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w 1. Introduction 

In this paper we consider the problem of minimizing 

b 

I(u) = f f ( x ,  u(x), u'(x)) dx (1.1) 
a 

in thc set d of absolutely continuous functions u : [a, b] ~ R satisfying the end 
conditions 

u(a) = or u(b) = fl, (1.2) 

d 
where 0~ and/3 are given constants. In (1.1), [a, b] is a finite interval, ' denotes ~ x '  

and the integrand f = f (x ,  u, p) is assumed to be smooth, nonnegative and to 
satisfy the regularity condition 

fpp > O. (1.3) 

The significance of the regularity condition (1.3) is that, as is well known, it 
ensures the existence of  at least one absolute minimizer for I in d ,  provided f 
also satisfies an appropriate growth condition with respect to p. Further, it implies 
that any Lipschitz solution u of  the integrated form 

x 

fp = f f~ dy + const, a.e. x E [a, b] (IEL) 
a 

of the Euler-Lagrange equation is in fact smooth in [a, b]. Notwithstanding these 
facts and the status of  (IEL) as a classical necessary condition for a minimizer, 
we present a number of examples in which I attains a minimum at some u E ~r 
but u is not smooth and does not satisfy (IEL). 



326 J . M .  BALL & V. J. MIZEL 

To see where the classical argument leading to (IEL) may break down, recall 
that the argument relies on calculating the derivative 

d 
Z(u + t~0) It= o 

b 
= lim f f (x ,  u(x) + tgfx), u'(x) + tqJ(x)) - - f ( x ,  u(x), u'(x)) dx 

t-~O t (1.4) 

for q~ a smooth function satisfying ~0(a) = ~0(b) = O, and concluding that since 
I(u + tg) is minimized at t = 0 the derivative is zero; viz. 

b 

f [L~ + L~'] ax - o. (1.5) 

I f  u E Wl'~(a, b) this argument is clearly valid, since by the mean value theorem 
the integrand on the right-hand side of (1.4) is uniformly bounded independently 
of  small t and consequently one may pass to the limit t ~ 0 using the bounded 
convergence theorem. However, if it is known only that the minimizer u belongs 
to d ,  the only readily available piece of  information which may aid passing to 
the limit in (1.4) is that I(u) < oo. Consequently one is typically forced into making 
assumptions on the derivatives o f f ,  these assumptions being unnecessary for the 
existence of a minimizer, so as to pass to the limit. More alarmingly, a difficulty 
may arise at an earlier stage in the argument to due the possibility that  near some 
u E d with I(u)< oo there may be functions v E d with I(v)= cx~; in fact, 
in two of our examples we are able to show that for a large class of  ~ E C~(a, b) 
the minimizers u are such that I(u + tq0 = cx~ for all t ~= O. 

The possibility that a minimizer u of  I in ~r might be singular was envisaged 
by TONELLI, who proved a striking and little known partial regularity theorem 
to the effect that u is a smooth solution of the Euler-Lagrange equation on the 
complement of a closed subset E of [a, b] of  measure zero, and that [ u'(x)] = oo 
for all x E E. He then gave a number of  criteria ensuring that  "the set E does not 
exist" and thus that u E C~ b]). Remarks in TONELLI [32] suggest that 
he did not know of any examples in which E is nonempty, and we believe that 
our examples are the first of  this type. A precise statement and p roof  of  a version 
of the partial regularity theorem is given in w 2, where we also gather together 
a number of  results concerning the existence of minimizers and first order 
necessary conditions. In this connection we mention that we are unaware of  any 
integral form of a first order necessary condition that is satisfied by every mini- 
mizer u in the absence of additional hypotheses on f .  

Our first example, given in w 3, is that of  minimizing 

subject to 

1 

I(u) = f [(x 2 - u3) ~ (u') 14 + e(u') 21 dx (1.6)  
0 

u(0) = 0, u(1) ---- k,  (1.7) 
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where e > 0, k > 0. (As we point out at the end ofw 5, the power 14 is the lowest 
for which singular minimizers of  (1.6) exist.) Note that if 0 < k ~ 1 and e = 0 

then the minimum of I is attained by u(x)= min (x~, k); the results sum- 
marized below show that the singularity of u at x = 0 is not destroyed provided 
e > 0 is sufficiently small. The integrand in (1.6) has a scale-invariance property 
which allows one to transform the Euler-Lagrange equation to an autonomous 
ordinary differential equation in the plane, and this makes it possible to give a 
very detailed and complete description of the absolute minimizers u of (1.6), 
(1.7) for all e and k. Some of the main conclusions are the following (see especially 
Theorem 3.12). There exist numbers e0 = .002474 . . . .  e* ---- .00173 ... such that 

2 

(a) for 0 < e < eo there exist two elementary solutions kl(e) x :~, k-2(e) x ~ 
of the Euler-Lagrange equation on (0, 1]; (b) if 0 < e < e* and k is sufficiently 
large I attains an absolute minimum at a unique function u which satisfies 

- -  2 

u(x),-,~k2(e)x7 as x - + 0 + ,  uEC~176 and f,(.,u(.),u'(.))EL~(0,1), so 

that (IEL) does not hold: if k = k-2(e) then u(x) = k2(e) x~; (c) if 0 < e < e* 
and k is sufficiently large (for example, k ~ 1) there is no smooth solution of  
the Euler-Lagrange equation on [0, 1] satisfying the end conditions (1.7), and hence 
I does not attain a minimum among Lipschitz functions; (d) if e > e* then there 
is exactly one u that minimizes I and it is the unique smooth solution of the Euler- 
Lagrange equation on [0, 1] satisfying (1.7). The detailed structure of the phase 
portrait that leads to these conclusions would have been extremely difficult to 
determine without the aid of computer plots, though these do not form part of 
the proofs. Since the singular minimizers are smooth for x > 0 their "Tonelli 
set" E consists in the single endpoint (0) and they do satisfy the Euler-Lagrange 
equation in the sense of distributions, i.e. in its "weak" form. 

In w 4 we consider the case when f = f(u, p) does not depend on x. We first 
construct an f E  Co~ 2) satisfying (in addition to (1.3)) 

]p] <=f(u,p) ~ const. (1 + p 2 ) ,  ( u ,p )ER2 ,  (1.8) 
and 

such that 

f(u, p) 
-+ oo as JPl -+ oo for each u =~ 0, (1.9) 

Ipl 
1 

l(u) = f f(u, u') dx (1.10) 
--1 

attains an absolute minimum subject to the end conditions 

u(--1) = ks, u(1) -~ kz (1.11) 

(for suitable k~, kz), at a unique function Uo whose Tonelli set E is a single interior 
point Xo E (--1, 1) and which satisfies 

f,,(Uo, u0) ~ L~oc(-- 1, 1 ); (1.12) 

hence (IEL) does not hold, with integration in the Lebesgue sense, and neither 
is the weak form of  the Euler-Lagrange equation satisfied. Next we construct, 
for any preassigned closed set E C [ - 1 ,  1] of measure zero, a similar function 
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f = f e  satisfying (1.8) such that for suitable k~, k2, I attains an absolute mini- 
mum subject to (1.11) at a unique function Uo whose Tonelli set is precisely E. 
Again (1.12) holds. These two examples demonstrate the optimality of Corol- 
lary 2.12 and the Tonelli partial regularity theorem (Theorem 2.7), respectively. 
Awareness of  conditions necessary for the validity of  chain rule calculations 
([34], [30], [27], [28]) influenced our initial construction of  those examples, 
thoug the proofs presented here avoid this issue. 

In w 5 we consider the problem of minimizing 

1 

I(u) = f [(x* - lu'l �9 + 21 dx (1.13) 
--1 

in the set ~r of absolutely continuous functions on [--1, 1] (i.e. functions in 
WI '1= Wla(--1, 1)) satisfying the end conditions 

u(--1) ---= k~, u(1) = k z ,  (1.14) 

where s > 3 and e 2> 0. (We allow s to take nonintegral values, even though 
the integrand is smooth only if s is an even integer.) We show (Theorem 5.1) that 
if s _>__ 27 then, provided --1 ___ kl < 0 < kz ~ 1 and s is sufficiently small, 

every minimizer uo of I in ~r is such that Uo(X),'-: Ixl :} sign x as x---~0, uo E 
C~ 1]) and uo~ W ~'p for 1 ~ p <  3. It follows that E =  (0} 
and that Uo does not satisfy the Euler-Lagrange equation either in its weak or 
its integrated form. Furthermore, if 3 < q ~ 0% 

inf I(v) > in f  I(v) = I(uo). (1.15) 
vE wl ,q[~/  

This remarkable fact is known as the Lavrentiev phenomenon (cf. LAVRENTmV 
[22], MAN~ [25], CESARI [11]), and its occurrence in a regular problem has not 
previously been noted; in the cited references only the case q ---- ~ is considered. 
If  s > 27 then an equally surprising property holds (Theorem 5.5), namely that 
for any sequence (Vm} ~ W l'q f~ ~ such that Vm(X ) --~ Uo(X) for each x in some 
set containing arbitrarily small positive and negative numbers one has I(v,,) --~ 
as m--~ ~ .  In particular, no minimizing sequence for I in w~'qf~ d can converge 
to Uo. Since conventional finite-element methods for minimizing I yield such 
sequences, it follows that they cannot in general detect singular minimizers. Si- 
milarly, if v, is a minimizer of, for example, an apparently innocuous penalized 
functional such as 

1 

l (u) = f [ ( x *  - U6) 2 lU'V + 2 + lU'I3+ ] dx (1.16) 
--1 

in ~r where y > 0, then vn cannot converge to Uo as ~ -+ 0-k. Motivated by 
numerical experiments of BALL & KNOWLES [6] we show also that if s > 27, 
3 ~ q <~ eo and e > 0, kl, k2 are arbitrary then (Theorem 5.8) I attains a mini- 
mum in W l'q f~ ~r and any such minimizer ul is a smooth solution of the Euler- 
Lagrange equation on [--1, 1]. (Note that such "pseudominimizers" do not in 
general exist for (1.6), (1.7).) The pseudominimizers can be regarded as being 
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"admissible" minimizers of  I with respect to various penalty methods such as 
(1.16). Finally, we show (Theorem 5.9) that for s < 26 all minimizers of I in 
~r are smooth, and that, at least for the corresponding problem posed on (0, 1), 
singular minimizers not satisfying the Lavrentiev phenomenon may exist for 
26 ~ s < 27. 

In all the examples considered we analyze whether or not the minimizers satisfy 
the weak or integrated forms of  the DuBois-Reymond equation 

d 
-~x(f-- u'fv) = A .  (DBR) 

The examples in this paper were motivated by attempts to prove that mini- 
mizers of  the total energy 

I(u) = f W(x, Du(x)) ax (1.17) 

of an elastic body subject to appropriate boundary conditions are weak solutions 
of the corresponding Euler-Lagrange equations 

8x ~ OAk -- 0, i = 1 . . . . .  n. (1.18) 

Here we have assumed that the body occupies the bounded open subset f2 Q R" 
in a reference configuration and that there are no external forces. The particle 
at x E f2 in the reference configuration is displaced to u(x) E 1%", and Du(x) 
denotes the gradient of  u at x. One of  the complications of  the problem, which 
is still open, is that the stored-energy function W(x, A) of  the material is defined 
only for det A > 0 and is typically assumed to satisfy W(x, A)---~oo as 
det A --~ 0 + .  The existence of minimizers in appropriate subsets of the Sobolev 
space W 1'1 = WW(.Q; R") is established in BALL [2] for a class of  realistic 
functions IV, and conditions guaranteeing that these minimizers satisfy other 
first order necessary conditions are announced in BALL [5]. It is known (BALL 
[3], BALL & MURAT [8]) that even when W satisfies favorable constitutive hypo- 
theses such as strong ellipticity, I may not attain its minimum within the class of  
smooth functions, and in fact that if n <= q ~ oo then 

inf I(v) -~- inf l(v) > inf I(v) (1.19) 
v smooth vEW l,q vEW I,I 

can occur for appropriate boundary displacements ~. Of course (1.19) is a higher- 
dimensional version of  the Lavrentiev phenomenon. The deformations responsible 
here for LAVRENTIEV'S gap are those for which cavitation occurs, that is, holes 
form in the body. Cavitation cannot occur if W satisfies the growth condition 

W(x, A) > const. [A 1~ for det A > 0, (1.20) 

for some p > n, by the Sobolev embedding theorem (nor, in fact, if p = n). 
An intriguing possibilty raised by our one-dimensional examples is that singular 
minimizers and the Lavrentiev phenomenon may occur for (1.17) even when (1.20) 
holds, and that the singularities of  Du might be connected with the initiation of 
fracture. More work needs to be done to decide whether this can happen under 
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realistic hypotheses on W. Similar considerations may be relevant for other non- 
linear elliptic systems (see, for example, GIAQUINTA [17] and several articles in 
BALL [4]). 

In view of the potential physical significance of singular minimizers and the 
Lavrentiev phenomenon in elasticity and perhaps other fields, our general view 
is that they should be studied rather than exorcised. However, it is of course also 
interesting to determine conditions under which this behavior cannot occur. We 
mention in particular the theorem of ANGELL [1 ] concerning a sufficient condition 
for nonoccurrence of the Lavrentiev phenomenon, which generalizes earlier results 
of TONELLI [32], CINQUINI [12] and MANI,~ [25]. ANGELL'S theorem is presented 
in CESARI [11], who gives a wealth of related results. We also refer the reader to 
the result of  GIAQUINTA & GIUSTI [18] (see also G1AQUINTA [17, p. 267]) giving 
conditions on f for minimizers of (1.1) to be smooth in the case when fsatisfies 
lq,p 2 "~ f ( x ,  U, p) <= A p  2 for all x, u, p, where ;t > 0. 

Many of the results in this paper were announced in BALL & MIZEL [7] and 
BALL [5]. 

We conclude the introduction with a remark concerning an abuse of notation 
in which we indulge. If, for example, we write u E wl'q(o, 8) A WI,Z(o, 1), where 
0 -< 6 < 1, we mean that u E WL2(O, 1) and that u restricted to (0, 8) belongs 
to Wl'q(O, d). 

w 2. Review of positive results concerning minimizers 
and first order necessary conditions 

We consider integrals of the form 
b 

I(u) = f f ( x ,  u(x), u'(x)) dx ,  

where -- m < a < b ,< 0% and where the competing functions u : [a, b] ~ ~ .  
We discuss the problem of minimizing I in the set 

d = (u C Wa'l(a, b) : u(a) = or u(b) -= fl}, 

where o~, fl are given real constants. By an appropriate choice of representatives, 
Wl'l(a, b) can be identified with the set of absolutely continuous functions u : [a, b] 
-+ R and we shall henceforth assume this to have been done. To avoid getting 
enmeshed in technical hypotheses that are unnecessary for our purposes, we make 
the standing assumptions that f = f ( x ,  u, p) is C 3 in its arguments and bounded 
below; the reader interested in optimal regularity hypotheses or the case u : [a, b] 
-+ R" can consult the cited references. Our aim in this section is to summarize for 
later reference the available information concerning the existence of minimizers 
and first order necessary conditions satisfied by them. 

Theorem 2.1. (TONELLI'S existence theorem). Suppose fpp > 0 and f ( x ,  u, p) 
~0(t) 

~0(Ipl ), x E [a, b], (u, p) E I% 2, where ~o is bounded below and satisfies t -+ oo 

as t--~ oo. Then I attains an absolute minimum on ~ .  
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For  the proof  see, for example, CESARI [11, pp. 112, 372], HESTENES [20], or 
EKELAND & TI~MAM [16]. The original proof  (for the case q0(t) = t p, p > 1) can 
be found in TONELLI [31 II, p. 282], and in TONELLI [33] for the general case. TO- 
NELLI [31 II, pp. 287, 296] and [33] also proved that minimizers exist when f h a s  
superlinear growth in p except in the neighborhood of  finitely many points or 
absolutely continuous curves; significant extensions of some of these results, 
together with a more complete bibliography, are described in McSHANE [24], 
and CESARI [1 1, Chapter 12]. These results imply, for example, that the func- 
tionals I considered in w 4 attain a minimum, but are not needed in our develop- 
ment there since the minimizer is constructed explicitly. 

Definitions 2.2. A function u E zr is a weak relative minimizer of I if l(u) < oo 
and there exists 8 :> 0 such that I(u) <: I(v) for all v E ~1 with 
ess sup [[ u(x) -- v(x)] + [u'(x) -- v'(x)I] :< 6. We say that u E ~r is a strong re- 

xE[a,b] 
lative minimizer of I if there exists ~ > 0 such that I(u) ~ I(v) for all v E ~1 
with max l u(x) -- v(x)] ~ & 

xE[a,b] 

We consider the following forms of classical first order necessary conditions 
for a minimum. The Euler-Lagrange equation is 

d 
~xxfP = fu. (EL) 

A function u E d satisfies the weak form of the Euler-Lagrange equation if  
f~,fp E L~oc(a, b) and (EL) holds in the sense of  distributions, i.e. 

b 

f [fH + f~qo] dx = 0 for all q~ E C~(a, b). (WEL) 
a 

A function u E d satisfies the integrated form of the Euler-Lagrange equation 
provided f~E La(a, b) and 

X 

fv(x, u(x), u'(x)) = f f~ dy + const, a.e. x E [a, b]. (IEL) 
Q 

The DuBois-Reymond equation is 

d 
~xx ( f -  u~'p) = fx. (DBR) 

A function u E d satisfies the weak form of the DuBois-Reymond equation if  
f - -u ' fp ,  fxE L~oc(a, b) and (DBR) holds in the sense of  distributions, i.e. 

b 

j [ ( f - -  u'fp) ~o' q- fx~o] dx = 0 for all ~0 E C~(a, b). (WDBR) 

A function u E ~1 satisfies the integrated form of the DuBois-Reymond equation 
provided fx E Ll(a, b) and 

X 

f (x ,  u(x), u'(x)) -- u'(x)fp(x, u(x), u'(x)) ~- f fx dy + const, a.e. xE [a, b]. 
a 

(IDBR) 
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Of course, if u satisfies (IEL) (respectively (IDBR)) then u satisfies (WEL) (re- 
spectively (WDBR)). We will see later that the converse is false in general; what 
is true is that, by the fundamental lemma of the calculus of variations, (WEL) 
is equivalent to 

Jr 

fp(x, u(x), u'(x)) = f fu dy + const, a.e. x E [a, b], 
c 

for any c E (a, b), a similar statement holding for (WDBR). 

Theorem 2.3. 

(i) Let uE ~1 be a weak relative minimizer of  l and suppose that f~(., Ft(.), u'(.)) E 
L~(a, b) whenever uE L~176 b) with ess sup lu(x) -- ~(x)] sufficiently small. 

xE[a,b] 
Then u satisfies (IEL). 

(ii) Let u E s4 be a strong relative minimizer of  I and suppose that fx(Yc(.), u('), 
u'(.)) E Ll(a, b) whenever xE L~176 b) with ess sup l~(x) --  x[ sufficiently 

xE[a,b] 
small. Then u satisfies (IDBR). 

Proof. 

(i) For  6 > 0 sufficiently small and G ( R closed define 

)'G(x) = sup If~(x, u(x) + t, u'(x))], 
t E [ -  O,~]F~G 

E(x) = {t E [--6, 61 : Ifu(x, u(x) + t, u ' (x) )  I - -  

We consider the set-valued mapping E: x ~-~ E(x). Clearly E(x) is dosed for 
a.e. x E [a, hi. Furthermore, for any closed G ( R the set 

{x E [a, b] : E(x) • G nonempty} = {x E [a, b] : 7~(x) --  7•(x) = 0} 

is measurable (since 7 a -  7R is a measurable function). By a standard 
measurable selection theorem (cf. CESARI [11, p. 283ff]) there exists a measur- 
able function (x ~ t(x) with t(x) E E(x) a.e. x E [a, b]. Hence 7R(x) = 
[fu(x, u(x) q- t(x), u'(x))] a.e. x E [a, b], so that our hypothesis is equi- 
valent to the existence of 7 E Ll(a, b) such that 

[f~(x, u(x), u'(x)) I ~ ~,(x) a.e. x E [a, b] 

for all ~ E L~176 b) with ess sup [u(x) -- fi(x)] sufficiently small. The result 
xE [a,b] 

now follows from TONZLLI [31] (see also CESARI [11, p. 61ff], HESTENm [20, 
p. 196ff]). 

