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Summary.  A study is made of the regularity properties of minimizers u of the integral 
b i I(u) = f2 f ( x ,  u, u ) dx subject to the boundary conditions u(a) = o~, u(b) = r as 

the interval (a, b) and boundary values o~,/3 are varied. Under natural hypotheses on 
f it is shown that the set of points in the (x, u ) -p lane  at which a minimizer u can 
have infinite derivative for some interval and boundary values is small in the sense 
of category. 

1 Introduction 

We consider the problem of minimizing the integral 

I(u) = f ( x ,  u(x), u'(x)) dx (1.1) 

among absolutely continuous real-valued functions u on [a,b] with given boundary 
values u(a) = c~, u(b) =/3. 

We assume throughout that f = f ( x ,  u, p) is a nonnegative C 3 function on N 3 
satisfying fpp > 0 and the superlinear growth condition 

f ( x , u , p )  >_ r  (1.2) 

where ~Y~)/tPl --+ cx~ as [Pl --+ oe. According to classical results of Tonelli [7, 
II pp. 282, 359], [8] under these assumptions the minimum of I subject to the given 
boundary conditions is attained, mad any minimizer u has a finite or infinite derivative 
u ~ at every point of [a,b]. Moreover 'u ~ : [a, b] ~ R tO { - e c ,  ec} is continuous and 
E := {x E [a, b] : l u ' ( x ) l  = is a closed set of measure zero. (For a review of 
these results see Ball and Mizel [1].) 

In general E is non-empty; examples with f a polynomial can be found in Ball 
and Mizel [1]. For some recent results involving similar examples see Sychev [5, 6]. 
Furthermore, Tonetli's partial regularity theorem described above is optimal in the 
sense that any closed set of measure zero is the singular set E corresponding to a 
suitable f and boundary conditions (Davie [3]). 

Since u is absolutely continuous it follows that meas u(E)  = 0, and hence that the 
subset 
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D = {(x, u(x))  : z  ~ E }  

of R 2 is closed and has two-dimensional Lebesgue measure zero. Of course for a 
given f the set D is in general dependent on the interval (a, b), the boundary values 
a,/3 and the minimizer u, and the question therefore arises as to what happens as 
these are varied. In this paper we show (Theorem 2.1) that the set of points ~ f  of 
11~ 2 that belong to D for some a, b, a,/3 and minimizer u is of first category. If the 
interval is fixed and the boundary values are restricted by the inequalities lal < M, 
t/3[ -< M then (Theorem 2.2) the closure of the set of such points is nowhere dense. 
Thus most points of ~2 cannot support a singularity for any interval or boundary 
conditions. We call ~ the universal singular setforf.  

A special case of Theorem 2.1 can be deduced from the result of Clarke and Vinter 
[2] who show that if in addition to the hypotheses of Theorem 2.1 f = f (x ,  u,p) is a 
polynomial in p of the form 

N 

f (x ,  u,p) = E q,i(x, u)p N-i  (1.3) 
i=o 

then 
~ s  c {(x, u) : qo(x, u) = 0}. 

Thus if, for example, q0 is a non-zero polynomial in x, u then ~ f  is nowhere dense. 
They deduce this result from the form of the Euter-Lagrange equation using a crite- 
rion of Tonetli [7, I I p .  364], a method that does not work under our more general 
hypotheses. 

In Sect. 3 we discuss whether analogous universal singular sets could be small for 
multi-dimensional problems of the calculus of variations. 

2 The universal singular set 

We denote by W 1'1(a, b) the usual Sobolev space of (equivalence classes of) functions 

u : (a, b) -~ 11~ such that Ilulia,  := f (lul + lu'l)dx < oc. As is well known, Wl,l(a, b) 
consists precisely of those u having a representative that is absolutely continuous on 
[a,b], and we always choose this representative. 

