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1. INTRODUCTION 

Let X be a topological space. By a semigroup on X we mean a 
family of maps {T(t)}t > 0 from X to itself satisfying (i) T(0) = 
identity, and (ii) T(s) T(t) = Z’(s + t) for all S, t > 0. It is usual to 
require that the maps {T(t))t > 0 satisfy certain properties related to 
continuity. In this paper we discuss several situations in which, by 
virtue of the semigroup properties, these continuity requirements in 
fact imply stronger ones. When X is a Banach space and {T(t)}t > 0 
a semigroup of bounded linear maps from X to X such results are 
well known, e.g., if for a fixed x E X the map t + T(t)x is strongly 
Lebesgue measurable on (0, co), then it is strongly continuous on 
(0, a). 

In a recent paper [6] Chernoff and Marsden considered the case of a 
semigroup defined on a metric space M. They proved that for such a 
semigroup the conditions (i) T(t): M -+ M is continuous for each 
t > 0, (ii) t b T(t) x is continuous on (0, co) for fixed x E M, imply 
that the map (t, x) ++ T(t)x is continuous on (0, co) x M. Further- 
more, they showed that the same conclusion holds if M is separable 
and if (ii) is replaced by the condition (ii)’ t H T(t)x is Bore1 
measurable for fixed x E M. We extend their techniques to prove 
a number of analogous results for semigroups defined on certain 
function spaces. Our methods involve extensive use of the Baire 
category theorem. 

A particular case that we treat, of importance for applications, is 
when X is an infinite-dimensional Banach space endowed with the 
weak topology (this space is not metrizable). We prove (Corollary 3.4) 
that, if X is reflexive, sequential weak continuity of the maps T(t), 

t I-+ T(t)x implies sequential weak. continuity of the map (t, x) I-+ T(t)x 

on (0, CO) x X. If X is an arbitrary Banach space we prove 
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(Theorem 5.2) that (a) strong (i.e., norm) continuity of T(t) for each 
t 3 0, and (b) weak Baire continuity of the map t t+ T(r)x for each 
x E X, implies strong continuity of (t, x) ++ T(t)x on (0, a) X X. In 
particular, the same conclusion holds if (b) is replaced by (b)’ weak 
continuity from the right at t = 0 of the map t t, T(t)x for fixed x E X. 
This last result is proved in two distinct, though related, ways; 
firstly by application of Chernoff and Marsden’s Bore1 measurability 
arguments, and secondly by a simpler method, based on lower 
semicontinuity, which appears to be new even for linear semigroups. 
The second proof is physically suggestive, in that an adaptation of it 
gives conditions under which one or more “energy” functionals are 
continuous along orbits of the semigroup (which may in fact be 
defined on any topological space). Under the same hypotheses strong 
continuity at t = 0 is shown to hold for certain special semigroups, 
provided X is uniformly convex, generalizing a result of Crandall and 
Pazy [7] for semigroups of nonexpansions on uniformly convex 
spaces. We remark that in [7] a proof, due to Phillips, is given, that 
for a semigroup of nonexpansions on an arbitrary Banach space, 
strong Lebesgue measurability of the map t H T(t)x implies strong 
continuity of the same map on (0, co). 

Our results include those of Chernoff and Marsden that we have 
mentioned and have an application to semigroups on Tychonov spaces. 
The sequential weak continuity properties of semigroups that we 
consider turn up in applications to partial differential equations 
arising from, e.g., continuum mechanics [see e.g. 3, 41. For the 
relationship between weak continuity and sequential weak continuity 
for maps and semigroups defined on a Banach space see [5]. 
Throughout this paper subscripts denote infinite sequences rather 
than nets. The symbols -1, -* denote weak and weak* convergence 
respectively. R denotes the real numbers. ‘S? denotes “the complement 
of”. 

2. SEMIGROUPS ON FUNCTION SPACES 

DEFINITION 2.1. A semigroup (T(t))t 3 0 defined on a topological 
space (X, T) is separately (sequentially) T continuous on (0, co) X X 
if x, r x, t, -+ t > 0, imply T(t,)x 5 T(t)x and T(t)xn 5 T( t)x. 
It is jointly (sequentially) 7 continuous on (0, co) x X if x, 5 x, 
t, --+ t > 0 imply T(t,)x, L T(t)x. 