(ii) This follows in a similar way from TON~LLI [31 ] (see also CESA_~ [11, p. 61 if]). 
Alternatively, one can deduce (ii) f rom (i) by a reduction based on the idea 
that ~0 = 0 is a weak relative minimum of  

b 

J(~) = f f ( x ,  u~o(x), u'~(x)) dx 
a 

subject to ~0(a) = 90(b) = 0, where u,(x) ~f  u(z), z + ~(z) = x. [] 
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Corollary 2.4. Let f = f l ( x ,  u) + f2(x,p).  I f  uE ~ is a weak relative minimizer 
o f  I then u satisfies (IEL). 

Proof. I f  fi 6 L~~ b) then fu(x, ?,(x), u'(x)) = (fl)u (x, ?,(x)) is uniformly bound- 
ed. [ ]  

Corollary 2.5. Let f = f l ( x ,  u )+f2(u ,  p). I f  u E ~ is a strong relative mini- 
mizer of  I then u satisfies (IDBR). 

Proof. If  ~ E L~(a, b) then fx(~(x), u(x), u'(x)) = (jq)x (~(x), u(x)) is uniformly 
bounded. [ ]  

The above results are notable for the lack of any convexity assumptions on f .  
The growth assumptions are also considerably weaker than those of corresponding 
theorems known for multiple integrals. For example, in Theorem 2.30) there is 
no hypothesis on f / t h a t  the result is true without such a hypothesis is suggested 
by the fact that fp is bounded for any solution of (IEL). We are not aware of any 
counterexamples to Theorem 2.3 if the integrability hypotheses are weakened 
to read in part (i) f ,( . ,  u(.), u'(-)) E L 1 (a, b), and in part (ii) fx(', u(.), u'(.)) E L l(a, b). 

We now describe results in which f is assumed convex with respect to p. 

Theorem 2.6. Let u E Wl'~(a, b) ( =  Lipschitz continuous functions on [a, b]) 
be a weak relative minimizer o f  I, and suppose that fpj,(x, u(x), p ) >  0 .for all 
x E [a, b], p E I~. Then u E Ca([a, b]) and satisfies (EL). 

Proof. This is standard and can be found in CESARI [11, p. 57ff]. [ ]  

m 

Let R = l~ k) (-- oo) L /{+  co} denote the extended real line with its usual 

topology. We define Cl([a, b]; R) to be the set of continuous functions u: [a, b] 
R such that for all x E [a, b] 

u'(x) de=_r limb_,0 U(X + h)h -- u(x) (2.1) 

exists as an element of R (with the appropriate one-sided limit being taken if 

x = a or x = b), and such that u':[a, b ] -+R  is continuous. 

Theorem 2.7 (TONELLI'S partial regularity theorem). Let fpp > O. I f  u E ~ is a 
strong relative minimizer of  I then u E C1([a, b]; R). 

Before proving Theorem 2.7 we note some consequences. Clearly u'(x) as 
defined in (2.1) coincides almost everywhere with the derivative of u in the sense 
of distributions. Therefore under the hypotheses of the theorem the Tonelli set E 
defined by 

g = {x E [a, b] : [ u'(x)] = co} 

is a closed set of measure zero. The complement [a, b] \ E is a union of disjoint 
relatively opert intervals Dj. By the optimality principle and Theorem 2.6, u 
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is a C a solution of (EL) on each Dj. By Theorem 2.7, u'(x) tends to + oo or -- c~ 
as x tends to the end-points of  every such interval (unless a E Dj or b E Dj). 
These consequences of Theorem 2.7 constitute TONELLI'S statement of  his theorem 
(TONELLI [31 II, p. 359]); our formulation includes the extra remark that u' is 
continuous. The proof we give, like TONELLI'S, uses the local solvability of  (EL), 
but we avoid his construction of  auxiliary integrands by applying the field theory 
of the calculus of variations. Recently, CLARKE & VINTER [13, 14] have presented 
certain extensions of TONELLI'S theorem to the cases when f is not smooth and 
u: [a, b ] - + R " .  They have also shown [15] that i f f  is a polynomial then the 
Tonelli set E is at most countable with finitely many points of accumulation. 

Lemma 2.8. Let A C R2 be bounded, and let M > 0, 
e > O  such that i f  (Xo, Uo) EA ,  1o~1 <=M, 18[<----M, 
of  (EL) satisfying the initial conditions 

U(Xo; ~,, 8) = Uo + o,, u'(xo; ~,, ~) = ~,  

exists for I x -- Xo] "< e, is unique, and is such that 

(a) u and u' are C 1 functions o f  x, oc, 8 in the set 

s~~ ~, 8): Ix - xol =< ~, I~l --< M, 181 =< m}, 

(b) 

~ O. There exists 
the solution u(x; o~, 8) 

(2.2) 

I u'(x; 0~,fl) --f l l  < O, (2.3) 
~u Ou 

(x; ~, 8) > 0, sign ~flfl (x; ~, 8) ----- sign (x -- Xo), (2.4) 

for all (x, o~, fl) E S, where sign t takes the values -- 1, O, 1 for t < O, t = O, 
t > O, respectively. 

Proof. Because fpo > 0, solving (EL) is equivalent to solving the equation 

u" = F(x, u, u'), 

where F(x, u, p) ac=f(fu - - f p x -  Pfp,)/fpv. Our hypotheses imply that FE C1(R3). 
The existence, uniqueness and smoothness assertions follow from standard results 
(see, for example, HARTMAN [19, Chapter 5]). Furthermore, the derivatives appear- 
ing in (2.3), (2.4) depend continuously on Xo, Uo. That e > 0 can be chosen 
sufficiently small for (b) to hold follows by a simple compactness argument, 
using the relations 

8u au 
u'(Xo; ~, t )  = t ,  ~ (Xo; ~, t )  = 1, ~ (Xo; ~, t )  = O, 

~'~fl] (xo; o~, 8) = l. [] 

Proposition 2.9. (TONELLI [31 II, p. 344ff]). Let m > 0, ~ > 0, Mx > 0. Then 
there exists e > O such that i f  Xo, Xl E [a, b], O < xl  --  Xo <= e, l Uol <= m and 

ul --  Uo ~ MI there is a unique solution ~tE C2([Xo, xl]) of  (EL) satisfying 
x 1 - -  x o 
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h(Xo) = Uo, h (xO = u~ 
min imi zer  o f  

over the set  

and max [ u(x) -- Uo] < ~, and ~ is the unique absolute  
xE[xo,xd -~- 

x l  

i(u) = f f ( x ,  u(x), u'(x)) dx 
XO 

d ~  = (U E w l ' l ( x o ,  Xl )  : U ( X o )  = Uo, u ( x 1 )  = Ul,  max I~(x) -- Uo I < ~). 
x~[xo,xd 

Proof. Let o r : m + 0 ,  A = [a, b] • [--a, a], M > m a x ( M ~ , 2 0 )  and let 
0 < ~ 6 < M - - M ~ .  Let e > O  be chosen as in Lemma2.8, and suppose in 
addition that 3 M e < 0 .  Let Xo, XlE[a,b] ,  O < x ~ - - x o ~ e ,  ]uol ~ m  and 

ul -- Uo ~ M~. Note that by integrating (2.3) we have that 
X 1 - -  X o 

[u(x; o~, fl) - -  Uo - -  o~ - -  f l (x  - -  Xo) l <= 6(x  -- Xo), x E [Xo, xl].  (2.5) 

Therefore 

u(x l  ; O, M )  >= Uo + M l ( X l  - -  Xo) ~- ( M  - -  M x  - -  6) (x~ - -  Xo) > Ua, 

u ( x l ;  O, - - M )  <~ Uo - -  M l ( x l  - -  Xo) - -  ( M - -  M1 - -  6) ( x l  - -  Xo) < u l .  

Ou 
Since ~ (xl ; O,/3) > 0 for fl E [-- M, M] there is a unique flo E [-- M, M] such 

that u ( x l ;  O, f l o ) =  ul .  Define h ( x ) =  u(x;  O, flo). Setting x = xl in (2.5)we 
obtain 

[flo] ----< 6 + M~. (2.6) 

Therefore, again by (2.5), for x E [Xo, xl] 

I ~(x) - Uo I < (6 + I~o I) (x  - ~o) 

(26 + M1) e < O- 

Now suppose that v E C2([Xo, xl]) is also a solution of (EL) satisfying 
U 1 - -  U o 

V(Xo) = uo, v ( x O  = ul and max I v ( x ) - -  uo[ < p .  Then v'(x-') 
xE[xo,Xd X~ - -  X o 

for some ~ E (Xo, xl) and (x, v(~)) E A, and so applying (2.3) with (:~, v(~)) 
replacing (Xo, Uo) we deduce that 

] u~--U-~o~6 v ' ( x )  x ~  - 

In particular, 
[v'(xo)[ ~ MI + 6 < M. 

fo r  x ~ [Xo, x l ] .  

By the uniqueness of flo we therefore have that v'(Xo) = flo, and thus v = ~. 
To show that ~ minimizes I in ~ ,  we consider the one-parameter family of 

solutions {u(.; or flo), Io~1 ~ m).  By (2.5), (2.6) we have 

u(x;  M ,  rio) - -  uo ~ M + (rio - -  a) (x  - -  xo) 2> M - -  (2a + M ~ ) e >  



336 J . M .  BALL & V. J. MIZEL 

and 

u(x; --M,/3o) -- Uo <: - - m  + (flo + 6) ( x - -  Xo) <: - - m  + (26 + ml )  e < --Q, 

0u 
for xE [xo, xd.  Since ~-~ (x; o~, t3o) > 0 it follows that fi is embedded in a field 

of extremals that simply covers the region [Xo, x l ] •  [ u o -  ~, Uo + Q]. Since 
fvp > 0 it follows from Weierstrass's formula (e.g. BOLZA [9, p. 91], CESAm [11, 
p. 72]) that 

for all u E ~ ,  with equality if and only if u = 2, which concludes the proof. [ ]  

Proof of Theorem 2.7. Let u E .d  be a strong relative minimizer of I; thus there 
exists 61 > 0 suchthat  I(u) ~: I(v) for all v E d  with max ]u(x) -- v(x)[ < 61. 

xE[a,b] 

Let ~ E [a, b], and suppose that 

x 4= .~,x E [a,b ] 

Suppose that x 4 :  b and take Yl > Y with Y l -  Y sufficiently small that 

max [u(x) -- u(x) l < 61 ~ts : -~-" Choose M1 > M(x). By (2.7) we can apply Pro- 

61 
position 2.9 with Xo = x, Uo = u(x), Q = - f ,  ul = u(xl), where xl E (x, xl) 
satisfies 

xl - ~ < e, u(xl) : ~'~)-l~ M 
X 1 - -  X I 

Let fi be the corresponding solution of (EL). Let ~ E d be defined by fi(x) = fi(x) 

if x E [x, xl], fi(x) = u(x) otherwise. Then ~Eto,blmax I ~(x) -- u(x) I =< -2-~I + -2-62 --_ 62 

and so I ( f i ) -  I (u )=  [ ( u ) -  [ ( u ) ~  0. Since u is the unique minimizer of 

in ~7 it follows that ~ = u in [7, xa] and hence that u E C2([x, xa]). Simi- 
larly, if ~ =4= a then u E C2([Xo, x]) for some Xo < x. In particular u is Lipschitz 
in the neighborhood of any x E [a, b] with M(Y) < oo, and thus by Theorem 2.6 
is C a in a neighborhood of any such x. Since u is differentiable almost everywhere 
in [a, b] it follows that D d~f {x E [a, b] : M(x) < oo} is a relatively open subset 
of [a, b] of full measure, and that u E Ca(D). 

Let E---- [ a , b ] \ D ,  and let xoEE,  so that M(xo)=Oo.  Suppose that 
Xo E (a, b). By an appropriate reflection of the variables x and/or u we can sup- 
pose without loss of generality that there exist points yj ~ Xo-- with 

U(Xo) -- u(yj) 
lim _ + oo. 
j-->oo XO - -  y j  

Let M 3> 0, 6 > 0 be arbitrary and apply Lemma 2.8 with Uo = u(xo). The 
solutions {u(.; 0r M) : I o~1 --< M} of (EL) form a field of extremals simply cover- 
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ing some neighborhood of  (Xo, Uo) in R 2. Thus, for Ix -- Xol sufficiently small 
there exists a unique o~(x) with [0ffx)[ =< M such that u ( x ) =  u(x;~x(x), M) ,  
and by the implicit function theorem and (2.4) o~ depends continuously on x. 
Clearly o~(Xo) = 0. We claim that o~(x) is nondecreasing near Xo. In fact suppose 
there exist sequences a i---> Xo, bj---> Xo, e~---> Xo with a i < bj < cj and 
~(a~) = o~(ci) =l= o~(b,,). Then for large enough j the solution vj(x) ,~ef= u(x; offaj), M) ,  
aj =< x ~ cj, satisfies vj(aj) = u(aj), vj(bj) q= u(bj), vj(cj) = u(ej) and 
max l u(x) -- vflx)[ <= 61. Since vj is embedded in a field of extremals, Weier- 

xE [aj,cjl 

strass's formula gives 

cj ej 

f f ( x ,  u(x), u'(x)) ax > f f ( x ,  v~(x), vj(x)) dx,  
aj  a j  

contradicting our hypothesis that u is a strong relative minimizer. Thus ~ is either 
nondecreasing or nonincreasing near Xo, the latter possibility is excluded by 
noting that by integrating (2.3) (cf. (2.5)) we obtain 

0~(yj) 6 + M U(Xo) --  u(yi) ' 
Xo --  yj Xo --  y] 

so that or < 0 f o r j  sufficiently large. This proves our claim. Now let x j -~  xo, 
z j--> Xo with x~ > zj. Then for large enough j, 

u(xj) - u(zj) 
x j - - ~  

u(xfi ~x(xj), M )  --  u(zfi ~x(zj), M )  

u(Xj; ~x(Zl), M )  --  u(zi; ~x(zj), M )  
~ - -  zj 

! . = u (wj, o~(zj), M )  

> M - - d ,  

where xy ~ wj ~ z~ and we have used (2.3). Thus, since M, ~ are arbitrary, 

lim u(xj) --  u(zj) __ + c~. (2.8) 
- ~  x j - -  zj 

In particular u'(xo) exists in the sense of (2.1) and equals + c~. A similar argument 
applies if xo = a or xo = b. We have thus shown that u'(x) exists in the sense 
of (2.1) for all xC [a, b]. The continuity of  u' at Xo is obvious if Xo E D, and 
follows simply from (2.8) otherwise. [ ]  

As an application of Theorem 2.7 we prove the following version of results of  
TONELLI [31, Vol. II, pp. 361, 366], which should be compared with Theorem 2.3. 

T h e o r e m  2.10. Let fpp > 0 and suppose that 

f ( x ,  u, p) 
lim - -  - -  oo 

Ipr-~o~ iPl 
for each x E [a, b], u E R .  
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Let u(') E s l  be a strong relative minimizer of  I and suppose either that 
fu(', u('), u'(.)) E L'(a, b) or that f~(., u(.), u'(.)) E Ll(a, b). Then u E Ca([a, bl) 
and satisfies (EL) and (DBR) on [a, b]. 

Proof. Let DI be a maximal relatively open interval in D ---- [a, b] \ E. By Theo- 
rem 2.7, u E Ca(Dr) and satisfies (EL) and thus (DBR) on D1. If  fu(', u(.), u'(.)) 
E Ll(a, b) then by (EL) 

Ifp(X, u(x), u'(x))] ~ const., x E D1. (2.9) 

If  f~(., u(.), u'(.)) E Ll(a, b) then by (DBR) 

l u'(x)fp(X, u(x), u'(x)) - - f ( x ,  u(x), u'(x)) [ ~ const., x 6 Dr. (2.10) 

By the following lemma, either (2.9) or (2.10) implies that u' is bounded in D1, 
and thus that D l = D = [ a , b ] .  [ ]  

Lemma 2.11. Let f satisfy the hypotheses of Theorem 2.10. Then 

If~(x, u, p)[ ~ oo, pL(x ,  u, p) - ] (x ,  u, p) -+ o0 

as ]p ] --~ oc, uniformly for x E [a, b] and for u in compact sets of  •. 

Proof. By the convexity o f f (x ,  u, .) we have that 

f (x ,  u, O) >= f(x,  u, p) -- pfp(x, u, p), 

and hence, for p =4= 0, 

P ~ "X, "~Jp( u, p) >= f ( x i ~  1' p) f(X,[plU, O) 

Therefore, for fixed x ,  u, 

l imfp(x, u, p) = 0% pfimoofp(x , u, p) = -- oo. (2.11) 

But fp(X, u, p) is increasing in p. Thus if xj-+ x, uj-+ u, Pi---> oo we have 
for pj > M,  

fp(xj, uj, pj) ~ fp(xj, uj, M),  
and so 

lim inf fp(Xj, u i, pj) ~ fp(x, u, M).  
j-+ eo 

Letting M--> oo we deduce that the first limit in (2.11) is uniform for x, u in 
compact sets; otherwise there would exist a convergent sequence (xj, uj) and a 
sequence Pl---> c~ such that lim inffp(Xj, uj, pj) < c~. The case p ---> -- oo is 
treated similarly. 

To prove the second assertion of the lemma we note that 

f (x ,  u, 1) >=f(x, u,p) -- (p -- 1)fp(X, u,p), 
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and hence, provided p > 1, 

f ( x ,  u, p) p p 
pfp(x, u, p) - - f ( x ,  u, p) > - -  = p p --  1 f ( x ,  u, 1 ) . ~ . p _ l  

Therefore, for fixed x, u, 

lim [pfp(X, u, p) - -  f ( x ,  u, p)] = oo. (2.12) 
p---), ~ 

That the limit in (2.12) is uniform for x, u in compact sets follows as above using 
the fact that p~(x ,  u ,p)  - - f ( x ,  u ,p)  is increasing in p for p > 0. The case 
p - +  - - c ~  is handled similarly. [ ]  

Corollary2.12. Let  f = f (u ,  p) satisfy fpp > 0 and 

f (u ,  p) 
lim - - - - o o  for each u E R .  (2.13) IpL 

I f  u(.) E ~ is a strong relative minimizer o f  I then u(.) E C3([a, b]) and satisfies 
(EL) and (DBR) on [a, b]. 

Finally, we remark that if 1 < q < oo then Theorem 2.7 still holds (with 
the same proof)  if we replace ~r by ~r ~ W~'q(a, b) both in the statement of  
the theorem and in the definition of a strong relative minimizer. This is perhaps 
of interest since in w 5 we show that minimizers in ~r and ~r w1"q(a, b) may 
be different. 

w 3. An integral with a scale invadanee property 

In this section we consider the problem of  minimizing 

1 

I(u) = f [(x 2 - u3) 2 (u') + e(u') 21 dx (3.1) 
0 

subject to 

u(O) = 0, u(1) = k, (3.2) 

where e > 0 and k > 0 are given. 
Note that the integrand 

f ( x ,  u, p) = (x 2 - -  u3) 2 p14 q_ ep2 (3.3) 

in (3.1) satisfies 

fpp ~ 2e > 0. (3.4) 

The Euler-Lagrange equation corresponding to (3.1) is 

d 
~xx (7(x2 -- u3)z (u')13 + eu') = --3uZ(x 2 --  u s) (u') 14. (3.5) 
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It is easily verified that (3.5) has an exact solution u = ~:x] on (0, 1] provided 

e = (1 -- ~3) (13~ca _ 7). (3.6) 

Define 
0(z) = (~)12 3"(i -- r) (133 -- 7). 

Differentiating 0 we see that 0 attains its maximum in the interval (~, 1) at the 

25 + 
point 3 " - -  --.868928 and that 0 ' ( 3 ) > 0  for ~ < x < x * ,  

39 . . . .  
0'(~) < 0 for 3" < ~ < 1. Define 

e o = 0 ( z * ) = . 0 0 2 4 7 4 . . .  

