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1. Introduction

In this paper we consider the equilibrium configurations of a homogeneous, in-
compressible, isotropic elastic body subjected to a uniform dead load surface traction
of magnitude T whose direction is normal to the surface of the body in the reference
configuration, and to no other forces. We concentrate on homogeneous equilibrium
solutions, that is those for which the deformation gradient F is constant, and we study
their bifurcations and stability (with respect to an appropriate static criterion) as T
varies. Since it turns out that the equations for homogeneous equilibrium solutions,
and the stability properties that we consider of these solutions, are independent of the
shape of the body in the reference configuration, we can suppose if desired that this
shape is a cube. (See Fig. 1-1.)

In (16) Rivlin studied the bifurcation of homogeneous equilibrium solutions of a
cube of neo-Hookean material subjected to three pairs of equal and opposite uniformly
distributed dead load surface tractions, and in particular he examined the case when
all the tractions are equal as above. Rivlin restricted attention to purely homogeneous
deformations, that is those of the form

(1-1) x(X) = {vxX\v2X\

where the vt are constants. (For the notation see Section 2.) For such deformations
F = diag (vlt v2, v3). In the case where the vi are positive he showed that as T is increased
the trivial solution vt = v2 = v3 = 1 ceases to minimize the total free energy locally
within the class of purely homogeneous deformations, and that new local minima
appear in which two of the vt are equal, say

(1-2) vx = v2 > 1 > vz (v^Vz = 1).

These equilibrium solutions remain local minima for arbitrarily large T, and there
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are no other local minima. We shall call a solution satisfying (1-2) plate-like, describing
the shape of the body for large deformations; in contrast, a solution satisfying

(1-3) v1 > 1 > v2 = vz = 1),

will be called rod-like. In a later paper (17) Rivlin studied the stability of all the purely
homogeneous equilibria with vi > 0 with respect to arbitrary virtual displacements.
(For related remarks see Hill (13).) With the exception of the trivial solution in the
case T < 0, he concluded that all the above local minima are stable. (In fact, as we
shall see, the nontrivial local minima are only neutrally stable.)

In Section 2 we describe some general results concerning homogeneous equilibrium
solutions for an arbitrary isotropic incompressible material. We first show (Theorem
2-1) that if T 4= 0 then x = FX is an equilibrium solution if and only if F = Qdiag
(vltv2,v3)Q

T, where QeO(3) and (v1X
1,v2X

2,v3X
3) is a purely homogeneous equili-

brium solution, a similar statement holding for T = 0. This reduces the problem to
that of studying purely homogeneous equilibria. We then show (Theorem 2-2) how
to determine the stability properties of a purely homogeneous equilibrium solution
with respect to arbitrary virtual displacements, given its stability properties with
respect to purely homogeneous deformations. Finally (Theorem 2-4), we give conditions
under which the absolute minimizer of the total free energy among sufficiently regular
deformations is homogeneous.

In Sections 3 and 4 we study the bifurcation of homogeneous equilibrium solutions
from the point of view of singularity theory. An important role is played in the analysis
by the equivariance of the governing equations under the symmetric group S3.
Although the methods are quite general, for ease of computation we restrict our dis-
cussion to the case of a separable stored-energy function

(1-4) $ (« ! , v2>
 vs) = <f>{
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The bifurcation from the trivial solution is then governed by the , ^haviour of <j>{v)
ne&Tv = 1. If

(1-5) 4>(v)~ £ %(«-l) n ,
n=0T O !

is the Taylor expansion of 0 at v — 1 then bifurcation occurs when T — c± + c2. Unless

(1-6) 2c2 + c3 ~ 0,

the nontrivial solutions all have two equal principal stretches vt. However, in the
critical case (1-6) a secondary bifurcation into solutions with all the vt different may
occur. The analysis applies in particular to the case of a Mooney-Rivlin material, for
which

(1-7) Q(vltvt,vt) =%{vl + vl + vl-3) + ̂ (vT2 + Vz* + Vs*-3),

where /i > 0 and v ^ 0 are constants, (v = 0 corresponds to a neo-Hookean material.)
The critical case alluded to above then occurs when k = /i/v satisfies

(1-8) ifc~3.

The analysis in Sections 3 and 4 is local; that is, it is restricted to a neighbourhood
of the trivial solution and to values of T near the bifurcation point. However, in
Section 5 we determine the global behaviour of purely homogeneous equilibrium
solutions with vt > 0 for a Mooney-Rivlin material and it turns out that no new
bifurcation phenomena, not already observed in our local analysis, appear. (This is a
particularly fortuitous instance of the principle that the global picture usually falls
into place once the most singular local problems are well understood.) As soon as k
is finite the plate-like solutions become unstable for sufficiently large T and then the
only (neutrally) stable solutions are rod-like. The transition from the plate-like solu-
tions to the rod-like solutions as T is increased is made via a secondary bifurcation
involving neutrally stable solutions with all three stretches unequal. This behaviour
persists for 3 < & < oo. As fc -> 3 from above the solution branches with all stretches
unequal coalesce into the single degenerate bifurcation point noted previously. If
k < 3 there is a branch of neutrally stable rod-like solutions; the plate-like solutions
are unstable for any T.

We conclude in Section 6 by discussing informally some further implications of
singularity theory for this class of bifurcation problems.

The reader wishing to bypass singularity theory can read Section 2 and 5 directly,
but will then need to perform some of the stability calculations in Section 5 explicitly.

2. Homogeneous equilibrium solutions

(i) The governing equations

We consider an elastic body of homogeneous isotropic incompressible material
which occupies in a reference configuration a nonempty bounded domain Q c R3

having sufficiently regular (say strongly Lipschitz) boundary 30. In a typical deformed
configuration the particle having position X in the reference configuration is displaced
to x(X) = {z^X)}. We write F = Vx(X) for the deformation gradient; the principal
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stretches A{ are the eigenvalues of J(FTF). The constraint of in compressibility takes
the form

(2-1) de t J = A1A2A3= 1.

Since the material is isotropic the stored-energy function W(F) can be expressed as a
symmetric function O(A1, A2, A3) of the principal stretches. We suppose that W, O
are G1 functions defined on the sets K = {FeM2Xa:6etF = 1},L = {(Aj.A^Ag): Â  > 0,
Aj A2A8 = 1} respectively, where M3X3 denotes the set of real 3x3 matrices. We extend
W, O to neighbourhoods of K, L in M3X3, U3 respectively in such a way that W, O
remain C1 and still satisfy

(2-2)

This extension, which is easily effected (cf. (3)), enables us to define derivatives of W, O
which are not tangential to K, L respectively.

