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1. Introduction 

In this paper we continue our discussion, begun in [ 5 ] ,  of feedback 
stabilization of distributed semilinear control systems. We restrict attention to 
systems of the “hyperbolic” form 

(1.1) ii(t)+Au(t)+p(t) B ( u ( t ) )  = O .  

Here A is a densely defined positive selfadjoint linear operator on a real 
Hilbert space H with inner product ( , ), B is a locally Lipschitz map from 
D(A”2) (endowed with the graph norm) into H, and p(t) is a real-valued 
control. 

The finite-dimensional stabilization problem H = IW” has been considered 
in the recent papers of Jurdjevic and Quinn [20] and Slemrod [24]. In the 
case when (1.1) is bilinear, i.e., B linear, these papers give simple criteria for 
feedback stabilization. Specifically, it is a consequence of both [20] and [24] 
that if the only solution of the uncontrolled system 

which satisfies 

(B(y(t)), y(t))= 0 for all tc[W+, 

is y ( t ) = O ,  then p(t) = ( B ( u ( t ) ) ,  u ( t ) )  is a stabilizing feedback control for ( l . l ) ,  
i.e., all solutions u ( t )  of (1.1) tend to zero as t + 03. 
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In [5] we attempted to generalize the above result to the case when H is 
infinite-dimensional. The main tool of our analysis was a recent extension by 
Ball [4] of the well-known LaSalle invariance principle for ordinary differen- 
tial equations. In order to apply the theory in [4] and hence generalize the 
above sufficiency condition we were forced to make the additional continuity 
assumption 

As we noted in [ 5 ] ,  condition (C) is too restrictive to apply to certain 
examples in structural mechanics. Consider for example the problem of 
stabilizing a vibrating beam by choosing the axial force as a feedback control. 
A simple model of this situation consists of the equation 

where u denotes the transverse displacement of the beam and p(t) is the axial 
force. For simplicity, assume the beam has clamped ends, u = u, = 0 at 
x =0,  1.  In this case, H =  L2(0, l), D(A"') = HZ(0, 1) (see e.g. [l] for a 
discussion of Sobolev spaces) and B = d2/dx2.  The important point is that 
while B is a bounded linear operator from D(A112) into H (and hence is 
certainly locally Lipschitz) it is not compact and therefore does not satisfy 
condition (C). Of course, if we consider instead an equation of the form 

with similar boundary conditions, we see that B = I  (the identity on H) does 
satisfy (C). It is for this reason that the applications given in [5] were to 
problems of the type (1.3). 

The aim of this paper is to present a theory of feedback stabilization for 
(1.1) which does not require condition (C) and hence will be applicable to 
problems of the form (1.2). We shall always make the choice p ( t ) =  
( B ( u ( t ) ) ,  r i ( t ) )  for the feedback control, so that the problem of feedback 
stabilization is reduced to showing that all solutions of the autonomous 
equation 

(1.4) u ( t ) + A u ( t ) + ( B ( u ( t ) ) ,  u ( t ) ) B ( u ( t ) )  = O  

tend to zero as t + 00. The damping in (1.4) induced by the feedback control 
can be very weak; in fact ( B ( u ( t ) ) ,  u( t ) )  may vanish identically on certain 
finite time intervals. Consequently, many of the usual techniques for studying 
the asymptotic behavior of nonlinear evolution equations are inapplicable (for 
details see Remark 3.1). Our analysis is based, as in [ 5 ] ,  on ideas of 
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elementary topological dynamics and in particular on the notion of a weak 
o-limit set. In addition we make use of the special structure of (1.4), which 
allows us to apply some delicate theorems on almost periodic functions and 
nonharmonic Fourier series. One of these results (Theorem 2.2), which 
appears to be new, gives sufficient conditions for the Fourier coefficients of a 
sequend.  of almost periodic functions, each having the same Fourier expo- 
nents, to  converge, given that the functions converge on compact intervals of 
R. Similar theorems have been used by Russell [23] for other purposes in 
linear control theory. 

The paper is divided into five sections. Section 2 presents the above- 
mentioned results on nonharmonic Fourier series. Section 3 discusses the 
stabilization problem and gives the main result (Theorem 3.2) on feedback 
stabilizability of (1.1). In Section 4 we discuss a number of applications to 
hyperbolic initial boundary value problems. In each application it is necessary 
(and not always trivial) to satisfy the genericity conditions on the eigenvalues 
of A that form part of the hypotheses of Theorem 3.2. In the first three 
examples we prove weak feedback stabilizability of (1.2) under progressively 
more difficult boundary conditions. Next we discuss the Timoshenko beam 
equations, a coupled set of wave equations for the motion of an inextensible 
elastic beam that are in some ways preferable to  (1.2) in that they may be 
obtained by linearization of a fully nonlinear theory. 

The last two applications are to a linear and a semilinear wave equation, 
respectively. In our analysis of the semilinear equation we give a partial 
answer to the following question: 

For what functions F is u = O  the only solution of 
u,,-uu, = o ,  O < x < l ,  

u = O  at x = O ,  u+cuy,=O at x = l ,  

I,' ~ ( u ( x ,  t ) )  dx = constant? 

Our result (Theorem 4.7) is that for all but countably many a we may take 
for F any nonconstant polynomial. The question for a = 0 was raised in [ S ]  
and remains unsolved. Finally, in Section 5 we collect some miscellaneous 
remarks connected with variants and possible extensions of our results; in 
particular, we exhibit some curious inequalities for solutions of linear evolu- 
tion equations. 

2. Nonharmonic Fourier Series 

which satisfies 

To any (uniformly) almost periodic function f ( t )  one may associate a 
unique Fourier series m 

f ( t ) -  a k  exp iiPkf) 9 

k E-m 
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where the ak are complex constants given by 

and where the exponents p k  are real and distinct (cf Bohr [7], Besicovitch 
[6] ) .  We shall be concerned with variants of the following question: Let 

be a sequence of almost periodic functions having the same exponents p k ,  

and suppose that f , + O  in L’(0, T) for some given T>O. Does a‘,’’+O as 
r + 03 for each k? 