When only one topology r is under consideration we abbreviate the 
above to “separately continuous” and “jointly continuous”. 
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Let E be a set and Y a metric space with metric d. Let A 2 YE = 
(f: E -+ Y}. Through ou we suppose A to have the product topology, t 
that is the topology of pointwise convergence on E. Let { T(t)}t 3 0 be 
a semigroup on A that is separately continuous on (0, co) x A. 

THEOREM 2.1. Let x E E and f, % f. Then there exists a dense G, 
subset G of (0, az) such that ;f t, E G and t, -+ t, then 

T&J f&> A Vo)f(x)* 

Proof. For 0 < a < b < co and E > 0 define 

S,,, = (t E [a, b]: r 3 n implies d(T(t)f,(x), T(t)f(x)) < E}. 

s* is clearly closed and [a, b] = (Jz=r A’,,, . By Baire’s category 
thlkem some S,,, contains an open interval. Since we may apply this 
argument to any such closed interval [a, b], there exists a dense open 
subset S, of (0, co) such that to E S, implies that there is an open 
neighbourhood N(t,,) of t, and some m with d( T(t) f,.(x), T(t) f (x)) < E 
for each t E N(t,) and r > m. Then G E UT-r Slli is a dense G6 set and 
has the required properties. 1 

COROLLARY 2.2 (Chernoff and Marsden). Let {S(t)}t > 0 be a 
semigroup on a metric space Y which is separately continuous on 
(0, co) x Y. Then {S(t)} isjointly continuous on (0, CXI) x Y. 

Proof. Let E = {x,,) be a singleton and let ynL y. By the theorem, 
applied to the semigroup induced on YE by {S(t)), there exists a dense 
G, subset G of(0, CD) such that t,+ t, E G implies T(t,) yn L T(t,) y. 
Let t, > 0 and choose t, E G, 0 < t, < t, . Then if TV -+ t, , T(7,) yn = 

T(t1 - 44 T(tcl - t1 + ~?L>rn JL T(t, - to) T(t,) y = T(h) Y- I 

THEOREM 2.3. Under the hypotheses of Theorem 2.1 suppose that 
A, _C A and that T([a, b])A, is a relatively sequentially compact subset 
ofAforanyO<a<b<co.Let{f,)CA,,f,%f~A, t,-+t,>O. 
Then 

WJ fn --& T(tJf. 

Proof. Choose t, with 0 < t, < t, . We can without loss of 
generality suppose that T(& + tl - to)fm 5 x, say. Then 

T(t,) fn ++ T(t,, - t,)X E x. 
Let x E E and let G be the dense subset of (0, co) corresponding 

to {fJ and f whose existence was proved in Theorem 2.1. There 
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exists {~,,u> C G, T, -+ t, as p -+ co. Define f,,u = T(T, + t, - to)fn . 
Then 

Hence 

lim lim f,,, = &L+m n-too’ lim T(T, - t,)x = T(t, - t,)x = a. 
P+m 

But since T ,  + t, - 1, ---f Tu as n -+ a3 we have also that 

Hence z(x) = T(t,) f (x) f or all x E E, which completes the proof. m 

3. SEPARATE AND JOINT CONTINUITY FOR SEMICROUPS ON 
BANACH SPACES AND TYCHONOV SPACES 

It follows from Corollary 2.2 that for a semigroup defined on a 
subset of a Banach space, separate strong continuity implies joint 
strong continuity. In this section we discuss the case when the norm 
topology is replaced by the weak or weak* topology. 

DEFINITION 3.1. A Banach space X is said to be of type A if the 
closed unit ball of X* is sequentially weak* compact. 

Separable and reflexive Banach spaces are both of type A, in the 
former case by the Banach-Alaoglu theorem and the metrizability of 
the closed unit ball in X* [8, p. 4261, and in the latter case by the 
Eberlein-Smulyan theorem. Not all Banach spaces are of type A 
[13, p. 2981. 

Let X be a Banach space of type A and let U C X* be sequentially 
weak* closed. Let (T(t))t 3 0 be a semigroup on U which is separately 
weak* continuous on (0, 00) x U. 

LEMMA 3.2. Let V C U be bounded. Then if O,< a < b < co the 
set T([a, b])V is bounded. 