We suppose that the body is held in equilibrium under the sole action of surface
tractions

(2-3) tR(X) = TN(X), a.

where tR is the Piola-Kirchhoff stress vector, T is a given load, and N = N(X) is the
unit outward normal to d£l. The equilibrium equations are the Euler-Lagrange equa-
tions for the total free energy

(2-4) I(x)= f [W(Vx(X))-TtrVx(X)]dX,
Jci

subject to

(2-5) detVo;(X) = 1,

where the term

- I TtrVxdX = - f tR-xdS
Jn Jan

represents the work done by the surface tractions (2-3). Equivalently, they are the
Euler-Lagrange equations for the unconstrained functional

(2-6) l(x)=[ [W(yx(X))-TtTVx(X)-p{X)(detVx(X)-l)]dX,
Jn

where the Lagrange multiplier p(X) corresponds to a hydrostatic pressure. (The value
of p depends on the way W is extended off K.)

A homogeneous deformation is one for which Vx(X) is constant. If x(X) is an equili-
brium solution, so is x(X) + o for any constant a e Rs. Thus in looking for homogeneous
equilibrium solutions it suffices to consider deformations of the form

(2-7) x(X) = FX,

where F e K is constant. For solutions of the form (2-7) the equilibrium equations take
the well-known form

de t .F= l ,
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where p is constant. Of course (2-8) are the equations for critical points of the functions

(2-9) H(F) = W(F) -TtvF, det F = 1,

and

(2-10) 8(F)= W{F)-TtrF-p{debF-l),

obtained by introducing (2-7) into (2-4), (2-6) respectively.
For a purely homogeneous deformation

(2-10) x(X) = K I 1 , v2X*, v3X*),

we have

(2-11) .F

We consider first the case when all the vt are positive (and thus equal to the principal
stretches At). By the isotropy of W

(2-12) —=• (F) — diag (<!>!, O2,O3),

where Ĝ  = 8<&(v1,v2,v3)/8vi) and so the equilibrium equations (2-8) take the form

(2-13i) Ô  - T = pvi1 (i= 1,2,3),

(2-13ii) t>i«>2v3 = 1>

which are the equations for critical points of the functions

and
3

(2-15) W(v,T) = <S>(v) — T 2 v-—p(v1v2v3— 1),

where we have set v = (vv v2, v3).
If two of the vt are negative, say v1 < 0,v2 < 0, v3 > 0, then we set

A = ( —i>i, ~ ^ 2 ' v s ) = (Ai, A2, A3),

and the equilibrium equations become

(2-16i)

(In this case the body undergoes a rotation through an angle n about the X3-axis, so
the problem is equivalent to that in which the vt are all positive but two of the pairs
of forces are reversed in orientation.)

(ii) A characterization of homogeneous equilibrium solutions

We now show how the study of the existence of homogeneous equilibrium solutions
may be reduced to that for purely homogeneous ones.

II PSP 94
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THEOREM 2-1. 7 / T + O then the homogeneous deformation x = FX is an equilibrium
solution if and only if

(2-17) F = Qto»g(v1,vtfvz)(F,

where Q e 0(3) and (v^X1, v2X
2, v3X

3) is a purely homogeneous equilibrium solution.
IfT = O then x = FX is an equilibrium solution if and only if

(2-18) F = Qdi&g(\1,X2,A3)R,

where Q,Be0(3), \ t > 0 are the principal stretches of F, and (^X1,A2X
2,A3X

3) is
a purely homogeneous equilibrium solution.

Proof. Let x = FX be a homogeneous equilibrium solution. Using the polar de-
composition theorem we can write F in the form

(2-19) F = QDR,

where D = diag (A1( A2, A3) and Q,ReO(3). By (2-8i)

(2-20) ediag(«1(A), O2(A), QS(\))R-T1 = pQD-^R.

If T 4= 0 then it follows from (2-20) that QTRT is diagonal, and therefore either RQ = 1
or RQ is one of the matrices diag(l, - 1, — 1), diag( — 1,1, —1), diag( — 1, — 1,1). In
the first case F = QDQT and (2-20) reduces to (2-13). In the second case we have, say,
R = diag ( - 1 , - 1,1) Q, and (2-20) reduces to (2-16). If T = 0 then clearly (2-20) re-
duces to (2-13). |

Note that the set of homogeneous equilibrium solution is the same whatever be the
shape of Q.

; R3) is stable if it is a weak relative

< e, detVy s 1.

(iii) Stability

We say that an equilibrium solution aj
minimum of/, that is if for some e > 0

I(y) > I(x) whenever 0 < \Vy-

and neutrally stable if for some e > 0

l(y) ^ I(x) whenever 0 < \\Vy — Vx||c(n;R») < e> detVy = 1,

but x is not stable. Otherwise we call x unstable. Koiter (11) has emphasized that it is
far from obvious that an equilibrium solution which is stable according to our definition
is Lyapunov stable in a suitable topology with respect to the equations of nonlinear
elastodynamics. The choice in our definition of a seminorm depending only on defor-
mation gradients reflects the invariance of / under rigid-body translations.

We first note that the invariance of / under the transformation Vx ->• QVxQT

(resp. Va; -> QVxR) when T + 0 (resp. T = 0) implies that a homogeneous equilibrium
solution x = FX with F given by (217) (resp. (2-18)) is stable, neutrally stable or
unstable according as the corresponding purely homogeneous equilibrium solution is
stable, neutrally stable or unstable. Thus in studying the stability of homogeneous
equilibrium solutions we may restrict attention to purely homogeneous solutions. In
the next theorem we consider only the case when all the vt are positive in (2-17), but
analogous results hold for the case when two v{ are negative.

THEOREM 2-2. (a) If T < 0 then the trivial solution x = X is unstable. Let T > 0.
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Then x = X is stable ifT>0 and (1,1,1) is a strict local minimum ofx¥( •, T), neutrally
stable if either T > 0 and (1,1,1) is a nonstrict local minimum ofY(-,T)orT = 0 and
(1,1,1) is a strict or nonstrict local minimum ofW(-, T), and unstable otherwise.