The answer to this question depends on the set of exponents P k .  Note that 
a positive answer would imply in particular that an almost periodic function f 
with exponents p k  is determined everywhere by its values on (0, 7‘). In some 
cases we will have to make the stronger hypothesis that the functions f, are 
uniformly bounded and tend to zero in L’(0, T )  for every T>O, and will be 
able to conclude only that at’+ 0 for some integers k. In our applications 
the fixed set of exponents p k  can be quite complicated; for example, it may 
possess an unbounded set of cluster points. However, we shall begin by 
considering a simpler situation, in which the p k  possess an “asymptotic gap” 
of length y. In this case the answer to our question is positive provided that 
T > 2 d y .  The proof of the theorem is essentially the same as that given by 
Gaposhkin [13] for a similar result. 

For any T >  2m/y there exist constants Ci = Ci(T)>O, i = 1,2,  such that 

for every almost periodic function 
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Proof: Let T>2m/y. Without loss of generality we may suppose that 
& < p k + I  for k 2 0 .  The result is known to be true (Ingham [19]) if (2.1) is 
replaced by the stronger condition that 

p k + l - p k z Y > O r  k = 1,2, . * . 

Making a small adjustment to y, it follows that there exists a positive integer 
M such that 

(2.3) 
T 

K2 c 1 a k l 2 t L 6  l f ( t ) 1 * d t Z K ,  1 ( a k I 2  
T kI>M IkI>M 

for every almost periodic function 

f ( t ) -  c 
~ 

I k b M  

where K1, K ,  are positive constants. 
If 

then 

where 

Applying (2.3) to h ( t )  

h ( t ) -  c a k  exp { i p k f ) .  
kI>M 

we easily obtain the left-hand inequality of (2.2). We 
prove the right-hand inequality by contradiction. If it is false, there exists a 
sequence 

m 

- 1 a'k" exp h k f )  , r = 1,2, * * a ,  

k = - a  

of almost periodic functions such that C;=-- = 1 and fr --., 0 in L2(0, T). 
By extracting a subsequence if necessary, we may suppose that { a t ) } -  {a,} in 
l 2  as r - m .  Writing 

= 1 a t )  exp { i p k t ) +  g(t)  , 
Ik lSM 
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it follows that 

and hence that g, + g in L2(0, T), where 

Applying (2.3) we see that { a t ” }  is a Cauchy sequence in I z ,  and therefore 
{ a t ) }  -+ {ak} strongly in 12. A standard calculation using (2.3) now shows that 

Since g is analytic, we may apply a technique of Zygmund ([26], Vol I, page 
206) to conclude that ak = 0 for all ( k ( > M ,  and hence a, = 0 for all k. This 
contradicts C;;“= -_ l a k  l 2  = 1. 

Note that if p k + l -  pk + 00 as k + a, then we may take T arbitrarily small 
in the above result, so that, in particular, f is determined everywhere by the 
values it takes on any arbitrarily small interval; this type of unique continua- 
tion property has been studied in the case of lacunary Fourier series by 
Zygmund [26] and others. In the case p - k  = - F k ,  Fk+1- P k  + y>O as 
k -+ m, sufficient conditions have been given for {exp {iFkf}} to form a basis of 
L2(0,27r/y); for a survey of these results see Higgins [18J If, finally, 
p k +  - pk -+ 0 as k -+ w, then there is no T>O such that either of the 
inequalities in (2.1) hold. To see this, consider the functions 

k - N  

which satisfy 

respectively. 

arbitrary. 
We now turn to the case when the fixed countable set of exponents pk is 
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THEOREM 2.2. L e t  
co 

f r ( t >  - C at' exp { ipkt)  
k=-m 

be a uniformly bounded sequence of almost periodic functions, let f be a locally 
integrable function, and suppose that f r  + f in L'(0, T )  for every T>O.* L e t  p, 
be an isolated exponent; i.e., infk f i  lp, - p k  1 > 0. Then 

exists and a:') --* a, as r + 03. 

Proof: We have that 

f r ( t )  exp {-pit) = a;"+ g,(t) , 
where 

Note that since the sequence f r  is bounded, so is lar'1, by Parseval's equality. 
Hence g, is a uniformly bounded sequence of almost periodic functions. Since 
infk+ilpi -pkI>O, a result of Levitan (cf. Fink [12], Theorem 4.12) implies 
that 

where C is a constant which does not depend on r or T. Therefore, 

C 1; f , ( t )  exp (-ipit) dt - a;" 

Let a;"' be any convergent subsequence of a;" with limit a. Letting k + 03 we 
obtain 

C 1; f ( t )  exp {- ipi t }  dt - a 5- 
I T  

The result follows by letting T + 03. 

*Actually, weak convergence in L'(0, T )  suffices. 
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If p, is not isolated, the conclusion of Theorem 2.2 is trivially false, since 
if pk -+ pi, then exp {ipkt} -+ exp {ipit} uniformly on compact intervals. Nor 
may we omit the hypothesis that fr  be uniformly bounded; this follows by 
consideration of the case when the set of exponents p k  is bounded. For 
definiteness suppose that F k  -+ 0 as Ikl+ m, p k  # 0. We claim that for any 
T >  0 the sequence {exp {-i~kt}}k 

Let S be the closure of {exp { i p k f } } k + ,  in C([O, TI). 
Then  

is complete in C([O, TI). 

Proof of the claim: 

exp { ipk t }  - 1 
l = I i m e x p { i p k t } ~ S ,  t = I i m  E S ,  

k k  k- k- 

etc. Hence S = C([O, TI) by the Weierstrass approximation theorem. 

It follows from the completeness that there exists a sequence 

of finite linear combinations of {exp { i & t } } k + ( )  such that f , ( t )  + exp {ip,t} 
uniformly on [0, TI. By extracting a diagonal subsequence we may suppose 
that f r ( t )  -+ exp {ipot} uniformly on [0, TI for every T >  0. But a:’= 0, a, = 1, 
so that the conclusion of Theorem 2.2 fails for the isolated exponent po.  We 
remark that in the case when p k  -+ 0 as Ikl-+ 00, even though there is no 
inequality of the form (2.1), and even though every infinite subsequence of 
the exp { ipkt}  spans C([O, TI), any almost periodic function f ( t )  - 

a, exp { ipkt}  is uniquely determined by its values on any arbitrarily 
small interval. This is true because any such f may be extended into the 
complex plane as an entire function (cf Fink [12], Theorem 4.8). 

