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1. Introduction 

Consider the mixed initial-boundary value problem 

u,=u~x, for 0 < x < l ,  t>s (1) 

Ux(i, t)=(-1)if i(u(i ,  t), t), for i=0 ,  I, t>s (2) 

u(x, s) = 6(x), for 0 < x <  1, (3) 

where ~ C ( [ 0 ,  1]) and the functions fo and f l  satisfy 

vf~(v, t)>O for Ivl a, t~s ,  i=0,1 (4) 

for some positive constant a = a(s). 
In [2] we showed that if the functions f~ are independent of t and twice con- 

tinuously differentiable, then any solution u of problem I converges in C a ([0,1]) 
to an equilibrium solution as t - - .~ ,  each equilibrium solution being supposed 
isolated. In this paper we prove analogous results for the case when the functions 
f ( . ,  t) "stabilize" as t--* c~, that is, tend to functions.~(.) which do not depend on t. 
In the catalyst particle problem discussed in [1, 2] this happens when the con- 
centration of the reactant in the bath containing the particle tends to a uniform 
value as t ~ .  

The stabilization of the functions f. is assumed to hold in the sense that, for 
any p>0 ,  

~t+l sup If~(v,s)-f~(v)lds~0, as t - - ,~ ,  i=0,1. (5) t 
M -<p 

Under some additional assumptions on the functions f problem I generates 
an asymptotically dynamical system on C 1([0,1]) in the sense of DAFERMOS [4]. 
Our proof of global attraction in C 1 ([0,1 ]) is based on a new form of the invariance 
principle for asymptotically dynamical systems in which we require only the 
limiting autonomous system to possess a Lyapunov function. This result is 
stated and proved in Section 2. 
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2. An Invariance Principle for Asymptotically Dynamical Systems 
Let X be a metric space with metric d. Following DAFERMOS [4--6] we define 

a process on X to be a family of operators U(t, s):X-- ,X,  defined for t ~  § 
ss  ~, and satisfying: 
(a) U(0, s) = identity for s s ~ ;  
(b) U(t+~, s)=U(t, s+z)U( r ,  s) for t, ~e~  +, s e ~ ;  
(c) for any fixed Soe~ the maps (t, O)~U(t ,  s)~,, with parameter se[so, oo), 
are equicontinuous on (0, o o ) x X  (i.e. given e>0,  t>0 ,  OeX, there exists a 
3 > 0 such that d(U(t, s)~b, U0-, s)ff) < ~ whenever It 7-fl + d(~,, if) < 6 and s>_So)*. 

In the special case when the operators U(t, s )~  ~ T(t) are independent of s, 
the process is called a semigroup of continuous operators. 

If U(., .) is a process and ~bsX, s s ~ ,  we define the positive orbit 

(4,, s)= v(t, 
t_>O 

and the o)-limit set 

f2(~0, s)={q~eX: there exists a sequence { t ,}~E +, t,--,ov as n ~ ,  such that 

U(t,, s)~--,49 in X}. 

The process U(-,-) is called an asymptotically dynamical system if there exists 
a semigroup T(.) such that for any fixed OEX, t ~  +, we have U(t, s ) ~ T ( t ) ~  
in X as s ~  ~ .  A subset A of X is positively invariant if T(z)A c A  for all z~ ~ +. 
A point ~b~X is a rest point if T(z)~b =q5 for all z ~ + .  

From now on we suppose that U(.,.) is an asymptotically dynamical system 
with corresponding semigroup T(.). We also suppose that 
(d) there are only finitely many rest points in any compact subset of X; 
(e) there exists a continuous function V: X--, ~ such that 

(i) V(T(T)~)< V(~) for any ~ X ,  z ~ + ;  
(ii) if V(T(,)qS)-- V(~b) for all z ~ + ,  then ~b is a rest point. 

Theorem 1. Let $~X,  s ~  be such that C+ ($, s) is preeompaet. Then f2($, s) 
consists of a single rest point. 

Proof. Since C + ($, s) is precompact, 12(~b, s) is nonempty, compact, positively 
invariant and connected. The first three of these properties follow from the 
method used by DAFERMOS [4--6]. The positive invariance is also a consequence 
of the following stronger assertion, which we need later. 

Proposition. I f  4)~f2(tp, s) and U(t,, s)tp~O in X for some sequence t ,~oo,  then 
U(t, + z, s) ~b ~ T(r) 4) in X as n ~ 0% uniformly for z in any compact subset of  ~ +. 