(b) Let T > 0. If (vvv2,v3) 4= (1,1,1 ),vt> 0, is a strict or nonstrict local minimum
of XV(•, T) then (v1X

1, v2X
2, v3X

3) is neutrally stable; otherwise it is unstable.

Remark. If O satisfies the Baker-Ericksen inequalities

(2-21) * 4 ^ > 0 <", + .,).

then it follows immediately from (2-13i) that there are no nontrivial purely homo-
geneous solutions with vt > 0 in the case T ^ 0. The inequalities (2-21) are a conse-
quence of strict rank 1 convexity of W (cf. (3)).

Proof of Theorem 2-2. (a) Let T < 0. To prove that x = X is unstable it suffices to
show that F = 1 is not a local minimum of H. Let Qe M3X3 be nonzero and skew-
symmetric. Then eeneSO(3) (in particular deteen = 1) and

H(een) = W(eeil)-Ttreen

as e -> 0, showing that F = 1 is not a local minimum.
Let T ^ 0 and suppose that (1,1,1) is a strict local minimum of T( •, T), i.e. there

exists e> 0 such that XV(-,T) >W((1,1,1),T) whenever 0 < £?=i | ^ - 1 | < e and
A^jjAg = 1. Let yeCl(Q.) with detVy = 1. Then

(2-22) Vy(X) = Q(X) diag (AX(X), A2(X), A,(Z)) R(X),

where Q(X),R(X)eO(3) and the \(X) are the principal stretches of Vy(X). If
|| Vy— l||c(n;R») is sufficiently small, then

sup 2 |Aj(Z)- l | < e

and so

= f (
f

+ T

Since (i?Q)ff (X) < 1 for t = 1,2,3, it follows that I(y) > I(X), with equaUtyif and
onlyifA(X) = (1,1,1) and either T = 0 or (RQ)(X) = 1 for all X. But if R(X) = QT(X)
for all X and X(X) = (1,1,1) then Vy(Z) s 1; therefore x = X is stable for T > 0. If
T = 0 then /(QX) = I(X) for any Qe*SO(3) and so x = X is only neutrally stable.
The same argument shows that if (1,1,1) is a nonstrict local minimum of *¥(• ,T)
then x = X is neutrally stable, and it is clear that otherwise x = X is unstable.
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(b) Let D = d i a g ^ ^ . t g . Since I(QDQ^X) = I(DX) for any <?e£0(3), x = DX
can at most be neutrally stable. Let yeC^Q) with detVy = 1, and let Vy be given by
(2-22). Then

= f [Y(A(X), T) - T(i>, T)] dX + T f 2 [1 -
Ja Jn»=i

and the result follows as in (a). |
That nontrivial homogeneous equilibrium solutions are at most neutrally stable

was observed by Adeleke(l) in an essentially equivalent problem. In fact the in-
variance of I(x) under the transformation Va; -*- QVxQT implies that if xeC\Q.; M3)
is a stable equilibrium solution then necessarily x = X + a for some a e K3. In parti-
cular it follows from part (a) of the theorem that there are no stable equilibrium
solutions for T < 0. The instability of the trivial solution for T < 0 was established
by Beatty(4).

In Section 5 we apply Theorem 2-2 to determine the stability of purely homo-
geneous equilibrium states with vt > 0 for a Mooney-Rivlin material. The special
case of a neo-Hookean material was discussed by Rivlin (17), but Theorem 2-2 shows
that the nontrivial equilibrium solutions stated in (17) to be stable are in fact only
neutrally stable. Let us analyse the method used in (17), but for a general isotropic
material. Consider an equilibrium solution x = F0X with corresponding hydrostatic
pressure pQ; this solution is stable if and only if Fo is a strict local minimum of H(F)
subject to A(F) a^detF- 1 = 0. Then

£ \T=0 = tr(F^G).

Let N denote the null space of A(1)(.F0). By the implicit function theorem we can solve
the equation

(2-23) A(F0 + 0 + T(G)FOT) = 0,

uniquely for r(G)eU with GeN sufficiently small. Expanding (2-23) in a Taylor
series we obtain T(G) = O(|(?|2) and

(2-24) AV(F0)(G + T(G)F»T) = - i A
( 2 W [«.«] + O(\G\°).

Since by (2-8)

we obtain

(2-25)

It follows that if

(2-26) (HM(F0) -PoAM(Fo)) [G, G] > 0,

for all nonzero GeN then Fo is a strict local minimum of H. For a neo-Hookean
material Rivlin showed that for certain equilibria the expression in (2-26) is always
non-negative; however his formulae show that it vanishes for some nonzero GeN,
and this precludes us from deducing stability. In such degenerate cases one might
contemplate expanding (2-25) to higher order in G to decide whether .Fo is a local
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minimum. However, it is in general impossible to detect neutral stability by this
procedure. The difficulties are illustrated by the trivial examples (a) e~1/z> and 0 have
the same Taylor expansion at x = 0, and (b) the function f(x,y) = (x2 — y)2 is zero on
the parabola y = x2 but nevertheless a neighbourhood of the origin may be covered
by a family of smooth curves (e.g. straight lines through the origin) along each of
which/has a strict local minimum at the origin.

(iv) Global minima

PROPOSITION 2-3. Suppose that

(2-27) Urn ^ = oo.
M

Then H(F) attains its minimum on K = {F: detF = 1}.

Proof. Since

it follows from (2-27) that H is bounded below on K and that any minimizing sequence
Fj for H is bounded. The result follows. |

Of course any (even local) minimizer ofH(F) satisfies the equilibrium equations (2-8)
for some p.

In general nonhomogeneous equilibrium solutions of the three-dimensional equili-
brium equations will exist (for examples in the case T = 0 see Truesdell(23)). However
a sufficiently smooth minimizer of I is in general homogeneous, as we now show.

THEOREM 2-4. Let (2-28) hold. Suppose further that if T + 0 there are only finitely
many purely homogeneous minimizers of H on K, while if T = 0 suppose that the only
minimizer of <!>(«;) on L is (1,1,1) (as will be the case if the Baker-Ericksen inequalities
(2-21) hold). Then the absolute minimum of I in {a;eCfl(Q; R3): det Va; = 1} is attained,
and all such minimizers are homogeneous.

