
Lyapunov Functions for Thermomechanics 
with Spatially Varying Boundary Temperatures 

J.M. BALL & G. KNOWLES 

Dedicated to James Serrin on the occasion of his 60 th birthday 

1. Introduction 

Consider a continuous body subjected to conservative body and surface forces, 
with a part 01-22 of the boundary maintained at a temperature 0 ~= Oo(X) and 
with the remainder of the boundary thermally insulated. A calculation of DUHEM 
[1911] shows that if 0o is constant then the equations of motion possess a Lya- 
punov function, the equilibrium free energy, given in a standard notation (see 
Section 2) by 

E =  fe~(-~lvl  = + U+~o-- Oo,~)dX-- f t a ' x d h .  (1.I) 

The purpose of this paper is to show that for certain cases when the reference 
heat flux vector qa = qa(X, 0, Grad 0) there is a corresponding equilibrium 
free energy function, namely 

E =  fOR(~IV[ 2 + U+V, - -C(X)~)dX- -  f t a ' x d A ,  (1.2) 
$/ cq.Q~.Qt 

that is nonincreasing along solutions even when 0o depends on X. 
In (1.2) r denotes the solution of the stationary heat equation 

Div qR(X, 4, Grad oh) : 0, X6 s (1.3) 

with boundary conditions 

q'[o~, = 0o, qR(X, ~b, Grad 4)" Nl~a~0a, = 0. (1.4) 

In Section 2 we give a formal argument showing that if r is any function satis- 
fying 4~1~a2 = 0o 
general that 

where 

then, for motions satisfying the Planck inequality we have in 

+ X _-_<-__ 0, (1.5) 

I = ! G r a d ( ~ ) . q a d X .  (I.6) 
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The argument applies in particular to thermoelasticity, when equality holds in 
the Planck inequality. 

In Section 3 we make a detailed study of the dissipation integral (1.6) with i 
given by (1.3), (1.4), showing that I = I(0) ~ 0 for all temperature distributions 
0(9 satisfying the boundary conditions in the two cases 

(a) qR = --k(O)Grad 0, where log k(O) is a concave function of log 0, 

(b) qR = --K(X)Grad 0, where K is a uniformly positive matrix. 

In case (a) we show that if log k(O) is sufficiently convex in log 0 on some interval 
then I(0) can be negative, and hence E is not a Lyapunov function. 

In cases when E is a Lyapunov function it is natural to conjecture that succes- 
sive states of the body at a sequence of times tj--~ <x> will generically realize, in 
an appropriate sense, a minimizing sequence for the functional E. Consider, for 
example, a thermoelastic material. I f  the boundary conditions allow conserved 
quantities these should be considered as constraints, and it may then happen 
(of. MAN [1985]) that the velocity fields of minimizing sequences do not tend to 
zero as t -+ o~. Otherwise, however, the preceding motivation leads to considera- 
tion of minimization problems for 

/~ (x)=  f qR(X) [W(X, Dx(X)) + ~o(X, x(X))] dX -- f tR " x dA, (1.7) 
12 Ot2\t3D1 

where W(X, F) aer U(X, F, i(X)) -- i(X) ~(X, F, if(X)). Under appropriate hypo- 
theses the study of such minimization problems falls into the framework given 
in BALL [1977] (see BALL & MURAT [1984] for developments and additional ref- 
erences). For further discussion concerning the relationship between thermo- 
dynamics and minimization of/~ see BALL [1984], where the results in this paper 
were announced, and BALL & KNOWLES [1985]. 

It would be interesting to find Lyapunov functions for some cases when qR 
depends also on mechanical variables and allowing spatially varying boundary 
temperatures. A Lyapunov function applying to the case when the spatial heat 
flux vector q is given by 

q = --k(O) grad 0, 

the gradient being with respect to x, could be relevant for the s tudy of B6nard 
convection, for example. 