Suppose the proposition is false. Then there exists an ~ > 0 and a sequence 
{ , , } c ~  + with z,---,T as n ~  such that d(U( t ,+ , , ,  s)$, T(r)~b)>e for all n. 
Since C + (q/, s) is precompact there exists a subsequence {tu} of {t,} and an element 

ef2($, s) with U(tu-1,  s ) $ ~  Z in Xas  p~oo .  Then 

* This equicontinuity property differs from that used by DAFERMOS. 
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d(U(t. + z u, s)O,T(*)ch)= d(U(r ,  + l, s +  t . -  1) U(t , -  1, s)O, T(z)(o) 
<d{U(z,+l, s+tu-1)U(tu-1,  s)O, U(z+l, s+tu-1) 7.) 

+d(U(z+l, s + t . - 1 ) ) 6  U ( z + l ,  s+ t . -1 )U( t . -1 ,  s)O) 
+d(U(z, s+ tu)V(t . ,  s)O, U(r, s +  tu)~b) 

s+t.)4), 
so that by (c), d(U(tu+z ., s)O, T(z)(3)~O a s / ~ o o .  This contradiction proves 
the proposition. 

The connectedness of O (0, s) follows from continuity of  the map t ~ U(t, s)0. 
Let 

a =  lim inf V(U(t, s)O), fl= lim sup V(U(t, s)O). 
t--* oo t--* oO 

Since (9 + (0, s) is precompact and V is continuous it follows that - oo < a __< fl < o0. 
Suppose for contradiction that a < ft. Choose 71,72elR so that a < ~h < 72 < ft. 
By (c) and the continuity of V the map t~V(U(t, s)O) is continuous on (0, o0). 
Therefore there exist sequences {t.}, {r.}, t.<r., t.~oo as n--*oo, such that 
V(U(t,, s )0)=7~,  V(U(r,, s )0 )=72 ,  and 7, < V(U(z, S ) 0 ) ~ 7 2  f o r  all ze[t., r.]. 

Since (9 § (0, s) is precompact we can suppose that U(t,, s)0 ~43 in X for some 
qSef2(0, s). Using the proposition, we see that V(U(t,+z, s)O)~V(T(z)c~) as 
n ~ oo, uniformly in any compact subset of P +. Thus, if z, ~ [0, rn - t. ] is a bounded 
sequence with z.--,z as n~oo ,  then 

0<2im ~ [V(U(t,+z,, s)O)- V(U(t,, s ) 0 ) ] =  .V(T(OqS)- V(~b)<0. (6) 

Since 71 < 72 this implies that the sequence { r . - t , }  cannot be bounded. Thus, 
without loss of generality, we may suppose that r , - t ,~oo  as n-,oo.  But then 
(6) and (e, ii) together imply that q5 is a rest point with V(~b)=71. Since 71 e(cr fl) 
is arbitrary, this contradicts (d). Hence e=f l ,  so that V(U(t, s)O)--*~ as t-~oo. 
Thus V(qS)=~ for all ~be~2(0, s). Using the positive invariance of Q(0,  s) and 
the properties (d) and (e, ii) we find that f l (0 ,  s) consists of finitely many rest 
points. The desired result now follows from the fact that f2(0, s) is connected. 

3. The System (I) as an Asymptotically Dynamical System 

We make the following hypotheses on the boundary funct ionsf(v,  t), i=O, 1 : 
(H1) f eC (R  x F0; 
(H2) for each teR,  f(v, t) is twice continuously differentiable with respect 

to wF~, and for each p > 0 ,  s e R  there are constants M2=Mi(p, s ) > 0 , j = 0 ,  1, 2, 
such that for all ]v]<p, t>s,* 

[l;(v, t)l<M o, ~'(v, t)l<M 1 , ~"(v, t ) l<M2;  (7) 

(H 3) f satisfies (4); 
(H4) there exist real valued functions f /eC2(R)  such that for each p > 0  

condition (5) holds. 

* Primes denote differentiation with respect to v. The arguments  of  the constants  M 2 will often 
be omitted where this will cause no confusion. 
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Remarks. It follows from (H2)- (H4)  that there exists a constant c~ > 0 such that 

vfi(v)>=O for [vl_>_E i=0,  1, (8) 

and that for each p > 0 there exist constants Mj =_~j(p) > 0, j =  0, 1, 2, such that 
for all ]v[__<p 

I~(v)l__<~o, I~'(v)l_-<~x, [f,"(v)l<M2. (9) 

Note also that if 1 =< y < oo, then by (H 2) and the bounded convergence theorem 
(5) is equivalent to 

~t+l t is~Plf( v, s)- f (v)]  ?ds 'O as t + ~ ,  i=0 ,  1. (10) 

For se  R, write 

Q(s)={(x, t ) :  0 < x < l ,  t>s}, S(s)={(x, t ) :  xe{0,1}, t>s}. 