Proof. To minimize / one can do no better than to minimize its integrand pointwise.
Thus if F minimizes H on K, x = FX minimizes / . Conversely, if x minimizes / then
Vx(X) is a minimizer of H on K for all Xe Q. Hence if T #= 0, by Theorem 2-1 we have

(2-29) V*(Z) = Q(X) D(X) QT(X),

where Q(X) e 0(3) and D(X) is a purely homogeneous minimizer of H. Since the
principal invariants of Vx(X) are continuous functions of X and equal the elementary
symmetric functions of the entries of the diagonal matrix D(X), and since there are
only finitely many possible values of these symmetric functions, it follows in particular
that tr D(X) and tr D2(X) are constants. The homogeneity of x now follows using a
trick taken from Shield (21). Since Vx(X) is symmetric, locally x(X) = Vg(X) for some g.
ButthenAx(X) = VAg(X) = VtrD(X) = 0, so that x is harmonic (and in particular C00).
Thus

0 = A(trZ)2(X)) = A(a£a&)

= x%xi
>

and so x\ap = 0.
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In the case T = 0 we have Vx(X) = Q(X) lR(X)eS0(3) for all l e f l . I t is well
known that this implies that x is homogeneous; for the convenience of the reader we
give a proof of this under our regularity assumption.

LEMMA 2-5. Let xeC^Q; Ua) be such that Vx(X)e80(3) for all XeQ. Then Vz(X)
is constant.

Proof. I t suffices to prove that Vx(X) is constant in a small neighbourhood of a
typical point, say Oe Q. Since det Va;(0) =J= 0, by the inverse function theorem x maps
a neighbourhood N of 0 homeomorphically onto a neighbourhood Nx of x(0). Denoting
the inverse function by X( •) we have that

(2-30) Vx(X)TVx(X) = 1 for all XeN,

(2-31) VX(x)TVX(x) = 1 for all XeNv

Let X, YeN. Then by (2-30)

\x(X)-x(Y)\ = \{\x(tX+(l-t)Y)-(X-Y)dt\
Jo

\(tX + (l-t)Y)-(X-Y)\dt
o

= \X-Y\.

The opposite inequality follows by applying the same argument to X( •) using (2-31).
Hence x is an isometry, so that Vx is constant. |

We note that Theorem 2-1-2-6 have obvious analogues valid for compressible
materials.

3. Bifurcations and symmetry

(i) Reformulation of the equilibrium equations

Our aim is to discuss the bifurcations of solutions to the equilibrium equations (2-13).
I t turns out to be convenient to introduce new coordinates

Jo

(3-1) w = {wltw2,w3); w

so that the incompressibility constraint (2-13ii) becomes a linear one,

(3-2) w^ + Wji + Wa = 0.

The equilibrium equations (2-13i) now take the form

(3-3) h(w,T)=p,

where h = (hv h2, h3) and

(3-4) ht{w, T) = e^O^e10!, e«\ ett») - T).

Let P denote the orthogonal projection of U3 onto the plane T defined by (3-2); thus

(3-5) Pz = « - J £ M 1 . M).

Clearly (3-3) holds for some p if and only if w satisfies

(3.6) Ph(w,T) = 0.

That H/'(>,T) defined by (2-14) is invariant with respect to permutation of its
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arguments induces a corresponding invariance property of (3-3) which we now de-
scribe. For n e S3, w e U3 we let

(3-7) Jnw

Then h{-, T) is equivariant with respect to (3-7) in the sense that

(3-8) h(ynw,T) = ynh{w,T) for all neS3,w€U3,

for any fixed T.
We now identify F with the complex plane C by means of the linear isomorphism

S defined by 8w = x + iy, where

(3-9) x = \wx, y = ( )

Correspondingly, we define

(3-10) yn = Sy»S-\ neS3.

The reader may check that

(3-llii) 7(123)2 = e-2"i/3z,

where z is the complex conjugate of z, (23) is a simple interchange permutation, and
(123) is the cyclic permutation. In other words, the action of S3 in our complex co-
ordinates is the standard two dimensional, irreducible representation of the group.
Similarly, we define h( •, T): C -> C by

(3-12) h(z, T) = 8Ph{8-hs, T).

Then (3-6) holds if and only ifK(8w,T) = 0, and by (3-5), (3-7), (3-8), (3-10) we have
that

= SPy,h{8-hs,T)

= SynPh(S-h,T)

= yA*,T),
so that %{• ,T) is equivariant with respect to the action of 83 on C.

(ii) Review of (10)

We have just shown that the equilibrium equations (2-13) can be written in the
form

(3-13) <7(z,A) = 0,

where g:C xR-> C is equivariant. (In (3-13) we have set g(z, A) = h(z, A + To), anticipat-
ing the change of variable A = T — To where To is a bifurcation point.) In this sub-
section we recall the results from singularity theory in (10) concerning such equations
and their bifurcations. Proofs are given only when it helps the exposition.

PROPOSITION 3-1. Ifg:C->Cisan equivariant 0 ° mapping, then there exist smooth
real valued coefficients a and b such that

(3-14) g(z) = o(|Z|
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Table 3-1.

Coefficients for Zn{z)
n a b

1
2
3
4
5

1
0

3|2|a

2Rlz3

91*1*

0
1
0

3|z
2R]

Note that |z|2 andRlz3 are invariant under the action (3-11) pf #3on C; indeed by
a theorem of Schwartz (20) the most general invariant function can be expressed as
a function of |z|2 and Rlz3 - precisely the form of the coefficients in (3-14). In (3-13)
the mapping g also depends on the bifurcation parameter A, and Proposition 3-1 has
an obvious analogue in this case, with the coefficients a and b in (3-14) depending
smoothly on A.

As an illustration of the above proposition (with applications in § 4) consider for
any positive integer n the equivariant map Zn: R3 -> IR3 given by

(3-15) ZrXw) = {wl,wl,wl).

Let Zn: C -> C be the corresponding equivariant map denned as in (3-12). Thus

(3-16) Zn(z) = ^

where z = x + iy and

(3-17) w1 = 2x,

By the proposition Zn(z) must be expressible in the form (3-14). In Table 3-1 we have
given the coefficients which occur for the cases n = 1, . . . ,5 , leaving for the reader
the simple calculations needed to check this information.

