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SINGULAR MINIMIZERS FOR REGULAR ONE-DIMENSIONAL 
PROBLEMS IN THE CALCULUS OF VARIATIONS 

BY JOHN M. BALL AND VICTOR J. MIZEL 

We announce some surprising examples of regular one-dimensional prob­
lems of the calculus of variations possessing singular absolute minimizers. 
These minimizers do not satisfy the usual integrated version of the Euler-
Lagrange equation. The examples all concern integrals of the form 

I(u)= I f(x,u(x),u(x))dx, 
Ja 

where [a,b] is a finite interval, ' denotes d/dx, f = f(x,u,p) is C°°, ƒ > 0 and 
fpp > 0 (regularity). We consider the problem of minimizing / in the set A 
of absolutely continuous functions u: [a,b] —• R satisfying u(a) = a, u(b) = (3, 
where a and (5 are given constants. As is well known, if a minimizer u of i" in 
A is Lipschitz continuous then u is smooth and satisfies the Euler-Lagrange 
equation 

(EL) (d/dx)fp = fu, 

and the DuBois-Reymond equation 

(DBR) (d/dx)(f-u'fp) = fx, 

for all x G [a, 6]. A little-known partial regularity theorem of Tonelli [1923, 
Vol. 2, p. 359] asserts that given any minimizer u of / in A, (i) there exists a 
closed set E C [a, b] of measure zero such that u G C°°{[a, b)\E) and 

lim \u(x)\ = oo, 
dist(x,£:)—0 ' 
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and (ii) for any x G [a, b] the limit 

,, . .. u(x + 6)-u(x) 
UW= /ïï& ~ 6 

x+6e[a,b] 
exists as an element of the extended real line R. In particular u satisfies (EL) 
and (DBR) on [a,b]\E. As far as we are aware, our examples are the first 
showing that the Tonelli set E may be nonempty. (For a recent version of 
Tonelli's theorem for nonsmooth integrands see Clarke and Vinter [1983].) 

Details of the proofs and further results will be published elsewhere. 
EXAMPLE 1. Minimize 

I{u) = / [(x2 - u 3 ) V ) 1 4 + <u)2}dx 
j o 

subject to u(0) = 0, u(l) = fc > 0. 
It is easily verified that if 

0 < e < e0 = max (2*/3)12(l - t3)(13t3 - 7) = .002474..., 
t»€[7/13,l) 

the corresponding Euler-Lagrange equation has an exact solution u = kx2lz 

on (0,1] provided A; has either of two values k±,k2 with ^ < fcf < k\ < 1. 
The underlying reason for the existence of these exact solutions is the scale 
invariance property 

(*) /(Xs,X2/3ti,X-1/3p) = X-2 /3 /(z,u,p), X > 0, 

of the integrand. This invariance is also responsible for the existence of 
transformations, namely v = u3/2, z = v/x, q = v' and x = e*, converting 
(EL) into an autonomous first order system of ordinary differential equations 
in the first quadrant of the q, z plane. The critical points in q > 0, z > 0 of 
this system are precisely the points q = z = k\^2 (a sink) and q = z = fc3^2 

(a saddle). Furthermore, every smooth solution u of (EL) on [0,1] with u(0) = 
0, u'(0) > 0 corresponds to a single orbit q(t), z(t) leaving the origin with slope 
3/2. Provided e > 0 is sufficiently small it can be shown that this orbit is 
attracted &st-+oo to q = z = k\t2. It follows that for e> 0 sufficiently small 
there exists 6 = 6(e) > 0 such that if k > &2 — 6 there is no smooth solution 
of (EL) on [0,1] satisfying the end conditions, and hence that / does not 
attain a minimum among Lipschitz functions. By applying the direct method 
of the calculus of variations and further analysis of the q, z phase portrait [in 
conjunction with a device due to Mania (cf. Example 2 below)], one concludes 
that for each k > ki — 6i(e) there is a unique absolutely continuous minimizer 
u, such that u G C°°((0,1]) and u(x) ~ fc2x

2/3 as x - • 0 +. (If k = k2 then 
u(x) = &2£2//3.) Hence the Tonelli set E consists of the single point x = 0. 
Since u'(0) = oo it follows easily that fu, fx £ Lx(0,1), so that u does not 
satisfy the integrated versions 

(IEL) fp = / fu + constant, 
JO 

(IDBR) ƒ - ufp = / fx 4- constant, 
Jo 
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of (EL) and (DBR). If A; > 0 is sufficiently small the minimizer is smooth and 
unique. If fc = fci then, for all 0 < e < eo, u(x) = fcix2/3 is not the minimizer. 