Let [a,b] C R. By a minimizer of I on [a,b] we mean a function u E wl ' l (a ,  b) 
which for some ct,/3 minimizes 

2 I(a,b)(V) = f (x ,  v, v')dx (2.1) 

in the set ~(a ,b)  = {V C W1J(a,b) : v(a) = c~,v(b) =/3}. We define the universal 
singular se t for fas  the set !~f of points (a, c~) E N2 such that there exists b 7(a and 
a minimizer u of I on [a,b] (or on [b,a] if b < a) with u(a) = a, lu'(a)l = ec. Our 
main result is that ~ f  is small in the sense of category. 

Theorem 2.1. The set ~ y  is of first category in !~ 2. 

If  we restrict attention to minimizers u defined on a fixed interval J = [A, B], /3  > 
A, with a bound on the values of u(A), u(B) then more can be said. Given M > 0 
define !~ry,j,:vf as the set of points (a, c0 c J x I~ such that there exists a minimizer 
u of I on J with u(a) = o~, Iu'(a)l = oc, lu(d)l _< M and lu(B)l <_ M. 
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T h e o r e m  2.2. The set ~ f , ~ , M  is nowhere dense. 

L e m m a  2.1. Let n j ,  j = 1,2, ..., be minimizers o f  I on [a,b] and suppose uj  --+ 
uniformly on [a, b]. Then u is a minimizer o f  I on [c, d] whenever a < e < d < b. 

Remark. It is not true in general that under the hypotheses of the lemma u is a 
minimizer of  I on [a,b]. For example, consider the integral 

K/ I(~t) = [(2? 2 -- U3)2('IZl) 16 + C(~') 21 dx (2.2) 

where e > 0 is sufficiently small (cf. Ball and Mizel [1]). Let uj minimize I in the 
set 

"~J = {V E rcVl'I(O' l) : v(O) = - l '  v(l) = l } 

_1 (1+ ~)x The minimizer uj exists by Tonelli 's theorem. Moreover, setting u(x)  = 7 + 
we see that 

I ( u j )  <_ co + e ~  (2.3) 

for all j ,  where co and cl are positive constants. In particular the uj  are bounded 
in W1,2(0, 1), and so a subsequence converges uniformly in [0,1] to a function u C 
W1'2(0, 1) with u(0) = 0, u(1) = 1. To show that u is not a minimizer of  I on 
[0,1], fix /ca, k2 with 0 < kl < k2 < 1. Let v E W1J(0 ,1) ,  v(1) = 1, with 

,~ 2 / 3  
v (xO <_ r~1~1 for some Xl E (0, 1), and let x l (v )  be the largest such value of  xl .  
Then klX2/3 < v(x) < k2x 2/3 on some maximal interval [x l (v) ,xz(v)]  C (0, t) and 
so 

fxa(v) 
I(V) ~ / (x2 - v3)2(Vt)16 dx 

J X] (V) 

f 
x2(v) 

x4(vt)16dx. (2.4) 2 (1 -- k23) 2 ,/;el(V) 

Setting z = X 11/I5 we deduce using Jensen's  inequality that 

( 1 1 )  15 cx2(@1/15 (dv)16  
--/~2) [ ~ dz I (v)  >_ ~ (1 3 2 

axl(v)'715 

~ ]  (1 -- k 3~2(k2x2(v)2/3 hlXl(V)2/3) 16 
> 
-- 2' ~ Zl(v)ll/15)l 5 

>_ eaxl(v) -1/3 , (2.5) 

where ca > 0 depends only on kl, k2. Applying (2.5) to uj  we deduce from (2.3) 
that x l (u j )  _> c3 > 0, where c3 depends for all sufficiently small e only on kl,  k2. 
Therefore 

x l (u)  >_ c3 > 0. (2.6) 

Hence by (2.5) applied to u, 
I (u )  >_ ca. (2.7) 
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But if e < ~c2 t h e n / ( x  2/3) = ~ < I(U), SO that u is not a minimizer of  I on [0,1]. 

Proof of Lemma 2.1. Let a < e < d < b, and let v c Wl'l(c,d) with v(c) = u(c), 
v(d) = u(cO. We must show that I(c,d)(V) >_ I(e,d)(U). 