We have thus proved 

P r o p o s i t i o n  3.1. I f  0 < e < eo the Euler-Lagrange equation (3.5) has exactly 

two solutions in (0, 1] of  the form u = kx  ~, k ->  0; the corresponding values of-k 

satisfy ~ < kt(e) 3 < 3" < k2(e) 3 < 1. I f  e = eo there is just  one such solution, 

namely u = (3*)�89 x~; i f  e > eo there are no such solutions. 

The integrand f in (3.3) satisfies the scale invariance property 

f (2x ,  2eu, 2 e-I p) = 2~(x, u, p) 

for all 2 > 0  and all (x,u,p) ,  where X = $  and ~ = - - ] .  
by making the change of variables 

v 
V = U lit ' ,  Z = ~ ,  q = V ' ,  X --~ e t .  

x 

Setting ;t = 1/x in (3.7) we obtain 

f ( x ,  u, p) = xeF(z, q), 

where 

(3.7) 

We exploit this 

(3.8) 

(3.9) 

F(z, q) f(1, zL ?,z q). (3.10) 

It is easily verified that, for any smooth integrand satisfying (3.7), (EL) is transform- 
ed into the autonomous system 

dz 
dt q z ,  

(3.11) 
aFq 
dt = F ,  - -  a&. 

More precisely, if 0 < a < b < oo and u is a smooth solution of (EL) on (a, b) 
satisfying u(x) > 0 for all x G (a, b), then 

q(t) = 7-1[u(et)] O-v)/v u,(et), z(t)  = e-t[u(et)] I1~" (3.12) 
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is a smooth solution of  (3.11) for log a < t < log b. Conversely, if (q, z) is a 
smooth solution of (3.11) defined for e~ < t < fl and satisfying z(t) < 0 for all 
xE  (0~,fl) then 

u(x) ---- [x.  z(log Ax)] ~ (3.13) 

is a smooth solution of (EL) for e ~ < Ax < e a, where A 3> 0 is arbitrary. The 
arbitrary constant in (3.13) arises from the fact that, since (3.11) is autonomous, 
if z(t) is a solution so is z(t -k log A); equivalently, if u(x) is a positive solution 
of  (EL) so is A - e  u(Ax). Note that (3.11 b) is the Euler-Lagrange equation for the 
integral 

= j , o '(x)  . x ,  

obtained by making the change of variables (3.8) in (3.1). As has been pointed 
out to us by P. J. OLVER, the fact that the scale invariance property (3.7) implies 
the existence of  a change of variables making (EL) autonomous is a consequence 
of  the theory of  Lie groups (cf. INCE [21, Chap. 4]). We remark that the above 
reduction to an autonomous system is used in BALL [3] as a tool for studying 
the radial equation of nonlinear elasticity in n space dimensions, the appropriate 
values o f y , ~  being 7 , =  1, ~ = n - -  I. 

From now on we assume t h a t f i s  given by (3.3), although it will be apparent 
to the reader that much of what we have to say applies to a general class of  inte- 
grands satisfying (3.7) for suitable y, ~. For  later use we note that since 

F(z, q) : (~)14 (1 - -  z2) 2 z -1413 q14 _.[_ (~)2 ez-2/3 q2, (3.14) 

(3.11) takes the form 

dz 
dt - - q - - z ,  
dq (3.15) 

dt G(z, q), 

G(z, q) aef Fz -t- ~ Fq -- (q -- z) Fqz 
Fqq 

q.._2.2 r.(~_),l (1 - z z) [13q(7  - z 2) - 84z]  qi, + ez4_] 
(3.16)  

3 z  / 91 ( t )  12 (1 - z2)  2 q '2  + ez  4 J " 

We study (3.15) in the first quadrant of the (z, q) plane. Note that solutions of  
(3.15) in the first quadrant correspond to positive solutions u of  (3.5) with u'(x) => 0. 
It is clear that any minimizer of  (3.1), (3.2) satisfies u'(x) ~= 0 a.e. xC [0, 1], 
since otherwise the value of I could be reduced by making u constant on some 
interval. 

Before proceeding with the details of  our phase-plane analysis, the reader may 
wish to look at Figure 3.1 so as to see where we are heading. 

We begin by examining the rest points of (3.15) in z > 0, q > 0. From (3.15), 
--3 

(3.16) these are easily seen to be given by q = z = k~, where k >  0 satisfies 
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-- 2 
(3.6), and correspond to the solutions u = kx- f  discussed in Proposi t ion 3.1. 

Thus, for  0 < e < eo, there are precisely two rest points, namely q = z = k l (e)~  

and q = z = k2(e) 3 ,  with 7 < ~1(e)3 < Ts < 1. We denote these points 
by P1 and P2 respectively. We study the nature of  the rest points by linearization. 

--3 --3 --3 
Thus let P denote a rest point  q = z = k-~. Setting z = k~- q- a, q = k~- + b 
gives (3.15) the form 

where 

and 

- 

(31k a - -  28) 

(1 - -  ~a)  (14  - -  13k3)" 

The eigenvalues o f  A are given by 

2• = ~l ( - -1  -4- 1/25 q- 36a(7~)) 

Thus, 

25 (i) if  (~(k) < 36' 

(ii) if a(k) 25 - -  36~ 

(iii) if --~-~25 < o'(k-) < --g-," 2 _  < 2+ < 0, 

(iv) if  a(k) = --3,  2_ = --�89 2+ = 0, 

(v) if 2 < (~(~), 2_ < 0 < 2+. 

(3.17) 

2+, 2_ are complex,  

1 and A has a double elementary divisor, 2+, 2_ --  6 

As is well known (cf. HARTMAN [19, p. 212, ft.]), cases (i)-(iii) correspond to P 
being a sink, and case (v) to a saddle-point. Case (iv) is a critical case where the 
stability is determined by the nonlinear terms in (3.17), and we discuss this present- 
ly. In case (i), P is a focus. In case (ii) P is an improper  node,  all solutions of  (3.15) 
near P approaching P with slope ~- as t -+ c~. In case (iii) P is an improper  node 
with a single pair of  solutions approaching P with slope 2_ + 1 E (2,  ~_) as 
t --~ cx~, and all other nearby solutions approaching P with slope 2+ -]- 1 E (~, 1) 
as t ~ c~. In case (v) the slope of  the stable manifold o f  P at P is 2_ § 1 < 2, 

that  of  the unstable manifold 2+ § 1 > 1. We now note that  t r ( k ) >  - -2  

Fig. 1. The phase-plane diagram for (3.15). Shown in particular are the smooth solution 
orbit, which leaves the origin with slope 3/2, and the stable and unstable manifolds of P2. 
The absolute minimizers of I correspond to appropriate portions of the dashed curves 
(see Theorem 3.12). 
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(respectively (r(k) < --3 z) if and only if 

3932 -- 503 -~ 14 > 0 (respectively G0) 

2 5  - 

where ~----~3, and since 39 G ~  this holds if and only if 3 > 3 " =  

25 + 1/~- 
39 (respectively 1: G 3*). The case a(k-) = --a z corresponds to 3 = 3*. 

Similarly, a(k) > - - ~  (respectively a(k) G --~6) if and only if  

32532 - 4273 q- 126 > 0 (respectively G0) ,  

which holds if and only if 3 > 3~ = .86634...  (respectively 3 G 3~). We let 
el = 0(3~) = .002473 . . . .  We have thus proved 

Proposition 3.2. Let  0 G e G eo. Then P~ is a s&k and P2 is a saddle point. 

dz 
Since ~ - = q - - z  the flow in the region 0 ~ q < z  is to the left, that in 

the region 0 < z < q to the right. We also make frequent use of  the direction 
dz 

of flow on the diagonal q = z, where ~-~ = 0, given in the following lemma. 

Lemma 3.3. 

(i) Let  O < e < eo. Then G(z, z) > O for  O < z < k l (e )~  and f o r  
- -  3 

k2(e)2 < z < o0, while G(z, z) < 0 f o r  k~(e) 3 < z < k'2(e) k. 
1 

(ii) Let  e = eo. Then G(z, z) > O for  all z > O, z =t= (3*)~. 

(iii) Let  e > eo. Then G(z, z) > O for  all z > O. 

For the purpose of studying the existence of  periodic orbits it is convenient 
to introduce the new variable r = Fq(z, q). It is easily verified, using the fact 
that Fqq>O,  that (z, q ) -+  (z, r) maps z > 0 ,  q > 0  onto z > 0 ,  r > 0  and 
has a smooth inverse. Thus (3.11) is equivalent to 

dz def ~ 
d t  ---- q(z, r) -- z = z(z,  r) ,  

(3.18) 

dr F~(z, q(z, r)) + ~ r ~ R(z, r). 
dt 

An easy computation shows that 

8Z  8R 
. . . .  Oz q- 8r �89 (3.19) 

Integration of (3.19) over the region enclosed by a nontrivial periodic or homo- 
clinic orbit gives a contradiction. We have thus proved 
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Proposition 3.4. The system (3.15) has no nontrivial periodic orbit and no homoelinic 
orbit in z > O, q > O. 

We next study the cont inuat ion  and asymptot ic  propert ies  of  solutions. 

Proposit ion 3.5. Let  Zo > 0, qo > 0, and let (z(t), q(t)) denote the unique solution 
of(3.15)  with z(O) = Zo, q(O) ~ qo. Then (z(t), q(t)) exists and remains in z > O, 
q > 0 on a maximal interval (tmin, ~ ) ,  where --  oo ~ tmin < 0. As t ~ co, 

- -3  - - 3  
either z ( t ) -+ cx~ and q( t ) -+ cx~ or (z(t), q(t)) -+ (k-f, k2-), a rest point. As  
t --~ train + either (z(t), q(t)) ~ (0, O) or z(t) --+ oo and q(t) --> c ~- C(Zo, qo) E 

- - 3  - - 3  
[0, ~ )  * or (z(t), q(t)) --~- (k~, k-~), a rest point. 

Proof .  Let  the maximal  interval in which the solution (z(t), q(t)) exists and remains  
in z > 0, q > 0 be (train, tm~x), where - -  cx~ ~ tmi n < 0 <~ tma x "~ oo. Ob-  
serve first tha t  if  (z(t), q(t)) remains  in a compac t  subset o f  z > 0, q >= 0 for  all 
t E [0, tmax) (respectively t E (train, 0]) then tmax = oo (respectively tmin = - -  ~ ) ,  
and we can apply  the Poincar6-Bendixson theory (cf. HART~AN [19, p. 151ft.]). 
By Proposi t ion 3.4 the only possibilities are that  (z(t), q(t)) tends to a rest point  
as t - +  oo (respectively t - +  - -  ~ ) ,  or tha t  the ~o-limit set (respectively c~-limit 
set) o f  (z(.), q(.)) contains more  than  one rest point  (and thus 0 < e < e0). The 
lat ter  case cannot  occur  since P1 is asymptot ical ly  stable. 

dz 
Next  we note tha t  on any open t-interval where q(t) ~ z(t) we have d-7 @ 0, 

and  thus the orbi t  has the representat ion q = q(z), where by (3.15) 

dq q2 [(~_)12 (1 - -  z 2) [13q(7 - -  z 2) - -  84z1 ql l  + ez4.] 
dz --  3 z ( q -  z) I_" 91(-~) 12 (1 - -  - 7 2 )  2 q12 _[_ eZ4 ..I clef H ( z ,  q,e).  

(3.20) 

We first el iminate the possibility that  q(z) becomes unbounded  as z --~ ~ E (0, oo) 
either f rom above  or below. By general results on ordinary differential equat ions 
we would then have q(z) --~ + cx~ as z ~ ~" -1- or q(z) ~ § ~ as z --~ ~ - - .  I f  

=~ 1, then for  q large and for z near  ~ we have 

d q [ =  q (32-)'2 ( 1 -  z 2 ) [ 1 3 ( 7 -  z 2 ) -  8 4 ~ ]  § e q'iS- < C q ,  

( q )  z, ~ 3z 1 - -  91(-~) 12 (1 - -  z2) 2 -t- q12 

where here and below C denotes a generic constant.  Thus  q is bounded  near  5, 
a contradict ion.  I f  ~ = 1, we observe tha t  q(z) satisfies 

d 
~z  ((q - -  z) fq  - -  F)  = --�89 Fq, (3.21) 

t It will be shown in Proposition 3.6 that in this case  tmi n = - -  oo and C(Zo, qo) > 0. 
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where F is given by (3.14). (This is essentially the DuBois -Reymond  equation for  

I.) N o w  

/2  ~\13 14 4e 2q z Fq=281~-" ) z - 7 ( l  - - z 2 ) 2 + - ~  -- -~ -2  " 3 -~ �9 , 

and 

~v(z, q) ae_f (q __ z) F 0 - -  F 

/2q \ta 14 Z2) 2 (13 l~z )  + 2q 2 2 

Thus,  for  z near 1 and q large, 

z 2 13 [F~I < C(q'3(l - -  z ) 3 - +  q) 

14 13 
C(ql4(1 - -  22) 2 -it- qi3)/Z 

13 
<~ C(ql4(1 __ 2.2)2 _[.. q 2 ) ~ ,  

and so by (3.21) 

~ 13 
d~p (z, q(z)) C I ~o(z, q(z))I ~. 

Thus ~o(z, q(z)) is bounded  near z = 1, which is a contradiction. 
The case when (Zo, qo) is a rest point  being trivial, we now consider the re- 

maining cases. First suppose that  qo < Zo. Note  tha t  q = 0 ,  0 < z < c~ is 
an orbit  of(3.15), and that  G(z, q) > 0 if z > 0, q > 0 and z + q is sufficiently 

dz 
small. Since -~- < 0 for  q < z it now follows that  either (z(t), q(t)) remains 

below the line q = z on [0, tmax), and hence by the first part  o f  the p r o o f  tends 
to a rest point, or that  Z(to) = q(to) for  some to > 0. In  the latter case it may  
happen that  z ( tO=q( t l )  for  some t~ ~ t o ,  with q ( t )>z ( t )  for t o <  t < t l .  

, /  , 1  

I f  so, then by t e m m a  3.3, 0 < e < eo and Z(to) < -k~(e)~ < z(t~) < k2(8) ~-, 
so that, unless (z(t), q(t)) ~ P~ as t--~ oo without  a further crossing of  q = z, 
z(t2) = q(t2) for some t2 > t~. I f  z(t2) < z(to) the orbit  (z(t), q(t)) would re- 
main in a compact  subset o f  z > 0, q >_ 0 for  tmin ~ t ~ 0 and hence tend to 
P~ as t ~ -  o~; this is impossible as P1 is a sink. Thus by Proposi t ion 3.4, 
z(t2) > Z(to), which implies that  (z(t), q(t)) remains in a compact  subset o f  z > 0, 
q ~ 0  for  0 = < t < t m a x ,  and thus tends to P~ as t - + o ~ .  

The above considerations show that, as regards the behavior  for  t ~> 0, it 
suffices to examine the case when q(t) > z(t) for all t E [0, tm~) and the corre- 
sponding solution curve q(z) is defined for all z => z0. To show that  tm~x ---- oo we 
examine the slope o f  the vector field on the line q = #z,  where /z > 1. On  this 
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line, as z --> e% 

1 7- 13 ]  1rz12 
dz 11 1 

= 2 1 ( # - 1 )  1 + o  , 

( 1 )  21 there exists where the o term is independent of/z.  Hence, provided/~0 > ~ ,  

> 0 such that  if  z > k and /z ~ / ~ o  then ~ ( z ) < / ~  on q = ~z. Choos ing  

/z > q(k)^ we deduce that  
Z 

~:(t) <~ (/z - -  1) z(t) 

whenever z(t) >= ~r, and hence that  tmax = cx~. 
We consider now the behavior  o f  (z(t), q(t)) for t E (train, 0]. Suppose first 

that  q o > Z o .  I f  q( t )>z ( t )  for all tE(t~in, 0], then either inf z ( t ) > O  or 
tE(tmin,0] 

z(t) -+ 0 as t--~ train@. In  the former  case, since q(t) cannot  become unbounded  
as t ~ train+, the curve lies in a compact  set o f  z > 0, q ~ 0 and we must  have 
that  tmi~ = --  oo and (z(t), q(t)) tends to a rest point  as t - +  - -  oo. I f  z(t) --> 0 

dq 
as t---> train+ then by (3.20) the corresponding curve q(z) satisfies ~z-z > 0 

for sufficiently small z > 0, so that  q(tmin) de f lim q(t) exists. I f  q( t~ )  > 0 
t~trnin+ 

then by (3.20) ~ > __C for sufficiently small z > 0, where C > 0 is a constant,  
d z =  z 

and integration o f  this inequality gives a contradiction.  Thus (z(t), q(t))-+ (0, O) 
as t--> train+. On the other hand, if q( t )=  z(t) for  some t E (tmi., 0] then 
q(tx) .< z(h) for  some earlier time. 

It  only remains, therefore, to consider the case when qo < Zo. First, if 
q(t) < z(t) for  all t E (train, 0] then either z(t) remains bounded  as t ~ t ~ , + ,  
in which case train = - - o o  and (z(t), q(t)) tends to a rest point  as t--~ - - o o ,  

dq 
or lim z(t) = ~ .  In the latter case, by (3.20), ~zz < 0, for z 2 > 7, q < z, 

t-+train+ 
and so as t ~ tmi.q- q(t) tends to a nonnegative limit, which we denote by 

C(Zo, qo). Next, if q(to) = Z(to) for some to E (train, 0] then q(i) > z(i) for  some 

t-E (tmi., to). We have already treated the case when q(t) > z(t) for  all t E 

(t~in,/'] and thus it remains to  eliminate the possibility that  q(tj) = z(tj) for  an 
infinite sequence tj--> train-l-, ~ and of  course this can only occur for 0 < e < e0. 
The corresponding orbit  would spiral either inwards or  outwards as t --~ tmi~+. 
I f  it spiralled inwards then clearly we would have tmi, = - -  eo  and (z(t), q(t))--~ P~ 
as t ~ - -  c% which is impossible since P~ is a sink. It  must  thus spiral outwards,  
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and of course it cannot remain in a compact subset of z > 0, q ~ 0, since other- 
wise it would have to tend to Pz as t ~ t~in+, which is clearly impossible. Fur- 
thermore the orbit must remain under that part  of  the stable manifcld of  Pz 
lying in q > z, and so z(t) ~ 0 as tj ~ t~i~+. But the solution curve (z,(t), q,(t)) 

1 
of  (3.15) satisfying z , ( 0 ) =  1, q,(0) : - -  approaches the z-axis as r---~oo, 

r 
crossing q ----- z arbitrarily close to the origin, which implies that  z(tj) is bounded 
away from zero. [ ]  

H e n c e  ~( t )  --~ 21 as  

of (3.22) we obtain 

Note that Propositions 3.2, 3.5 together imply that when e = eo the unique 
--3 

fixed point q = z = k~  is unstable. 
It  is possible to specify more precisely the asymptot ic  behavior of  those 

solutions of  (3.15) satisfying z(t) -+ o% q(t) -+ r as t -+ oo. For  such a solu- 
q(z) 

tion we have seen in the proof  of  Proposition 3.5 that ~ is bounded for large t. 
1 

Setting r  z(t) '  we see that (3.15) becomes 

= r - 99), 

992 [ . (~)12(~2 1) [1399(7r 1)__ 84r + er (3.22) 
---= (1 - -  99) + T 91(])12 (r __ 1)2 9~2 + eCX2 , 

defq(t) 
where 99(0 - -  z(t) '  and hence as t ~ ~ ,  

4' 99(1 20 = - -  ~i 99) + o(1). 
2~ t - +  oo. Linearizing about  the rest point r = O, 99 = 

- •  ((t) ~ Cle 20 , 

19(0 -- ~ol <= C2 e-t ,  

for sufficiently large t, where C1 and (72 are positive constants. I t  follows that 

~-~t ]q(t) - -  ~o z ( t )  l < C2 - ' 9  
= C 1  e 

for sufficiently large t, so that the solution curve rapidly approaches the line 
q=~z. : l  Since ~----- q - -  z we deduce that 

t 19 
z(t) = Ae ~ -F 0 (e - ~ ` )  

as t --~ ~ ,  where A = A(zo, qo) is a constant, and hence that the corresponding 
solution u of  (3.5) satisfies 

7 1 
u(x) = Ax  -~ + O(x ~) as  x - +  o o .  