Proof. For each t > 0, T(t) maps sequentially weak* compact sets 
to sequentially weak* compact sets, and thus bounded sets to bounded 
sets. Choose 01, /3 with 0 < OL < /I < a. For n = 1, 2 ,..., define 
En = {t E b, 131: II T(t)x* II d n f or all x* E V}. Since closed balls in 
X* are weak* closed, E, is closed. By the above (JEr E, = [a, /3]. 
Hence for some interval (y, y + 6) C (CW, /3), T([r, y + S])V is bounded. 
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Hence each of the sets 

qq WY + 4 Y + (T + l)QV 

= T([y + (Y + 1)6, y + (r + 2)S])V, T = 0, I,2 ,..., 

is bounded, and therefore T([a, b])V is. 1 

THEOREM 3.3. {T(t)}t 3 0 isjointly weuk* continuous on(O,co) x U. 

Proof. In Theorem 2.3 set E = X, Y = R, A = U. Then 
{ T(t)}t > 0 is separately continuous on (0, co) x A with respect to the 
product topology on A. Let x,* -* x* in U. Define A, = {x*, x,*, 
n = 1,2 ,...,I. Then A, is bounded, and by Lemma 3.2 ?“([a, b])A, is 
bounded for 0 < a < b < co. Since X is of type A, T([a, b])A, is 
a relatively sequentially compact subset of A. Let t, -+ t, > 0. Then 
by Theorem 2.3 T(tn)xn* -* T(t,)x*, which completes the proof. 1 

COROLLARY 3.4. Let {S(t)}t > 0 be a semigroup on a sequentially 
weakly closed subset W of a reJEexive Banach space X. If {S(t)}t 3 0 is 
separately weakly continuous on (0, co) x W then it is jointly weakly 
continuous on (0, m) X W. 

Remarks. 3.1. If X is separable Theorem 3.3 follows immediately 
from Corollary 2.2 and Lemma 3.2. 

3.2. For an application of joint weak continuity to a stability 
problem for a nonlinear partial integro-differential equation see 
[4, Theorem 9.21. 

.3.3. In [3] th e invariance principle for semigroups on reflexive 
separable Banach spaces with the weak topology was established under 
supposedly weaker continuity requirements than assumed by 
Slemrod [12]. Corollary 3.4 shows that these continuity requirements 
are basically the same. 

3.4. If X is not reflexive Corollary 3.4 may be false, even when 
W = X and X is separable. Indeed let {S(t)}t > 0 be the semigroup 
of linear maps on C(S), where S is the circumference of the unit 
circle, defined by (S(t)f)(s) = f (t + s), where the argument off is 
taken modulo 27r. [C(S) is the space of continuous real-valued func- 
tions on S with the supremum norm.] Recall that a sequence {f,) 
converges weakly to f in C(S) if and only if {f,} is bounded and 
fn + f pointwise on S [S, p. 2651. It follows that {S(t)}t > 0 is 
separately weakly continuous on (0, co) x C(S) (and, in addition, 
each S(t) is strongly continuous). For small enough E > 0 define f, by 
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fn(c) = f,(c + 2/n) = 0, fn(e + I/n) = 1, fn linear in the intervals 
[E, E + l/n], [E + l/n, E + 2/n] and f, zero elsewhere. Then f, - 0 
in C(S). But (S(E + l/n)f,)(O) = 1, while (S(~)0)(0) = 0. Thus 
S(E + l/n)fn. + S(E)O, which shows that {S(t)}t > 0 is not jointly 
weakly continuous on (0, cc) x C(S). 

THEOREM 3.4. Let E be a Tychonov space (i.e., TI and completely 
regular). Let {S(t)}t > 0 be a separately continuous semigroup defined 
on a subset F of E. Suppose that for any 0 < a < b < co and any 
sequentially compact subset FI of F, the set T([a, b]) F, is relatively 
sequentially compact in F (this will hold, in particular, sfF is sequentially 
compact). Then (S(t)}t > 0 is jointly continuous on (0, a) x F. 