3. Semilinear and Bilinear Stabilization Problems 

Let H be a real Hilbert space with inner product ( , ) and norm I - I .  We 
consider the question of feedback stabilization for the second-order equation 

(3.1) i i + A u + p ( t )  B(u)=O.  

Here A is a densely defined positive selfadjoint linear operator on H such 
that A-’ is everywhere defined and compact. We suppose that the eigen- 
values A:, n = l , 2 ; . . ,  of A, O < A , < A , < - . . ,  are simple, and we write 
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A = We denote the normalized eigenfunction of A corresponding to 
A: by 6”. Let HA = D(A1”). HA forms a Hilbert space under the inner 
product 

We denote by ( 1  - \IA the norm in HA and assume that B :HA + H is locally 
Lipschitz. 

The real-valued function p(t) is a control, and we consider the problem of 
choosing it in such a way that all solutions u( r )  of (3.1) converge to zero, in 
an appropriate sense, as t + m. A natural choice for p ( t )  is 

since then, formally, 

(3.2) E ( t ) -E(0 )  = - ( B ( u ) ,  U)2 d t ,  
L l  

where E ( t )  J(lu(r)1* +l\u(t)lk), so that the linearized energy function does not 
increase. This suggests that solutions will decay under appropriate conditions 
on B. Therefore we consider the problem of proving that solutions of the 
autonomous equation 

(3.3) ii + A u  + ( B ( u ) ,  c)B(u) = 0 

decay to  zero. 
Let X = HA x H. X forms a Hilbert space under the inner product 

We write (3.3) in the form 

(3.4) w =dw + f ( w ) ,  

where 

Our assumptions imply that d generates a c“ group ed‘ of linear isometries 
on X ,  and that f : X + X is locally Lipschitz. Let 4 = (!;) E X. It can be shown 
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(cf, Balakrishnan [2], Ball [3]) that, with an appropriate definition of weak 
solution, a function w E C([O, TI; X), T>O, is a weak solution of (3.4) with 
initial data w ( 0 ) = 4  if and only if w satisfies the variation of constants 
formula 

(3.5) w ( t )  = edr4 + 6' ea(1-s) f (w(s ) )  ds 

on [0, TI. A standard argument shows that for given 4 there exists a unique 
solution w of (3.5) defined on some maximal interval [0, t,,), t , ,>O. The 
corresponding u(r)  is a weak solution of (3.3) satisfying the initial conditions 
u(O)= uo, u ( O ) =  u , .  It can be shown that u satisfies the energy equation 
(3.2). In particular, Ilw(t)llx is bounded on [0, t,,), so that, by a standard 
continuation argument, t,,, = 03. Writing w ( t )  = T(t)4,  it follows that the 
operators {T(t)} ,  t 2 0, form a semigroup, i.e., T(0) = identity, T(t + s)  = 
T(t)T(s)  for all s, t 2 O .  The map { t ,+}++ T(t )4  from [ O , m ] x X  to X is 
continuous. For more details of these assertions see Ball and Slemrod [5]. 

We define the weak w-limit set of 4 to be 

ww(4) ={$E X: there exists a sequence t,, + 00 as 
such that T(t,,)+ - $ in X}. 

n -+ 03 

The following result is an immediate consequence of Ball and Slemrod [5], 
Theorem 3.1. 

THEOREM 3.1. Let B satisfy the continuity condition 

(C) 4" + $ in HA implies I?($,,) --* B($) in H .  

Suppose also that i f  (;)=ed'$ with 

( B ( y ( t ) ) ,  y ( t ) )  = 0 for all t 8 0  , 

then $ = O .  

t +a. 

Then every weak solution w = (z) of (3.3) converges weakly to zero in X as 

The proof of Theorem 3.1 makes repeated use of condition (C) to show 
that (a) f is sequentially weakly continuous, (b) T( t ) :  X -+ X is sequentially 
weakly continuous for each t 20, and (c) if $E ww(4), then ( B ( y ( t ) ) ,  y(t ) )  = 0 
for all t 20, where (T)=e.*JI. 

From now on we assume that B is a bounded linear operator. In this case 
condition (C) is equivalent to compactness of B, and as discussed in the 
introduction this is a restrictive condition for applications. 
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First note that a necessary condition for all solutions of (3.3) to converge 
weakly to zero is that 

since if (B&, &) = 0 for some k, then w ( t )  = sin A,t 4 k  is a non-zero periodic 
solution of (3.3), and no such solution can converge weakly to zero. 

The following genericity condition will prove important: 

A, *An # 2Ak unless m = n = k and the + sign is taken, or 
both (&,, &) and (B&, 4,) are zero. (H2) 

Note that (H2) is trivially satisfied if (B&,, 4,) = 0 for m # n. A strengthened 
version of (H2) is 

For each k, 
inf 12Ak -A, *Anl > 0 ,  

(H2+) 

where the infimum is taken over m f  n with (B+,, +,,) and (B&,, 4,) not 
both zero. 

THEOREM 3.2. Suppose that either 
(i) B = K + S ,  where K :  HA + H and S :HA + H are bounded linear 

operators with K compact and S symmetric (i.e., (Su, u ) = ( u ,  Su) for all 
u, u E HA), and (Hl), (H2) hold, 

(ii) (Hl)  and (H2+) hold. 

Then every solution w = (:) of (3.3) converges weakly to zero in X as t + a. 

01 

LEMMA 3.1. Let  EX, t,,-+m, and 

Then, for every T >  0 ,  

lim sup l lT ( t+ t , )~ -e" 'T( tn )41Jx  = O ,  
n- t d o .  TI 

(3.6) 

and 

(3.7) n- lim C ( B y . ( L ) .  y , ( ~ ) ) ~  dt = O .  
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Proof: We know that 

Let 

By (3.21, ( (u , , ( t ) ( (2 ,+ (Un( t ) (2s  const., and 

(3.8) n- lim IT(Bu,,(t), U,,(t))' dr = O  

Therefore, for t E [ O ,  TI. 

T 112 

d const. TI/'( [ (Bu,,, ti,,)' dr) , 

and hence (3.6) holds. It follows from (3.6) that 

where limn- sup,,lo~ rl Ikn(r)l= 0. Using (3.8) we obtain (3.7). 