The function u=u(x, t; t~, s) is said to be a solution of problem I if 

ueC(Q(s)), uxeC(Q(s)wS(s)) , u, eC(Q(s)), uxxeC(Q(s)) 

and (1)-(3) hold. The usual norms in the spaces C([0, 1]) and C 1([0, 1]) are 
denoted by [[. 1[ and [[-II1 respectively. The following theorem can be proved 
by exactly the methods of [1, 2]: 

Theorem 2. For any CeC([0,  1]) and s e n  there exists a unique solution 

u(x, t)=u(x, t; ~, s) 

of problem (I). This solution satisfies the integral equation 

u(x, t )=~G(x ,  ~, t - s ) r  o ~tsG(x, i, t - z ) f ( u ( i ,  ~), z)dz (11) 

in Q(s), where G(x, 4, t) denotes the Green function for the heat equation in Q(O) 
with zero Neumann data. Furthermore 

[u(x, t)l__<max {[[~[[, a(s)} for(x ,  t)eQ(s) (12) 

and for any 6 > 0  there exists a constant K = K ( r  s, 6) such that 

luAx, t)l<K for(x,  t)eQ(s+cS). (13) 

For q/eC([0, 1]), seN,  t e n  +, define 

(v(t, s)~ ) (x)=u(x, t + s; r s). (14) 

By Theorem 2 U(t, s) maps C([0, 1]) into C 1 ([0, 1]) and satisfies conditions (a) 
and (b) in the definition of a process. We next prove that U(t, s) satisfies a strength- 
ened equicontinuity property. 

Lemma 1. Given any e>0 ,  ~,keC([0, 1]), t>0 ,  SoeR, there exists a 6 > 0  such that 

II u(t, s)~,- u(7, s)~l l ,  < 
whenever [t--t~ + [l~--~[[ <b and s>=s o. 
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Proof. Let e>0, t>0,  SoCk, and let if, t~eC([0, 1]). Write 

vs(x, ~)=u(x, r+s; r s), ~s(x, ~)=u(x, ~+s; ~7, s). 

Then by (11) 

vs(x , z ) -~s(x  , z)=~lG(x, r r) [~b(~)-r (15) 

-YJ=0 ~'oG(x, i, z - a )  ~(vs(i, a), a + s ) -  f (~s(i, a), a + s)]da. 

Let ms(z)= Ilvs(., r ) - f s ( . ,  ~)11. Then if S>So and I1~-~11 < 1, 

ms(z) =< II~,-,~ll + M, E~:o 5; IIG(', e, -~-,~)ll ms(o)do, 

where M, =M ,  (max {lloll + 1, a(so), So). But 

IG(x, r .0l <co(.0 ~eG(0, 0, "0 (16) 

for x, ~ [ 0 ,  1] ands>0. It was shown in [2] that o)(~) is continuous for ~>0 
and satisfies o (T)~ (re r) -§ as z--*0 +.  Therefore if 7 > 2 and 7'= 7/(7 + 1) then 

max .[; IIG(., i, r - o ) l l " d , ~ k ( ~ ) <  oo. (17) 
i = 0 , 1  - 

Hence 

so that 

ms(~) ~ II0-q~ll + 2M1 {k (T)} 1/?'' (~; {ms(a)};'da) 1';', 

{ms(Z)}r <2r-1 nO-~ll~+22~-1M~{k(~)}~/~' 5~ {ms(a)}~da. (18) 

Applying Gronwall's inequality we deduce that for 7e [0, 3 t/2], say, there exists 
a constant C > 0 such that 

msff)____Cl[0-~l [. (19) 

From (15) and (19) we obtain 

+Mx C ~)= o ~rolGx(x, i, a)lda } Ile-~ll. (20) 

Since both integrals in (20) are bounded for 7~[t/2, 3t/2], it follows from (19) 
and (20) that there exists a 61 > 0 such that 