Proof. Note that in the proof of Theorem 3, the fact that X is of 
type A and Lemma 3.2 are used only to show that T([a, b])A, is 
relatively sequentially compact. With this remark in mind the result 
follows immediately from the observation that E is homeomorphic 
to a subset of the closed unit ball in C(E) endowed with the weak* 
topology, the homeomorphism being given by the map x t, S! for 
x E E, where a(f) = f (x) for each f E C(E). [13, p. 1031. 1 

4. MEASURABILITY 

In this section we outline the information on almost open sets and 
weak and strong measurability that we require. For background 
material we refer the reader to the discussions in Kuratowski [lo] and 
Hille and Phillips [9]. 

Let E and F be topological spaces. Let B(E) denote the Bore1 sets 
in E, the o-algebra generated by the open sets in E. Define 

S(E) = (A C E : A = U d N for some open U c E and first category set N GE) 

It is easy to check [IO, p. 881 that S(E) is a u-algebra. Elements of S(E) 
are said to be almost open, or to have the Baire property. Clearly 
B(E) C S(E); note, however, that S(Rn) neither includes nor is 
included in L(Rn), the Lebesgue measurable sets in Wn [lo, p. 5251. 
Let R be a u-algebra of subsets of E. A function f : E -+ F is said to be 
R-measurable if and only if f -‘( V) E R for each open V c F. Functions 
f: E + F which are S(E)-measurable are said to be Baire continuous 
(or almost open or to have the Bake property). Bore1 measurable 
functions are obviously Baire continuous. 
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We need the following theorem, used implicitly by Chernoff and 
Marsden. 

THEOREM 4.1. Let F be second countable. Let f : E -+ F be Baire 
continuous. Then f is continuous when restricted to the complement of a 
first category set M. 

A proof of this theorem for E, F metric (the argument is unchanged 
for our case) is given by Kuratowski [lo, p. 4001. If E is a Baire space 
then the complement of M is clearly dense in E. 

Now consider the case when F = X is a Banach space. Let R be a 
o-algebra of subsets of E. A function f: E + X is said to be weakly 
R-measurable if and only if x* of is an R-measurable map from E to 
R for every x* E X*. f is separably-valued if and only if f(E) is 
separable. We now prove a version of Pettis’ theorem [9, p. 721. 

THEOREM 4.2. Let R be a o-algebra of subsets of E. Let f: E---f X. 
Then 

(i) If f is R-measurable then f is weakly R-measurable, 

(ii) If f is weakly R-measurable and separably-valued then f is 
R-measurable. 

Proof. Part (i) is trivial since (x* 0 f)-‘(U) = f -l(x*-l( U)) for any 
x* E X* and open U C [w. To prove (ii) we may assume that X is 
separable. Then X possesses a countable determining set {xn*} C X*; 
i.e., /I x ]I = supn 1 x,*(x)1 for each x E X [9, p. 341. Let x0 E X and 
define B,(x,) = {x E X: Ij x - x0 11 < r]. Then 

B,(x,) = {x E X : 1 x,*(x - x0)] < r n = 1, 2,...}. 

Therefore 

f-‘w%)) = fi cxn* of)-yt E R : [ t - x,*(x(J .< Y], 

?L=l 

which belongs to R. As X is separable it follows that f -l( V) E R for 
any open V _C X. 1 

Remarks. 4.1. Suppose R = S(E). Then (ii) may be proved 
using the method in Hille and Phillips [9, Theorem 3.5.3, p. 721 and 
the result of Kuratowski [IO, p. 4011, with the stronger conclusion 
that f is the uniform limit of a sequence of countably-valued functions. 
Note, however, that if f is Baire continuous there need not exist a 
first category set MC E such that f (VM) is separable. For example, 
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let X be of uncountable dimension and let f be the identity map, 
which is Baire continuous. Then %?iVI would be nowhere dense and 
hence X = M u C&M would be a countable union of nowhere dense 
sets, which is impossible. Thus with our definition of R-measurability 
Hille and Phillips’ Theorem 3.5.3 does not have a direct analogue. 

4.2. One alternative way of defining weak R-measurability of 
f : E --f X is to require thatf -‘( U) E R for any weakly open subset of X. 
This kind of measurability is implied by R-measurability and implies 
weak R-measurability, and thus in a separable space all three concepts 
are equivalent. 

5. STRONG AND WEAK CONTINUITY 

The following theorem is due essentially to Chernoff and Marsden, 
who assume that X is a separable metric space. 