Singularity theory methods concentrate on qualitative properties of the solution
set (or bifurcation diagram) of an equation such as (3-13), where by qualitative pro-
perties we mean those properties not affected by changes of coordinates. Specifically,
we shall call two equivariant C00 mappings g,k:CxU->C equivariantly contact
equivalent, or more simply equivalent, if there exists a family of invertible matrices
SsX and a diffeomorphism of C x IR of the form (0(z, A), A(A)) such that

(3-18) A(z,A) = £2Agr(0(z,A),A(A)),

where SzX and 0 preserve the symmetry - see (9) or (10) for the exact requirement.
(Remark: One explicit property of matrices 8Z^ which preserve the symmetry will be
needed below: namely when z = 0, <S0A = a(A) 1 for some real valued function a(A).
See (10) for the proof.) We also require that A'(A) > 0. Multiplication by an invertible
matrix does not affect the zero set of an equation; thus if (3-18) is satisfied, the solution
set of h is mapped onto that of g by the diffeomorphism (0, A). Note that this diffeo-
morphism maps every plane {A = const.} into another such plane. It should be
understood that singularity theory methods are local, and (3-18) is only required to
hold in a neighbourhood of the point under study; however, as illustrated by this
paper, the local methods often go surprisingly far in clarifying the global picture.
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One of the basic techniques of singularity theory involves the so-called normal form.
A normal form theorem describes a class of bifurcation problems which, after an
appropriate equivalence transformation, may be written in a specific, explicit form,
usually chosen for its ease of solution. We give two such theorems here, the first
corresponding to the generic case, the second covering a degenerate case which occurs,
for example, when /i/v = 3 for a Mooney-Rivlin material. For both these theorems,
let g: C x R ->• C be an equivariant C°° mapping, and let a, 6 be the coefficients which
occur in (3-14). We study g in a neighbourhood of the origin in CxR; as regards A
this choice is just a matter of convenience, but for z it is quite important, since the
origin is a point of maximal symmetry.

THEOREM 3-2. Ifa(0) = 0,6(0) #= 0 and {da/d\)(O) + 0, then g is equivalent to

(3-19) tf(z,A) =

where

sign(A2) = sign (&(<>)§[ (0)).

Any small 'perturbation of g is equivalent to g itself.
Thus the solution set of an equation satisfying the hypotheses of the theorem may

be mapped onto the solution set of

(3-20) z2±Az = 0,

by an appropriate diffeomorphism, at least near the origin. We emphasize that there
are no higher order terms in (3-19) - the point of the theorem is that (locally) the
higher order terms may be transformed away by an appropriate change of coordinates.
The reader may easily verify that the solution set of (3-20) consists of four lines in 3-
space, the line z = 0 corresponding to the trivial solution and three lines of nontrivial
solutions

(3-21) z=+\, z=+e2« ' 3A, z = Te-2"*'8A.

This is sketched in Fig. 3-2. Note that the general point in the plane has 6 images when
the group S3 acts on it, but points on the lines

(3-22) argz = 0,77/3,277/3 (mod 77),

have only three images, because they have higher symmetry. In terms of the identi-
fication (3-9) of the plane F with C, (3-22) corresponds to points w for which wi = Wj
for some i #= j . Thus all solutions (3-21) possess this partial symmetry. Also in Fig. 3-2
we have indicated the (linear) stability of the various solution branches when sign (Az)
is minus: + + for both eigenvalues positive (Convention: positive eigenvalues are
stable), H— for one positive and one negative eigenvalue, for both eigenvalues
negative. In our application these labels correspond to stability with respect to purely
homogeneous deformations. In general stability lies outside the scope of singularity
theory, but it was determined for these special cases by ad hoc methods in §5 of (10).
As to interpreting the hypotheses of Theorem 3-2, if a(0) 4= 0 then equation (3-13)
is nonsingular and no bifurcation occurs. The condition 6(0) + 0 requires that quadratic
terms be present in g, and (da/dX) (0) =f= 0 requires that an eigenvalue cross the imaginary



328 J. M. BALL AND D. G. SCHAEFFER

Fig. 3-2

axis with nonzero speed as A varies. In the next theorem we suppose that 6(0) = 0.
To formulate appropriate hypotheses, let us write

(3-23i) a = ̂ 4|z

(3-23ii) & = C|z

where the higher order terms are O(A2+ |A| |z|2 + |z|4). This notation automatically
incorporates the hypothesis a(0) = 6(0) = 0, and we add the nondegeneracy conditions

(3-24) A+0, a + 0, Ap-Ca*0, AD-BG + 0.

THEOREM 3-3. / / (3-24) is satisfied, then g is equivalent to

(3-25) N(z,X) = ( |z |2±A)z + ( ± | z | 2 + Ai«z3)z2 ,

where

sign(Az) = sign (Act), sign (|z|2z2) = sign [(Ca, - Afi) Aa],

and

(3-26) A = (AD-BC) ^/(Afi-Cctf.

A universal unfolding of N is provided by the two parameter unfolding

(3-27) F{z,X,8,e) = (|z|2±A)z + (± |z|2 + (A + <J)itfz3 + e)z2.

The technical characterization of a universal unfolding is given in (9), but the
essential property is that given any smooth perturbation p, g + rp is equivalent to
F(- ;8,e) for some choice of 8 and e. In symbols, there exist smooth functions 8(T),
e(j) for small T, with <S(0) = e(0) = 0, such that

g + TP~F(-;8(T),e(T)).

We shall see below that of the two parameters in the universal unfolding, 8 plays an
entirely subordinate role. (In the language of singularity theory, 8 is a modal para-
meter.) Indeed, if we were to consider 0° equivalence rather than C00 equivalence, 8
would not be needed at all. Any two versions of (3-25) with different values of A,
but having the same sign, may be related as in (3-18), the definition of equivalence,
where S, 0, and A are Lipschitz continuous. However the (7°° structure is finer, and
one needs to allow A to vary to guarantee the existence of a C00 solution of (3-18).
Unfortunately it seems that C°-equivalence cannot be studied directly - one must
work through C°° equivalence.
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(a) e < 0

(b) e = 0

/++
(c)e>Q

Fig. 3-3

The zero set of (3-27) is determined in (10), but for the reader's convenience we
sketch the calculation here. For simplicity we consider only the situation where A > 0
and the minus sign is chosen at both open positions in (3-27); this is the case which
occurs for a Mooney-Rivlin material. We distinguish three possible ways in which
(3-27) can vanish:

(1) 2 = 0,
(2) z 4= 0, but z,z2 are real multiples of one another,
(3) z 4= 0, and z, z2 are not real multiples of one another.