Since uj(a), uj(b) are bounded and the uj are minimizers, it follows that I(a,b)(Uj) 
is bounded, and thus so is f :  ~(u}) dx. By the de la Vall6e Poussin criterion it follows 

that u E Wl'~(a, b) and uj ~ u in Wl,l(a, b). In particular u is differentiable a.e. 
in (a,b). Pick points xo c (a, c), xl E (d, b) at which u is differentiable. Thus there 
exists M > 0 such that 

u(x) - u(xo) < M if Ix - xol is sufficiently small, (2.8) 
X - -  X 0 

and 

u(x) -U(Xl)  _< M if I x -  xl] is sufficiently small. (2.9) 
X - - X  1 

Given 6 > 0 sufficiently small choose j = j(6) sufficiently large so that 

[]uj - unc([a,b]) < & (2.10) 

For this j define 

I uj(x) i f a < x < x o - ( 5  
6-1[(x  - xo + ~5)u(xo) + (Xo - x)uj(xo -- 6)] if Xo -- 6 < x < xo 
u(x) if xo < x < c 

ue(x) = v(x) if c < x < d 
u(x) if d < x < xl  
(~'--I[(Xl + (~ --  X )U(X l )  + (X --  Xl )?~j (ZI  + (~)] i f x  1 < X < Xl  + ~ 

uj(x) if x 1 + 6  < x < b. 
(2.11) 

Since uj  is a minimizer, I(a,b)(ue) > I(a,b)(uj), and hence 

I(~o-6,,o)(U6)+ [(xo,c)(U)+ I(<d)(V)+ I(d,xl)(U)+ I(x~,~l+e)(U6) >_ [(~o-6,~+s (2.12) 

Now for x E (xo - 6, zo) 

l u g ( z ) [  = ~ - l l ~ ( x o )  - u A z o  - (~)I 

<_ ~ - ~ [ u ( x o )  - u ( x o  - ~)1 + ~ - ~ l u ( x o  - ~ )  - u s ( x o  - ~)I 
<_ M +  1, (2.13) 

and so f (x ,  ue(x), u}(x)) is bounded on (xo - 6, Xo) independently of  & Hence 

lim I(~o_e,~o)(ue) = 0, (2.14) 
6---+0 

and similarly 
lim I(~ #~+~)(u~) = 0. (2.15) 
6---+0 

Also, since f > 0 and by weak lower semicontinuity, 

liminfI(~o_e,~+a)(uj(6 )) > liminfI(~o,,~,)(Uy(e )) 
6-~0 6-~0 

> I(~o,~)(u). (2.16) 
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The weak lower semicontinuity implies also that 

I(~0,~)(u) < vc, I(d,x~)(U) < ~ ,  (2.17) 

and so combining (2.12), (2.14)-(2.17) we obtain I(~,d)(V) > I(~,d)(U), as required. 

L e m m a  2.2. Let  a < b and let u E W h l ( a ,  b) be a minimizer  o f  I on [c, b] f o r  any 
c E (a, b). I f  there exists a minimizer  uo o f  I on [a, b] with uo(a) = u(a),  uo(b) = u(b) 
and ]u~(a)] < ~x~, then u also minimizes  [ on [a, b]. 

Proof. For e > 0 sufficiently small let 5(e) E (0, -~) be such that 

lu(a + 6(~)) - u(a)l <_ ~, 

and define 

u~(z) = { 
(~ -- (~(~))--1 [(X --  a - -  ~(C)) u o ( a  + ~) + ( a  -F ~ --  x ) u ( a  + (~(~))] 

if a +  6(r < x < a + r  
uo(x)  if a + c < x < b .  

Then u~(a + 8(e)) = u(a  + 6(e)) and so 

(2.18) 

(2.19) 

[(a+6(e),b)(Ue) ~ Tl-(a+6(e),b)('Lt ). (2.20) 

It is easily verified that lu~(x)l <_ M < o<~ on (a + 6(e), a + e), and so letting e ---+ 0 
we obtain [(,,b)(U) <_ [(~,D)(Uo) as required. 