LEMMA 3.2. Ler (H2) be satisfied. Let 

Then (By(t), y ( t ) )  is an almost periodic function of t, and i f  

then 

where N = {A, f A,, : rn # n and (B+,,,, &), (B+,,, &,) not both zero}. 
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Proof: Let 

Then 

where 

Since e"" is an isometry for each t, edl(LK 4 edr+ in X as K --* 03, uniformly 
for t ER. It follows that (By,(t), yK ( t ) )  + (By(t), y(t)) as K m, uniformly for 
~ E R .  Now 

K 

(BYK(~),  YK(~))= 2 k(B4n, A)(%, exp { i A m t } + i i ,  exp { - i A m t } )  
m.n - 1 

x(a, exp{ih,t}-ii, exp{-ih,?}) 

where the second sum is finite. Hence (By(t), y(t))  is the uniform limit of 
finite trigonometric polynomials, and is consequently almost periodic. Also, 
for real A, since N n 2A = 4, 

Therefore, 
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The result follows. 

Proof of Theorem 3.2: Let 4 E X. Since IIT(t)t#& Sconst. for all t 2 0, it 
follows that ox(4) is nonempty. Let $ E U ~ ( ~ ) ,  so that there exists a 
sequence 1, + 03 such that T(c,,)+ - 4 in X. By Lemma 3.1, 

for each t Z O ,  so that w x ( 4 )  is positively invariant under e"'. Let 

In case (i) we have, by (3.2), 

for any t > O .  But 

Passing to the limit, using the compactness of K and the fact that HA is 
compactly embedded in H, we obtain 

t[(SY(t), Y(t))-(SY(O), Y(o))]+ 

Differentiating with respect to t, we get 

( B y ( t ) ,  y ( t ) ) = O  for all t 2 O  

By Lemma (3.2) and (Hl) ,  ak = O  for all k, and hence $ = O .  Hence 
T ( t ) 4  - 0 in X as t + m. 

In  case (ii), let 

By Lemma 3.1, (By , ( t ) ,  yn(t)) + 0 in L'(0, T )  for each T>O. Let 

= b',"'+ ic',"' . 
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Since (By,,(t), y,,(t)) is a uniformly bounded sequence of almost periodic 
functions, and since inf,,, {2Ak - V I  > 0 for each k, it follows from Theorem 
2.2, Lemma 3.2 and (Hl)  that 

Thus (::Ig{)-O in X ,  and so 9=0. Hence T ( t ) 4 - 0  in X as t 4 a .  

Remark 3.1. We note that some other techniques commonly used in 
studying stability of nonlinear evolution equations are inapplicable to (3.4), 
specifically: 

The linearization of (3.4) is w(t) = d w ( t ) .  Since the eigen- 
values of SP are purely imaginary, the linearization of (3.4) gives no 
information on the behavior of the full nonlinear equation. 

The center manifold theorem and its generalizations 
to infinite dimensions (see Marsden and McCracken [21]) would require the 
operator d to have all but a finite number of eigenvalues strictly in the left 
half of the complex plane. As noted above this is not the case in our problem. 

Contraction Semigroups : The theory of asymptotic behavior of contrac- 
tion semigroups is particularly powerful for studying nonlinear evolution 
equations of the form w ( t ) = 9 w ( t ) ,  where - 9 is a maximal monotone 
operator on a Hilbert space (see Dafermos and Slemrod [ll],  Haraux [15], 
Pazy [22]). Unfortunately, for system (3.4)-sB - f is not monotone on X. 

Linearization: 

Center Manifolds : 

4. Applications 

EXAMPLE 4.1. Vibrating beam with hinged ends. Let ~ c F P  be a 
bounded open set with boundary aR and consider the system 

(4.1) u , + A 2 u + p ( t ) A u = 0 ,  X € R ,  

(4.2) u = A u  = 0 ,  x c a a .  

If N = 1 and R = (0, l ) ,  then (4.1)-(4.2) is a standard model for the transverse 
deflection u(x, t )  of a beam with hinged ends, and in this case p ( t )  denotes 
the axial load on the beam. 

THEOREM 4.1. Let the eigenualues A,, of -A with Dirichlet boundary 
conditions on a l l  be simple. Set 

p ( t ) = ] ,  y h u d x .  
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Then, for all initial data { u ~ ,  , uo} E H2(R) rl HA(R) x L2(R) = X ,  (4.1)-(4.2) 
possesses a unique weak solution {u ,  U}E C([O, a); X ) ,  and {u ,  ic} - (0, 0} in X 
as t + m. 

Remark 4.1. The condition that the eigenvalues A,, be simple (which is 
automatically satisfied if N = 1, R =  (0, 1)) is a condition on R which is 
necessary for feedback stabilizability of (4.1)-(4.2). This may be proved by 
the same argument as in [ 5 ] ,  Theorem 4.1. 

Proof of Theorem 4.1: Set A = A 2 ,  B = A ,  H=L2(R),  D ( A ) =  
{ u E H4(0): u, Au E HA(R)}, D ( A  = H2(R) rl H:,(R). The eigenvalues of A 
are A: and the corresponding eigenfunctions &(x) are the same as for -A. 
Clearly, (&,,, b,,) ZO, (B&, 4,) = O  for m f  n, so that (H l )  and (H2) hold. 
Since B is symmetric, Theorem 3.2 (i) applies and the result follows. 

EXAMPLE 4.2. Vibrating beam with clamped ends. Consider the system 

(4.3) 
(4.4) 

u,, + u,,,, + p(t)u,, = 0 , 
u=u,=O at x = O , 1  

O < x < l .  

THEOREM 4.2. Set 

P O )  = I’ U ~ Y ,  dx .  

Then for all initial data {uo ,  
a unique weak solution {u, u } ~  C([O, a); X )  and {u,  u }  - (0, 0)  in X as t + a. 

H;(O, 1) x L2(0, 1) = X ,  (4.3)-(4.4) possesses 

Proof: Let A = d4/dx4, B = d 2 / d X 2 ,  H = L2(0, l) ,  D(A)  = H4(0, 1) n 
HG(0, l), D(A”*) = H;(O, 1). The eigenvalues of A are A;, where A, = p; and 
cosh p, cos p,, = 1. The corresponding eigenfunctions, not normalized, (cf. 
Courant and Hilbert [lo]) are 

&(x) = (sin p, - sinh p, “0s p,x - cosh p,x) - (cos p, - cosh p,) 

x (sin pnx -sinh p,,x) . 