2. Equilibrium Free Energy 

Consider a continuous body occupying in a reference configuration :the 
bounded open subset .c2 ~ R n. At time t the particle occupying in the reference 
configuration the point XE-Q has position x (X , t )ER"  and temperature 
O(X, t) > 0. Assuming the external volumetric heat supply to be zero, the govern- 
ing equations are 

t~Rb = Div T R + l~Rb, (2.1) 

pRL r -- tr (TRF r) + Div qR = 0, (2.2) 
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where v = 5c is the velocity, 0R(X) is the density in the reference configuration, 
TR is the Piola-Kirchhoff stress tensor, b is the body force density, U is the internal 
energy density, F = Dx(X, t) is the deformation gradient and qR is the (reference) 
heat flux vector. (Here and below, Div, D and Grad all refer to differentiation with 
respect to X, dots to differentiation with respect to t.) 

We make the thermodynamic assumption that motions of  the body satisfy 
the Planck inequality (see TRUESDELL [1984 p. 112]) 

0R0/? >= --Div qx, (2..3) 

where ~(X', t) denotes the specific entropy. We recall that the Clausius-Duhem 
inequality 

0R~ >= --Div ( O )  (2.4) 

follows from (2.3) and the Fourier inequality 

qR" Grad 0 ~ 0. (2.5) 

For nonsmooth solutions (2.1)-(2.3) must be interpreted in an appropriate weak 
or distributional sense (cf. DAFERMOS [t983]). We suppose that the body force is 
conservative, so that 

b(X, t) = --Vx~p(X, x (X, t)) (2.6) 

for some potential ~p(X, x). 
We impose the following boundary conditions: 

Mechanical: x---- xo(X), X 6  ~D~, 
(2.7) 

TRN = tR(X), X~ e l2 \  ~.c2~, 

Thermal: 0 ~ Oo(X), X E  ~ff~2, 
(2.8) 

qR " N = 0, XE ~-Q \ ~ 2 .  

Here 8.q~, ~-q2 are given subsets of  the boundary ~ ,  N = N(X) is the unit 
outward normal to 0O at X, and Xo, tR, 0o are given functions. 

Let 4, = 4~(X) => 0 be a given function satisfying 

4~(X) = Oo(X), XE ~f22. (2.9) 

It follows from (2.1)-(2.3) that 

 7[0R(�89 U - t - ~ - - 6 ~ ) I < ~ D i v [ v r T R ] +  -- 1 DivqR. (2.10) 

Using (2.10) and the boundary conditions (2.7), (2.8) we obtain 

+ I ~  O, (2.11) 
where 

E =  fOR(�89 dX - f tp..xdA, (2.12) 
D ~Og2~ 
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and 

I = f f  Grad (~-) . qR dX. (2.13) 

Thus E will be nonincreasing along solutions provided 

I ~  0. (2.14) 

An important special case is when 0 o > 0 is independent of X. Choosing 4, ~ 0 o 
we find that 

I = - 0 0  f q~" Grad 0 02 dX, (2.15) 

so that (2.14) holds provided (2.5) does. In fact in this case I _> 0 if we assume 
that (2.4) holds instead of  (2.3). This result is well known (see DUHEM [1911], 
ERICKSEN [1966], COLEMAN & DILL [1973], for example). The corresponding 
function 

E =  fQR(�89 - V+W--Oo,7) dX- -  f tR.XdA (2.16) 

is commonly called the equilibrium free energy, and we carry over the same ter- 
minology to E given by (2.12) whenever 4, is chosen so that (2.14) holds. 

As an example we consider a thermoelastic material, whose constitutive rela- 
tions are given in terms of the Helmholtz free energy function A(X, F, O) by 

OA OA 

(2.17) 
qR = qR(X, F, 0, Grad/9). 

By (2.2), (2.17) we see, as is well known, that equality holds in (2.3) and that 
(2.4) reduces to (2.5). 