I[U(7, s ) r  U(t, s)q~[[1 <�89 (21) 

whenever [[r162 <61,7~[t/2, 3t/2], and s>-_So. 
From (11) there results 

Vs(X, 7)-vAx, t )=~  [G(x, ~, 7)-a(x,  ~, t)] r 

--yJ=o {~ [G(x, i, t - a ) - G ( x ,  i, t -a)] f (vs( i  , a), a+s)da  

+ ~G(x, i, 7-a)f(vs(i ,  a), a+s)da}.  
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It follows that, for s_>__ s o and 7____ t, 

I1,~(., 7) -  vs(., t)ll, _-< II~ [a(., r 7)-a( . ,  r t)]•(r162 
+Mo Zko{I~ IIG(., i, t - a ) - G ( . ,  i, t-a)l[, do. (22) 

+ Yo-' Ila(., i, o.)[lldO}, 
where M o = M  o (max {11~'11, a(s0)}, So). By estimating the integrals in (22) by 
means of the explicit representations for G, see [2], it can be shown that 
11~(.,~-)- ~s(.,t)ll,-~0 as 7--,t + ,  uniformly for S>So. A similar argument applies 
if F~ t - .  Thus there exists a 6a > 0 such that 

II v(7, s)~, - u(t, s)ell, < ~  (23) 

whenever IZ-tl < ~  and s>s  o. Let ~ = m i n  {6,, 62, �89 The result then follows 
by combining (21) and (23). 

Lemma 2. U(., .) is an asymptotically dynamical system on C 1 ([0, 1]) with corre- 
sponding semigroup T(,) defined by 

(T(t)~)(x)=w(x,  t; r  

where w is the solution of the autonomous system 

wt=w~ 0 < x < l ,  t > 0  
(I') Wx(i , t ) = ( - - 1 ) ~ ( w ( i ,  t ) )  i=0 ,  1, t > 0  

w(x, 0) = r  0_<x< 1. 

Furthermore, if r  1 ] ) a n d  t > 0  then U(t , s )~k~T(t )~  in C~([0, 1 ] ) a s  
S.---~ oO . 

Proof. That T(-) is a semigroup on C 1 ([0, 1]) can be proved as in [1, 2]. Let 
~ C ( [ 0 ,  1]) and write 

v~(x, t)=u(x,  t+s;r  s), w(x, t )=w(x,  t;q/), 

z~(t)=llv~(., t ) - w ( . ,  t)ll. 

We first show that, for any fixed T>0 ,  z~(t)~O as s ~ o o  uniformly for ts[0, T]. 
From (11) and the corresponding autonomous equation we have 

Zs(t)<YJ=o I'o IIGe, i, t - ' 0 l l  If, (vAi, T), ,c + s)-fi(w(i, ,0)l d-c. 
Therefore 

where 

zAt)<=4~At)+ ZLo ~'oO~(t-v)IZ(vAi, z))--~(w(i, z))ldz, (24) 

q~s(t)=Z~= o S~m(t-z)If (vs( i ,  z), z+s)- f (v~( i ,  z))ldz, 

and ~o is defined in (16). 
Note that if 7 > 2, 

,~(t)_= ELo (I~{~(~)}~'d~)'~' q:+' F(v,(i, t-s),  ~)-~(v,(i, ~-s))l'd~)'~, 
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SO that by (10) and (12), for any T>0 ,  

e s ( t ) ~ 0  as s ~ o o  (25) 

uniformly for t~[0, T]. 
From (9) and (24) 

zs( t)<r 219l 1 5to~O(t-T)zs(~)dz. 

Hence if 7 > 2 

{z~(t)} ~ < 2  ~-1 {~b,(t)} ~ + 2 2~-1 21,I~ (5o {~ ~' dz) yI~'' 5to {Zs(Z)}'dz" 

Thus there exist constants A (s) and B such that, for 0 < t < T, 

{z~(t)}~____A (,) + B 5~ {zs(z)}~dz, 

where, by (25), A(s)~O as s~oo .  By Gronwall's inequality 

{zs(t)}~<=A(s)e'. 

Hence z~(t)~O as s ~ ,  uniformly for tE[0, T], as required. 
Now let t > 0 be fixed. Then 

[Vsx(X, t)-wx(x, ,)l=E,=o 5o lax(x, i, t -z)l  If,(v~(~, z), z +~)-~(~(; ,  z))ldz 
+~I=o  5o [Gx(x, i, t - z )]  ]fi(vs(i, z)- f i (w(i ,  z))ldz 

= 11 q- 12 . (26)  

Given e>0,  let 6 > 0  be such that, for all xe[0,  1], i=0 ,  1, 

e (27) 5t,_a [Gx(x, i, t-O]dZ <8M o. 