Integration by parts shows that (I&$,,, 4,) = - 14nx12 # 0. Since B is symmetric, 
Theorem 3.2 (i) will apply if (H2) holds. Unlike Example 4.1, we do  not have 
(B&, &) = 0 for m # n, so we apply the following 

PRorosrrioN 4.1. For p, the positive roots of cosh p, cos p, = 1, the 
equation pi*  pf, = 2pi can only be satisfied i f  m = n = k and the + sign is 
taken. 
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Proof: The proof involves obtaining accurate asymptotic estimates for 
the p,. We omit the details because they are almost identical to those of the 
proof of Proposition 4.3 below. The proof of Proposition 4.3 is in fact slightly 
harder since in that case the lowest root p1 < 7~ has to be handled separately, 
whereas here a simple computation shows that sech p >cos p for O <  p S&r, 
so that pI >:T. This larger value of p,  enables one to use the asymptotic 
estimates for all the p, including p I .  

Proposition 4.1 shows that (H2) is satisfied, which completes the proof of 
Theorem 4.2. 

E~AMPI-E 4.3. Beam with “follower” load. We again consider (4.3), but 
allow one end of the rod to be free and loaded tangentially with load p(t). 
The other end is assumed clamped. This problem is particularly interesting 
since it is analogous to problems in mechanics where a thrust is applied to a 
structure at a free end, e.g. hosepipe, flexible missile. The boundary condi- 
tions associated with this problem are 

(4.5) u = u, = O  at x =0,  u,, = u,,, = O  at x = 1 . 

A, B and H are as in Example 4.2, but now D(A)  = { u  E H4(0, 1): u = u, = 0 
at x = 0, uxx = u,,, = 0 at x = 1) and D(A”2) = { u  E H2(0,  1): u = u, = 0 at 
x = 0). The eigenfunctions of A not normalized, are 

(4.6) &(x) = (cos p, + cosh p,)(cos pnx -cosh p,x) + (sin p, -sinh p,) 

x (sin pnx -sinh p,x) , 

where A:= p: are the corresponding eigenvalues and p, satisfies 
cosh p, cos p,, = -1 (cf. Bolotin [S]). Note that, in this example, B is not of 
the form K + S  with K compact and S symmetric. 

THEOREM 4.3. Set 
r l  

P O )  = J, YY, dx. 

Then for all initial data {u” ,  uo}€ D(A”’) X L2(0, 1) = X ,  (4.3)-(4.5) possesses 
a unique weak solution {u, u } ~  C([O, m); X )  and {u, u }  - (0, 0) in X as ? -+ m. 

Proof: The proof is an immediate consequence of Theorem 3.2 (ii) and 
the following two propositions, which verify conditions (H 1) and (H2+), 
respectively. 
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PROPOSITION 4.2. (A, &,,) # 0, n = 1,2, - - - . 
Proof: For brevity write p, = p, 4, = 4. A direct computation using (4.6) 

yields 

L -(4, A,) = (sin p - sinh p)’(sinh p cosh p +sin p cos p - 2p) 
CL 

+ (cos p + cosh p)‘(sinh p cash p -sin p cos p )  

+ 2(sin p - sinh p)(cos p + cosh p)(sinh2 p - sin2 p )  . 

Since (cos p + cosh p)2 = sinh’ p -sin2 p, it follows that if (4,4=) = 0, we 
have 

p(sin p -sinh p )  = sinh2 p cos p -sin2 p cosh p 

= -2(cosh p +COS p )  . 

But sin p = f tanh p, and hence 

2 sinh p 

=cash p r 1 * 

2 sinh pI  

cosh p1 1 A numerical computation shows that pI # 

so that 

. Also p, > 10 if n >  1, 

s 2 +  < l o ,  
cosh (10)- 1 

2 sinh p, 2 cosh p, 2 =2*  
1°<cosh p, T 1 ‘cosh p, r 1 cosh p, T 1 

which is a contradiction. 

PROPOSITTON 4.3. For p, the positive roots of cosh p, cos p, = -1, and for 
each k = 1,2,. - .  , 

where the infimum is  taken over m, n not both equal to k .  

Proof: The roots O < p l < p z < . . .  of c a s h p c o s p = - l  are given by the 
p coordinates of the intersections of the curves sech p and -cos p. It follows 
that p, has the form 

n = 1,2,  * - * , p, = ( n  - $ ) m  +a,, 
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where I&I<&r. It is clear graphically that I6,l is a decreasing function of n. 
Computed values of pl , 6' , 6, are kl  = 1.875 1 * - * , 6, = 0.3043 - * * , 6, = 
-0.0182 * . Thus we have the preliminary estimate 

LEMMA 4.1. 16,1<0.02, n > l  

Next we refine this estimate. 

LEMMA 4.2. 6, = 2c,(-l)"-' exp { - (n - $)T} , n > 1 , where 0.97 < c,, < 
1.03. 

Proof: Let f (k)  = cosh p cos p, so that f r ( ~ )  = sinh p cos p -sin p cosh p, 
f"(p) = -2sinh p sin k. Let n > 1. By Taylor's theorem, 

where I&,l<O-O2 by Lemma 4.1. Thus 

(4.7) -1 = 6,(-1)" cosh ( ( n - 4 ) ~ )  +6;(--l)" sinh [(n -4)7r+[,,] cos 5,. 

Furthermore, lcos 5, - 1 I S I[',, so that 

(4.8) Jcos 5, - 1) < 0.0002 . 

Now, 

Hence 

Also 

(4.10)12exp{-(n - i )~}cosh ( ( n - - i ) ~ ) -  11 =exp{-(2n-l) .rr}~e-~"<O0.0O01 . 

Substituting (4.8)-(4.10) in (4.7) we obtain 
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where ~a,~<O.OOOl, IpnI<0.022, lyn(<0.0002. Now ( l+p,)( l+y,)= l + a n ,  
where (a, 1 C0.023. Therefore, 

where )pn~<O.OOO1+0.O2x 1.023<0.021. The result follows. 

tion to show that the equation 
Since C L Z , + ~ - C L ~ , - ~ ~ ~ F ’  as n -+m, it suffices for the proof of the proposi- 

has no solution with m f  n. Suppose for the sake of contradiction that it has 
such a solution. By Lemma 4.2, to first order, (4.11) becomes 

(4.12) (2n - 1)’*(2m - I)’= 2(2k - 1)‘ 

This diophantine equation has an infinity of nontrivial solutions which may be 
written down by the procedure given in Hardy and Wright [16], pp. 241-243. 
Two such solutions are 1’ + 7’ = 2+, 72 + 17’ = 2- 13’. All such solutions of 
(4.12) are with the + sign, for otherwise the left-hand side would be divisible 
by 4. Because of these considerations we split the proof into two cases. 

m, n, k do not satisfy (4.12). Substitution into (4.11) yields Case 1. 

so that 

(4.13) 1S[(2n-1)2*(2rn-1)2-2(2k- 11’1 
4 
T’ 

= - (26: F S’, - + 4( k - f ) ~ &  F 2( m - f)rrS,,, - 2( n - ~ ) T S ,  I . 

