose $k(\theta)=e^{\theta}$. Note that even when (i) or (ii) hold the second variation for some boundary conditions may be positive; if so the field theory of the calculus of variations (see Morrey [1966 p. 12]) can be applied to conclude that ϕ is a strong local minimizer of I, so that E is a Lyapunov function for solutions with $\sup _{t \geq 0}\|\theta(\cdot, t)-\phi(\cdot)\|_{L^{\infty}(\Omega)}$ sufficiently small. This information might be useful for stability studies.

We consider next the anisotropic linear case

$$
\begin{equation*}
\hat{q}_{\mathrm{R}}=-K(X) \operatorname{Grad} \theta \tag{3.27}
\end{equation*}
$$

where we assume that the matrix K is bounded and measurable in Ω and satisfies

$$
\begin{equation*}
K^{\alpha \beta}(X) \xi_{x} \xi_{\beta} \geqq k_{0}|\xi|^{2}, \quad \xi \in \mathbb{R}^{n}, \quad \text { a.e. } X \in \Omega \tag{3.28}
\end{equation*}
$$

for some constant $k_{0}>0$. We do not need to assume K is symmetric (the Onsager relations, for a critique see Truesdell [1984 Lecture 7]). By definition, a weak solution of (3.2), (3.3) is a function $\phi \in H^{1}(\Omega)$ satisfying $\left.\phi\right|_{\partial \Omega_{2}}=\theta_{0}$ and

$$
\begin{equation*}
\int_{\Omega} K^{\alpha \beta} \phi_{, \beta} v_{\bullet \alpha} d X=0 \tag{3.29}
\end{equation*}
$$

for all $v \in H^{1}(\Omega)$ with $\left.v\right|_{\partial \Omega_{2}}=0$. It follows from Chicco [1970] (see also TruDINGER [1977]) that there exists a unique such weak solution ϕ and that

$$
\begin{equation*}
m \leqq \phi(X) \leqq M \quad \text { a.e. } X \in \Omega \tag{3.30}
\end{equation*}
$$

Defining ϕ in this way, we have from (3.1), (3.27) that

$$
\begin{equation*}
I(\theta)=\int_{\Omega}-\left(\frac{\phi}{\theta}\right)_{, \alpha}^{K^{\alpha \beta}} \theta_{, \beta} d X \tag{3.31}
\end{equation*}
$$

Theorem 3.5. $I(\theta) \geqq 0$ for all $\theta \in \mathscr{A}$.
Proof. Let $\theta \in \mathscr{A}$ and define $w=\log \theta-\log \phi$. Then $w \in H^{1}(\Omega) \cap L^{\infty}(\Omega)$ with $\operatorname{Grad} w=(1 / \theta) \operatorname{Grad} \theta-(1 / \phi) \operatorname{Grad} \phi$ a.e. in Ω. Hence

$$
\begin{aligned}
I(\theta) & =\int_{\Omega}\left[\phi K^{\alpha \beta} w_{, \alpha} w_{\beta \beta}+K^{\alpha \beta} \phi_{, \beta} w_{, \alpha}\right] d X \\
& \geqq \int_{\Omega} K^{\alpha \beta} \phi_{, \beta} w_{; \alpha} d X=0
\end{aligned}
$$

where we have used (3.28) and (3.29).
Remark. The proof in fact shows that $I(\theta) \geqq 0$ for all $\theta \in \mathscr{A}_{2}$, where $\mathscr{A}_{2}=$ $\left\{\theta \in H^{1}(\Omega): \theta>0\right.$ a.e., $\log \theta \in H^{1}(\Omega)$ and $\left.\theta\right|_{\partial \Omega_{2}}=\theta_{0}$ in the sense of trace $\}$.

Setting in particular $T_{\mathrm{R}}=0, U=\theta$ in (2.1), (2.2) we see that by Theorems 3.1, 3.5 and under the hypotheses of these theorems

$$
\begin{equation*}
\frac{d}{d t} \int_{\Omega} \varrho_{\mathrm{R}}(\theta-\phi \log \theta) d X \leqq 0 \tag{3.32}
\end{equation*}
$$

for sufficiently regular positive solutions θ, satisfying $\left.\theta\right|_{\partial \Omega_{2}}=\theta_{0},\left.\frac{\partial \theta}{\partial n}\right|_{\partial \Omega \mid \partial \Omega_{2}}=0$,
of the heat equations

$$
\begin{align*}
& \varrho_{\mathrm{R}} \frac{\partial \theta}{\partial t}=\operatorname{Div}(k(\theta) \operatorname{Grad} \theta) \tag{3.33}\\
& \varrho_{\mathrm{R}} \frac{\partial \theta}{\partial t}=\operatorname{Div}(K(X) \operatorname{Grad} \theta) \tag{3.34}
\end{align*}
$$

respectively. Various Lyapunov functions similar to (3.32) have been used for systems of reaction-diffusion equations, (see Rothe [1984]).