Case (1) requires no comment. In case (2), note that z and z2 are real multiples of one
another if and only if z3 is real; i.e. if and only if (3-22) is satisfied. Thus solutions found
in case (2) have partial symmetry. To find the solutions explicitly it suffices to consider
z real, the other two cases being obtainable by rotation. On setting z — x and sub-
stituting into (3-27) we find

(3-28) A = x2-x3 + (A + 8)x4 + ex.

This solution branch is shown in Fig. 3-3 in the three cases e < 0, e = 0, and e > 0.
The parameter 8 has little effect on (3-28), provided A + 8 remains positive. We have
not shown the two other solution branches which occur in case (2), but the reader
should keep their existence in mind.
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Fig. 3-4

In case (3), (3-27) can vanish only if both coefficients a and 6 vanish. The equation
6 = 0 defines a curve in the complex plane which is a distorted circle as sketched in
Fig. 3-4 if e > 0, the origin if e = 0, or empty if e < 0. (As our theory is local we only
consider solutions close to the origin.) Setting a = 0 defines A as a function of z along
this curve, and we have included this solution branch in Fig. 3-3 as a dashed curve -
somewhat symbolically, as it must be remembered that these curves are invariant
under the action of S3 and also meet the two solution branches arising in case (2) but
not shown in the figure.

The most noteworthy feature of these diagrams is the secondary bifurcation which
occurs at the points labelled (x+, A+) and (x_, A_) in Fig. 3-3(c). For our stability
analysis below we want to establish that

(3-29) A+ > A_.

On solving b = 0 we find that

and (3-29) follows from the relation A = |z|2 satisfied on the solution branch of case
(3). We have included the signs of the two eigenvalues of the Jacobian in the figure.
The Jacobian is a 2 x 2 matrix with real entries obtained from the normal form by
regarding the latter as two real equations in two real unknowns. In general one might
suspect that the contact equivalences (3-18) might change the sign of these eigen-
values; we showed in (10) by ad hoc arguments that in fact this does not occur.

In case (1) the Jacobian of (3-27) is — Al, stable for A < 0 and purely unstable for
A > 0. In case (2) the eigenvalues of the Jacobian are readily computable, since the
Jacobian is diagonal. In case (3) the stability of the branches is most conveniently
determined by the principle of exchange of stability, at least near the point of secondary
bifurcation. (Herein lies the relevance of (3-29).) In fact it is shown in (10) that this
branch is stable along its entire length.
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4. Local analysis

(i) Bifurcations of equilibrium solutions for a class of stored-energy functions

The principal task of this section is to analyse equation (2-13) with the methods
reviewed in §3. To keep the calculations reasonably simple we restrict attention to
the case when O has the separable form

(4-1) ®(vi.t>a.es) = 0(«i) + 0(»«) + 0fo)-
There is experimental evidence (cf. Jones and Treloar(l4)) that (4-1) is a good assump-
tion for rubber. We suppose that <fi(v) is a C°° function in the neighbourhood of v = 1,
and, that the Taylor expansion of <f> about v = 1 is given by

(4-2) 4,(v)~ £ ^ ( « - l ) n .

The corresponding function K(z, T) defined by (3-12) has Taylor expansion

(4-3) K(«,2V~ £ £&£„(«),

and it is easily verified that

(4-4) K = ci + c 2 - y > a2 = c1 + Sci + c3-T, o3 = ^ + 7c2 + 6c3 + c4 - T,
U4 = c1 + 15c2 + 25c3 + 10c4 + c 5 - T , as = c1 + 3lc2 + 90cz + 65ci+i5c5 + ce-T.

Since %(• ,T) is equivariant it can be expressed in the form (3-14) for some coefficients
o(|z|2, Rlz3, T) and 6(|z|2,Rlz3, T). Referring to Table 3-1 we see from (4-3) that

(4-5ii) 6(0,0, T) = i [d + 3c2 + c3 - T].

Bifurcation occurs when (4-5i) vanishes; i.e. when T = To, where

(4-6) T0 = Cl + c2.

The bifurcation which occurs for T = To will be covered by Theorem 3-2 unless (4-5ii)
also vanishes, that is, unless

(4-7) 2c2 + c3 = 0.

We concentrate primarily on the bifurcation problem which occurs when (4-7) is
satisfied at least approximately, using Theorem 3-3 for the analysis. Let us evaluate
the various coefficients in (3-23) when (4-7) is satisfied. Using Table 3-1 we may write
out the first five terms of (4-3) explicitly:

(4-8) -Az — zZ + MSCz + cJlzlZz + ^

where TQ is given by (4-6) and A = T — To. In computing (4-8) we have evaluated the
coefficients of Z3, Z4, Zb at T = To and neglected the corresponding terms AZn, as these
derivatives do not occur in (3-23); similarly, terms with n > 5 do not contribute. On
comparison of (3-23) and (4-8) we find that

(4-9)
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Let us now suppose, for example, that

(4-10) 3c3 + c4 > 0, 12c3 +8c4 + c5 < 0, AD-BO > 0.

Then the nondegeneracy conditions (3-24) hold, A > 0, and the signs at the open
positions in (3*25) are both negative. Therefore when 2c2 + c3 = 0 the solution set of
fi(z, T) = 0 near the bifurcation point has the form of Fig. 3-36. Note that the stable
branch in this figure occurs for x > 0, which corresponds to a rod-like deformation.

Moreover when 2c2 + c3 is nonzero but small, it follows from Theorem 3-3 that
h(z, T) is equivalent to (3-27). From (4-6), 6(0,0,T0) is positive or negative according
as 2c2 + c3 > 0 or 2c2 + c3 < 0 respectively. It follows from the unfolding theorem, as
may be seen from (10), that 6(0,0, To) = oce + O(e2), where a is a positive number,
provided that b(0,0,TQ) = c2 + \c3 is small enough. Thus the bifurcation diagram of
%{z, T) = 0 has the form of Fig. 3- 3 a or c according as 2c2 + c3 < 0 or 2c2 + c3 > 0
respectively. As before x > 0 is associated with a rod-like deformation, x < 0 with a
plate-like one.

For a Mooney-Rivlin material (1*7) we have

cx= fi-v, c2 = /i + Bv, c3 = — I2v, c4 = 60y, c6 = — 360i>, c6 = 2520i>,

and hence

(4-11) T0=2{jt + v),

(a formula first obtained by Hill(i2)), while the degenerate bifurcation occurs when
ju, = 3v. Note that the conditions (4-10) hold when v 4= 0, and that the secondary
bifurcations illustrated in Fig. 3-3c occur for/* > 3v.