THEOREM 5.1. Let {T(t)}t > 0 be a semigroup on a second countable 
topological space X. Suppose that for each t > 0 the map T(t): X---t X 
is sequentially continuous, and that for each x E X the map t I+ T(t)x 
is Baire continuous. Then the map t tt T(t)x is continuous on (0, a). 

Proof. By Theorem 4.1 f is continuous when restricted to a dense 
G, subset G of (0, co). Let t, > 0 and t, -+ t, . We can suppose that 
t, > &to for each n. Define S, = {s E (0, co): s + t, - *to E G}, which 
is a dense G, subset of (0, co). Then S = (Jl,, S, is a dense subset 
of (0, 00). Choose s E S with 0 < s < it,, . Then for x E X, T(t,)x = 
T( it,, - s) T(s + t, - &,)x % T(t,)x. m 

The next theorem generalizes to nonlinear semigroups the Corollary 
to Theorem 10.2.3 in Hille and Phillips [9, p. 3061. 

THEOREM 5.2. Let {T(t)}t 3 0 be a semigroup on a subset W of a 
Banach space X. Suppose that for each t > 0 the map T(t): W --+ W 
is strongly continuous, and that for each x E W the map t ti T(t)x is 
weakly continuous from the right on (0, co). Then the map (t, x) t+ T(t)x 
is sequentially continuous on (0, CO) x W with respect to the strong 
topology. 

Proof. Let x E W. Define XI to be the closed linear subspace of X 
spanned by {T(q)x: q > 0 rational}. Then X, is separable and 
T(t)x E XI for each t > 0. Let E = (0, GO) and define 8: E --+ XI 
by e(t) = T(t)x. S ince 0 is weakly continuous from the right it is 
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weakly B(E)-measurable, and hence weakly S(E)-measurable. By 
Theorem 4.2 8 is S(E)-measurable, and by Theorem 5.1 9 is strongly 
continuous on (0, co). The result now follows from Corollary 2.2. 1 

Remarks. 5.1. The map t I--+ T(t)x will, of course, be weakly 
continuous from the right on (0, a) if it is weakly continuous from the 
right at t = 0. 

5.2. The proof shows that the map t t, T(t)x will be strongly 
continuous on (0, co) under the weaker continuity requirements that 
t I-+ T(t)x is weakly continuous from the right on (0, co) and that for 
each t > 0, T(t) is strongly continuous when restricted to orbits 
of the semigroup. 

5.3. A similar proof to that of the theorem, based on Corollary 3.4, 
shows that for a semigroup {S(t)}t > 0 defined on a sequentially 
weakly closed subset W of a reflexive Banach space X, weak continuity 
from the right of the maps t t+ S(t)x, t E (0, co), together with 
sequential weak continuity of S(t) for each t >, 0, implies joint 
sequential weak continuity of the map (t, x) H S(t)x on (0, co) x IV. 
Weak continuity of t tt S(t)x on (0, co) follows under the weaker 
assumptions (a) t e S(t)x is weakly continuous from the right on 
(0, co) and (b) for each t 3 0 T(t)x, - T(t)x whenever x, --f x 
strongly. 

5.4. In applications sequential weak continuity of t tt T(t)x on 
(0, co) can sometimes be established using a result of Lions and 
Magenes [II, p. 2971. 

We now consider under what conditions t t+ T(t)x is strongly 
continuous from the right at t = 0. First note that this will happen 
under the conditions of Theorem 5.2 if W = (J,,,, T(7)W; for in this 
case if t, -+ 0+ and x = T(7)y E W then T(t,)x = T(tn + 7)x -+ 
TV = x. 

DEFINITION 5.1. A semigroup {T(t)}t 3 0 on a subset W of a 
Banach space X is nonexpansiwe at t = 0 if t, + O+ implies 

lim SUP II W,)x - WJY II < /I 2 - Y II 
n-m 

for all x, y E W. 