By Lemma 4.2, 

I ( r  - $1 TS, I 5 2.06(1 - ;)T exp { - (I - t )  T }  , r > l .  

Let g(x) = xe-’, so that g’(x) = (1 - x)e-x s 0 if x 2 1. Thus for r > 1 

(4.14) 

Now note that at most one of n,m and k can be one, since otherwise we 
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would have k = m = 1 and k, = 6 p I  = 3.2477 * - 3 E (pl, p2). Hence by (4.13), 
(4.14) we obtain 

4 
*' 1 s- [2(0.31)2+ (0.02)2+2* x 0.31 + 2  x 0.1]<0.95 , 

which is a contradiction. 

Case 2. m, n, k satisfy (2n - 1)2 + (2m - 1)' = 2(2k - 1)'. We may assume 
that n < k < m. Substitution into (4.11) yields 

(4.15) (2n-l)7rS,+(2rn-1)~Sm-2(2k-1)7r6, =2S;-SZ,-S;. 

If n = 1 ,  our previous estimates and (4.15) show that 

1 
0 . 3 ~ S l ~ - ( 4 X 0 . 1 + 2 ( 0 . 3 1 ) 2 ) = 0 . 1 8 8  * * * ,  

T 

which is impossible. Thus we suppose that n > I .  By Lemma 4.2 and (4.13, 

Let r 2 1 and for fixed n > 1 consider 

def g((n -4+ r ) r )  e ( r )  = = (I + +) e-m . 
g((n -;)*I n -- 

Since 

e - - < O ,  1 
it follows that 
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But 

IX2St - 8;- S2,]/g((n -i)lr)l 
1 

(n - 4 ) ~  (2~2 ,  exp {(n - 2 k + 5 ) ~ )  - c', exp {(n - 2m + i) l r }  - c', exp { - (n - +) l r } (  -- - 

since n + 1 5 k 5 m - 1. Substituting the above into (4.16) yields 

0.97< Jc,I < 3  x 1.03 x$e-" + A < 0 . 5  . 

This is a contradiction. 

EXAMPLE 4.4. Timoshenko beam. We now treat a linearized model for 
the plane motion of a uniform beam that is somewhat more satisfactory than 
that discussed in Examples 4.1-4.3 above. The model consists of the coupled 
set of wave equations 

(4.17) 
pun = NU, - ( p ( t )  + + NIB,, 
den = Me, - (p ( t )  + t N)(  e - U, ) . 

Here u(x, r) denotes the transverse displacement of the center line of the 
beam, while O(x, t )  denotes the angle which the normal to the cross section 
makes with the x-axis. The positive constants p, d ,  N,  M are related to the 
material properties and to the cross section of the beam. The beam is 
subjected to a time-dependent axial force p ( t ) + a ,  where a is a constant. 
Equations (4.17) are known as the Timoshenko beam equations. A derivation 
in the case p ( t ) + a  = O  can be found in Timoshenko and Young [25]. The 
equations may alternatively be derived by linearizing a fully nonlinear one- 
director theory of the plane motion of an inextensible elastic rod about the 
time dependent trivial solution in which the rod is straight and subjected to 
the axial force p(t>+a.* For a derivation of a similar set of equations see also 
Green, Knops and Laws [14]. 

We assume that the ends of the beam are simply supported, so that 

(4.18) u = e x  = O  at x =0,1. 

We will be interested in stabilizing (4.17) by means of an axial force p ( t ) + a  
which tends in a suitable sense to a! as t + "; i.e., p(r) + 0. Because in this 

* W e  are indebted to Stuart Antman for discussions o n  this point. 
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model the beam may suffer instabilities both in compression and tension, we 
shall suppose that la 1 is sufficiently small; specifically, 

(4.19) - N < a < $( - N  + ( N 2  + 4MNTZ)”Z) . 

Let H = L2(0, 1) x L2(0, 1) with inner product 

Let 

Note that B is symmetric. 

LEMMA 4.3. A is a positive selfadjoint operation on H with an everywhere 
defined compact inverse. 

Proof: We have 

Consider the problem of minimizing Nlvx I’+ M(ex (* in HA(0, 1) x H’(0,  1) 
subject to the constraint lOl’+ 2(OX, v )  = f 1. By use of the PoincarC inequality 
and the constraint we see that any minimizing sequence is bounded. A 
standard argument shows that the minimum value is u* ,  where u* is the least 
non-negative value of v for which a nontrivial solution of 

(4.20) 
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exists satisfying the constraint and boundary conditions. Since the solutions of 
(4.20), which are equilibrium solutions corresponding to (4.17), have the form 
u = C sin nmx, 6 = cos nmx, it follows that v+ = 0, v- = $(N + (NZ + 4MN,rr2)’’2). 
Hence A is positive provided O<a + N <  u - ,  which holds by (4.19). A simple 
calculation shows that A is selfadjoint, while A-’ is compact by standard 
elliptic theory. 

Note that HA = D(A ‘I”) = H:,(O, 1) x H’(0, l), and 

The eigenvalues of A are given by 

Note that A d 2  = ho2 = (a  + N)/d .  The corresponding eigenfunctions are 

(a + N)nm 
N n 2 m 2 -  ph:2 

, where Cz = 
C: sin nmx 

cos nmx 

There are no other eigenvalues or eigenfunctions since the 4: span H .  