It is easy to check that there exists a constant C1 > 0 such that 

[Gx(x, i, t - z )  I < C, (28) 

for all x6[0, 1], 26[0, t - 6 ] ,  i=0 ,  1. Also, by (5) there exists an s 1 such that for 
s>=sl, i=0 ,  1, 

5to ]f(vs(i, ~), z+s)- f i (vs( i ,  z))[dz< e (29) 
4C1 

Combining (7), (27), (28) and (29) we see that for s>sx,  xe[0,  1], 

] I i1<4M~ 4C 1 =~" 

Therefore I1--+0 as s--+oo, uniformly for xs[O, 1]. But the same holds for I 2, 
since 

Ii=1__< & (max z~ (z)) Y)=o 5'0 [Gx (x, i, t - z) ldz. 
[0,T] 

and the integrals on the right hand side are bounded (see [2]). 
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Thus we have shown that 

II v(t, T(t)OII,->o 
which completes the proof. 

as S--~ OO 

4. Global Attraction 

We can now prove our main result. 

Theorem 3. Suppose that the equilibrium solutions of the autonomous problem (I') 
are isolated in C([O, 1]). Let I/s~C([O, 1]) and s6R. Then 

lim Ilu(., = o  
t--~ oo 

for some equilibrium solution v of problem I'. 

Proof. Since, for t>0 ,  U(t,s) maps C([0, 1])into C~([0, 1]), we may without 
loss of generality suppose that r  1 ([0, 1]). Since by Lemma 2, U(. , .)  is an 
asymptotically dynamical system on C1([0, 1]), and since hypothesis (e) of  
Theorem 1 was established in [2], we need only show that r (r s) is precompact 
in C 1 ([0, 1]). But by (13) and the Arzela-Ascoli theorem C+ (r s) is precompact 
in C([0, 1]). Therefore if t , ~  there exists a subsequence {t,} of {t,} and an 
element ~br 1]) such that U ( t , - l ,  s)r in C([0, 1]) as t , ~ .  But 

U(t u, s)r  = U(1, t u - 1 +s) U(t~- 1, s)r  

so that, by Lemmas 1 and 2, U(tu, s)r  in C 1([0, 1]). This completes 
the proof of the theorem. 

5. A Related Problem 

As another application of the invariance pinciple for asymptotically dynamical 
systems which we proved in Section 2, we consider the problem 

uz=Uxx+f(x, t, u), 0 < x <  1, t>s 

(II) ux(0, t)=u~(1, t )=0 ,  t>s  

u(x, 0) = r  0 < x <  1, 

where r e C([0, 1]) and f satisfies the hypotheses 
(i) f E c l ( [ 0 ,  l l x  [RX R);  

(ii) for each xr 1] and t ~ ,  f (x ,  t, v) is twice continuously differentiable 
with respect to v~R and for each p>0 ,  s~lR, there are constants Mj=M~(p, s) 
j = 0 ,  1, 2, such that for all Ivi<P, t>s 

Ili(',t,'OII--<Mo, IIS'(',t,")IISM,, 
(iii) for each s~ R there exists a constant a(s)e R such that 

sup vf(x, t, v)<O for ]vi>a, t>s. 
x~(O,1) 

Suppose there exists a function S~C 1 ([0, 1] x R) which for each xE[O, 1] is 
twice continuously differentiable with respect to the second argument, such that 
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for each p > 0, 

~[+1 sup Ilf(.,~,v)-y(.,v)lldz~O a s  t - - , ~ .  Ivt-<o 

Then the limiting autonomous system for (II) is 

wt=Wxx+f(x, w), 0 < x < l ,  t>0  

(II') wx(0, t)=w~(1, t )=0,  t>0  

w(x, O)= 4,(x), O< x <  J. 

Then it is possible to prove the following result. 

Theorem 4. Suppose that the equilibrium solutions of the autonomous problem 
(II') are isolated in C([0, 1]). Let ~sC([0, 1]) and se~.  Then the solution 
u=u(x, t; qs, s) of (II) satisfies 

lim I[u(., t; ~, s)-v(.)[[,  =0  
t ~ 0 9  

for some equilibrium solution v of (II'). 

The proof follows very closely that of Theorem 3. The relevant results for 
the autonomous problem (II') may be found in [3]. We shall omit the details. 
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