Clearly a semigroup of nonexpansions is nonexpansive at t = 0. The 
following theorem, together with Theorem 5.2, therefore generalizes 
a result of Crandall and Pazy [7] for a semigroup of nonexpansions 
defined on a closed convex subset W of a uniformly convex space. We 
impose no conditions on W and give a simpler proof. 
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THEOREM 5.3. Let {T(t))t > 0 be a semigroup on a subset W of a 
uniformly convex Banach space X such that 

(4 W)lt 3 0 is nonexpansive at t = 0, 

(b) for each x E W the map t M T(t)x is weakly continuous from 
the right at t = 0, and 

(c) for each t 3 0 T(t): W -+ W is strongly continuous. Then 
t N T(t)x is strongly continuous from the right at t = 0. 

Proof. Let x E W and t, + O+. Then T(l)x E W. Therefore 

limsuplIT(t,)x- T(t,)T(l)xii <11x-- T(l)xlj. (5.1) n-m 

But by @I, 

jj x - T( 1) x !j < lim inf jJ T(t,) x - T(t,) T(1) x 11. (5.2) 
n-m 

Combining (5.1) and (5.2) we have that 11 T(t,)x - T(tn + 1)x I/ -+ 
II x - W>x II. BY uniform convexity T(t,Jx - T(tn + 1)x+x - T( 1)x 
strongly. But by Theorem 5.2 and Remark 5.1 T(t, + 1)x --f T(l)x 
strongly. Hence T(tJx -+ x strongly. 1 

6. ORBIT CONTINUITY OF SEMICONTINUOUS FUNCTIONS 

Let {T(t)}t > 0 be a semigroup on a topological space S. Associated 
with S we consider a family Y of at most countably many functions 
V: S + R each of which is sequentially lowel, semicontinuous, i.e., 
xn 9 x implies V(x) ,< lim inf,,, V(x,)-this property ensures that 
if V is bounded below on a sequentially compact subset E of S then a 
minimizer exists for V in E. An interesting special case is when Y 
consists of a single function V = V(x) which measures the energy 
of a state x of a physical system modelled by the semigroup { T(t)}t 3 0, 
and in this case a minimizer of V on a subset E of S may represent a 
“stable” equilibrium state. The existence of such equilibrium states 
for problems in one and two-dimensional nonlinear elasticity has been 
established in this way by Antman [ 1,2], the spaces used being various 
reflexive Banach spaces endowed with the weak topology. In this 
section we give conditions under which each V E Y is continuous 
along orbits of the semigroup, so that “shocks” do not occur. As an 
application we give a simple proof of Theorem 5.2. 

Our results are based on the following lemma. 
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LEMMA 6.1. Let f be a real-valued function on (0, co) which is 
lower semicontinuous from the right. Then f is continuous at all points of a 
dense G, subset G, of (0, a). 

Proof. Let 0 < a < b < co and E > 0. For each positive 
integer n the set E, = {t E [a, b]:f(t) < n> is closed from the right, 
and [a, b] = Uz=‘=, E, . Hence some E, contains an open interval (a, ,f3). 
Let supIE(a,O) f (t) = k. There exists t, E (cr, p) with f (to) > k - E. 
Then there exists 6 > 0 with t, + 6 < p such that s E (t, , t, + 8) 
implies f (to) < f(s) + E and thus 1 f(s) -f (to)1 < E. Thus 
sr , s2 E (to , t, + 6) implies 1 f (sr) - f (s,)i < 2~. Applying the same 
argument to every [a, b] C (0, cc) leads, as in the proof of Theorem 2.1, 
to the required result. 1 

Remark 6.1. This proof is due to Dr. A. M. Davie and is repro- 
duced here with his kind permission. Another proof follows simply 
from Theorem 4.1, and it is interesting to compare the two results. 

Now let x E S, and for each V E V define 0,: (0, a) -+ R by 
O,(t) = V(T(t)x). 

LEMMA 6.2. If the map t M T(t)x is continuous from the right on 
(0, a) then there is a dense G, subset G, of (0, GO) at the points of which 
each &, is continuous. 

Proof. Each BV is lower semicontinuous from the right on (0, co). 
The result follows from Lemma 6.1 and the fact that V is at most 
countable. i 

We now reprove Theorem 5.2. 