We now study the behavior of  solutions in a neighborhood of the q and z axes, 
and in particular near the origin. 
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Proposition 3.6. Every smooth solution u o f  (3.5) with u(O) = O, u'(O) > 0 cor- 
responds to a single orbit of(3.15) in z > O, q > 0 that leaves the origin z = q = 0 
with slope -~. The only other orbits of(3.15) leaving the origin correspond to solutions 
u o f  (3.5) with U(Xo) = 0 f o r  some xo > 0; these orbits satisfy 

q(t) 
lim z ( t ) =  lim q(t) = 0 ,  lim _cx~. (3.23) 

t~lOgxo + t~ logxo + t"*logxo + z(t)  

Solutions (z(.), q(.)) o f  (3.15) whose orbits have an unbounded intersection with 
0 < q < z correspondprecisely to solutions u of(3.5) with u(O) > O, u'(O) > O, 
and thus satisfy t l imo z(t)  = oo, lim q(t) = c ~ O, where c = c(z(O), q(0)) 

- -  t - - ~  - o o  

is a constant. 

Proof. Let u be a smooth solution of  (3.5) on some interval [0, a], a > 0, satis- 
fying u(0) = 0, u'(0) = ~ > 0. Then u(x) = ~ x  q- o(x), u'(x) = a~ + o(1), as 

3 1 1 3 1 1 
x --~ 0 + ,  and hence z = o~-~ x-f  + o(x2-), q = 3(o~-2- x- f  + o(x-~)). Thus 
the corresponding solution (z(t), q(t)) satisfies 

lim z ( t ) =  lim q ( t ) =  0, lim q(t) 3 
t~-oo t~-oo t~-oo z(t)  2 .  

That this solution is the same for any ~ > 0 (up to adding a constant to t) fol- 
lows from the similarity transformation (3.13) and the uniqueness of solutions to 
the initial value problem for (3.5). 

Let u~(x) denote the unique solution to (3.5) satisfying u~(1)= 0, u~(1)= 
fl > 0; this corresponds to a solution (za(.), qa(.)) satisfying 

and 

as t - *  0 + .  

3 
[fl(e t -  1) ,-+- o(e t -  1)]~- 

za(t) = el = o(1), 

I 
q~(t) = -~[fl(et - -  1) -F- o(e t - -  1)]~- (fl + o(1)) = o(1), 

Also 

lim qa(t) lira t 3 
t-,o+ zr = t-,o+ 2(e -- 1) = oo. 

Let 6 > 0 be sufficiently small. It follows from Proposition 3.5 that za(ta) = 6 
for some minimal ta > 0. Also, since qa(ta) > za(ta), the corresponding inter- 

section at x = eta of the graph of  ua with 6 ~" x ]  is transversal, and thus by 
the implicit function theorem ta depends continuously on ft. Hence also qa(ta) 
depends continuously on ft. We examine the behavior of  qa(ta) as fl varies from 
0 to oo. We first show that 

lim qa(ta) ----- oo. (3.24) 
f l~eo  



350  J, M .  BALL & V.  J .  MIZEL 

Since u'~(x) 3> 0 for all x ~ 0, u s is invertible; denote the inverse function by 
xa(u). By (3.5) xa(.) satisfies the t ransformed equat ion 

[19(x 2 - -  u3) 2 + ex~ 2] x,., = x . ( x  z - -  u 3) (28xx.  - -  39u2), (3.25) 

where the subscripts denote derivatives with respect to u. This equat ion has the 
solution x(u) ~-~ 1, u E [0, �89 in the ne ighborhood of  which (3.25) can be writ ten 
in the form X.u -= h(u, x,  x . )  with h continuously differentiable. Since Y(0) = 

1 
xo(O ) -= 1, ~ , ( 0 ) =  O, (X~)u (O)=-~- ,  it follows that  x~-+ 1 in C~([0,�89 as 

fl ~ co. In particular,  t o ~ 0 as /3 -+ oo. Since qo(ta) = 3 u#(et#)�89 uo(e' is) = 
1 t 

~T e ~-~ 
3 2 this gives (3.24). 
2- (xa), (~-~ eY ta ) 

Next ,  let fro(x) = f12ua(/3-3 x), which also solves (3.5) and satisfies h~(/33) = 0, 
~(ff3) = 1. Clearly ug ~ ~ in C1([0, 1]) as /3 ~ 0q-, where ~ is the unique 
solution of  (3.5) satisfying ~(0) = 0, ~'(0) = 1. But ~33eta is the least value of  

x > / / 3  such that  ~a(x) = ~'} x :}, and thus tends to the least positive roo t  
of  u ( x ) =  ~Zx{ as /3-->-0+. Thus 

lim qa(ta) = 3(6~)~ ~,(~), 
/3--*0+ 

which is the value of  q at the intersection of  z = 3 with the smooth  solution 
orbit  leaving q ----- z = 0 with slope 3.  We have thus shown that  the region above 
this orbit  in the strip 0 < z <= 6 is completely filled by the orbits (za(.), qa(.)). 
I f  Xo > 0 is given then (z(t) ,  q( t ) )  = (zr - -  log Xo), qo(t - -  log Xo)) corre- 

! 
sponds by (3.13)ff to the solution u of  (3.5) satisfying U(Xo) = O, u'(Xo) = / 3 X o  -f , 
and thus (3.23) holds. 

Let  u~,, be the unique solution of  (3.5) satisfying u(0) ---- y > 0, # (0)  = v > 0. 
Then  the corresponding solution (z~.~('), q~,~(.)) of  (3.15) satisfies tli_mozr,~(t) 

_--o~, t-.-~lim q~,~(t)=03~_y�89 As Y--~ 0 + ,  u~, 1 ~ ~ in C~([0, 1]) and hence, 
3 

for  each f i x e d  t, zT.t(t ) ~ k(t) d~r ~-f(e') - / . ,  def 3 - 1 - -  u~(e  `) ~ ' (d ) .  el and qv,~(t) -+ et*~ = -f 

Conversely, suppose that  (z(.), q(.)) is a solution of  (3.15) whose orbit  has an un- 
bounded intersection with 0 < q % z. By Proposi t ion 3.5, lim q(t)  = c >= O. 

t-+train+ 
Let  Xo = e t ra in .  Suppose t m i n  ~ - -  c~, SO that  Xo > 0. Then  the corresponding 
solution u of  (3.5) would satisfy 

lira v(x)  ~ l i m  z ( t )  = c ~ ,  l ira v ' (x )  = c ,  
x-C'Xo+ t-+to x-+Xo+ 

3 
where v = u~-, which is impossible. Thus tm~ = -  o% XO = O, and since 
lim v'(x)  = c we have v(x)  -+ d as x - +  X o + ,  where d >= 0 is a constant.  But 

x-+O+ 
if  d were zero then we would have 

c~ = lim v(x)  lim v'(x)  
x-+O+ X x-+0+ --'1"-- r  
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2 c  

a contradiction. Hence u(0) > 0, u'(0) = ~ ~ 0. Now if c = 0, u(x) ~ u(0) 

by uniqueness of  solutions to (3.5), and hence q(t) ~ O. Hence u'(0) > 0. 
It  follows immediately from the above that for 6 > 0 sufficiently small the 

region in 0 < z < 6, q > 0 below the smooth solution orbit is completely 
filled with orbits corresponding to solutions of  (3.5) with u(0) > 0, u'(0) > 0. 
In particular there are no other orbits leaving the origin. [ ]  

We next apply the results of  Section 2. 

Theorem 3.7. I attains an absolute minimum on the set ~1 ---- {u E Wu(0,  1): 
u(0) = 0, u(1) = k}. Let  u be any minimizer. I f  e ~ eo then u is a C ~ solution 
o f  (3.5) on [0, 1]. I f  0 < e ~ eo then either u is a C ~ solution o f  (3.5) on [0, 1] 

- -  2 1 

or u is a C ~ solution of(3.5) on (0, 1 ] with u(x) ~ k x T ,  u'(x) , ~  $ - k x - T  as x --> O+,  

where k satisfies (3.6). In all cases u corresponds to a single semi-orbit (z(t), q(t)), 
t E ( - - o % 0 ] ,  o f  (3.15), with z ( t ) > O ,  q ( t ) > O  for  all t E ( - - c o ,  0]. 

Proof. That  I attains a minimum on d follows immediately from Theorem 2.1. 
Let u be any minimizer. By Theorem 2.7 and the subsequent discussion there is 
a closed set E of measure zero on the complement of  which u is a C 3, and hence 
smooth, solution of (3.5). Let D1 be a maximal relatively open interval in [0, l] \ E, 
and denote by Xo, xl  the left and right hand endpoints of  D1 respectively. We 
have already noted that u ' ( x ) ~  0 a.e., and it thus follows from Theorem 2.7 
that  if  Xo ~ 0 (respectively xl =~ 1) then lim u'(x) = --}- ~ (respectively 

x-e . -xo + 

lira u'(x) = + oo). I f  u'(x) were zero for some x E (x0, xl)  we would have, 
x-*xi -- 

by uniqueness of  solutions to (3.5), that u = const, in (Xo, xl)  and thus in 
D1 ---- [0, 1], contradicting k > 0. Thus u'(x) > 0 for all xE (Xo, x~) and u 
generates a solution (z(t), q(t)), tE  (log xo, log x0 ,  to (3.15) with z(t)  > O, 
q(t) > 0 for all t E (log Xo, log xi). But by Proposition 3.5 the solution (z(t), q(t)) 
exists for all t > log Xo, and therefore 

lim u'(x) = lim ] q(t) z ( t ) - �89  x~-�89 < o0. 
x - ~ ' x l  - -  t - + l o g x t  - -  

Hence xl  ---- 1. Suppose that  

lim u'(x)----- 
x - * x  o 2 r 

- -  oo ~ tmi, < log x0. Then 

lim 2 q(t) z ( t ) - �89  Xo �89 < oo , 
t - - - ~ l o g x o  + 

since Xo > 0, yielding a contradiction. Therefore t m i n  = log Xo. By Proposition 
3.5 there are three cases to consider. First, we may have (z(t), q( t ) ) -+ (0, 0) as 
t ~ log Xo+. I f  Xo > 0 this is impossible since we would then have U(Xo) = 0 
and hence u(x)----0 for all x E [0, 1]. I f  Xo = 0 then by Proposition 3.6 u 
is C ~ on [0, 1 ]. Second, we may have z(t)  ~ oo and q ( t ) ~  c ~ 0 as t ~ log Xo + .  
In this case, by Proposition 3.6 Xo = 0 and u(0) > 0, which is impossible. Third, 

- - 3  - - 3  

we may have Xo = 0 and lim (z(t), q(t)) = (k~-, k~-), a rest point. In this 
t---> - -  CO 

- -  2 

kx ~-, , case u is C ~ on (0, 1] with u(x),-~ u ( x ) ~ . ~ $ k x - ~  as x - ~ O + .  [ ]  
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As a prel iminary result showing that  every minimizer  must  in certain cases be 
singular we prove  

Lemma 3.8. Let u minimize I on d ,  and suppose that 0 < ~x < fl < min (1, k) 
and 

~E �89 \13/ /33)2 0(,)14 < t9"~'a (1 - -  (fl - -  . (3.26) 

Then u(x) > o~x } for all x E (0, 11. 

Proof .  We modi fy  an a rgument  of  MANL~ [25] (see also CESARI [11] and Section 4). 
I f  the conclusion of  the l emma  were false then there would exist a subinterval  
(xl ,  x2) o f  [0, 1] such tha t  

and  

2 
o~x3 <= u(x) <= fix} for  all x l  --< x --< x2 

u(xl) = o~x~, u ( x 2 ) =  fix 2. Thus 

f f(x,  u, u') dx > x + 1 - - -  (u'y + & 0 z X2 ] 

X2 

> (1 - -  fla)2 f x,(u,y+ dx. 
xt 

13 
Let  x = y.-r Then 

9 
xT3 

x2 2 / d u ~  14 
f X4(Ut) 14 "X = (9)13 f \dy] d,. 

x t  9 
x~  

I 

and by Jensen 's  inequali ty the minimizer  of  this integral subject to u I 9_ = o~x~, 
ly=x13 

2_ 5 ~ 

u I 9=~x~isgpvenbythelinearfuncti~176 
,=xp \ xp-xl / 

Therefore  
2 2~14 

X2 f f(x,  u, u') dx > r ' s  (1 - -  fl3)2 f lx~ - -  o~x? / 
\1"3 / 9 9 Xll3 

o  xp_ 

�9 /Xl \ 2 \14 

X 2 (1  -- - iX 1 / ~  / 1 " ' ' ' " "  ~ (3.27) 

1 

> [9v3 ( l  - -  fl3)2 X~( f l  - -  0~) ~+ ~-  ~ j  



Minimizers Need Not Satisfy Euler-Lagrange Equation 353 

Define v E ~r by 

Then 

v(x) = 

I 2 3 
x -~ 0 -<- x <- 13 rx2  

[ u(x), x2 <- x <- l .  

3 
#Tx2 1 1 

I(v) = f e(~x--r)2 dx + f f (x ,  u, u') dx 
0 .X2 

4 e  1 1 x ,  
= -~-fl'Zx~ -a t- l(u) -- f f ( x ,  u, u') dx. 

0 

Hence if (3.26), (3.27) hold then I(v) < I(u), a contradiction. [ ]  

Remark. Although MANI,~'S device, which he developed in connection with the 
Lavrentiev phenomenon, is used in the proof of Lemma 3.8, our minimization 
problem does not exhibit this phenomenon. In fact if u is a minimizer then by 

Theorem 3.7 we have [u(x)l < Cx ~ for x near zero. Thus if 

then 

u~(x)=lu(-~)6 f , O < ~ x < _ 6  

[ .(x), ~ <<- x <- 1, 
d 

lim f f ( x ,  ue, u'~) dx = 0 and so 
d ~ 0 +  0 

inf I(v) = I(u). 
vE w l , ~  r 

In order to identify the minimizer from among the various geometrically 
possible trajectories in the phase-plane we make use of the following lemma. 

Lemma3.9.  Let  uE d be a smooth solution of (3.5)on (0,1] with u ( x ) > 0 ,  
u'(x) > 0 for all xE (0, 1]. Let  (z(.), q(.)) be the corresponding solution of(3.15). 
Then 

3 
I(u) -= -- 3~p(ki-, q(0)), 

where ~v(z, q) ~- (q --  z) Fq -- F. 

Proof. From (3.11), (3.21) we have that 

d 
x - ]  F = --3 ~xx [x�89 x E (0, 1]. 
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By Proposition 3.6 (see the formula for ~0 in the proof of Theorem 3.7) 

exists and is finite. Therefore 

1 2 

Z(u) = f x -W F dx = --3~o(z(0), q(0)) 
0 

3 

= --3~p(k~-, q(0)). [ ]  

Since ~q(z, q) = (q -- z) Fqq and Fqq > 0, it follows from Lemma 3.9 that, 
of  all trajectories (z(-), q(.)) of (3.15) satisfying z(0) = k and lim (z(t), q(t)) = 

t ---> -- oo 
- - 3  - - 3  

(0, 0) or (k~, U2-) (a rest point), that corresponding to an absolute minimum 
3 3 

of I has either the greatest value of q(0) ~ k~- or the least value of q(0) =< k~-. 
So as to decide between these two possibilities it is convenient to restate Lemma 3.9 
in the following way. Define 

I'(z, q) = v/(z, q) + �89 / F q ( ~ ,  ~) d~. (3.28) 
0 

Then if us, u2 satisfy the hypotheses of Lemma 3.9 with corresponding solutions 
(z,(.), qt(.)), (z2('), q2(')) of (3.15), 

3 3 

I(Ul) -- I(u2) ---- --3[F(kT, ql(0)) - - / ' ( k ~ ,  q2(0))]. (3.29) 

Note that by (3.21) we have that along solutions of (3.20) 

d 
-~z if(z, q) = --�89 q) -- Fa(z, z)) 

= --(q --  z) M(z, q, e), (3.30) 

where M(z, q, e) > 0 for z, q > 0. As an application of this idea we prove the 
following proposition. 

We denote by (Zsm("), qsm(')) the smooth solution orbit, which by Proposition 
3.6 leaves the origin with slope 3 ;  this orbit is unique modulo adding an arbitrary 
constant to t, and we choose for convenience the normalization corresponding to 
the smooth solution u of (3.5) satisfying u(0) = 0, u'(0) = 1. 

Proposition 3.10. I f  Zsm(t ) -+ o~, q~m(t)---> o0 as t -+ oo then for  any k > 0 
there exists precisely one solution u o f  (3.5) belonging to C~176 1]) and satisfying 
the boundary conditions (3.2), and u is the unique minimizer o f  I in Jff. 

Proof. If  u is a smooth solution of (3.5) on [0, 1] satisfying (3.2) then u(x) > 0, 
u'(x) > 0 for all xC (0, 1]. Otherwise there would exist some Xo E (0, 1) with 
u'(xo) ---- 0, and hence u(x) ~ U(Xo) by uniqueness, a contradiction. Thus any 
such solution is represented by an appropriate portion of the smooth solution 

3 

orbit (Zsm('), q~m(')), and since this orbit cuts the line z = k-2- exactly, once the 
existence and uniqueness of u is assured. 
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It  remains to prove that I(u) ~ I(v) for every other v E ~ .  I f  this were false 
there would exist by Theorem 3.7 an absolute minimizer u~ o f / i n  d with Ux @ u, 
I(uO ~ I(u). Let (z~(.), q~(.)) be the corresponding solution of  (3.15); thus 

3 
z~ (0 )~k~- .  We know by Theorem 3.7 that we must have 0 < e ~ e o  and 

- -3  --3 
lim (Zl(t), q~( t ) )= (kT, k~-), and since P, is a sink we also have k - =  k2 if 

t-~-- oo 
0 ~ e ~ e0. Since the smooth solution orbit lies entirely above any such solution, 

3 
by our preceding discussion we know that q~(0) has the least value of ,7(0) <_-- k3- 

3 --3 --3 
of all solutions (z(.), q(.)) of  (3.15) with z(0) = k~, lim (z(t), q(t)) = (kT, kT). 

t-~,--- oo 
--3 

It  follows that ,Tt(t) ~ z~(t) ~ k-~ for all t E ( - -  o0, 0]. Let the smooth solution 
orbit have graph ,7 = ,Tsm(Z), Z ~ O. Then by (3.28)-(3.30) and the fact that 
~9q(.Z,q)>0 for q > z ,  

3 --3 --3 - -3  - -3  3 3 
/ ' (kT,  qt(0)) ~- F(k ~-, k ~-) < l~(k T, qsm(k2-)) <Z F(kT,  qsm(k2-)), 

and thus I(u) < I(uO, a contradiction. [ ]  

We give now an alternative proof  of  the assertion in Proposition 3.10 that the 
unique smooth solution u of (3.5) minimizes I, since it illustrates the various 
connections between the phase-plane diagram and the field theory of the calculus of  

variations. We note that uA(x)def A - ~  u(Ax) is a smooth solution of (3.5) for 
~uA(x) 
- -  -- AYu ' (Ax)  ~ O. Also, for any x > 0 we have any A > 0, and that ~A 

2 ~  3 ] 2  
• u(Ax) J ( A x )  T 

lim UA(X) = lim A 3x --  0 and lim ux(x) = lim x / - - /  
A-~o+ A-~o+ A x  ~ - ~  ~-~oo [ A x  J 

2 2 

= x ~- limzsm(t) ~- = cx~. Define uo(x) ~ 0. Then (Un}0_~A<oo is a field of  extre- 

mals that simply covers the region x > 0 ,  u ~ 0 .  Let vE~r  v @ u ,  with 

v(x) ~ 0 for all xC (0, 1] and v(x) <= Cx ~ as x - > 0 +  (we have already seen 
that any minimizer of  I has these properties). In order to handle the singularity 
of  the field at the origin define for 6 > 0. 