3. The Dissipation Integral 

In this section we discuss the positivity of the dissipation integral 

I(O) ~- f f  Grad ( - ~ ) .  qR(X, 0, Grad 0) dX (3.1) 

given by (2.13) when qR = qR(X, 0, Grad 0). In (3.1) the admissible functions 
0 > 0 satisfy the boundary conditions (2.8). We choose 4' to be a solution of 
the stationary heat equation 

Div qR(X, 4,, Grad 4,) = 0, XE 52 (3.2) 

subject to the same boundary conditions 

r = Oo(X), XE 0522, 
(3.3) 

qR(X, 4,, Grad 4,). N = 0, x E 052 \ 0522. 
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In the examples treated below (3.2) is elliptic and 4' unique. Proceeding formally 
for a moment, we observe that the Euler-Lagrange equation for I can be written 

) OX ~ Grad " ~0,~ 02 ~ ---- Grad " 00 

+ qR" 24' Grad 0 -- -~  Grad . (3.4) 

It is easily seen that 0 = 4, is a solution of (3.4), and since 1(4)) = 0 we are 
faced with a classical question in the calculus of variations, to decide if the given 
solution 4' is a global minimizer of L The problem is not straightforward since 4' 
is only known implicitly and the integrand may be negative. 

For the remainder of this section we make the technical assumptions that 
has a sufficiently regular boundary (it is enough that .(-2 is strongly Lipschitz 
in the sense of MORREY [1966 Section 3.4]) and that 0(22 Q ~-Q is closed with 
positive ( n -  1)-dimensional measure. We suppose further that 0o: 0-Q~-+R 
is sufficiently regular, specifically that 0o is the boundary value o n  ~r in the 
sense of trace of some function 0 E H1(12), and that there are constants m, M 
such that 

0 ~ m ~ Oo(X) ~ M < r for a.e. XE ~ 2 .  (3.5) 

We define a set d of admissible functions by 

---- {0 E H~(g2) f5 L~(g2) : eSxS inf0(X ) > 0, 

lea, = 0o in the sense of trace}. 0 

We consider first the case 
k 

~tR = --k(O) Grad 0, (3.6) 

where the thermal conductivity k(O) is real-valued, continuous and strictly posi- 
tive for all 0 ~> 0. By (3.1), (3.6) 

1(0)= --fk(O)Grad(~-~-).GradOdX. (3.7) 
\ L , /  

o 

Writing u(O) = f k(s) ds, g(X) = u(O(X)), we see that (3.2), (3.3) become 
1 

Ag = 0 in .Q, 

ea\~o~ (3.8) 
glow, = ~(0o), ~g = O. 

It is easily checked that U(0o) is the boundary value of an H~(~2) function (for 
example of ~(~), where ~, : max (m, min (M, 0}}. It follows by standard theory 
that (3.8) has a unique weak solution g, i.e. gE Ha(~),  gJo~, = ~(0o), and 

f Grad g .  Grad v dX ---- 0 (3.9) 
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for all vEHI(12) with v[~o = = 0 .  Defining 4 , = u - l ( g )  we have that 

f k(ep) Grad ~b. Grad v dX ---- 0 (3.10) 
~2 

for all v E HI(-Q) with v 1~o2 = 0. By the maximum principle (for an appropriate 
version see Cmcco [1970]) 

m ~ ~X)  ~ M a.e. XE/-2. (3.11) 

Also 4~ E CI(-Q). 

Theorem 3.1. Let log k(O) be a concave function of  log 0. Then I(0) ~ 0 for 
all O E d .  

To prove the theorem we need some elementary lemmas. 

Lemma 3.2. Let Q be an open interval (fnite, semi-infinite, or infinite) of  R.  
Let k : Q --> (0, co). Define f :  Q • -+ R by 

lyl  2 
f(w, y) -- h(w) " 

Then f is convex i f  and only (f  h is concave. 

Proof .  Let t E [0, 1 ], w,~; E Q, y, ) E PC. Then 

6fd-e-ff(tw + (1 t )  "w, ty + (1 -- t ) y )  -- tf(w, y) (1 -- t)f(-w, y) 

= h(tw + (1 -- t) -if) [tk(w) + (1 -- t) h('~) -- h(tw + (1 -- t) w)] 

[ely[ ~ ( 1 - t )  l.~l~ t (1 - t )  ] 
• [ h - ~  + ~(~i ] h(w) h(~ I h ( ~ ) y - -  h(w) ~1 ~ . 