5. Global analysis for a Mooney-Rivlin material

In this section we solve (2-13) directly for the special case of a Mooney-Rivlin
material with stored-energy function O given by (1*7). Substituting (1-7) into (2-13)
we obtain the equations

(5-li) /u%-wr*-Tvt=p (*= 1,2,3),

(5-lii) v^2 v3 = 1.

As in the local analysis of the preceding section, solutions of (5-1) fall into three cases:

(1) the trivial solution v1 = v2 = v3 = 1,
(2) solutions with two principal stretches equal,

(3) solutions with all three stretches unequal.

Case (1) requires no analysis, so we proceed to case (2). Let us suppose that

(5-2) vt 4= v2 = v3.
We eliminate the pressure from (5-1) by subtracting the i = 2 component of (5-li)
from the i = 1 component, and dividing by v1 — v2; this yields

(5-3) T = (v1+

When (5-2) is included this becomes

(5-4) 2i = (»1+

In other words, recalling the S3 symmetry, we find three solution branches under case
(2), (5-4) being the defining relationship for a typical branch. Note that T = T(v^) is
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Rod-like

(a)

(c)

Fig. 51

strictly convex and tends to oo as vx tends to either zero or infinity. The branch defined
by (5-4) crosses the trivial solution v{ = 1 at T = 2(ji + v), the bifurcation point noted
in (4-11). Moreover, differentiating (5-4) we get

This gives rise to three qualitatively different pictures, depending on the sign of
fi — Zv, as sketched in Fig. 5-1.

In case (3), we solve (5-1) as follows. Permute the indices in (5-3) cyclically, subtract
the result from (5-3), and divide by v1 — v3; this yields the equation

(5-5) v(v1v2 + v2v3 + v3v1)= fi.

Hence if v = 0 there are no solutions in case (3). If v > 0 we set k = /iv~l, ut = l/vt,
and (5-5) then becomes

(5-6) u1 + u2 + u3 = k.

Of course we still have the relationship

(5-7) uxuzu3 = 1.

The convex surface (5-7) intersects the plane (5-6) in a smooth, convex, closed curve if
k > 3, at the single point (1,1,1) if k = 3, and not at all if k < 3. Only the first case
requires further comment. In Fig. 5-2 we have indicated the plane defined by (5-6)
and its intersection with (5-7) when k > 3. To complete the bifurcation diagram
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U2=U3

Intersection
with (5.6)

Positive
orthant

(Fig. 5-1) we need to know the behaviour of T, computed from (5-3), along the inter-
section curve. Recall that by symmetry T is invariant with respect to the action of
S3; in particular T is invariant under reflection across the three lines ut = Uj (i 4= j)
in the figure. Thus the directional derivative of T along the curve must vanish at the
intersection of the curve with each of the lines ut = Uj. These considerations show that
T restricted to the curve must have at least 6 critical points. We claim in fact that T
has precisely 6, that t is monotone between any adjacent two of the 6 points shown
in the figure. We prove the claim by direct computation. Let us parametrize the right
half of the intersection curve in Fig. 5-2 by u3. The parametrization becomes singular
near the critical points at the ends of the interval, but there are at least two critical
points of T in the interior of the interval. From (5-3) we have

(5-8) T =
Differentiating (5-8) we find

(5-9)

Equation (5-9) has 3 real zeros, one of which is negative (to be ignored) and two that
are positive. The two positive zeros have been accounted for above, and there are no
others. This proves the claim.

Let us call the two positive zeros of (5-9) «„, and u*, where

0<u <Kk<u*
* 3

Since d2T/du\ is positive (resp. negative) at u+ (resp. u*), we see that T has a local
minimum, denoted jPmln (resp. maximum, ̂ mx), at u3 = u* (resp. u*). This information
enables us to complete Fig. 5-l(c). Note that we use the same convention as in §3 of
including only one of the three symmetric branches and showing the asymmetric
branch as connecting this branch to itself. For the reader's convenience in verifying
this figure we remark that at the secondary bifurcation at T — Tmln we have

uz = u3 = it* < 1, ux = «J2 > 1;
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recalling that ut = l/t>t-, we see that

«! .< 1 < v2 = v3,

a plate-like solution. In the figure we have shown

(5-10) Tmln > To.

This inequality follows for k near 3 by the local analysis of § 3 and for k near oo since
the whole secondary bifurcation branch recedes to infinity in this limit. We offer the
following proof of (5-10) in general. From (5-9)

(5-11) Tmin = vut(k-Ut)(k + *i*).

Since To = 2{ji + v), (5-10) is equivalent to

(5-12) -ku%+k*ul-(2k + 3)ut + k> 0.

Since u* is a root of (5-9), (5-12) holds if and only if

(5-13) khi% - 2(2k + 3) «* + 3k > 0.

We consider (5-13) as a quadratic in u^; its minimum value is

which is positive when k > 3. This proves (5-10).
We have also included stability labels in Fig. 5-1,5 = stable, ns = neutrally stable,

u — unstable. To verify these labels we first determine the stability with respect to
purely homogeneous deformations. The result is that an equilibrium solution v is a
strict local minimum of T( •, T) if and only if it has the label s in Fig. 3-3; otherwise
it is unstable. (We temporarily ignore the critical cases occurring at the bifurcation
and limit points.) This follows either by direct computation, or by combining the
local analysis of §§3, 4 with the following result due to Berger(5): for a variational
problem, a solution branch can undergo a change of stability, as a parameter varies,
only at a bifurcation point. In other words, any change of stability of a smooth solution
branch must be accompanied by the appearance of new solutions. Thus we may
restrict our attention to the neighbourhoods of the bifurcation points in Fig. 5-1, and
the stability of the noncritical equilibrium solutions now follows immediately from
Theorem 2-2. To determine the stability in the critical cases it is simplest to note that
by the same proof as in Proposition 2-3 there is always an absolute minimizer of
T(w, T). Also it is not possible for all the critical points of T(u, T) to be local minima.
Hence (i) the nontrivial solutions corresponding to the limit points in Fig. 5-1 (a), (c)
are unstable, (ii) at the primary bifurcation point T = To the trivial solution is un-
stable when /i 4= 3i>, stable if /* = 3v, (iii) the solutions at the secondary bifurcation
points are neutrally stable.