Given e > 0, p > 0 we denote by R+P,~ (respectively RP_,e) the subset of ~ f  

consisting of  those points (a, c~) c R2 such that whenever 0 < e ~ < e there exists a 
minimizer u of I on [a, a + e ~] with u(a)  = e~, ul(a)  = +(~ (respectively - o o )  and 
I(~,a+~,)(u) <_ p. Similarly, we denote by L+P~ (respectively LP_,~) the set of  points 

(a, ~) c ~2 such that whenever 0 < e / < e there exists a minimizer u of  I on 
[a - e t, a] with u(a)  = o~, u~(a) = +oo (respectively - o o )  and I(~-~,,a)(U) < p. We 
set 

R~ := R+ p ~ u R p 

n~ := L+P,~ U L p_,~. 

We will use the fact that R p is the same as the set Rc p consisting of those (a, c~) 
such that whenever 0 < e~ < ~ there exists a minimizer u of  I on [a, a + E ~] with 
u(a)  = e~, lug(a)] = oo and I(~,~+~,)(u) < p. Clearly R~ C /~P. Conversely, if 

(a,(~) E R~ then there exists a sequence cj -+ c, 0 < cj < e, such that the 
corresponding minimizers u j  of  I on [a, a + e~] satisfy either u~(a) = +oo for all j or 
u~j(a) = - o c  for all j .  Since uj  is a minimizer of I on [a, a + eP] for 0 < e~ < Ej and 

l(a,a+e')(uy) <_ I(a,a+~j)(Uj) it thus follows that (a, c0 E R+P,~ U RP_e. Hence R~ p =/~e p. 

With the obvious definition we also have that Le p = L~ p. 
A proof of  the next lemma can be found in Ball and Mizel [1]. 
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L e m m a  2.3. (Tonelli [7, II, p .344  ff]) Let k > 0, m > 0, r > 0, M > 0. Then 
there exists 6 > 0 such that i f  Ixol < k, 0 < Xl - xo _< 6, luol < m and 

I Xl - -  X0 I 

there is a unique solution u C C2([xo, Xl]) o f  the Euler -Lagrange  equation 

d 
-d-~xfp = f~  (2.21) 

satisfying u(xo)  = Uo, U(Xl) = Ul and ]u(x) - u0l _< r f o r  all  x E [x0, Xl]. 
Fur thermore  u is the unique absolute min imizer  o f  I(xo,x,)(v) in the set  

~/~ = {v  E W 1 4 ( x o ,  x l )  " V(Xo) = uo, V(Xl) = ul,  max Iv(x)  - uol <_ r}  
XC[XO,Xl] 

L e m m a  2.4. For  each c > O, p > 0 the sets  R~,  L~ are closed. 

Proof.  We prove the result for Rff; the proof for L~ is similar. Let (as, c~)  C R~, n = 

1, 2, ... with (am an)  ---+ (a, a). We show that (a, a )  E /~P. Let 0 < d < c and pick 
d ' d "  with d < e" < d "  < e. By assumption there exists a minimizer u~ of I on 
[as,  an + d"]  with un(an)  = O~n, jU'~(an)l = OC and J[(a . . . .  +eH')(Un) < P" Defining 
u ~ ( x )  = an  for x < an we deduce from the last inequality and the superlinear growth 
condition that a subsequence, again denoted Un, converges weakly in W l , 1 ( a -  1, a + 
e"), and thus uniformly in [a - 1 ,a  + e"], to a function u E w l ' l ( a  - 1 ,a  + e").  
By Lemma 2.1 (applied to any compact subinterval of  (a, a + c")) u is a minimizer 
of I on [c,d] whenever a < c < d < a + e" and by weak lower semicontinuity 
I(a,~+~,,)(u) < p. 