THEOREM 4.4. Let 

Let a satisfy (4.19). There exists a countable set K of real numbers such that 
for all initial data 

(4.17H4.18) possesses a unique weak solution 
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and if a& K, then 
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Proof: We apply Theorem 3.2 (i). It remains to verify (Hl) and (H2). To 
verify (Hl )  we compute 

which is zero if and only if n#  0, C: = 1/2n7r. Substituting for A:2 and using 
the fact that a + N # O ,  we obtain 

(4.21) - N  2n2r2(dN - pM)  
p+4dn27r2 

a =  

which is a contradiction if a does not equal one of this countable sets of 
numbers. (Note that if dN>pM, then, for all large enough n, a given by 
(4.21) satisfies (4.19). Consequently, for these values of a, (4.17)-(4.18) is not 
weakly stabilizable with our choice of p ( t ) . )  To check (H2), f i s t  note that if 
n # rn, then (B4:, 4k)H = (BC#J;, +:)H = 0. In general, (B+:, 4i )H # 0. Thus 
we must prove that if n#O 

Suppose for the sake of contradiction that A ~ - + A ; ' = 2 h ~ .  Substituting for the 
A's and eliminating the square roots by successive squaring, we obtain a 
quartic equation for a. The coefficient of a4 is ( 3 ~ + 4 d r ~ ( n ~ + 4 h ~ ) ) ~ +  
16n2r2pd, which is.nonzero. For each n, k this is a contradiction for all but 
finitely many values of a. We obtain the same contradiction if A: f A; = 2Az. 
This completes the proof. 

EXAMPLE 4.5. A wave equation. Consider the wave equation 

with boundary conditions 

(4.23) u = O  at x = O ,  u + a u , = O  at x = l ,  

where a > O  is a constant. 
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THEOREM 4.5. Let p ( t )  = JA &ux dx and X = {{u, U}E H'(0, 1) X L2(0, 1) : 
u(0) = 0). Then, for all initial data {uo, tio} E X, (4.22)-(4.23) possesses a 
unique weak solution {u, u } ~  C([O, m); X )  and {u, u }  - (0, 0) in X as t + m. 

Proof: Set A = - d2 /dx2 ,  B = d/dx, H = L2(0, l), D ( A )  = {u E H2(0 ,  1); 

( ~ ~ 1 ~ + a - ' u ( l ) ~ .  The eigenfunctions of A are 4, =sin A,x, where A; are the 
associated eigenvalues and A, satisfies 

~ ( o )  = u(i)+au,(i)  = o}, H~ = D ( A ' / ~ )  = { u  E ~ ' ( 0 ,  1); u(o)= o}, llull;= 

tanA,+aA,=O. 

Since (B&, 4,) =+sin2 A,, and since r 2 r 2  is not an eigenvalue, (Hl) is 
satisfied. Since B is not symmetric, we must show that (H2+) holds. 

PROPOSITION 4.4. Let 0 < A1 < A 2  < - - denote the positive roots of 
tan A +aA = 0. Then, for each k, 

Proof: Since A, = (n -$ ) r+o( l ) ,  and since r 2 r 2  is not an eigenvalue, it 
suffices to show that the equation 

has no solution with m f  n. If m, n, k satisfy (4.24), then taking tan of both 
sides gives 

tan A, f tan A,, - 2 tan hk 
1 T tan A, tan A, 1 - tan2 Ak * 

- 

Applying the definition of the A's it follows that 

In conjunction with (4.24) this implies that A, = A, = &, which is a contradic- 
tion. The proof of the theorem is now completed by applying Theorem 3.2 
(ii). 

EXAMPLE 4.6. Nonlinear wave equation. As a new application of our 
earlier result, Theorem 3.1, we consider the nonlinear wave equation 
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where f ( u )  is a nonzero real polynomial in u, with boundary conditions 

(4.26) u = O  at x = O ,  u + a y , = O  at x = l ,  

where a > O  is a constant. 
The definitions of H,  A, D ( A )  and the eigenvalues and eigenfunctions of 

A are the same as in Example 4.5. In this case, however, B = f  is nonlinear. 
Let $,, - $ in HA. By the Sobolev imbedding theorem and the continuity of 
f, f($,,) -+ f($) in H = L2(0, 1). Hence condition (C) is satisfied. 

THEOREM 4.6. There exists a countable set A o c  (0, t.) such that, for any 
initial data {uo, Uo}e HA x H = X ,  and for any nonzero polynomial f ,  there 
exists a unique weak solution {u, U}E C([O, 03); X )  to (4.25)-(4.26) with p ( t )  = 
( f ( u ) ,  4). and i f  a&A,, then {u, U } - { O , O }  in X as t + a .  

The proof of Theorem 4.6 is an immediate consequence of Theorem 3.1 
and the following theorem applied to F ( u )  = J” f ( s )  ds. 

THEOREM 4.7. There exists a countable set A, clw such that i f  F is any 
nonconstant real polynomial and i f  a E R\AI, then there is no nonzero solution 
I.4 of 

(4.27) 
u, - u,, = 0 , 

u = O  at x = O ,  u + a y , = O  at x = l ,  

satisfying lo1 F(u(x,  t ) )  dx =constant, 

for all t Z 0 .  

Remark 4.2. The set A, contains 0, since then, if u(x,  t ) =  

sin 21rt sin 21rx, 

jol U ( X ,  t)2m+1 dx = O  . 

As far as we know, Theorem 4.7 may be valid with A, = (0). 

In this proof, An =&,(a) denotes the unique root 
of tanA+aA=O lying in the interval (n- - f )m<A<(n+i)m;  note that h ,,= 
-A,,. The general solution of (4.27) is 

Proof of Theorem 4.7: 

m 

u(x ,  t )  = 1 (a,, exp { A n t } +  ci,, exp { - A n t } )  sin A,x. 
n = l  



582 J.  M. BALL AND M. SL.EMROD 

Let F(u) = ~ ~ = o  ciui with p 2 1, a,,# 0. An argument like that in the proof of 
Lemma 3.5 shows that I,!, F ( u ( x ,  t ) )  d x  is an almost periodic function of t and 
that the corresponding Fourier series may be obtained by formal multiplica- 
tion. We consider the coefficient of exp{ipA,t} in this Fourier series. This 
coefficient is equal to cpaE J:, sin" A,x d x  provided that there are no contribu- 
tions from off-diagonal products; i.e., provided that if 

with l S s S p  and the r, integers, then s = p  and A,, = A ,  for each j .  We shall 
show for fixed s, p, n, r , ,  * * , r, that this is true for all but countably many a. 
The result then follows by taking for A,  the union of the exceptional a 
values over s, p, n, rl , * , r, and applying the uniqueness theorem for the 
Fourier expansions of almost periodic functions to deduce that 
c,aE JA sinp A,x dx = 0. Since a graphical argument shows that JA sinP A,x d x  Z 0, 
this gives a, = O  for all n, and hence u = O .  For each s, p with l S s S p ,  and 
for each r l ,  * * * , rs with either s < p or some r,# n, let 

We have to show that g has at  most countably many roots. First note that 
since tan A,(a)+aA;(a) = 0, it follows by differentiation that 

(4.28) 
( 1  + a  + a 2 A f ) A ~ + A i  = 0 ,  

Ai(0) = -A;(O) . 