. ( x ) ,  

x - - 0  
v~(x) = u(~) + - - - 7 -  (v(2~) - u(6)), 

v(x), 

Then 

O_<_x<__6, 

6__<x__<2~, 

2 ~ x ~ 1 .  

1 

I(ve) --  I(u) = .[ I f (x ,  re(x), v'e(x)) - - f ( x ,  v~(x), p(x, v~(x))) 
0 

--  (v'e(x) -- p(x, vo(x))) fp(x, vo(x), p(x, ve(xl))] dx,  

where p(x, v) denotes the slope function of the field. Since the integrand on the 
right-hand side is positive by convexity, and since it can be verified that 
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2~ 

lim f f ( x ,  va, v'~) dx = O, it follows that  I(v~) --~ I(v) as 6 --~ 0 + ,  and we ob- 
#--~0+ 

tain by Fa tou ' s  Lemma that  

1 

I(v) - -  I(u) ~ f [ f (x ,  V(X), v'(x)) - -  f ( x ,  v(x), p(x,  v(x))) 
0 

- -  (v'(x) - -  p(x, v(x)), fp(x, v(x), p(x,  v(x)))] dx > O, 
as required. 

Theorem 3.11. There exists a number e* satisfying 0 < e* < el < eo such that 
3 3 

(i) i f  0 ~ e < e* then (Zsm(t), qsm(t)) -+ (kl 2, kl 2) as t ~ 0% 
3 3 

(ii) i f  e = e* then (Zsm(t), qsm(t)) -+ (/c~2 , k 2 )  as t--~ oo, and 

(iii) i f  e > e* then Zsm(t ) -+  0% qsm(t) -+  O0 as t ~ 00. 

Proof. We first show that  there exists a minimal number  e* with 0 < e* < ez 
such that  (iii) holds. I f  e > eo then Z~m(t)-+ 0% qsm(t)--~ Oo as t - +  oo by 

Proposi t ion 3.5. Thus suppose 0 < e ~ e0, and let k - =  k2(e) if 0 < e < eo, 

39 define /T = (z*)~ if e = eo (for 3" as in (3.6)), and set z =/~3.  For  y > ~0 
_2_Z 

vv(x) = k x  3. Then by direct calculation 

clef la__(3~l 4 ~ -14  . . . .  
J ( ~ ' )  - s ~ ,  ~ t ~ t v ~ )  - I ( v , ) )  

[ ,1, 13~,2 ] [ 2~,1, 
---- 32 [~i0y ~ 39 4y- -~3  + 1 2  + ~  - 3 4 y _ 3 3  

y l a  7F2 
+ +-6. 

28y - -  27 4), - -  3 

Therefore 

where a = 1.52378 . . . .  

20)'2 18] 

J(1.1) ----- a32 + bv + c, 

b = --2.44042 . . . .  c = .94934 . . . .  I t  now follows that  
J(1.1) is negative if 3_ < 3 < ~r+, where 1:_ = .66576 . . . .  3+ = .93578 . . . .  Since 

3" > 3_ it follows that  k-x ~ does not  minimize I if e > 0(3+) = .0019603 . . . .  
3 

Therefore if e > 0(~:+), there is some solution (z(.), q(.)) of(3.15) with z(0) = ~ ,  
__3 

q(0) :~ k 2 and lim (z(t), q(t)) = (0, 0) or  a rest point, and this clearly implies 
l---~" -- CO 

that  Zsrn(t ) ~ oo, qsm(t) ~ oo as t ~ ~ .  Define e* to be the least nonnegative 
number  such that  (iii) holds. Since el = 0 ( 3 1 ) =  .0024735 . . .  it follows that  
0 < e* ~ el, as claimed. 

We next prove that  e* > 0. I f  not  we would have Zsm(t ) --+ oo ,  qsm(t) ----> oo 
as t ~ oo for  every e > 0. By Proposi t ion 3.10 all minimizers o f  I in ~r would 
then be smooth  for  any k > 0. But by Lemma 3.8 this is false for  e > 0 suffi- 
ciently small. 
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For  the remainder  o f  the p roo f  it is convenient  to make the dependence on e 
explicit by writing Zsm(t) = Z~m(t, e), q~m(t) ----- qsm(t, e), and where appropriate  
qsm(z) = q,m(Z, e). Using the implicit function theorem it is easily shown that  

if Z~m(t, ~ ) =  ~ > 0, q~m(t', ~):4 = ~" then there exists a smooth  function t(e) 
defined for  e near ~ such that  Z~m(t(e), e) = z. Thus if z,~(t, e*) -+ oo as t -+ oo 
we also have zsm(t, e) --~ oo as t -*  oo for e near e*, contradicting the minimality 

3 3 

of  e*. Likewise, if (Z~m(t, e*), q~m(t, e*)) --~ (k'~(e*) ~,  k-l(e*) ~-) as t - +  oo then 
since e* < e 1 we have q~m(t,e*) < Z~m(t,e*) for some t; thus q~m(t',e) < 
Zsm(t', e) for  some e > e* and some t', a contradiction. There remains only one 

3 3 

possibility, tha t  (Z~m(t, e*), q~m(t, e*)) ---~ (k-2(e*) -2-, k-2(e*) ~-) as t --* cx~, which 
proves (ii). 

We next remark  that for  any e > 0 the slope of  the vector field on the curve 
14 

q = 1-'~z equals, by (3.20), 

142 
H z, , e  = 3 9 z 2 ( 1 4 _  13z2 ) ,  

14 
which is positive if 0 < z =< 1. In particular qsm(Z, e*) < ~ for all z E 

3 8 H  
(0, k'2(8")2-). An easy computa t ion  also shows that  ~ (z, q, e) > 0 for 

14 
0 < z <  1, z , < q <  13--7' e > 0 .  Suppose that  0 < e < e *  but  that 

3 3 

(7.sm(t, e), qsm(t, e)) ++ (kl(e) 2, kl(e) 2) as t --~o~. Since k2(e) is decreasing 
3 3 

in e we must then have qsm(k2(e*)2, e) > k2(e*) ~. Choose any qo with 
3 3 

qsm(k2(e*) T, e) > qo > k2(e*) ~- and consider the solution (z(t,e), q(t, e)) o f  
3 

(3.15) satisfying z(0, e) = k-2(e*) ~-, q(0, e) ----- qo. For  t < 0 this solution curve 
cannot  cross the (Zsm(', e), q~m(', e)) orbit and hence by Proposi t ion 3.6 it crosses 

_ 3 

q = z. The re fo re  there exists ~ (0, k2(e*) ~) with q(~, e) = qsm(Z, e*), (~r, e) 

> dq~m (~, e*), where q = q(z, e) denotes the graph of  (z(., e), q(', e)). But this 
= dz 
contradicts the monotonici ty  of  H(~, q~m(~r, e), "). Therefore  (i) holds. [ ]  

Remarks. The numerical evidence is that  e * =  .00173 . . . .  Tha t  (Zsm(t), q~m(t))-+ 
3 3 

(kl2(e),kt2(e)) as t - ->oo for  e ~> 0 sufficiently small can also be proved by 
trapping the smooth  solution orbit  in an appropria te  tr iangular invariant region, 
but  the calculations are ra ther  tedious. 

For  0 < e < e* we denote  by (l(e)  the maximum value of  -Tsm(t), t E R,  
which is achieved when the smooth  solution orbit  cuts q = z, z > 0, for  the 
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3 

first time. It follows immediately from Theorem 3.11 that if 0 ~ e < e*, k ~ 
~l(e) (or if e = e* and k ~ k'2(e)) then there is no smooth solution to the Diri- 
chlet problem consisting in the Euler-Lagrange equation (3.5) and the boundary 
conditions (3.2). 

In the following theorem we identify the absolute minimizer of I in ~/ for 
every k > 0 ,  e ~ - 0 .  If  0 < e < e t  we denote by ~o(e) the minimum value of  
z on the unstable manifold of P2, which is achieved when that part of  the unstable 
manifold in q ~ z  cuts q = z  for the first time. 

Theorem 3.12 

(a) Let 0 < e < e*. There exists' a number ~(e) with ~o(e) < ~(e) < ~I(E) such 
that 

(i) i f  0 < k < ~(e)~ there is exactly one u that minimizes I in ~ and u is the 
unique smooth solution o f  (3.5) on [0, 1] satisfying (3.2), 

(ii) /f  k = ~(e):} there are exactly two functions u~, u2 that minimize I in d ;  
ul is the unique smooth solution o f  (3.5) on [0, 1] satisfying (3.2), and Uz(X) 
"~ k2(e) x z3 as x--> O+ and corresponds to that connected part o f  the 

3 

unstable manifold o f  Pz defined by q <= z, ~(e) <-- z <-- k ~  (e), 

(iii) if  k > ~(e):} there is exactly one u that minimizes I in d ;  u(x) ~ kz(e) x ~} 
as x -+ O+ and corresponds to that part o f  the unstable manifold o f  P2 

3 3 3 

defined by q ~ z, k -f ~-- z ~-- k2(e)  i f  k ~ k2(e) and by q ~ z, -kf(e) 
3 2 

z ~ k~- ~f k ~ k-2(e), so that in particular if  k = k-2(e) then u(x) = k'2(e) x~-. 

(b) Let e = e*. Then there is exactly one u that minimizes I in d .  I f  k ~ k-2(e*) 
then u is the unique smooth solution of(3.5) on [0, 1] satisfying (3.2), and, i f  k ~= 

/~2(e*), u ( x ) ~  k'2(e*) x~- as x--> O+ and corresponds to that connected part o f  the 
_ 3  3 

unstable maniJbld o f  P2 defined by q ~ z, k ~  (e) ~-- z ~ k ~-. In particular i f  

k = k2(e*) then u(x) = k-z(e*) x ~. 

(c) Let e > e*. Then there is exactly one u that minimizes I in d and u is the 
unique smooth solution o f  (3.5) on [0, 1] satisfying (3.2). 

Proof. Part (c) follows immediately from Theorem 3.11 (iii) and Proposition 3.10. 
If  0 - < e < e *  and kE(0,~o(e)  az) L/(~l(e) ~-,cx~) or if e----e* and kE 
(0, ~-o(e*)~-) L/[k2(e*), ~ )  then the solution specified in the theorem is the only 
geometrically possible one, and perforce by Theorem 3.7 is the unique minimizer. 
Suppose 0 ~ e ~ e* and kE [~'o(e)~, ~1(e)2]. By Lemma 3.9 and the sub- 
sequent discussion there are only two possibilities for a minimizer, a smooth 
solution u = u~(x, k) represented by part of the smooth solution orbit q = qsm(Z), 

3 
0 --~ z ~ k~-, q ~ z and a singular solution u ~ u2(x, k) represented by a part 

3 3 
of the unstable manifold of P2 which we denote by q = qu,(Z), k~  _~ z _~ ~'2(e)~-, 



Minimizers Need Not Satisfy Euler-Lagrange Equation 359 

q ~< z. Define 

R(k) ---- I(u,(', k)) -- I(u2(', k)). 

By Lemma 3.9 we have 

R(~o(e) 2-) = --30P(~'o(e), qsm(~o(e))) -- V(;'o(e), ~o(e)))< 0, 

and 

R(~,(e) ~) = --3(~(~,(e), ~l(e)) --/fl(~i(e), qun(~l(e)))) > 0. 

Also, by (3.29), (3.30), 

dR 
- ~  (k) > 0 for ~o(e){ --< k <-- (~(e) 3z. 

Hence R(r ~) = 0 for a unique r (Co(e), ~'l(e)) and part (a) follows. 

In the case e = e*, k E [~o(e*)~, k-2(e*)] we define R(k) as above and note 
dR 

that R(~o(e* )~)<0 ,  lim R ( k ) = 0 ,  ~-~- (k)>0 for kE[~o(e*)~, k'2(e*)). 
k-+k-2(~*)- 

Hence part (b) holds. [ ]  

The results of Theorems 3.11, 3.22 are summarized pictorially in Figure 3.1. 
Note that whenever the minimizer is singular at the origin neither (IEL) nor 
(IDBR) holds, since then both xlim+fp(x, u(x), u'(x)) and lim [u'(x)fp(x, u(x), x~0+ 
u'(x)) - - f ( x ,  u(x), u'(x))] are + o~. However, in all cases (WEL) and (WDBR) 

are satisfied. Note also that if 0 < e < eo then u(x) = k l (e )x  ~- is never a 
minimizer. It is interesting to observe from the figure how for fixed e the number 
of solutions uE C~((0, 1]) of (3.5) satisfying u(0) = 0, u(1) ---- k varies with k. 
For  example, if 0 < e < e~ then as k approaches k~ the number of such solutions 

tends to infinity. An alternative proof  that for k = k-2(e) and e > 0 sufficiently 

small u(x) = k2(e) x -~- minimizes I in d has been given by CLARKE & VIXIER 
[14]. 

We conclude our discussion of the phase portrait with a few remarks concerning 
the behavior of the branch of the unstable manifold of P2 that near P2 lies in 
q < z. Since, by Lemma 3.8, if k > 0 is arbitrary but fixed then any minimizer 
of I in d is singular provided e > 0 is sufficiently small, it follows from Theo- 
rem 3.12 that ~ l (e ) -~0  as e - ~ 0 .  Hence also ~o(e)-~0 as e - + 0 ;  this is 
consistent with the fact that the slope of the unstable manifold at P2 tends to 
infinity as e--> 0. As t -~  ~ the above branch of the unstable manifold tends 

- -  3 - -  3 - -  3 

to (kl(e)-E, kl(e)~-); in fact it cannot tend to (kz(e){, kz(e)~-) by Proposi- 
tion 3.4, and it cannot tend to infinity because the upper branch of the stable 
manifold at P2 would then have nowhere to go as t--> -- o~. For 0 < e < eo 
and eo -- e very small an application of center manifold theory (see, for example, 
CARR [I0]) shows that the connecting orbit from P2 to P1 is almost parallel to 
the line q = z .  
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w 4. The case with no x-dependence 

In this section we consider the problem of minimizing 

in 

! 

I ( u ) =  f f ( u ( x ) ,  u ' (x) )dx  (4.1) 
--I 

= (u E Wl'l( - 1, I) : u(-- 1) = k,,  u(1) = k2}, (4.2) 

where k~, k 2 E R. Concerning the integrand f = f(u, p) we will require that 

f E  Ce~ Lp > 0, 
(4.3) 

Ipl <=f(u,p) < const. (1 + p2), (u,p) ER2.  

We will show that an absolute minimizer Uo of I over ~r need not satisfy (WEL) 
or (IEL), although by Corollary 2.5 Uo must satisfy (IDBR). In our examples Uo 
is constructed directly, though as we remarked in Section 2, for the functions f 
appearing below the existence of Uo also follows from known extensions of  Theo- 
rem 2.1. 

We first give an example where the Tonelli set E = {Xo} is a singleton. 

Theorem 4.1. There exist an f satisfying (4.3) and 

f(u, p) 
- - - ~  as ]p]---~c,~ for each u~=O (4.4) 

Ipl 

and a number ko > 0 such that whenever --k~, k 2 > ko then (4.1), (4.2) has a 
unique global minimizer Uo, but E = {xo} for some Xo = xo(kl, kz) E (--  1, 1), 
and 

Z(uo, ug) L L ( -  I, I), 

so that neither (WEL) nor (IEL) is satisfied. 

Remark. The theorem shows that if (2.13) fails for just one value of  u then the con- 
clusion of  Corollary 2.12 need not hold. 

Proof  of Theorem 4.1. The proof  splits naturally into two parts. Part I is devoted 
to the construction of  a strictly monotone function gE CI(R) satisfying 

(gl) g E CI(R) #~ C~(R \ {0}), 

(g2) g"  r L~(--6, ~) for any ~ > 0, 

and to the solution of the minimization problem on d for a certain functional J 
involving g. Part II then presents the construction of an integrand f satisfying 
(4.3), (4.4) such that the corresponding functional I has the same global minimizer 
as J over ~ .  



h(0)  = 0,  

h(s) = 1 

For instance, 
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Par t  L Select an even function h E C(R)/5 C~~ \ {0}) such that 

O <-- h <-- 1, h(s) > O for s=4=0, / 
(4.5) I for Is I > 1/2, h'~_LI(--D,O) for any d > O .  

h(s) = sZ(2 § sin (s-Z)) ~(s) + (1 -- ~)(s)), s E R ,  

with ~ E C ~ an even function satisfying 

0 = < ~  1, ~ / ( s )=0  for I s l ~  1/2, , ] ( s ) =  1 for Is I ~  1/4, 

defines such a function. 
Now specify g E CI(R) by 

g' = h, g(0) = 0, (4.6) 

and note that g is odd, strictly monotone, and satisfies (gl), (g2). Put 

1 

J(u)  = f [g ' (u(x))  u'(x)] 2 dx ,  u E ~r (4.7) 
--1 

Since g is C 1 it readily follows that 

go uE W~'I(--1, 1) for all uE wl ' l(--1,  1). (4.8) 

Hence given I E ~ one can decompose J as follows: 

1 

J(u)  = f [ (g ' (u(x))  u ' (x)  - 1) 5 + 2lg ' (u(x) )  u ' (x)  - -  12] d x  
- - I  

1 

= f (g ' (u(x))  u ' (x)  - -  I) 2 d x  + 21(g(k2) - -  g ( k , ) )  - -  21 z,  (4.9) 
--1 

for all u E d .  Thus it is clear that if u E d  satisfies for some 1 

g ' (u (x ) )  u ' (x)  = l, a.e. xE [--1, 1], (4.10) 

then u is a global minimizer of J in ~' .  By (4.8) this last condition requires that 

g(u(x) )  = l x  + m,  x E  [--1, 1], (4.11) 

and the end conditions on u imply that 

1 = �89 - -  g ( k O ) ,  m = �89  + g(k2) ) .  (4.12) 

Now since g is strictly increasing and has range R, (4.11), (4.12) determine a unique 
strictly increasing function uo E C([--1, 1]). Moreover, by the inverse function 

( ' ) theorem applied to - T ( g -  m) it follows that 

Uo E C([--1, 1])/5 C~ 1] \ {Xo}), (4.13) 



362 J.M. BALL & V. J. MIZEL 

where xo is the unique point such that Uo(Xo) = O. Finally, by (4.12) it follows 
that 

Uo(--1) = k,,  Uo(1) = k2. 

Therefore if the function Uo defined by (4.11), (4.12) is absolutely continuous, 
then Uo belongs to d and provides a (unique) global minimizer for J. The absolute 
continuity of Uo is now verified by making use of the monotonicity of Uo and (4.13): 

1 Xo 1 

f I.o(x)l dx = f Uo(X)dx + f Uo(X)dx = (Uo(Xo) --  Uo(--1)) + (Uo(1) --  Uo(Xo)) 
--1 --1 .'Co 

Part II. Write 

= k2 -- kl < e,z. 

f~  p) = (g'(u) p)2, (u, p) E R z , 

so that 

f ~  if and only if u=4=O. 

Using (4.11)-(4.13) and (gl), we have 

0 f;(UO, "0) = 2(g'(uo) "0) g"("O) ~0' 

= (g(k2) -- g(k,)) g"(Uo) u'o E COO([ - 1 ,  11 \ {Xo}). 

Therefore, by (g2), if - - l < a < x o < b <  1 then 

0 u ' If~ u0) [ dx = lim If,,'( o, uo)[ dx + [f~ Uo)l dx 
a h~O+ xo@h 

[Uo~o--h) uo(b) ] 

- " Ig"(u) l d u +  f Ig"(u) l du -- (g(kz) -- g(kO)hlim+ Luo(a) ,o(xo+h) 

so that 
o L~oc(--1, 1) (4.14) f.~(uo, uo) r 

A function f 6  C~(R a) satisfying (4.3) as well as 

f ( u , p )  >=f~ + p, (u,p) E R  a, [ 
(4.15) / f (u ,  p) = f~ p) + p when g'(u) p >= l --  6, 

where I is given by (4.12) and 6 > 0 ,  is constructed below. Obviously fo r f sa t i s -  
fying (4.15) and for Uo as in (4.11), (4.12), 

1 1 
l(uo) ae/ f f(uo, uo) dx = f [f~ Uo) + Uo] dx = J(uo) + k 2 -- kl ,  (4.16) 

1 --1 

so that uo is also the unique global minimizer for I over a~r Moreover, by (4.14), 
(4.15), 

L(Uo, Uo) o -=f](uo, Uo) ~ L~oc(-- 1, 1). (4.17) 
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Also, since (4.10) implies that 

l 
U'o(X) -- g'(uo(X))--> oo as x--~ Xo, 

it follows by TONELLI'S partial regularity theorem (Theorem 2.7) that 

uo(xo) = ~ ,  

so that the Tonelli set of Uo is the singleton E = (Xo), completing the conclusions 
of the theorem. 