Let ~2 be a minimizer of  I(a,a+e')(v) on the set 

, ~ t  = {V E w l ' l ( a ,  a + c')  : v(a)  = o~, v (a  + e')  = u (a  + e')}. 

Since u C ~/~' we have I(a,~+~,)(~t) < p. If  [~2'(a)l = oc we have thus found a suitable 
minimizer of  I on [a, a + d] .  So suppose that Ig'(a)l < oc. Then by Lemma 2.2 u 
minimizes I on [a, a + d] .  I f  IC(a)l < ec then there exists M > 0 such that 

u(b) - ~ 1 M 
~ _ a < - 2  

for all b C (a ,a  + e'). Let k = s u p i a n l , m  = supllunIIc([an,a~+e,,]), r = 2m, and let 
6 > 0 be given by Lemma 2.3. Choosing xo = a~, Xl = a~ + r ,  0 < r < min(6, d) ,  
and noting that 

lim u~(a~ + 7-)_ -- Un(an)  < 1 M 
n-- ,~  r - 2 ' 

we deduce that for n sufficiently large u,~ C C2([a~, a,~ + r]). This contradicts 
l u ' ( a ~ ) l  = oc and hence lu ' (a) l  = oc,  so that u is a suitable minimizer on [a, c~ + d] .  
Since e t c (0, e) was arbitrary we have shown that (a, c0 C -Rf as required. Hence 
Rf  = / ~  is closed. 
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Define 
K l =  {(x,y)  C]~ 2 : X _ > 0 ,  y_>0} ,  
/(2 = {(x,y)  E R 2 : x  >_0, y_< 0}, 
/(3 = {(x,y)  E R  2 : x < 0 ,  y > 0 } ,  
/4-4= {(x,y)  E]~ 2 : z < 0 ,  y < 0 } .  

We say that a set E C ]R 2 is Ki-closed if any point z E R e such that z E E M (Ki + z) 
is in E.  

L e m m a  2.5. Let e > 0, p > 0. Then RP+ ~ is K4-closed, R p is K3-closed, LP+ ~ is 
K2-closed, and L p ~ is Kl-closed. 

Proof. We show that RP+,e is K4-closed; the proofs of  the other assertions are similar. 
Let z = (a, o~) and (an, een) E RP+,e M (K4 + z) with (an, O~n) ~ (a, C~) as n ~ oo. 
Let 0 < c '  < g" < d "  < c. By assumption there exists a minimizer un of [ 
on [an,an + g'"] with un(an) = an, u~(a~) = +oo and I(a~,a~+z'")(Un) <_ p. AS 
in the proof of  Lemma 2.4 we may suppose that Un ---+ u in W l ' l ( a -  1,a + d') ,  
where u is a minimizer of  I on [c,d] whenever a < c < d < a + g '~ and where 
l(a,~+~,,)(u) <_ p. Since u c w l ' l ( a  - 1,a + ~"), u is differentiable at some point 

a + ~ with d < g < e '~. Let ~2 be a minimizer of  I(a,a+g)(v) on the set . ~  = {v E 
w l ' l ( a , a  + g) : v(a) = oq v(a + g) = u(a + g)}. 

Suppose fi'(a) ~ +co. We first show that in this case u is a minimizer of  I on 
[a, a + g]. This follows as in Lemma 2.4 if l~2'(a)l < oo. If  ~2'(a) = - c o  we argue as 
follows. Since an <_ a, c~,~ < a there exists for large enough n points xl,~ >_ a with 
~2(Xln) = c~  and limn__+~ Xl~ = a. Also, since u,~ --+ u uniformly in [a - 1, a + e"] 
and u is differentiable at a + g there exists a sequence an > 0 with l i m n + ~  ~,~ = 0 
such that 

u~(a + g + &~)~ - u(a + g) _< C < oc (2.22) 

for all n. Now define 

{ c~n if a n < _ X < X l ~  
~(x) if x l n < x < a + g  

~2n(X) = u ( a + g ) + ( x _ a _ ~ ) ( S n - l ( u n ( a + ~ + S n )  
- u ( a + g ) )  if a + g  < x < a + g + 5 n .  