If  h is concave then clearly 6 f ~  O, hence f convex. If  f is convex the concavity 
h(~) 

o f h  follows from ~ f ~ O  on choosing ~=h--~wjy. [ ]  

We introduce the change of variable 

w = / ~ - ~ d s  (3.12) 
1 

Let 0 : O(w) denote the inverse function; thus 0 ( . ) : Q - + R ,  where 

Q = -  o s f l  s / "  
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Lemma 3.3. k(O(.)) is concave on Q if and only if log k(O) is a concave func- 
tion of log 0. 

Proof.  Suppose log k(O) is concave in log 0. Then log k(O) is locally Lip- 
schitz in log 0 on R, and hence k(O) is locally Lipschitz in 0 on (0, oo). In particular 
k is differentiable a.e. on (0, oo) with locally bounded derivative. By the chain 
rule the locally Lipschitz function k(O(.)) has derivative 

dk(O(w)) dlogk(O(w)) 
- -  a.e. w E Q.  (3.13) dw d log O(w) 

Since d log k(O)/d log 0 is a.e. nonincreasing in log 0, dk(O(w))/dw is a.e. non- 
increasing in w. Hence k(O(.)) is concave. 

The converse is proved similarly. [ ]  

Remark. By making the identification h ( t ) :  k(et), t-----log 0 and using a 
similar proof one can show that a necessary and sufficient condition for a func- 
tion h : R  ~ (0, oo) to be such that log h(-) is convex (respectively concave) is 
that h be locally integrable and for each s E R there exists 2(s)E R with 

t 

h(t) ~ h(s) -F 2(s) f h(r) dr for all t E R ,  
8 

(respectively ~ ) .  

Proof  o f  Theorem 3.1 .  Let 0 E d .  
to H~(-Q) ~ L~~ with Grad w(X) = (k(O(X))/O(X)) Grad 0(X) a.e. 
Thus 1 ( 0 ) :  J(w), where 

J(w) = f f(X, w(X), Grad w(X)) dX, 
O 

and 

Then w = w(X) defined by (3.12) belongs 
XE~2. 

(3.14) 

J:(X, w, y) -- k ( ~ )  fy -- y "  Grad ~b(X). (3.15) 

It follows from Lemmas 3.2, 3.3 that f (X,- ,  .) is convex on I• n. Define 

= f j  -7-as. 
1 

Note that f (X,- ,  ") is differentiable at (w, y) unless y ~ 0 and O(w) belongs to 
the set S of points where k(.) is not differentiable. Since log k(O) is concave in 
log 0, it follows easily that S is countable. I f  6(X) = s E S on a set M of positive 

measure then (MORREY [1966 p. 69]) Grad ~b(X) = 0 a.e. XE M. Thusf(X,  -, -) 
is differentiable at 0i~(-Y), Grad ~(X)) for a.e. XE O, and by the convexity we 
have 

(iX, w(X), Grad w(X)) ~f(X,-if(X), Grad ~(X)) + r~(X), a.e. XE -O, (3.16) 
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where 

rw(X ) :- ~f (X, -if(X), Grad ~(X)) (w(X) -- "if(X)) 
Tw 

#f  ~(X), Grad ~(X)) (Grad w(X) Grad ~(X)) 
+ - f l y ( x ,  �9 - 

_ k'(r i Gra d do12 I.," ds + Grad r  Grad ds , 
k(r , ~ \ g  s 

since O('~(X)) = ~(X). Setting u = [ _ 3 ds, cv = ~ and noting that since 
r 

k(-) is Lipschitz, v E Hi (D)  (cf  MARCUS & MIZEL [1972]) with v [~a~ = 0, we de- 
duce from (3.10) that 

f rw(X) dX = 0. (3.17) 
f/ 

Integrating (3.16) we thus have I(0) ~ I(r = 0  as required. [ ]  

Remark. The proof  in fact shows that I(0) >~ 0 for all 
0 

(OE W ' : ( ~ ) : O > O  a.e., w :  f k(S)dsEH'(#2) and 
S 

of  trace}. 1 

0 E ~ I ,  where d l  = 

0 I~a, = 0o in the sense 

The condition that log k be concave in log 0 is satisfied, for example, by the 
functions 

k(O) = t,O ~, tz > O, ~x C R ,  

k(O) = / z  (log 0) ~, /z > 0, a > 0, 

the first example (for applications see KATH • COHEN [1982], LARSEN d~; POM- 
RANING [1980], ZELDOVICH & RAIZER [1969]) being critical in that log k is affine 
in log 0. Clearly products of  k's satisfying the condition also satisfy it. I f  k is 
C ~ on (0, oo) the condition takes the form that Ok'(O)/k(O) be nonincreasing in 0. 