To construct f satisfying (4.3) and (4.15) we first construct an appropriate 
function e E C~([0, l] •  such that the formula 

d e f  t 
f(u, p) = e((g (u)) 2, p) + p (4.18) 

yields a function f with the desired properties. Let o E C~(R) be a nonnegative 
o o  

even function with supp 0 C (--1,  1), f O(p) dp = 1, and put 

Thus r ~- e -1 r satisfies 

o o  

f p2~(p) dp. 
- -  o o  

o o  o o  

s u p p e ~ ( - - e , e ) ,  f e,(p) d p =  1, f p2e~(p)dp=e2o~. (4.19) 
- - o o  - - c o  

Now let 0 C C'(R) F~ C~176 \ (0)) be given by 

2p - p +  1, p ~ 0  

O(p)= (P+ 1) -1 , p > 0 .  
(4.20) 

Note that 0 is strictly convex, with O"(p) > 0 for p =k 0. We claim that for e > 0 
small and b E (0, 1] the graphs of 0 and of v(p) = b(p 2 -- o~e2), p E R, inter- 
sect at a unique point Pb E [1, ~ ) .  The existence and uniqueness of the intersec- 
tion follows from the strict monotonicity, in opposing senses, of 0 and r on 0 
p < e~. The condition for intersection: 

implies when b = 1 that 

(p + 1) (p2 _ o~e2) = b - l ,  (4.21) 

(p~ + l ) p  2 > 1, 

so that Pl > -~. Since the left-hand side of (4.21) is strictly increasing on �89 ~ p < oo 
when ~e 2 < 1, it follows that then Pb E [1/2, oo) as required. Note also that 
(4.21) yields the asymptotic estimate 

pb,'~b-~ for b~.~0. (4.22) 
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By the inverse function theorem Po is C ~ on (0, I]. Therefore on defining 

e(b, p) ----- (r �9 max (0, v}) (p) 

Pb o0 

= f e,(p - q) O(q) dq + f q,(p -- q) ~,(q) dq, (4.23) 
--oo Pb 

one obtains e as the sum of two functions in C~ 1]•  so that 
e s C~((0, l ] • ~'0. Moreover, by (4.19), if p > Pb + e then 

e(b, p)  = b f q,(q) [(t9 --  q)Z _ o~e2] dq 
- - 0 0  

= b ? o,(q) [q2 _ 2pq + p2 _ 0r dq = bp 2, (4.24) 
- - 0 0  

while if p < p b - - e  then 

OO 

derbY(p) (4.25) e(b,p) -~. f O,(p --  q) O(q) dq -~ . 
- - 0 0  

It is easily verified that ~0 has the following properties: 

~ 0 > 0 ;  q~(p)-----2p 2 - p +  l+20~e  2 f o r p ~ - - e ,  | 
(4.26) / q~(p) ~ 0(p + e) = (p + e + 1) -1 for p ~ --e. 

Thus, since by (4.23) 

e(b, p)  >= max {(o~ * 0) (p), (~, * r) (p)} = max {q0(p), bp2}, p E R ,  (4.27) 

it follows from (4.26) that for e > 0 sufficiently small 

e ( b , p ) + p > = 9 ( p ) + p > = l p [ ,  (b,p) E (0, I]•  (4.28) 

Now set 

e(0, p) = qg(p), p E R ,  (4.29) 

and define f by (4.18). It is immediate that f E  C~~ \ {0})• Furthermore, 
since for any interval --A ~ p ~ A there exists by (4.22) a number Oa > 0 such 
that 

e(g'(u) 2, p)  + p ~- cp(p) + p, Ig'(u) l < OA, p E [--.4, .4], 

it is seen that actually f E  C ~~ as required. The proofthatfsat isf ies (4.3) is straight- 
forward: the property .fpp :> 0 follows from the facts that O " ( p ) >  0 for all 
p =]= 0, v"(p) :> 0 if bE (0, 1 ] , pER,  while the growth condition follows from 
(4.23), (4.26) and (4.28). The growth condition (4.4) is a consequence of (4.24). 
The inequality in (4.15) results directly from (4.27), (4.29). To establish the equa- 
tion in (4.15) we choose ko ----- 3/2, so that by (4.5), (4.6) there exists ~ > 0 such 
that 

t = �89 - g(~c,)) > g(ko) > 1 + 2~ 
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whenever - -kl ,  k2 > ko. Next, we note that by (4.21) 

p3 <= p~ + Pb--  = b - X + ~  - ,  

so that for sufficiently small e > 0 we have 

l -- b > b~pb + eb �89 for all b E (0, 1]. 

Now suppose that b�89 >= l -- ~ for some b E (0, 1], p E R. 

P >= b-�89 l -  ~) > pb + e, 

so that e(b, p) = bp 2 by (4.24). This completes the proof. 

(4.30) 

By (4.30) we have 

[] 

Remarks. 1. If  the construction in Theorem 4.1 is repeated with a function 
h 'E L2(--1, 1) then it is easily verified that the minimizer Uo does satisfy (IEL), 
(WEL) even though u'(xo) ---- co. 

2. Let 9 E C~(-- 1, 1) be nonzero in a neighborhood of x0. Then for any t @ 0 
there exist constants c(t) > 0, o~(t) > 0, such that 

xo + a(t) 

I(uo + t~o) >= c(t) f (U'o(X)) 2 dx. 
xo -c,(t) 

Since 
xo+ae) uo(xo+a(t)) du 

f f lh(u), xu-a(t) uo(xo-~(t)) 

1 
it follows that if -h-- C Ll(--b,  b), for any b < 0, which is clearly consistent with 

(4.5), then I(uo + tg) = + co. 

We now give an example where the Tonelli set E is any prescribed closed Le- 
besgue null set; this shows that the Tonelli partial regularity theorem (Theorem 
2.7) is in a certain sense optimal. 

Theorem 4,2. Given any closed subset E C [ -  1, 1 ] of  measure zero, there exists 
a function f = fE  satisfying (4.3) and 

f(u,p) 
Ipl as Ipl oo for all u ~ F ,  (4.4)' 

with F a Lebesgue null set, such that for certain scalars kl ,  kz E R,  there variational 
problem (4.1), (4.2) has a unique global minimizer Uo, and uo is strictly increasing 
with 

Uo(X) = + oo if and only if x E E. 

Furthermore 

f (uo, uo) r L L ( -  l, ]), 
so that neither (WEL) nor (IEL) is satisfied. 



366 J.M. BALL & V. J. MIZEL 

Proof. Again the proof  splits naturally into two parts, with Part II identical with 
the argument for Part II in Theorem 4.1. Hence only Part I is given here. 

Part I. The construction begins with the global minimizer Uo and then yields a 
function g E Ca(R) satisfying 

(gl)' g E Ca(R)A C~(R \ F), with F ( R  a compact Lebesgue null set, 

(g2)' g" r Ll(a, b) for any (a, b) such that F A  (a, b) 4= 0. 

Let k E C(R) A C~(0, l) satisfy 

k ( t ) = O  for tE(- -cx~,0] ,  k ( t ) = 2  for t C [ 1 , ~ ) ,  

k'(t) > 1 for t E (0, 1), lim k'(t) = lim k'(t) = + oo. (4.31) 
t ~,-0 + t -* ' l  - -  

We take the harder case whert E is an infinite set such that neither --1 nor 1 
belongs to E. The modifications necessary when E is finite and/or one or both 
endpoints belong to E are easily made. Let x_ = min x, x+ =- max x, so that 

xEE xEE 

- - l < x _ < x + <  1. Pick c < - - 1 ,  d >  1. Then 

oo 

(e, d ) \  E =  ~_J 0j, 
j=l 

where the 0 i = (aj, bj), j > l, are disjoint and open, with 

(al, b,) = (e, x_), (a2, b2) = (x+, d). 

Clearly 

[0i] = d -  e, (4.32) 
j=l 

where Iojl = b j -  aj. It follows that 

oo 
d e f  

j = l  

for some increasing continuous function 

q9(0~ 1, t > 0 ;  
t 

Define rio : [e, d] -+ R by 

(4.33) 

q~ : (0, cx~) -+ (0, c~) satisfying 

lim ~0(t) = o~. (4.34) 
t~0+ t 

Uo(X) =- ~,  ~0(]Ojl)k (x  -- aj ~ (4.35) 
j=t \ b y -  aft" 

By (4.31), (4.33) it follows that this series is uniformly convergent on R. Moreover, 
for x E Oj, 

(x, ---- a,~ +~(10jl)k {x -- a i i ?to(X) Y ~ ~(lr k ~b, - -  a,1 ~bj - a f t  

x - -  a l l  
= ~o(aj) § ~(1r k \ b j  - -  O j / '  (4.36) 
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so that  
I ~o(~i) [ = lim ~o(X) -- ~o(aj) = 2~(I~j[). (4.37) 

x ~b~ 

It follows from (4.36), (4.37) that  Uo is strictly increasing on [c, d], and Uo E 
C~([c, d] \ E) with 

~o(C) = 0, ~0(d) = 2o~. (4.38) 
Furthermore,  

SO 

f l o(x)l f  (l sl) k, ax 

= ~ 2~(10jl ) = 2~ = rio(d) --  rio(c) < oo,  
]=1 

Uo E Wm((c, d) \ E), and since Uo E C([c, d]) it follows ([29, p. 224]) that 

?to E wl'~(c, d). (4.39) 

By (4.34), (4.42), 

0 < sup g'(u) -+ 0 as j - +  oo,  
uEuo((PS)f'~[kt,k2] 

so that  g' can be extended to a function g* E C([kl,  k2]) 

clef [0 '  uE F,  
g*(u) 

[ g'(u), u E [kl, k2] \ F ,  

by setting 

(4.42) 

(4.43) 

(4.44) 

_.Jim g'(u) = O, j @ 1, 
u Uo(as)+ 

lim g'(u) = O, j + 2, 

bs--as 
0 < g'(u) < ~ ( b j  - -  aj) for u E ff0(d)j)/~ [k~, k2], j ~ 1. 

By (4.31), (4.40) 

Now define Uo to be the restriction of  rio to [--1,  1 ] and let 

kl  = Uo(--1), k2 = uo(l),  

so that  0 < k l < k 2 < 2 o ~ .  Define g : [ k l ,  k2]--+[--1,1] by g = u o  1. It 
follows f rom (4.36) that  

g(u) = (bj -- ai) k - '  ( u - u~ ) q~(lOj[) + a s for uE fio(r s) A [k,, k2] , (4.40) 

where fi0(Os) = (fi0(as), ~o(bs)), j ~ 1. Consequently g E C~(uo(tPs) f~ [k~, k2]) 
and 

bj --  aj (u --  ffo(aj) 
g'(u) - -  q~(bj --  as) (k- l ) '  \-~(-~j -- aj) / ' u E ~to(r f~ [kl, k2]. (4.41) 
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oo 
where Faef[kl, k2]--k,  JT~o(Oj)=uo(E). To show that gEC([k , ,k2])A 

j = l  
C~176 k2] \ F) is in Cl([kl, k2]) note that 

k2 
f Ig'(u)l du= ~ f g'(u)du 

kl j = l  ~)jA[kl,k,] 

: ~ [g(uo(bj)) -- g(uo(aj))] + g(uo(bl)) -- g(uo(--1)) 
j=3 

+ g(uo(1)) -- g(uo(aa)) 

= ~ ( b  i - a j ) - ( d - c ) + 2  
j=l  

: 2 : g(kz) -- g(ka) < ~ ,  

where we have used the fact that, by (4.36)-(4.38), F has measure zero. Hence 
gE Wla((k~, k2) \ F) and thus by the continuity of g on [ka, kz] ([29, p. 224]) 
gC Wl"I(ka, k2). Therefore, for each uE [kl, k2], 

u / 
g(u) -- g(k,) = f g'O') dy -~ g*(y) dy. 

kl kt 

Since g* ~ C([k~, k2]) we deduce that gE C~([k~, k2]). Moreover, by (4.34), 
(4.42) g can be extended to a function in CI(R) f~ C~(R \ F) satisfying 

Thus 
o < g'(u) <= 1, u ~ R \ [kl, k2]. 

O ~ g ' ( u ) ~  1, uER,  

g'(u) = 0 if and only if u C F. 

Now g = u~ -l on [kl, ka] implies that 

g'(uo(x)) Uo(X) = 1 a.e. xE  [--1, 1]. 

It follows as in (4.7)-(4.9) that Uo is a (unique) global minimizer for J in d .  
It remains only to repeat the proof  given in Part II of the argument of Theo- 

rem 4.1 in order to construct an fsat isfying (4.3), (4.15) relative to f~ 
(g'(u) p)2, (u, p) E R z. [ ]  

w 5. A case exhibiting the Lavrentiev phenomenon 

In this section we consider the problem of minimizing 

1 
I(u) = f [(X 4 - -  U6) 2 l Ut Is _~_ ~(Ur dx  

- I  
over 

~1 = (uE W1'I(--1, 1 ) :u( - -1)  = kl,  u(l) = k2}, 

(5.1) 
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where s > 3, e > 0 and kl, k2 ~ R. Note that the integrand 

f ( x ,  u,p) = (x 4 --  u6) 2 [pl s + ep 2 (5.2) 

is C a, nonnegative, and satisfies fpp ~ 2e > 0; furthermore, in the case when 
s = 2m is an even integer f is a polynomial. 

By Theorem 2.1 there exists at least one absolute minimizer Uo of I in ~r 
Any minimizer Uo of I in sr is either nondecreasing or nonincreasing, since other- 
wise the value of I could be reduced by making Uo constant on some interval. 
(In fact, if  kl  =4= k2 then Uo is strictly increasing or decreasing, since if Uo were 
constant on some interval then, as constants satisfy (EL), by Theorem 2.7 we would 
have Uo constant everywhere.) 

Our first aim is to prove the following theorem. (In the statement of the theo- 
rem and below we abbreviate Wl'V(--1, 1) by W 1'p where convenient.) 

Theorem 5.1. Let s ~= 27. Let - - l  <= kl < 0 < k 2 ~ 1 
there is an ex = e~(o~, kl, k2, s) > 0 such that when 0 < e < ea 
Uo o f  I in d satisfies 

(i) the Tonelli set for  Uo is E = {0}, 

(ii) Uo E W I'p for  all p such that 1 <= p < 3, and 

no(x),~ I xl ~ sign x 

- [x l~  < go(x) < ~k~ Ixl ~ 
and 

~k2x z3 < Uo(X) < x~ 

(iii) uo satisfies none o f  (WEL), (WDBR), (IEL), (IDBR), 

(iv) for  any q, 3 <= q ~= c o, 

inf l(v) > inf I(v) = l(uo) (the Lavrentiev phenomenon). 
veal vE W I ,q~,.cJ 

and 0 < o~ < 1. Then 
each minimizer 

as x --.'- 0, (5.3) 

for --1 < x < 0, (5.4) 

for 0 < x < 1, (5.5) 

The proof  of  Theorem 5.1 depends on some lemmas. 

Lemma5.2.  Let 0 <  o~ < / 3  < 1, 0 < k ~ 1, ~ >= ] and s > 9. Let vE WI'1(0, 1) 
satisfy 

o, k x  ~ <= v(x) <=/3kx ~ for xl --< x --< x2, 

v(xO = od, xL v(x9 = / 3 k x L  

where O <= x~ < x2 ~ l. Then 

X2 

f (x 4 _ v6)2 l v, [s dx ~ (1 -- (ilk)6) 20*-'M(fl --  0r ~ x(2 r-')s+9 
x l  

s - - 9  
where 0 = 

s - - " l "  



370 J.M. BALL & V. J. MIZEL 

Proof (cf. MANTA [25]). We have 

x2 x ! 2 (  /)6\2 
- - ~  X 8 f ( x4- -v6)21v 'J 'dx= 1 x ' )  Iv ' l 'dx 

Xl  

x2  

> (1 - (~k)~) ~ f x~l~ ' F ~x. 
x l  

Setting y = x ~ ~(x ~ = v(x), we obtain by Jensen's inequality 

~, 4 d~ I f x lv, l  x=os-,f dy 
X l  

_> 0~_ ~ [v(x~) - v(xO] ~ 
- -  [X~ - -  X~] s - I  

[; - (x ,y '  1' 
= 0 ~ ik, ,x~,_l~+9 \ x21 .1  

[l - -  \"~2 / J 

>= OS-lkS(~ _ oO s x~r  

and the result follows. [ ]  

Lemma 5.3. Let kl ,  k2 be arbitrary, s > 3,  and let uo minimize I in ~r Then either 
the Tonelli set E of  Uo is empty, or E = {0} and Uo(0) = 0. 

Proof. Suppose first that xo E [-- l, I ] with uo(xo) 6 @ x 4. Then there is a non- 
trivial interval [c, d] C [ - 1 , 1 ]  containing Xo and such that 

Uo(X) 6 =1= x 4, x E [c, d]. (5.6) 

Now Uo minimizer the integral 

d 
J(v) -- f [(x 4 - v6) = Iv'l s + ,(v ')  =1 dx 

c 
in 

= {v E Wl"(c, d) : v(c) = Uo(C), v(d) = uo(d)}. 

But by (5.6), 

[fu(x, Uo(X), Uo(X))[ <= const, f ( x ,  Uo(X), Uo(X)), x E [c, d], 
' 1 and therefore, since J(uo) < oo, fu(., Uo('), Uo(')) E L (c, d). By Theorem 2.10, 

Uo is smooth in [c, d], and in particular Xo E E. 
It remains to consider the possibility that Xo E E with U(Xo)6= xg =~ 0. 

Suppose k2 ~ kl ; the case k2 ~ kl is treated similarly. Then u is nondecreasing 

~ and so we must have Uo(Xo)= + c o .  Suppose that X o > 0  and U(Xo)=X ; 

the other three cases Xo > 0, u(xo) = --x]o and Xo < 0, u(xo) = -4- IXol ~ 
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are treated similarly. Then there exists x~ E (0, Xo) such that 0 < u(x) < x za 
for all x E (x~, Xo). By the preceding argument Uo is a C 3 (in fact C ~) solution of 
the Euler-Lagrange equation 

d 
[S(X 4 - -  U6)2 ]Ut I'-~ sign u' + 2eu'] = --12uS(x 4 -- u6) lu ' [s (5.7) 

in (x,, Xo). Since the right-hand side of (5.7) is negative in (xl, Xo) this contradicts 
~o(Xo) = + ~ .  [ ]  

Lemma 5.4. Let kl ,  k2 be arbitrary, s > 3 and let Uo minimize I in ~cJ. Suppose 

that 0 ~ xl < x2 ~ 1 and that Uo(Xl) = x~-, Uo(X2) --- x~. Then Uo(X) <= x ] 
for all x E [xl, x2]. 

Proof. Suppose first that 

Then 

~r(Uo) - -  I(~) = 

Uo(X) > x ~ for all x E (xl, x:). Define 

Uo(X) x r [x~, x~] 

~ ( x ) =  x~ xE [x. x2]. 