Second proof of Theorem 5.2. With the notation of the original 
proof let 5’ = X, endowed with the weak topology. Let (yi} be dense 
in X, and let Y = (V,}, where Vi is defined by V,(x) = jl x - yi /I 
and is sequentially weakly lower semicontinuous. Note that if z E X, , 
{an} C X, and lim,,, l/i(xn) = V,(z) for all i, then a, 2 z strongly. 
Let G, be as in Lemma 6.2 and let t, -+ t, E G, . Then letting 
a, = T(t,)x we see that T(t,n)x 4 T(t,)x strongly. The result 
follows from the strong continuity of T(t) for t > 0. 1 

Reverting to the hypotheses made at the beginning of this section, 
we make the following definition: 

DEFINITION 6.1. The semigroup {T(t)}t > 0 is said to be 
V-continuous if the conditions x, 5 x, V(x,) -+ V(x) for all V E Y’-, 
imply that V( T(t)x,) -+ V( T(t)x) for all V E V and t 3 0. 
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The proof of th e o f 11 owing theorem is immediate from Lemma 6.2 
and is thus omitted. 

THEOREM 6.3. Let {T(t))t > 0 be Y-continuous. Let x E X. If the 
map t t-s- T(t)x is continuous (resp. continuous from the right) on (0, co) 
then for each V E Y the map t b+ V( T(t) ) x is continuous (resp. continuous 
from the right) on (0, 00). 

Remarks 6.2. By using the methods of Section 5 it can be shown 
that Theorem 6.3 holds when the semicontinuity conditions on V are 
replaced by the condition that the map t FF V(T(t)x) is Baire 
continuous for each V E V. Under this hypothesis, and if S is a subset 
of a Banach space endowed with the weak topology, the maps 
t H V( T(t)x) will, in fact, be continuous on (0, co) if the map 
t t+ T(t)x is continuous from the right on (0, CD). 

6.3. Let S be a subset of a Banach space X endowed with the weak 
topology, and suppose that Y consists of a single strongly continuous 
function V. Then it may happen in applications that x, S, x, 
V(xJ -+ V(x), imply that x, % x strongly. (e.g., let X be uniformly 
convex and V(e) = I/ * II.) I n such cases V-continuity is implied by 
weak continuity of t t-+ T(t)x on (0, co) and strong continuity of 
T(t), t > 0. 

ACKNOWLEDGMENT 

This paper was written while the author held a Science Research Council research 
fellowship at Heriot-Watt University. 

REFERENCES 

1. S. S. ANTMAN, Existence and nonuniqueness of axisymmetric equilibrium states 
of nonlinearly elastic shells, Arch. Rat. Mech. Anal. 40 (1971). 329-372. 

2. S. S. ANTMAN, “The Theory of Rods,” Handbuch der Physik, Vol. Via/2, ed., 
C. .Truesdell, Springer, Berlin, 1972. 

3. J. M. BALL, Stability theory for an extensible beam, J. Di@rmtial Equations 14 
(1973), 399-418. 

4. J. M. BALL, Saddle point analysis for an ordinary differential equation in a 
Banach space and an application to dynamic buckling of a beam, Proc. Symp. 
Nonlinear Elasticity, ed., R. W. Dickey, Academic Press, 1973. 

5. J. M. BALL, Weak continuity of mappings and semigroups, to appear. 
6. P. CHERNOFF AND J. MARSDEN, On continuity and smoothness of group actions, 

Bull. Amer. Math. Sot. 76 (1970). 1044-1049. 
7. M. G. CRANDALL AND A. PAZY, Semi-groups of nonlinear contractions and 

dissipative sets, /. Funct. Anal. 3 (1969), 376-418. 



CONTINUITY PROPERTIES OF NONLINEAR SEMIGROUPS 103 

8. N. DUNFORD AND J. T. SCHWARTZ, “Linear Operators,” Part I (1958), Interscience, 
New York. 

9. E. HILLE AND R. S. PHILLIPS, Functional analysis and semi-groups, A.M.S. 
Colloq. Publ. Vol. XXX1 (1957). 

10. K. KURATOWSKI, “Topology,” Vol. 1, Academic Press, New York, 1966. 
11. J. L. LIONS AND E. MAGENES, “Problemes aux limites non homogenes et applica- 

tions,” Vol. I, Dunod, Paris, 1968. 
12. M. SLEMROD, Asymptotic behaviour of a class of abstract dynamical systems, 

J. Differential Equations 7 (1970), 584-600. 
13. A. WILANSKY, “Topology for Analysis,” Ginn, Waltham, 1970. 