Since u,~ is a minimizer of I on [a,~, a+g+6,~] for sufficiently large n, it follows that 

/(~,~+e+~)(u~) >_ I(~,~+e+~)(un). (2.23) 

Using (2.22) we see that 

li+rnoo I(an,a+g+Sn)(~tr~) = .[ (a ,a+~)(~) ,  (2.24) 

while by weak lower semicontinuity and the positivity of f 

l i m i n f I ( ~  a+e+en)(u,~) > liminfI(~ ~+e)(un) 

> I(,~,a+e)(u). (2.25) 

Combining (2.23)-(2.25) we deduce that 

[(a,,~+e)(~z) >_ I(a,a+e/(u), (2.26) 
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so that u is a minimizer of  I on [a, a + g] as claimed. 
Using Lemma 2.3 as in the proof  of Lemma 2.4 we see that lu'(a)l = oc. Suppose 

that u'(a) = - o c .  Then since a~ < a, c~n _< a ,  u'~(a~) = +oo and u~ ~ u 
uniformly in [a - 1, a + d ' ]  it follows that for sufficiently large n there exist Yn > an 
with u,~(y~) = c~ and l im,~o~  y~ = a. Since the u~ are uniformly bounded and 
y~ - an --+ 0 it follows from Lemma 2.3 that u,~ E C2([a,~, y~]), contradicting 
u ' A a n )  = +o~. 

From the above arguments we see that either g(an) = + ~  or u'(a) = +c<~ and u 
is a minimizer on [a, a + g]. In both cases we have a minimizer on [a, a + dJ  with 
derivative +co at a. Thus z C R+P# and hence R+P# is 1s 

Proof of Theorem 2.1. Since 5~ry = iioo n i  i j L  i o,,a '~ ~ ~1/~'~ 1/i . . . .  since by Lemma 2.4 all the sets 

R]/vL~/~ are closed, it suffices to prove that each of  the sets R~/i,L~/~ is nowhere 

dense. Let us suppose the contrary, that the set ]~/ j ,  say, contains a nonempty open 

set G. Since R{/ j  = RJ+,I/j [..J F~ j it follows that one of the sets R j R j - , i / j  +,l/j, - ,1/j  

is dense in an open subset /2 of  G, say _RJ,1/j D /2. Then for any z C S2 the set 

N (ts + z) is dense in ~2 N (/(4 + z), and hence by Lemma 2.5 z E 1~3+,1/j and 

Q C RJ+,I/j. 
Set 

Qh = {(x, v) e ~2 : I< < h, lyl < h}. 
1 Choose z E s and a positive h < ~ such that Qh + z C Q. Write Q = Qh + z, 

z = (a, c0, and let xl  = a - h ,  x2 = a+h. Since ~(p)/fp[ ~ oc as JPr --+ oc there exists 
a constant K > 0 such that p(p)  _> IPl - K for all p. Choose l > (21s 1 ) h + j  and let 
yl = o ~ - - l ,  Y2 = OZ-I-l. Let u be a minimizer of I on [Xl, x2] with u (x i )  = Yl, u(x2) = Y2. 
Then there exists a point (b,/3) E Q such that u(b) =/3 and lu'(b)l < ec. By assumption 
there exists a minimizer g on [b, x2] with g(b) =/3,  ~Y(b) = +ec and I(b#2)(~t) <_ j .  
Now 

< f~21~2, [ dx I~(x2) - ~(b)l ~_ s163 + ~(~,)] dx 

<_ K(x2 - b) + j ,  

and hence g(x2) <_ c~ + h + 21s + j < y2. Thus there exists a point c E (b, x2) with 
u(c) = ~2(c). Set 

u(x) if xt  < x < b  
v (x )=  ~2(x) if  b < x < c .  

Then v is a minimizer of  I on [xl ,  c]. But v has no derivative at x = b, either finite 
or infinite, contradicting Tonelli 's  result. 