To investigate how close the condition is to being necessary for I to be non- 
negative on d we compute the second variation. Suppose k is C 2 on (0, co). Let 
u~ W~'~(~2) with ulo~2 = 0 .  Then 

def d 2 

62I(r (r Cu) = a--~/(r + ~u))[,=o 

= 2 f G r a d  u .  G r a d  (cbk(cb) u) dX 
O 

= f [2a IGrad ul 2 -- Aa.  u 2] dX, (3.18) 
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def  
where a = ~k(~) and where" we have used (3.9). Note that 

Aa = L ~ - - ~  -k 

= (-~)'k(~b)[ Grad ~ 1 2  (3.19) 

and t~zI(~) ~ O, In particular, if log k(0) is concave in log 0 then Aa ~: 0 
consistent with Theorem 3.1. The Jacobi equation, that is the Euler-Lagrange 
equation for (3.18), is 

Div (2a Grad u) ----- - - A a .  u. (3.20) 

We now let n =  1, / 2 : ( 0 , 1 ) ,  002 = 0 0 ,  so that 

k(~) fix = c, XE [0, 1], (3.21) 

where we assume c = U(0o(1)) -- Z(0o(0)) is nonzero. We seek a function u(X) = 
z(r), r = log ~, making (3.18) negative. Note that for such a function, by (3.19), 
(3.21), 

~zI(~) (4,u, 4,u) = s ( z ) ,  
where 

and 

Also, (3.20) becomes 

iogOo(1) 
J(z) = 2c f [z~ - -  �89  z 21 d r  (3 .22/  

IogOo(O) 

d z 
p(r) : ~ log k(e~). (3.23) 

z~ -t- lP ( r )z  ---- 0. (3.24) 

Suppose that we can find a solution 
~,(o0 ---- ~'(fl) = 0. Let 

0o(0) < e ~, 0o(1) > e ~. 

Employing classical reasoning (cf BOLZA [1904]) we set 

{ z(;), "rE [o~, fl], 
zi(r) : otherwise, 

and note that by (3.24) 

~4 :0  of (3.24) on an interval [o~, fl] with 

(3.25) 

J(zO = 2c j [~2 _ �89 dr 
tx 

= 2ez"z~. I~ = O. 

But zl cannot be a minimizer of J among W 1'~176 functions vanishing at log 0o(0), 
log 0o(I) since by standard arguments zt would then be a smooth solution of 
(3.24) on [log 0o(01, log 0o(1)]. In particular we would have ~,~(o~) = 0, and hence 
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~ 0 by uniqueness of  solutions to the initial-value problem for  (3.24), a contra-  
diction. Thus  J(z) takes negative values and so 

inf  I(O) < I(qb) = 0. (3.26) 
0 ~  

We give two ways o f  constructing an appropria te  solution ~. First, suppose 
log k(O) convex in log 0 but  not  affine, equivalently Ok'(O)/k(O) nondecreasing 
in 0 but  not  constant.  Then p(~r) ~ 0 and p(zo) > 0 for  some zo- Let  2, be the 
solut ion o f  (3.24) with initial data  ~(~o) = 1, ~( ro)  = 0. Since ~ "< 0 where 

=> 0 and since ~ ( ~ o )  < 0 it follows that  ~, has two roots o~, fl with e~ < Zo < ft. 
Second, suppose that  p(r)  > 2e 2 > 0 on an interval o f  length greater than ~/e. 
I f r o  is the mid-point  of  the interval and ~ is the solution o f  (3.24) with 2,(l'o) = 1, 
z~(ro) ----- 0 then Z, has at least two zeros in [~o - -  zc/2e, ~o + ~/2e]; this follows 
f rom Sturm's  first compar ison theorem (HARTMAN [1964] p. 334) using the 
compar ison  solution w = cos e(~" --  Zo) o f  w~ + e2w = O. 