If g has uncountably many roots, then it has a finite cluster point of roots. By 
the analytic implicit function theorem, AI(cy) is analytic in a neighbourhood of 
the real axis. Hence g is analytic there, and thus by the identity theorem 
g ( a ) = O .  We prove by induction that 

for all a. This is true for m = O .  Assume it is true for m. Multiply (4.28) by 
A;". Thus 

A?+' 
~ Z m + l  

(1 +a)(' )'+a2(=) +A:m+l=O.  
2 m + l  

Hence 

( l + a )  a* 
2 m + l  2m+3 +- g',+1b)+ g m ( a )  = 0 ,  
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so that g&+,(a) G O  and g,+l(a) = constant. But 

g&+,(O) = (2m + 3 ) [ A ~ y Z ( 0 ) A : , ( O )  + . + A ~ " ' 2 ( 0 ) A : ~ O ) - p A ~ m ~ 2 ( O ) A ~ ( 0 ) ]  
= -(2m + 3)g,+,(O) = 0 . 

Therefore, g,, ,(a) = 0. This completes the induction. We deduce in particular 
that 

Let P ( t )  be a polynomial with only odd powers; then it follows that 

P ( r l ) + . . . + P ( r s ) = p P ( n )  . 

By the Weierstrass approximation theorem, if h is any odd continuous 
function, 

h ( r , ) +  - - * + h(r , )  = ph(n)  

Choose h such that h ( n ) = l ,  h ( - n ) = - l ,  h( t )=O if I t - n \ 2 $  or I t+n l2 t .  
Then 

and so s = p and rj = n for 1 S j S p .  This is a contradiction. 

5. Concluding Remarks 

As the reader will have observed, the principal difficulty in applying 
Theorem 3.2 to particular examples is the verification of the genericity 
condition (H2) or (H2+),  which requires precise information about the 
eigenvalues A: of A. There are several interesting generalizations of the 
examples in Section 4 to which our methods presumably apply, but which we 
have omitted because of the difficulty of checking the genericity condition. 
For example, consider the problem of stabilizing the equation 

(5.1) U" + u,,, + P( t )u ,  = 0 

under either of the boundary conditions (4.4), (4.9, subject to  the additional 
requirement that in some sense P ( t )  -+ p o  as t 03, where the constant po is 
less than the first critical load. (For information about the critical load in the 
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case of the boundary conditions (4.5) see Carr and Malhardeen [9].) If 
p(t)=P(t)-p,,  then the system has the form (3.1) with A = 
d4/dx4+p0 d 2 / d x 2 .  The analogues of Propositions 4.1, 4.3 are now harder to 
prove on account of the complexity of the characteristic equation for the 
eigenvalues of A. In the case of the follower load problem (5.1), (4.5) there is 
the additional complication that A is no longer selfadjoint, although it can be 
made selfadjoint by a suitable change of coordinates (d [9]). 

The problem of verifying (H2), and especially (H2+),  in applications to 
partial differential equations increases with the number of space dimensions. 
In particular, if A,,+l-A,,  -+ 0 as n + CQ, then (H2+)  cannot hold. Consider, 
for example, the case H = L2(R), A = -A, D(A)  = {u E HA(R) : Au E L’(R)}, 
with R a bounded open subset of 54’. If fi is the unit square, then it is known 
that 

(For references see Hejhal [17]). Thus, for any E >0, N ( ( t  + ~ ) ~ ) - “ ( t ~ ) - +  CQ 

as t + a, so that - A, +. 0 as n + m and (H2+) does not hold. Known 
asymptotic estimates suggest, but do not appear to prove, that the same is in 
general true for elliptic operators in more general domains R and for 
dimensions greater than 2. 

We did not make explicit use in this paper of Theorem 2.1. However, it 
may be used in certain cases to give an alternative proof of weak stabilizabil- 
ity. Suppose, under the general assumptions of Section 3, that B is symmetric 
and (B&, 4,,,) = 0 for m f  n. Suppose further that 

Let 

u(t) = (a, exp {iA,t}+i i ,  exp {-iA,,t})4,, 
n = l  

be any solution of ii + Aw = 0. By Theorem 2.1, 

for some positive constant C = C(T) ,  provided T >  r l y .  Therefore, 
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and similarly, 
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If the sum in square brackets is known to be finite, either of these inequalities 
can be used in conjunction with Lemma 3.1 and the invariance of the weak 
o-limit set under edl  to show that solutions of (3.3) tend weakly to zero as 
t --+ 00. The crucial point is that one may pass to the limit in the left-hand 
sides of (5.2), (5.3) using weak convergence. For the interest of the reader we 
make explicit these a priori inequalities in two special cases. 

EXAMPLE 5.1. Consider the system 

(5.4) 
4, - u, = 0 9 

u = O  at x = O , 1 .  
O < x < l .  

For every T >  1 there exists a constant K ( T )  > 0 such that for all solutions u 
of (5.4) 

(5.5) loT (6' u2 dx)' dt S K  (6' UU, dX)2 d r .  

In fact one may take T =  1 in (5 .5 ) .  

EXAMPLE 5.2. Consider the system 

u , + k = o ,  
u = y , = O  at x = O , l .  

O < x < l ,  

From (5.2) we deduce that for every T>O, however small, there exists a 
constant K(T)>O such that for all solutions u of (5.6) 

(5.7) 

A similar argument shows that the inequality 



586 J .  M. BALL AND M. SLEMROD 

holds. But the inequality 

is false. Were such an inequality true, then one could use Lemma 3.1 to 
prove strong convergence to zero in Example 4.1. 

Acknowledgement. We are grateful to Jack Carr for several helpful 
discussions. 
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