Proof of Theorem 2.2. Let (a, c~) E ~ f  ,E,M, and let u be a minimizer on E with u(a) = 
o~, [u'(a)l = oc, lu(A)l <_ M and tu(B)] <_ M.  Denote by CM,A, B the maximum of 

[ -2M 2M ] f on [A, B] x [ - M ,  M ]  x B---2-X, g=--A �9 Letting l~(x) = u(A)+ (u(BB}~_-~(A))(X- A), 
we see that 

[(U) ~ [(lu) G (B -- A)CM,A,B. 

Pick j > m a x { ( B -  A )C M,A,B , B 2--~_ A }. Then ( a, o~ ) e R{ / j U n ~ / j , and so ~ f  ,E,M C 

R~/j U L~/j. But as shown in the proof  of Theorem 2.1 the set R~/j U L~/j is closed 

and nowhere dense. 
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3 Discussion 

It would be useful to determine whether !~f has two-dimensional Lebesgue measure 
zero, and if so to calculate its Hausdorff dimension, but we have not succeeded in 
these tasks. It is not even clear to us whether or not the projection of  ~ y  onto 
the x-axis has zero one-dimensional Lebesgue measure. In this connection we recall 
the example in Ball and Mizel [1] of a smooth nonnegative integrand f = f ( u , p )  
satisfying fpp > 0 and f (u ,p ) / l p  I ~ oo as Ipl ---+ c~ for each u 4 0 ,  but for which 
the Tonelli set E is nonempty. Since this integrand does not depend on x it follows 
that the projection of  ~ f  onto the x-axis is the entire x-axis. However this f does 
not satisfy the growth hypothesis (1.2). 

An interesting question is whether under suitable hypotheses small universal sin- 
gular sets exist for multiple integrals 

I(u) = fsl  f ( x ,  u, Du) dx (3.1) 

depending on mappings u : /2 ~ ~N,  where /2 C R ~ is bounded and open. In this 
context we recall the example of NeSas [4] for which N = n 2 with n sufficiently 
large, and f = f ( D u )  is analytic and satisfies the uniform convexity condition 

D2f(A)(~,~)  > c[~] 2 for all A , ~ ,  (3.2) 

where c > 0. The corresponding Euler-Lagrange equation has as a weak solution the 
mapping u ~ given by 

x i x  j 
u ~  -- , (3.3) 

Ixl 
which is Lipschitz, but is not differentiable at the origin. Since f depends only on 
Du, given any constant vectors a E R ~, c~ E I~ N the mapping ua, ~ ~  defined by 

u~ = u~ - a) + c~ (3.4) 

is also a weak solution, and since f is strictly convex it follows that ua,~~ is the unique 

absolute minimizer of I(u) subject to the boundary condition ulon = ua,~ . o  Hence for 

any a E ~2, c~ E R N there exists a minimizer Ua,o,~ which is not smooth at the point 

a, with U~ = o~, in contrast to our one-dimensional result. 
However, this example is not a fair comparison since in one dimension Lipschitz 

minimizers are necessarily smooth. A fairer comparison would be to consider smooth 
integrands f : /2 • ~ N  • M ~ X ~  _+ R, with f ( x ,  u, .) strictly convex (or, more 
generally, strictly quasi-convex), where M ~ • ~ denotes the set of real m • n matrices, 
satisfying the growth condition 

f ( x ,  u, A) >_ colAI p + cl (3.5) 

for constants p > n, co > 0 and cl. The growth condition (3.5) ensures that any 
minimizer of  I o n / 2  is continuous, and we can ask whether the set 

5~f,s~ = {(a, c~) E /2 • ~lv : there exists a minimizer u of  I on g2 with u(a) = o~ 

and Du unbounded in any neighbourhood of a} 
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is in some sense small. As far as the authors are aware there is no counterexample 
to this in the literature. In particular there is no example known of  an integrand 
f = f(Du) satisfying (3.5) with a corresponding minimizer having Dz~ unbounded at 
an interior point of D. 
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