X2 

f [(x 4 - Uo6) 21 u;l" + ~(uoY - ~(~'):] dx 
X l  

= f ' ( x , -  ug)21 u;i , ax + + v,(x)) 2 -  ( x-b2]dx, 
X I  X I  

where v = Uo -- ~. Note that v(xt) = v(xz) = O, v(x) > 0 for all xE (x~, x2). 
The first integral on the right-hand side is positive, and for the second integral 
we obtain, using integration by parts, 

X2 X2 

f 4x-~ v' dx + f (v') ~ ax 
x l  X l  

x a  4 x a  

= ( % - t  v)lg:+ + f ~x--~v dx + f (v') 2 dx > O. 
X l  X l  

This contradicts the minimum property for Uo. (When xl = 0 the validity of the 
integration by parts stems from the fact that finiteness of I(uo) ensures that 

x 

v' EL2(--1, 1), so that v ( x ) =  f v ' (y )dy  is o(x �89 as x-~0-1-.) 
0 

More generally, if Uo(X) > x ]  for any ~ E (xl, Xz) then there is an interval 

(xl, x2) C (Xl, Xz) such that Uo(~l) = x~, Uo(X2) = x~ and Uo(X) > x]- 
for all x E (~j, x2). Applying the preceding argument to (Xl, ~2) gives a contra- 
diction. [ ]  

P r o o f  o f  Theorem 5.1. Fix o~, fl with 0 < o~ < fl < 1. Let v E ~r and suppose for 
the moment that 

v(~) =< c~k2x-] for some ~C- (0, 1]. (5.8) 
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Then there exists an interval [x~, x2] Q (0, 1) such that 

06k2 x ]  < v(x)  < flk2x~ , x E (Xl ,  x2) 

= = 

By Lemma 5.2, with k = kz and 7 = 2/3, 

I(v) :> (1 - -  ( i lk2)6) 2 0 s - l k ~ ( f l  - -  06) s x 2 ~(s-.27). 

Since s ~ 27, (5.10) implies that 

X(0 > (1 -- @k96) ~ 0=-q4~ -- ~)=. 

Similarly, if in place of (5.8) we assume that 

v(x-) ~ o&~ I ~[]  for some ~ E [-- 1, 0), 

then by applying Lemma 5.2 to the function - - v ( - - x )  we obtain 

I(v) > (1 -- (flkl)6) 20S-l(--kl) s (fi --o~) s. 

(5.9) 

(5.10) 

(5.11) 

(5.12) 

~(x) = 

�9 k2 ,  

A direct computation yields 
3 3 

, (~ , )2  dx  = - -  f s(~) = 0 + f3  9 3 
_lkd ~- -Ikll  ~ 

~1, - 1  ~ x < -I/~,13 
2 3 

- I x l L  - I ~ , V < x < 0  
2 3 

x 3,  0 ~< x ~< k2 -2- 
3 

k 2 ~<x_< 1. 

ixl- ax=3(ik,1�89 (5.15) 

I(v) > min (ho(kl), ha(kz) } O'-'(fl - -  o~) ~, (5.14) 

where ha(k ) def (1 -- (/~k) 6) [k[ s, this estimate being independent of e > 0 and 
of q. 

Now consider the following function h E ~ :  

In either case we therefore have 

We now note that one of(5.8), (5.12) holds if either v(0) ~: 0 or v E W l'q It~ .~  
for some q with 3 --< q :< cx~, since if v(0) = 0 and v E W l"q/5 ~ ,  q E [3, c~), 
then for all x E [--1, 1] 

Ii ',1 Ii, <'yl'"'f " <  
Iv(x)l = v'(y) < ,~'I" lq'dy = o(1) I x l , - , ~ ,  

while if q = e~, 
[ v(x) ~ const. [ x I . 

(5.13) 
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Together (5.14), (5.15) ensure that for fl = fl(0r k~, k2, s) chosen to maximize 
the right side of  (5.14) and for e > 0 sufficiently small, i.e. e < eo(~, k~, k2, s), 

inf I(v) > I(h) ~ in f  I(v) 
v~ W l , q A ~  

for all q with 3 ~ q ~ ~ ;  furthermore any minimizer uo of I in ~ satisfies 
Uo(0) = 0, and 

Uo(X)<Oaqlx[~, - 1 - < _ x < O  / 
(5.16) 

Uo(X) > o~k2x za, O < x G 1 .  I 
It follows from (5.16) that u0(0 ) = q- 0% so that by Lemma 5.3 we have E = {0}. 
Also, since Ikil ~ I, i = 1, 2, it follows from Lemma 5.4 (applied to Uo(X) and 
--Uo(--x)) that 

Uo(X) >= - [ x l ~ ,  - 1  _< x-<  o ] 
2 l (5.17) 

uo(x) G xX, 0 G x G 1. 

Since by Theorem 2.7 Uo: [--I ,  1 ] - + ~  is continuous, we have 

xliom+fp(x, Uo(X), Uo(X)) = ~o+lim [Uo(X)fp(X, Uo(X), Uo(X)) - - f ( x ,  Uo(X), Uo(X))] 

.~--- AC (X) ~, 

and it follows immediately that none of  (WEL), (WDBR), (IEL), (IDBR) hold. 
We next show that 

] u0(x) [ ~ const. ] x] - 3, x E [-- 1, 1], 

uoE W I'p for a l l p  such that l ~ p < 3 .  For which ensures that 
define uCE~g by 

Then 

udx) = 

Uo(X), --  1 --< x ~ - -  

3 

Uo(-O, - ~  <- x <_ -1 Uo(-~)I T 
2 3 3 

] x ]3- sign x, --] Uo(-- 01 ~- -< x ~ Uo(0 ~- 
3 

Uo(O, Uo(O 2 < x -< 

Uo(X), ~ ~ x ~ 1. 

r 

0 ~ /(/dO) --  I(L/~-) ~--- S [(X4 --  ~/06)2 (//;)s + E(~,;)2] d x  

3 
uo(O T 

- f ~(~ Ixl -~)  2dx, 
3 

- l u o ( - O l  2 

(5.18) 

~E [0, 1] 
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and hence by (5.17) 

f [(X 4 6 2  ' s 1 
- -  Uo) (Uo) + e(uo) 2] dx  <= const. {Uo(~): + ]Uo(--~)[�89 

1 
< C~ ~-, ~ E [0, 1], 

for some constant C > 0. Now define 

(5.19) 

so that 

g(x)  = Uo(X) f p ( x ,  U0(X), Uo(X)) - - f ( x ,  Uo(X), U0(X)), 

' 2 g ( x )  = ( s  - -  1) ( x  4 - Uo6) 2 (uo) s + e(Uo) . 

Since Uo(X) is smooth for x :]= 0, by (DBR), 

g t ( x  ) - - 8 X 3 ( X  4 - -  ii6) ' s = (Uo), X E [ - -1 ,  O) W (0, 1], 

and so by (5.17) g is increasing on [-- 1, 0), decreasing on (0, 1 ]. Thus for ~ E (0, 1 ], 

r r r 

g(:) : = f g(:) dx < f g(x) dx < (s -- 1) f [(x 4 -- u06) 2 (Uo)" + e(uo) 21 dx, 
0 0 0 

(5.20) 

and it follows from (5.19), (5.20) that 
a 

g(r =< const. ]~[- 3 (5.21) 

The same argument applied on [-- 1, 0) shows that (5.21) holds also for ( E [-- 1, 0), 
and (5.18) follows by the formula for g. Clearly (5.18) implies that Uo E W I'p for 
l = p < 3 .  

It now only remains to prove (5.3) and the strictness of the inequality in (5.17). 
For this we make the same substitutions as in Section 3, namely 

3 
U ~  

z - -  , q = - ~ u : ~ u  ", x - - -  e ' ,  
X 

which for u > O, x > 0 reduce the Euler-Lagrange equation (5.7) to the system 

dz 
dt - -  q - -  z ,  

dq q2 

d-7 = 3 z  (5 .22 )  

(1 -- z 4) (s -- 1) q -~- (1 -- z*) + 8z 4) -- 8sz  + ez  --5- e V '5-1  , 

x 

-~-(s -- 1) (1 -- z4) 2 + ez e 
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which, of course, is not autonomous since s =~ 26. We compute the sign of dq 
dt 

on the diagonal q = z; this is the same as the sign of 

(~-)s-3(1 __Z4)[(S__ l) z(~-(l_z4)_~Sz4)_8sz]_~_egL~32e(S32""-~6)t 

(s ,) 
= ( 1 - - z  4) z ( s - 2 4 )  ~ (tr s - z  4 ) + e z  3 e ~ 3 i t ' 

s ( s  - 25) 
< 1. Fix ~ E ( a ~ , l ) .  Then if 0 < Z o <  1 we where trs = (s -- 1) (s --  24) 

have that, for t sufficiently large and negative, - ~ <  0 whenever q = z, 
O<Z<Zo. 

t4r 

Now let (z(.), q(.)) be the solution of (5.22) corresponding to Uo on (0, 1]; 
the behavior of Uo on [--1, 0) is handled similarly. By our results so far (taking 

0% = 03) it follows that if e > 0 is sufficiently small, i.e. e < to(O~Q, kl,  k2, s), 
dz 

then O < z ( t ) < =  1, 0 < q ( t ) < = c o n s t .  for all t C ( - - c % 0 ] .  Note that - ~ - < 0  
dz 

for q < z, ~ -  > 0 for q > z. In view of  the bound on z, this implies that we can- 

not have z ( t ) =  l + q ( t )  for any t E ( - - c o ,  0). If z ( t ) = q ( t ) =  1 for some 
dq dz d2z 

t E ( - - o o ,  0) then by(5.22),  ~ - ( t ) = � 8 9  ~ - ( t ) = 0 ,  ~ ( t ) = � 8 9  which by 

the same reasoning is impossible. Thus strict inequality holds in (5.17) for x =~ 0, 
-4-1. If  z(t) <= q(t) for all sufficiently large and negative t, or if z(t) >= q(t) 
for all sufficiently large and negative t, then for some z*E [0, 1], z(t)--> z* as 
t---> -- oo; in these cases we must have z* = 1, since for z* < 1 the relations 

Uo(X) ~ (z 'x)  ~ as x - +  O+ and I(uo) < ~x~ imply that 

! 

f xS(u0) s dx < ~ ,  
o 

and hence by H61der's inequality 

uo(x) = f uo(y) dy <= const, y) '  x ~ = o(1) x s, o 
which contradicts z(t) > Q since s ~ 27. We therefore need only consider the 

case when there exists a sequence tj--> -- oo with z(tj) = q(tj) < 1, ~7, (tj) ~ O. 
dq 

t g g  

By our analysis of  the sign of ~ -  on the diagonal, it follows that for any such 
dz 

sequence z(tj)--> 1 as j--> co, and the sign of -~- then implies that z( t ) -~  1 
as t - +  - - o o .  This proves (5.3). [ ]  
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We remark that the relations (5.3)-(5.5) imply that the inverse function Xo(U) 
of  Uo is not C z, and in particular that the graph of uo is not a smooth curve in 
the plane. We mention this fact because of its relevance to attempts to elucidate 
the phenomenon of singular minimizers by consideration of some parametric 
problem of the calculus of variations. 

We remark also that if 9 E C~(--  1, 1) is given with 9(0)=~ 0, and if t 4: 0, 
then I(uo + tg) = oo. In fact, since U'o(X) -+ oo as x--> 0 by Theorem 2.7, 
there exist constants e(t) > O, a(t) > 0 such that 

~(t) 
I(uo + t 9) >: c(t) f lu0(x)I s dx. 

- -  ~ ( t )  

Since by (i) and (iv) Uo q_ WLS(--o~(t), o~(t)) the assertion follows. 
The reader can easily verify that an appropriate version of Theorem 5.1 holds 

when the signs of kl, k2 are reversed. Note also that the comparison argument 
used in the proof  requires that the value of e approach zero as kl,  k2 -+ 0. In 
fact if e > 0 is fixed then for sufficiently small I kl [, ] k2 [ the minimizer of  I in 
d is unique and smooth. This can be proved by noting that constants satisfy (EL), 
and thus, by an argument similar to that used in the proof  of  Lemma 2.8, for 
]k~ ], [k2] sufficiently small there is a unique smooth solution ul of (EL) in 
and ul can be embedded in a field of  extremals simply covering the region S = 
{(x, v): ]x] ~ 1, kj _< v --< k2}. But any minimizer Uo o f / i n  M is monotone and 
thus has graph lying in S. By the field theory of  the calculus of variations I(u~) <= 
I(fio) with equality if and only if Uo = ul. Hence Uo = u~, as claimed. 

It is important to note the significance of the Lavrentiev phenomenon for nu- 
merical schemes designed to approximate minimizers of variational problems 
such as (5.1). Such schemes, for instance those using finite elements, are often 
associated with the use of approximating functions that are Lipschitz. Hence the 
existence of Lavrentiev's gap ensures that no such scheme can yieM a minimizing 
sequence for L On the other hand, one  might suppose that a sequence {Vm)Q 
WI'~176 d could be found satisfying the pseudo-minimizing condition 

I(v,~) --> inf  I(v) , 
vE wl ,  ~176 

and such that v m converges to the actual minimizer u0 in some mild sense. Our 
next result shows that even this cannot happen. 

Theorem 5.5. Let s > 27, --1 ~ k 1 < 0 < k2 ~ I, 0 < ~ < 1, 0 < e < 
el(o~, kl ,  k2, s) and 3 ~ q ~ oo. Let Uo be an absolute minimizer of  I in ~ .  For 
any sequence (Vm} Q W I'# f~ ~ such that Vm(X) --> Uo(X) for  each x in some set 
containing arbitrarily small positive and negative numbers one necessarily has 

I(Vm ---> O0 as  m - +  oo. 

Proof. Let l iE[ - -1 ,0 ) ,  ryE(0,1]  satisfy lj-+O, rj-->O as j - ->oo,  and 
suppose that vm(lj)--> uo(lj), Vm(rj)-+ uo(rj) as m - + o o  for each j = 1, 2, . . . .  
Fix s with 0 < ~ < 0~. Given j we have by (5.5) that for all sufficiently large m 

vm(lj) < , ,k,  Iljl Vm(rj) > o k2r . 
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Since  /3 m changes sign in [lj, rj], Vm(Xo)= 0 for some Xo E (lj, rj). I f  Xo >: 0, 
say, then by the argument preceding (5.14) there is an interval [yl, Yz] Q (0, rj) 
such that 

- 

~xk2x < vm(x) < or X~, x E (Yl, Y2), 
_ ~ z 

Vm(Yl) = o~k2Yl, ore(Y2) = ock2Y ~ . 

By Lemma 5.2, 

I(vm) > (1 - -  (0r 20S-lk~(or - -  ~)Sy2�89 

> Crfk('-27), 

where C > 0 is a constant. I f  Xo :< 0 we obtain similarly 

I (Vm)  > e l  l j[ -�89 

Letting j--> oo we obtain that I(Vm) ---> (x) as m -+ 0% as required. []  

A more quantitative version of Theorem 5.5 may be proved. If s, kl,  k2, 0r e, q 
and Uo are as in the theorem and if l ~ a < _ o o  then 

s--27 

inf (I(v) -- I(uo) ) [I v -- /d-l/2+3/a "> O. U.La(_l,l) v E ~ A w I , q  

This has some of the features of an uncertainty principle. By Theorem 5.1(iv) it 
suffices for the proof  to show that if ~ : IIv -- u0/Iz~(-l,1) then 

s--27 

l(v) ~2§ const. > 0 

for ~ > 0 sufficiently small. But it is easily shown using (5.3) that for 6 > 0 
3 

sufficiently small there exist points --l,  r E (0, const. 62+3/o) such that 

v(1) < o~kl [11 ~, v(r) > c~kz r{ ,  

and the result follows using the same proof  as for Theorem 5.5. 
Theorem 5.5 contrasts strongly with a claim of LEWY [23]. There it was asserted 

that the sequence (urn} constructed through the following constrained minimiza- 
tion procedure: 

I(UM)----- inf I(v), 
vEJr M 

where ~r = {V E Wl'C~ A d : II vii wl,~ ~ M}, would yield a sequence {uM} 
converging to the global minimizer Uo as M---> oo. Note that the existence of a 
constrained minimizer um for M sufficiently large follows from the precompactness 
of ~r in C([--1, 1]). Theorem 5.5 reveals that in our example no subsequence 
of (u~} can converge to u o pointwise, even on a two-sided sequence of points 
x j -+  0. A similar comment applies to any "penalty method" which involves 
adding to the integrand a term such as ~ [u'l 3+~ or , / l u " l  1+~, 7 > 0, and ex- 
amining the limiting behavior of the corresponding minimizers as n ~ 0 + .  
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The above predictions for numerical methods have been confirmed experiment- 
ally in BALL & KNOWLES [6], where numerical methods are described and developed 
that are capable of detecting the absolute minimizer Uo. Their numerical experi- 
ments also indicate that in an example due to MANI~ [25] (which is not regular, 
but to which the ideas below also apply) minimizing sequences in W 1'~176 converge 
to a "pseudominimizer" ut ~ Uo. We now examine the existence of pseudo- 
minimizers corresponding to the regular integrand (5.2). 

We first discuss the problem of minimizing 
1 

J(u) = f [(x 4 --  u6) 2 ]u' 1' -t- e(u') 2] dx (5.23) 
0 

in various subsets of 

d o  = (u ~ w~, ' (0,  1) : u(0) = 0, u( l )  = I,}. 

We begin by stating an analogue of Theorem 5.1 for this problem. Note that there 
is no condition on the size of k. 

Theorem 5.6. Let s>=27, k >  
ea(or k, s) > 0 such that i f  0 < e 
such existing by Theorem 2.1 for any e ~ O) satisfies 

(i) the Tonelli set for Uo is E = (0}, 

(ii) Uo E WI'P(O, I) 

i f  k <= t then 

while i f  k > 1 

O, and 0 < o~ < 1. Then there is an e~ = 
< e~ each minimizer Uo of  J in d o  (at least one 

for 1 ~ p ~ 3 and satisfies 

Uo(X) ~ x ~ as x---~ 0 q- ; (5.24) 

2 
~kx -3- < Uo(X) < x z3 for 0 < x < 1, (5.25) 

then there exists exactly one s E (0, 1) with Uo(YO = x za and 

o~x ~ < uo(x) < x ~ for 0 < x < ~ ,  (5.26) 

x ~ < Uo(X) < k for ~ < x < 1. (5.27) 

vE Wl"q(O, 1) with 3 ~ q ~ c ~ .  As in the proof  of Theorem 5.1 there exists 
an interval [x~, Xz] ( (0, 1) such that 

2 2 
o~x x < v(x) < fix x, x E (x l ,  x~), 

v(xO = o,x~, v(x~) = ~x  

Proof. If  k ~ 1 then the proof  follows the same lines as that of Theorem 5.1. 
We therefore suppose that k > l .  Choose /3 with ~ < f l <  1. Let r E , C o  

with V(Xo) <= o~X~o for some Xo E (0, 1); we have seen that such an Xo exists if 

(iii) Uo does not satisfy (IEL) or (IDBR), 

(iv) for any q, 3 <= q ~ oo, 

inf J(v) > inf J ( v )=  J(uo). 
vE,~o v~ wl,q(O,l)l~% 
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and thus by Lemma 5.2 

22 

f [(24 __ /36)2]/9' ]s .q_ e(/3,)2] dx > (1 - -  36)  2 0 s - l ( [ ~  - -  0~)  s 2 i  �89 
0 

Now define v E ~r by 

X ~- ' 

b(x) = ~ ( x ~ ) ,  

Iv(x), 
Then 

3 
0 ~ X "<~ V(.22)2- , 

3 
U(X2) ~- -~- X ~<~ X 2 , 

x 2 < = x ~  1. 

3 
x2 ~ 2 xa 1 

J(v) -- J(b) --- ] [(2 4 - -  U6) 2 I/3t[ s ql_ ,~(Vt) 2] dx -- f e(-~x-V) z dx, 
0 0 

(5.28) 

and so by (5.28), with /3 =/3(~, s) chosen to maximize (1 - -  f l 6 ) 2  ( f l  _ or one 
has 

J(v) -- J(•) > �89 - -  f l 6 )20S- I ( f l  _ o~)S 

for e sufficiently small (independently of v). In particular, (iv) holds. Also, any 
minimizer Uo of J in d o  satisfies 

Uo(X) > C~x ~ for 0 < x = < l ,  

and so E ) {0} with Uo(0) = + cx~. By inspection of (5.7) it is seen to be im- 

possible that Uo(X) ~ x ~- for all sufficiently small xE [0, 1]; hence there exists 

some ~ E (0, 1) with Uo(~) = x{ and we may assume that ~ is maximal. By 

Lemma5.4,  u o ( x ) > x  ~ for ~ < x ~  1 and Uo(X)~X ~ for 0 ~ x ~ < ~ .  