EXAMPLE 2. Minimize 

I(u) = j [ (x 4 -u 6 ) 2 (u) 2 m + €K)2]dx 

subject to u(—l) = — k, u(l) = k > 0. 
Here m is a positive integer. Note first that when m = 13 the integrand 

has the invariance property (*), and that if e > 0 is sufficiently small there 
are two solutions, u = fci|x|2/3signx, u = fc2|x|2/3signx, of (EL) for i ^ O . 
For minimization problems such as in Example 1 the same phase portrait 
techniques are applicable. However, we now consider the case m > 13. We fix 
k G (0,1] and let e > 0 be sufficiently small. Then I attains a minimum, and 
any minimizer u satisfies u(0) = 0, u'(0) = +oo. Furthermore 

inf I(v) > I(u) (the Lavrentiev phenomenon). 
v € iv*.-( - i , i ) 

v(+l)=±fc 

Here the Tonelli set E contains at least one interior point, namely x = 0, 
and (IEL) and (IDBR) are not satisfied for any choice of lower limit in the 
integrals of fui fx. These results are proved by adaptation of the argument 
of Mania [1934] (see also Cesari [1983, p. 514], who is responsible for the 
resurrection of the remarkable Lavrentiev phenomenon from the literature). 
The Lavrentiev phenomenon can be viewed as a kind of 'uncertainty principle': 
one cannot simultaneously approximate the minimizer u and minimum value 
m of 7 arbitrarily closely by a Lipschitz function. 

EXAMPLE 3. We state this example as a proposition, since the explicit 
formula for the integrand is somewhat complicated. 

PROPOSITION. There exists a nonnegative C°° function f = f{u,p) such 
that 

(i) for some a > 0 the functional 

I{u)= I f{u,u)dx 

has a unique minimizer u in the set A of absolutely continuous functions on 
[—1,1] satisfying u(—l) = — a, u(l) = a; 

(ii) û E C°°([-l, 1]\{0}), ü(0) = 0, tz'(0) = +°o, and fu(%TZ') £ L ^ - l , 1), 
so that (IEL) does not hold and E = {0}; 

(iii) fpp > 0, \p\ < f{u,p) < const(l +p2) for all u,p, and 

f \ U DJ 

lim ' = oo for every u # 0. 
|p|-*oo p 

The proof proceeds by first establishing conclusions (i) and (ii) for the 
integral 

JM = /_ i(^K)2^, 
where g is a suitable function satisfying g\u) > 0 for u ^ 0, g'(0) = 0, 
by examining the values of ü,ü', and finally constructing an appropriate 
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integrand f{u,p) > (g\u)p)2 satisfying fpp > 0 and such that f{%u') = 
{g'(u)iï)2. Note that for integrands independent of x, (IDBR) always holds for 
a minimizer (cf. Tonelli [1934], Cesari [1983, p. 63]). If fpp > 0, f{u,p)/p - • oo 
for all u then an argument based on (IDBR) shows that any minimizer is 
smooth and satisfies (EL) on [—1,1], so that Example 3 is, in a sense, optimal. 

It would be interesting to determine if analogues of Examples 1-3 hold for 
multiple integrals with integrands independent of u, such as those occurring 
in nonlinear elasticity, under growth hypotheses ensuring that any minimizer 
is continuous. If so, then the appearance of singularities in the gradient of 
u could be related to the onset of fracture. Finally, we remark that because 
of the Lavrentiev phenomenon care must be taken in the interpretation of 
minimizers obtained numerically via finite element schemes. 

Most of the results concerning Examples 1 and 3 were obtained when Mizel 
was a U. K. Science and Engineering Research Council Visiting Fellow at 
Heriot-Watt University in 1981 and 1982. Further results were developed 
during a brief joint visit at the Institute for Mathematics and its Applications 
(University of Minnesota) and at the Mathematics Research Center (University 
of Wisconsin). 
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