I f  n > 1 and either o f  the above two conditions on k holds then by choosing 
[2 = (0, 1 )x  g2', where ,(2' is a bounded  open subset o f R  "-1, and ~f22 = {0,1} • .(2' 
we can find a function 0 = O(X ~) in ~r satisfying (3.26). We have thus proved 

Theorem 3.4. Let n ~ 1. Suppose k is C 2 on (0, o0) and satisfies either 

(i) log k(O) is convex in log 0 but not affine, or 

d z log k(O) 
(ii) d (log 0) 2 ~ 2e2 ~ 0 on an interval of  length greater than ~--~-'e 

Then we can find [2, ~Q2, Oo such that 

inf  I(0) < O. 
0 ~  

As an example satisfying both  (i) and (ii) one can choose k(O) -- e ~ Note  
that  even when (i) or (ii) hold the second variation for  some boundary  condit ions 
may be positive; if  so the field theory o f  the calculus o f  variations (see MORREY 
[1966 p. 12]) can be applied to conclude that  q) is a strong local minimizer of  L 
so that  E is a Lyapunov  function for  solutions with sup [10(., t) - -  $(.)T[L~(m 

t~O 

sufficiently small. This information might be useful for  stability studies. 
We consider next the anisotropic linear case 

glR = --K(X) Grad  0, (3.27) 

where we assume that the matrix K is bounded and measurable in ~2 and satisfies 

K ~ ( X ) ~  ~ ko 1~[2, ~eER, ' a.e. XE -(2, (3.28) 

for  some constant  ko > 0. We do not  need to assume K is symmetric (the On- 
sager relations, for  a critique see TRUESDELL [1984 Lecture 7]). By definition, a 
weak solution o f  (3.2), (3.3) is a function 4>E HI(-Q) satisfying 4~1~a2 = 0o and 

f K~%:v,~ dX = 0 (3.29) 
0 
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for all vE H~(12) with vtea, = 0. It follows from CHICCO [1970] (see also TRU- 
DmGER [1977]) that there exists a unique such weak solution ~b and that 

m ~ 4~(X) ~ M a.e. XE f2. (3.30) 

Defining 4~ in this way, we have from (3.1), (3.27) that 

i o,= s_ 

Theorem 3.5. I(0) >: 0 for all 0 E ,~. 

Proof. Let 0 E ~ and define w = log 0 --  log ~b. Then w E H~(~2)/q L~(f2) 
with Grad w = (1/0) Grad 0 -- (1/~b) Grad ~b a.e. in Q. Hence 

I(o) = f [4~K'~w~,w ~ + K'~4~ ~w,~] dX" 

where we have used (3.28) and (3.29). [ ]  

Remark. The proof  in fact shows that I(0) :> 0 for all 0 E d 2 ,  where ~r 
{0 E Hi(g2) : 0 ~ 0 a.e., log 0 E HI(D) and 0 ]~a, -- 0o in the sense of  trace}. 

Setting in particular TR ---- 0, U = 0 in (2.1), (2.2) we See that by Theorems 
3.1, 3.5 and under the hypotheses of  these theorems 

d 
f QR (0 -- ~ log 0) dX ~-- 0 (3.32) 

dt 

O0 I for sufficiently regular positive solutions 0, satisfYing 0 ioa2 = 0o, "~n oa~a, = 0, 
of  the heat equations 

00 
~R "~  = Div (k(O) Grad 0), (3.33) 

00 
QR "~ = Div (K(X) Grad 0), (3.34) 

respectively. Various Lyapunov functions similar to (3 .32)have been used for 
systems of reaction-diffusion equations,  (see ROTHE [1984]), 

We end by noting that the hypothesis of  strict positivity of  0o in Theorems 3. I, 
3.5 is essential: In fact, if  ~ = - -Grad  0, n = 1, ~ = (0, 1), 0Q2 = ~17, 0o(0) = 0, 
0o (1 )=  1, then 4 ~ ( X ) = X  but for 0 = X  ~, 0 < ~ <  1, we have 

X c , - 1  
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