It follows as in the proof  of Theorem 5.5 that Uo(X) < x ~ for 0 < x < ~, so 
that ~ is unique. The remaining assertions in the theorem follow as before. [ ]  

We now prove the existence of a pseudominimizer for (5.23). 

Theorem 5.7. Let s ~ 27, k > 0 and 3 <= q ~ oo. Then J(u) attains an absolute 
minimum on Wl'q(O, 1) f~ d o ,  and any such minimizer ul belongs to C~176 I]) 
and satisfies (EL) on [0, 1 ]. 

Proof. We first note that it suffices to prove the theorem for q = 3, since any 
minimizer for this q value is by the theorem smooth and thus a minimizer for all 
q > 3 .  

Let (vj) be a minimizing sequence for J in Wl'3(0, 1) #~ ~r Since vj E W1'3(0, 1) 
we have by H61der's inequality that, as x ~ 0, 

vj (x) = o(1) x ~, all j _=> 1. 

We claim that there exists a number 6 > 0 such that 

v/x)  <= �89 ~ for all x E [0, 6], all j -> 1. (5.29) 
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If not there would exist a subsequence (v~.} of (@ and a sequence x~ --~ O-i- with 

v~(xt, ) > �89 Therefore there would exist numbers x1., x2j, E (0, x~) such that 

kx ~ ~ v~,(x) < l f i ,  xl,, < x <_ x~,, 

v,~(x,,,) = �88  , v, ,(x2,,) = �89  

Applying Lemma 5.2 we deduce that 

J(vt, ) > (1 2-6)2 n,-1 A-~r(27-,) - -  v -T "~'2p * 

Since s >  27 and x2~,---~0+, it follows that J(vu)---~c~ as /z---~cx). This 
contradiction establishes (5.29). By (5.29), 

But 

f, ( o : - -  = - -  l . ) j [  dx. (5.30) J(vj) > x s 1 --~] Iv';~dx > (1 2-6) 2 f x~l '~ 
0 0 

o ( /  :' 
f iv~t3 dx < x "-a dx ~ xS ]vj], -z 

0 J 

<= const, xS I v~'l ~ 5-. 

and therefore by (5.30) 

f [ v j [ a d x < = M < o o ,  j > = l .  
o 

Since vj(0) = 0 it follows that (vj} is bounded in W1'3(0, 5). Moreover, it is ob- 
vious from the form of J that {@ is also bounded in W~'2(O, 1). Therefore there 
exist a subsequence (vq} of  (vl} and a function u E W~'3(0, 5) f~ WI,2(0, 1) A d o  
such that in the sense of weak convergence, 

v o-'- u in Wl'a(O, O) and in W1'2(0, 1); 

in particular, vo(x) -+ u(x), for 
lower semicontinuous in WI'I(O, 
that 

For given 

all x, 0 ~ x <-- 1. Since J is sequentially weakly 
1) (see, for example, CESARI [11, p. 104]) it follows 

J(u) <= l imin f  J(vo) -=: inf J(v). (5.31) 
0--~ oo vC W1,3(0,1 ) f ~ o  

2 ~ (0, 1), however small, the integral 

1 

J~(v) = f [ (x  4 - v6) 2 t o'l s + e(v')  z] dx 

attains a minimum on the set 

~ = {v C W1'1~, 1) : v(x--) = u('Z), v(1) = k} 



Minimizers Need Not Satisfy Euler-Lagrange Equation 381 

and, by the proof of Lemma 5.3 (reformulated for the interval (Y, 1)), any mini- 
mizer fi belongs to C~([~, 1]). Given any such minimizer fi, define 

[ v~(x), 0 <-- x <-- -s 

~(x)  = ~ v~(~) + ~-~ffi(~ + ~ )  - v~(~)] (x - ~), ~ _< x _< ~ + ~ 

[ ~(x), ~ + ~ ~< x _< 1, 

where ,/e = [ re(x--') -- K(x-') 1. For sufficiently large ~ and small Y, T 0 is well defined 
and belongs to W1'3(0, 1)A ~r Notice that [v~(x)[ is uniformly bounded in 
[~, Y + r/e ], independently of ~. Therefore, since ~Te ~ O, 

lira J'~(-vo) = J ~ ) "  
~---~ Oo 

By lower semicontinuity, 

and hence 

lim infJT(vq) ~ J~u) ,  
Q-~OO 

0 ~ lim sup [J(vQ) -- J(vQ)] = lim sup [Jx-(Vq) -- J~(vo) ] 
~---~ oo 0 - ~ - ~  

--< J~-O) - J~(u). 

Therefore J-~(u) =- J-~(u-) and thus u minimizes J~ in d~ .  In particular uE C~([~, 1]) 
and satisfies (EL) in [~, 1]. Since ~ was arbitrary it follows that uE C~((0, 1]) 
and satisfies (EL) in (0, 1]. Since u E Win(0, 6) we also have u E W1'3(0, 1) 
and therefore by (5.31) u minimizes J in W1'3(0, 1) A ~r Clearly u'(x) > 0 for 
x E ( 0 ,  1]. 

Our final task is to show that uE C~176 1]), and by (EL) it suffices for this 
to show that u'(0) is finite. Passing to the limit Q ~ oo in (5.29) we obtain 

u(x) <= �89 ~ for all x E [0, 6], (5.32) 

and since J(u) < oo it follows that 

1 

f x a I u'l s dx < ~ .  (5.33) 
0 

Since u is a smooth solution of (DBR) on (0, 1] we have 

d , d u6) 2 
~x ( u ~  - - f )  = ~xx ((s -- 1) (x '~ -- (u') s + (u') 2) 

for 0 < x ~ l ,  

= - 8 x 3 ( x  4 - u 6) ( u T  

and therefore by (5.32), (5.33) 

d 
x ' ~ x ( u ' f  p - - f )  E r~(o, 1). 

But J(u) < cx~ implies that 

u~fp - - f =  (s -- 1) (x 4 -- u6) 2 (u') s q- e(u') 2 E L'(0, 1) 
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d d 
"~x (x(u'fp - -  f ) )  = X-~x (u'fp --  f )  + (u'fr - -  f )  

belongs to Lt(0,  1). Hence  

( u6 2 
x ( u ~  - - f )  = (s --  1) 1 - -  -~1  x9(u')" + ex(u')2 

is uni formly  bounded,  and by (5.32) this implies tha t  xg(u') s is bounded.  Hence  

9 9 
u'(x) <= const,  x s, u(x) G const,  x s, x E  (0, 1]. (5.34) 

Note  that  since s > 2 7 ,  1 - - 9 / s > 2 .  Pick a o E ( 2 , 1 - - 9 / s )  such that  if  

def (S -Ji- 5~ n 
a .  = (ao - 2) \ s  - 1!  + 2 (5 .35)  

s - - 5  
then a n =~ ~ for  any n : 0, 1, 2, . . . .  This is clearly possible. We prove  by 

induction tha t  for  any n : 0, 1, 2 . . . .  there is a constant  c,  > 0 such tha t  

u'(x) <= Cn(1 q- X%-1), U(X) <= C,(X q- X~"), XC (0, 1]. (5.36) 

This is true for  n = 0 by (5.34). Suppose the assert ion is true for  n. We prove  
tha t  it holds for  n + 1. This is obvious if a ,  ~ 1, so we consider the case a n < 1. 
N o w  by  (EL) 

d 
~xxfP = --12uS(x 4 - -  u 6) (u') s, x r  (0, 1], 

and  so by (5.32), (5.36) 
l 

[df~ =< const ,  x 5an-k4+s(an-1), x E  (0, 1]. 

s - 5  
Since a n =~ ~ it follows tha t  

fp = s(x 4 - -  u6) 2 (u') ~-1 + 2eu' <= const.  (1 + XS-S+(~+5)~ X E (0, 1]. (5.37) 

s - - 5  
I f  a,, > ~ then (5.37) implies that  u' is bounded  on (0, 1] and thus that  

s - - 5  
(5.36) holds for  n -k 1. Otherwise, a~ < ~ and  we deduce f rom (5.37) that  

xS(u,)S 1 G const,  x 5 ,+(~+s)o., x E  (0, 1]. 
Therefore  

r ~ _ (~+__~31) const,  x~-+1-1, u'(x) G const, x '~ 'J ~ = 

so tha t  (5.36) holds for n -k 1 . This proves  our  assertion. 
Since ao > ~-, a~ ~ 1 for  large enough n, and hence by (5.36) u '(x) is 

bounded  in (0, 1]. Therefore  u'(0) is finite and uE C~176 1]). Finally, if  h is any 
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minimizer of J in Wl'q(0, 1)/5 S/o, q => 3, then the above arguments applied 
to the minimizing sequence in W~'3(O, 1){5 s/o given by vj ~ ~t show that 
uE C~176 1]) and satisfies (EL) on [0, 1]. [ ]  

Note that the proof of Theorem 5.7 shows that any minimizing sequence for 
J in wl'q(0, 1) f~ s/o, q ~ 3, has a subsequence converging weakly in W l'q(0, d) 
and Wl'2(0, 1) to a minimizer. 

Remark. Theorems 5.6 and 5.7 apply equally to the problem of minimizing 

0 

J_(u)  - -  f [(x 4 - u6) z lu'l s + ~(u') 2] dx 
--1 

over various subsets of 

S/_ = {u E Wl't( - 1, 0) : u(-- 1) = k, u(0) = 0}, with k < O, 

as can be seen by noting that v(.) E S / -  if and only if b = --v(-- .) E s/o, and 
J_(v) = JO). 

We next prove the existence of pseudominimizers for our original functional 
I(u) given by (5.1). 

Theorem 5.8. Let s > 27, 3 ~ q <= 0% and let k~, k 2 be arbitrary. Then I(u) 
attains an absolute minimum in S~ f~ W l'q, and each such minimizer u~ belongs 
to C~([--1, 1]) and satisfies (EL) on [--1, 1]. 

Proof. If kt = k 2  then the unique minimizer o f l i n  S/f~ W l'q is u l ~ k ~  
and there is nothing to prove. If k~, k2 are not equal and have the same sign then 
any minimizer Uo of I in S / i s  strictly monotone and by Lemma 5.3 is a smooth 
solution of (EL) in [-- 1, 1], and again we have finished. We therefore suppose that 
k 1 < 0 < k 2 , the case kl > 0 > k2 is treated similarly. Let {@ be a minimizing 
sequence for I in S / A  W l,q. By extracting an appropriate subsequence, again 
denoted by (@, we may suppose that v~ -~ u~, say, in Win(--1, 1) and that 
either (a) vj(O) = 0 for all j ,  or (b) v~(O) < O, for all j ,  or (c) vj(O) > 0 for all j. 
If  (a) holds then clearly {@ (restricted to [0, 1]) is a minimizing sequence for J 
(given by (5.23)) in s/o A wl.q(o, 1), where s/o = {u E Win(0, 1) : u(0) = 0, 
u(1) = k2}, and therefore by the proof of Theorem 5.7 u~ minimizes J i n  wl'q(o, l) 
A s/o. A similar argument holds on [--1, 0], and so by Theorem 5.7 and lower 
semicontinuity u~ is smooth on [--1, 0] and [0, 1] and minimizes I in S/#~ W l'q. 
Standard arguments then show that u~ satisfies (EL) and is smooth in [--1, 1]. 

Suppose (b) holds; case (c) is treated similarly. Suppose first that lira vj(0) 
j-+oo 

= ul(0) < 0. Let u2 be any minimizer of 1in ~7 der {u E S/ :  u(0) = ul(0)}. Then 
by Lemma 5.3 u2 is smooth in [--1, 0] and [0, 1], and so 

inf 1 <  I(u2) < I(uO. 
dAwl,q 

But by lower semieontinuity I(ul) <= inf I, and it follows that ul minimizes 
~r165 
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/ i n  ~r Hence ul is smooth in [--1, 0] and [0, 1], minimizes / in  ~r A W 1,q, 
and by standard arguments is a smooth solution of (EL) in [--1, 1]. 

It remains to consider the case when (b) holds and lim vj(O) = u~(0) ----- 0. Let 
u3 be any minimizer of j-~oo 

0 

J_(u) = f [(x 4 - u6) ~ l u '  I ~ + ~(u') ~] dx 
--1 

in ~'_, where 

~ _  = (u E Wt"(  - 1, 0 ) :  u ( - - 1 )  = k l ,  u(0) = 0 ) .  

On the other hand let u, be any minimizer of J(u) in ~r n wl,q(o, 1); the 
existence and smoothness of u, is guaranteed by Theorem 5.7 and the remark 
following it. Define fi 6 ~1 by 

u3(x), --1 --< x ~ 0 
~(x)  = 

[ u4(x), 0 ~ x ~ 1. 
We first show that 

I(fi) ~ inf I. (5.38) 
, ~ A w I , q  

To this end consider the sequence 

u3(x) ,  

wj(x) = 

u4(x), 

1 
j '  

1 
- - - - ~ x ~ O ,  

J 

f l j ~ x ~  l. 

(5.39) 

In (5.39), M is chosen greater than max (u4(0), k2 + I k, [} so flj ~ 0 +  satisfies 

( -  + )  + Mflj. The existence of flj follows from the intermediate U4(flj) U3 
\ d l  

value theorem. Note that by a version of Lemma 5.3 which applies to J_, 
ua 6 C~~ - 1 ,  0)) and so wj 6 ~ A W l,q. Since, as is easily checked, 

lim l(w~) = I(fi), 
j---~ oo 

(5.38) follows. Next, let 6j > 0 be the largest root of vj(x) = 0 in (0, 1), and 
define 

0, O<_x<--~j, 
~j(x) = 

vj(x), ~j <: x <= 1. 

Then vj6 d o  A w1,q(o, 1) and so J(vj) >~ J(~j) >: J(u4). Also, by the sequential 
lower semicontinuity of J_, 

J_(u3) <: J_(ul) <: li.m infJ_(vj). 
j - + o o  
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Therefore 
inf I = lim I(vj) = }im (J_(vj) + J(vj)) 

~ , &  w l , q  j-~ ~ . 

lim inf J_(vy) -t- lim inf J(vj) (5.40) 
3--~- ~ j - + o o  

J-(u3) + Y(u4) = I(~). 

Combining (5.38), (5.40) we obtain 

I ( f i )=  inf I.  (5.41) 
. ~ f ~ w l , q  

Suppose first that u~(0) is finite so that u3 is smooth on [--1, 0]. Then h minimizes 
/ i n  ~ / f~  W l'q, is smooth on [--1, 0] and [0, 1], and so is a smooth solution of 
(EL) on [--1, 1]. On the other hand by Theorem 5.6 and the Remark, we know 
that for e > 0 sufficiently small u~(0) = + ~ .  For  such e, 1.ira vj(0) = ul(0) = 0 
cannot occur. Indeed, solving (EL) with initial data 

u(0) = ~, u'(O) = M, (5.42) 

for 16] small generates by Lemma 2.8 a field of extremals covering a neighborhood 
of the origin. For  6 sufficiently small and negative the solution ut of  (EL) satis- 
fying (5.42) intersects the graphs of both u3 and u4 at points rt < 0 and st > 0 

rt, st -+ 0 as 6 -+ 0-.  It then follows from the field theory respectively, where 
that 

u3(x), --1 ~ x_~ rt ,  

v~(x)  = u t ( x ) ,  r t  < x < s t ,  

u4(x), st -< x <-- 1, 

satisfies I(vt) < I(fi). But vt E ~r • W l'q, contradicting (5.41). 
Summarizing, we have shown that in all cases/at tains a minimum on ~r A W 1,q 

at some smooth solution ul of  (EL). If  ul is any minimizer in ~r A W 1,q then 
applying the proof  to vj ~ Ul shows that u~ is smooth (the case when (b) holds 
and lira vj(0) = 0 does not occur). [ ]  

j ~ - o o  

We now examine what happens if s < 27. I f  s = 26 the integrandfgiven by 
(5.2) satisfies the scale invariance property (3.7) with y = ~ and ~ = - - ~  
and the phase-plane techniques of Section 3 are applicable to the one-sided prob- 
lem of minimizing J in d o .  We confine attention here to the observation that the 
same argument as in Lemma 3.8 shows that if s >= 26, 0 < o~ < min (1, k) and 

e > 0 is sufficiently small then any minimizer Uo of J in ,~o satisfies Uo(X) > ~x ~ 
for all xE (0, 1] and is thus singular. If, further, s <  27 then the Lavrentiev 
phenomenon does not occur; this follows by noting that, by the proof  of Theo- 

rem 5.6, Uo(X) ~ x ~ for x sufficiently small, and by using the argument in the 
remark following Lemma 3.8. It remains, therefore, to consider the case s < 26. 

Theorem 5.9. Let 3 < s < 2 6 ,  e > 0 .  

(i) Let kl ,  k2 E R and let Uo minimize I in ~ .  Then Uo E COO([ - 1, 1]) and satis- 
fies (EL) on [--1, 1]. 
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(ii) Let k E R  and let Uo minimize J in do .  Then Uo E C~176 1]) and satisfies 
(EL) on [0, 1]. 

Proof .  It  suffices to prove (ii), since in case (i) if uo(O) q= 0 then Uo is smooth  
by Lemma 5.3. 

To  prove (ii) we may as before assume that  k ~> 0. We note that  by the same 
arguments as in the proofs of  Theorems 5.1, 5.6 any minimizer Uo satisfies 

0 <= Uo(X) <= x z3 for  x sufficiently small and ]u~(x)I ~ const, x -k ,  x E  (0, 1]. 
It follows from (5.7) that  

s(x 4 -- u~)2(u;) s - '  + 2euo) < const, x 3 , x E  (0, 11. (5.43) 

Hence, by integration, u~(x) is bounded for x E  (0, 1] if s < 25. I f  25 ~ s < 26 
we deduce by integrating (5.43) that  

Uo(X) ~ const, x ~~ Uo(X ) ~ const, x ~~ x E  (0, 1], (5.44) 

for  some z o E (3 z, 1), and we may clearly choose ~'o such that  if 

64) s - - 6  ~of [ s --  (s + 5)" + 4 '  (5.45) 
3.  = 13o - s + 7 7 - -  

s - - 5  
then ~:, ~= ~ for any n = 0, 1, 2 . . . . .  We prove by induction that  for  any 

n = 0 ,1 ,  2, . . .  there is a c o n s t a n t  d , > 0  such that  

Uo(X) <= d,(1 + x~,-1), uo(x ) <= d,(x + x~,), x E  (0, I] .  (5.46) 

This is true for n = 0 by (5.44). Suppose it is true for n. We prove that  it holds  
for  n + 1. This is obvious if  "G ~ 1, so we consider the case 3, < 1. By (5.7) 

2euo(x) ~ const. (1 + xS-S+(s+5)~,), x E  (0, 1]. (5.47) 

But 5 - - s + ( s + 5 )  3 , = ' G + l - -  1, so that  (5.46) holds for  n +  1. 
s - - 6  

Since s < 26 it follows that  z o > s - - - ~ '  and thus 3, => 1 for  large enough 

n. Hence in all cases u0 is bounded in (0, 1] and thus uo is a smooth solution of  
(EL) in [0, 1]. [ ]  

We end by remarking that  the methods of  this section apply also to the problem 
of  minimizing 

1 
I(u) = f [(x 2 - -  ua) 2 [u' [s + e(u,)2] dx 

0 
in 

,5~ = (g E WI'I(0,  I)  : lg(0) = 0, u(1) = k) ,  

the special case s ~ 14 having been exhaustively discussed in Section 3. For  this 
problem any absolute minimizer is smooth for  3 < s < 14, singular minimizers 
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can  exist  wi thout  the  Lavrent iev  p h e n o m e n o n  for  14 <= s ~ 15, s ingular  mini-  
mizers  and  the Lavrent iev  p h e n o m e n o n  can exist  for  s ~ 15, and  s m o o t h  pseudo-  
minimizers  exist  if  s ~ 15. 
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