Some caution should be attached to the interpretation of our stability results on
accoiint of a remark of Sawyers (17), who showed for a cube of neo-Hookean material
that the nontrivial neutrally stable purely homogeneous solutions with vt > 0 may
become unstable when one of the pairs of equal and opposite surface tractions is
slightly perturbed. Of course this behaviour is only to be expected in a case of neutral
stability; a small desymmetrization of the problem will typically result in the con-
tinuum of equilibria x = Q diag {vlt v2, va) Q

TX, QeO(3), splitting up into a discrete
number of neighbouring equilibria, some stable and some unstable.
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As a numerical example we take the case k = 7-1. This was the value obtained by
Rivlin (15) in his experiment on torsion of a cylinder of pure gum rubber. From (4-11),
(5-9), (5-11) we find that

that at T = Tmin,

vx = 0-16, v2 = va = 2-51,

and that at T = Tmax,

v1 = 12-31, v2 = v3 = 0-28.

When assessing the significance of such numerical results one should bear in mind
inter alia that (i) it would be difficult experimentally to apply uniform dead load
tractions to the entire surface (ii) the Mooney-Rivlin stored-energy function is not
very accurate for large strains (iii) the bifurcations at T = To, Tmln, Tmax may be
preceded by other bifurcations into nonhomogeneous deformations or by rupture
instabilities (perhaps of the type discussed in (3, 7)); certainly in the above example
one would be unlikely to reach a stretch v1 = 12-31 on account of rupture.

6. On the robustness of the observed behaviour

As the reader will have noted, Theorems 3-2 and 3-3 are quite general and could be
applied to give information about homogeneous equilibrium solutions for a general
isotropic material not necessarily having the form (4-1). I t is perhaps useful to sum-
marize the conclusions of these theorems in less technical language. Because of sym-
metry vx = v2 = v3 = 1 is always a critical point of Y(v, T). Also because of symmetry,
there is only one free coefficient in the quadratic terms of the Taylor expansion of T
at this critical point, and one in the cubic terms. Bifurcation occurs when, as T
increases, the quadratic terms change sign, changing a local minimum of *F into a
local maximum. The content of Theorem 3-2 is that, provided there are nonzero cubic
terms in T at the bifurcation point, the local structure of the resulting bifurcation is
completely determined, up to diifeomorphism. Fig. 3-2 provides a representative
picture. When the cubic terms vanish Theorem 3-3 is applicable, assuming that the
nondegeneracy conditions (3-24) are satisfied. The full range of phenomena pictured
in Fig. 3-3 will occur if the given problem is embedded in a one parameter family of
problems such that the cubic terms at the bifurcation point change sign as the para-
meter is varied. Moreover, the behaviour of the one parameter family of bifurcation
problems is robust with respect to perturbation - a perturbed one parameter family
of bifurcation problems will run through exactly the same sequence of bifurcation
diagrams as the parameter varies, differing only by appropriate diffeomorphisms. In
particular, the cubic terms contributed by the two parts of (1-7) have opposite signs,
and the degenerate case /i = 3i> occurs when they are exactly balanced. (Warning:
T(v1 + v2 + v3) also contributes cubic terms.)

The conclusions of the preceding paragraph were purely local, restricted to an
appropriate neighbourhood of the trivial solution v1 = v2 = v3 = 1. However it is also
possible to extract quasi-global conclusions using singularity theory methods. As an
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example, consider an arbitrary (smooth, symmetry preserving) perturbation of O(w)
given by (1-7), say <t>(«) + eP(v, e), and the corresponding equilibrium equations

(6-lii) vxv%vz = 1.

For any bounded set

€ = {(!>,T):0 < v{ < B,0 < T < C),

there is a symmetry preserving diffeomorphism of 0 which maps the solutions of (5-1)
in 0 onto the solutions of (6-1) in &, provided <S is sufficiently small. Of course there
is a trade-off between the size of 0 and the maximum allowable e, and some care is
required near the boundary of 6, where the perturbation may push a solution of (5-1)
across 80. We do not give a precise formulation or proof of this result here, referring
the reader instead to Theorem 2-15 of (8), an analogous result whose proof uses the
same techniques. The essential point is that all the bifurcation phenomena depicted
in Fig. 5-1-the transcritical primary bifurcations in cases (a) and (c), the limit
points, the secondary bifurcations - are stable with respect to symmetry preserving
perturbations, except the degenerate primary bifurcation in case (6) when fijv = 3,
and, as discussed above, this phenomenon has codimension 1 and is stable within a
one parameter family of bifurcation problems.

Another type of perturbation which can be treated is that in which the material
is allowed to be slightly compressible. This is because, as shown by Rivlin (18), allowing
a slight degree of compressibility in an incompressible material is in fact a regular
perturbation. In our notation the essence of Rivlin's argument may be summarized
as follows. Consider a compressible isotropic material with stored-energy function

(6-2) 0(V) = %(v) + ̂ ^ %(v, e),

where T = v1v2v3 and e ->• 0 describes the incompressible limit. We suppose that <J>2

is positive and bounded away from zero. The equilibrium equations for purely homo-
geneous deformations with vi > 0 for this material are

(6-3) — = T (i= 1,2,3).

On writing out (6-3) we obtain the equations

Let us introduce a new variable p = ((T — l)/e) <J>2. We may then augment (6-4) to a
4 x 4 system of equations

When e = 0, (6-5) yields the equations describing a critical point of <£0 — T(vx + vz + vz)
in the surface v1v2v3 = 1. In §3 we reduced these equations when e = 0 to a pair of
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equations in two real unknowns and the bifurcation parameter T. In other words,
we used two of the equations to solve for p and T; the remaining two equations con-
tributed the bifurcation equations. By the implicit function theorem this same
reduction can be done for e nonzero, and the result is an equivariant bifurcation
problem

gr(2, A, e) = 0,

where g: C x R x R ->• C. In short, we get a smooth unfolding of the original problem.
Thus it follows from the unfolding theorem that the same bifurcation phenomena
occur.

There is an extensive literature concerning the bifurcations, near a stress-free state,
of solutions to the three-dimensional traction problem for a compressible material
(cf. (21, 6)). For some remarks on the relationship between strict rank 1 convexity and
homogeneous equilibrium solutions in the compressible traction problem see (2).

We are grateful to Marty Golubitsky or some most helpful suggestions about per-
forming the calculations of § 3, and to Constantine Dafermos for discussions concerning
stability.
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