We end by noting that the hypothesis of strict positivity of θ_{0} in Theorems 3.1, 3.5 is essential. In fact, if $\hat{q}_{\mathrm{R}}=-\operatorname{Grad} \theta, n=1, \Omega=(0,1), \partial \Omega_{2}=\partial \Omega, \theta_{0}(0)=0$, $\theta_{0}(1)=1$, then $\phi(X)=X$ but for $\theta=X^{\alpha}, 0<\alpha<1$, we have

$$
I(\theta)=\int_{0}^{1}-\left(\frac{X}{X^{\alpha}}\right)_{X} \alpha X^{\alpha-1} d X=-\infty
$$

Acknowledgement. The research of J.M.B. was supported by a U.K. Science and Engineering Research Council Senior Fellowship and by visits to the Mathematics Research Center, University of Wisconsin, and the Institute for Mathematics and its Applications, University of Minnesota.

References

J. M. Ball [1977] Convexity conditions and existence theorems in nonlinear elasticity, Arch. Rational Mech. Anal. 63, 337-403.
J. M. Ball [1984] Material instabilities and the calculus of variations, in "Phase Transformations and Material Instabilities in Solids", ed. M. Gurtin, Academic Press.
J. M. Ball \& G. Knowles [1985] in preparation.
J. M. Ball \& F. Murat [1984] $W^{1, p}$-quasiconvexity and variational problems for multiple integrals, J. Functional Analysis 58, 225-253.
O. Bolza [1904] "Lectures on the Calculus of Variations", Reprinted by Chelsea, N.Y., 1973.
M. Chicco [1970] Principio di massimo per soluzioni di problemi al contorno misti per equazioni ellittiche di tipo variazionale, Boll. Unione Mat. Ital. (4) 3, 384-394.
B. D. Coleman \& E. H. Dill [1973] On thermodynamics and the stability of motion of materials with memory, Arch. Rational Mech. Anal. 51, 1-53.
C. M. Dafermos [1983] Hyperbolic systems of conservation laws, in "Systems of Nonlinear Partial Differential Equations" ed. J. M. Ball, D. Reidel, 25-70.
P. Duhem [1911] "Traité d'Enérgetique ou de Thermodynamique Générale", GauthierVillars, Paris.
J. L. Ericksen [1966] Thermoelastic stability, Proc. $5^{\text {th }}$ National Cong. Appl. Mech. 187-193.
W. L. Kath \& D. S. Cohen [1982] Waiting-time behavior in a nonlinear diffusion equation, Studies in Applied Math. 67, 79-105.
P. Hartman [1964] "Ordinary Differential Equations", John Wiley \& Sons, New York, reprinted by Birkhauser, Boston, 1982.
E. W. Larsen \& G. C. Pomraning [1980] Asymptotic analysis of nonlinear Marshak waves, SIAM J. Appl. Math. 39, 201-212.
C-S. Man [1985] Dynamic admissible states, negative absolute temperature, and the entropy maximum principle, preprint.
M. Marcus \& V. J. Mizel [1972] Absolute continuity on tracks and mappings of Sobolev spaces, Arch. Rational Mech. Anal. 45, 294-320.
C. B. Morrey [1966] "Multiple Integrals in the Calculus of Variations", Springer.
F. Rothe [1984] "Global Solutions of Reaction-Diffusion Systems", Springer Lecture Notes in Mathematics Vol. 1072.
N. Trudinger [1977] Maximum principles for linear, non-uniformly elliptic operators with measurable coefficients, Math. Zeitschrift 156, 291-301.
C. Truesdell [1984] "Rational Thermodynamics", $2^{\text {nd }}$ edition, Springer-Verlag, Berlin, Heidelberg, New York, Tokyo.
Y. B. Zeldovich \& Y. P. Raizer [1969], "Physics of Shock Waves \& High Temperature Hydrodynamic Phenomena", vol. II, Academic Press, New York.

Department of Mathematics
Heriot-Watt University
Edinburgh
\&
Department of Electrical Engineering, Imperial College of Sciene and Technology, London

