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Synopsis
A global inverse function theorem is established for mappings u: 1 —R", ! cR" bounded and open,
belonging to the Sobolev space W'?({1), p>n. The theorem is applied to the pure displacement
boundary value problem of nonlinear elastostatics, the conclusion being that there is no interpenetra-
tion of matter for the energy-minimizing displacement field.

1. Introduction

Consider a material body whose particles are labelled by the positions they
occupy in a reference configuration <R’ () bounded and open. A basic
requirement of continuum mechanics is that interpenetration of matter does not
occur, i.e. that in any deformed configuration the mapping u giving the position
u(x) of a particle in terms of its position x in the reference configuration be
invertible. A complete analysis of invertibility would necessitate a study of the
mechanics of self-contact, and we do not attempt this here. Rather, we examine
situations in which interpenetration of matter in the interior of a body can be
ruled out using information about the deformation of its boundary. We concen-
trate attention on nonlinear elasticity, although our methods have applications to
other theories of mechanics.

In nonlinear elastostatics, experience with one-dimensional problems (cf. Antman
[2], Antman and Brezis [3], Ball [6]) suggests that to ensure the invertibility of
equilibrium solutions in three dimensions one should assume that the stored-
energy function W(x, Vu(x)) satisfies the condition

W(x,F)—>x as detF—0+. (1.1)

This condition expresses the fact that an infinite amount of energy is required to
compress a finite volume of the material into zero volume. It follows from (1.1)
that any equilibrium solution u of finite energy satisfies

det Vu(x)>0 (1.2)

almost everywhere in ). If u were C' then (1.2) would imply local invertibility of
u at x, by the inverse function theorem. However, it is not known under what
conditions u is C*, and in fact for nonhomogeneous materials 1 may not be this
smooth. The existence theorems of Ball [4,5] and Ball et al. [8] assert only that
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for certain materials and boundary-value problems a function u minimizing the
total energy exists in the Sobolev space W'*?((}). In Theorems 3 and 4 of this
paper it is shown under certain hypotheses that for a pure displacement
boundary-value problem any such minimizer is a homeomorphism of Q. The
hypotheses do not exclude cases in which self-contact of the boundary occurs.
These results are an immediate consequence of a new inverse function theorem in
R" that is the main result of this paper.

Our inverse function theorem, Theorem 2, asserts roughly the following: if
u: §—R" is a function in W'*(Q), p>n, coinciding on 8} with a homeomorph-
ism u, of (), if (1.2) holds almost everywhere, and if for some q>n

I [Vu(x)|* det Vu(x) dx <o, (1.3)
£y

then u is a homeomorphism of Q onto uy(€2). (In (1.3) Vu~'(x) denotes the
inverse matrix of Vu(x).) Examples are given showing that if (1.3) is omitted u
need not be a homeomorphism; however, in this case some information on
invertibility is given in Theorem 1. Without the hypothesis that u coincide on 3Q
with a homeomorphism, u need not even be locally invertible. An instructive
example is the mapping u of the unit disc D ={|x|<1} in R? given in polar

coordinates (r, 8) by
1
u:(r,0)— % r, 26).

It is easily checked that u € W"*(D), that detVu(x)=1 if x#0, and that (1.3)
holds. But u is not locally invertible at the origin. This example shows that
Theorem 2 is different in character from an interesting result of Meisters and
Olech [15], who proved in particular that if u:  —R" is continuous and locally
one-to-one in 0\ Z, where Z < () is a finite set, if u is one-to-one on 3}, and if Q)
is connected, then u is a homeomorphism.

For other related literature, though not of immediate relevance here, see
Berger [9] (local versus global invertibility), Browder [11] (orientation-preserving
mappings) and Clarke [12] (a local inverse function theorem for Lipschitz
functions).

2. Global invertibility

Let ECR" be a nonempty bounded open set with boundary dE. We assume
familiarity with the Sobolev spaces W**(E), 1 <a = (cf. Adams [1]). Elements
of W'*(E) may be (equivalence classes of) functions or vectors, depending on the
context. We say that E is strongly Lipschitz if for each x€dE there exists a
neighbourhood U, of x and a Cartesian coordinate system £ =(£,,...,&,) in U,
such that ENU, ={¢eU,: & >f(&,,...,&,_,)} for some Lipschitz continuous
function f: R"~* — R, and that E satisfies the cone condition if there exists a finite
cone C such that each point x € E is the vertex of a finite cone C, contained in E
and congruent to C. If a>n and E is strongly Lipschitz then W'*(E) is
continuously imbedded in the space C**(E) of Holder continuous functions with
exponent p =1—n/a (Morrey [16, p. 83]); if u€ W"*(E) we shall always assume
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that the Holder continuous representative of u has been chosen. All derivatives in
this paper are distributional derivatives. B,(x) denotes the open ball in R" with
centre x and radius r.

If u: E->R" is continuous then the Brouwer degree d(u, E,p) of u with
respect to E at a point p eR"\u(9E) is a well-defined integer depending only on
the boundary values of u. (For a discussion of degree theory see Schwartz [19].) If
V is a connected component of R"\u(3dE) then d(u, E, p) is independent of p€ V,
the common value being denoted by d(u, E, V). We will use the formula

d(u, E, V)= L p(u(x)) det Vu(x) dx, (2.1)

where p is any nonnegative real-valued continuous function with compact support
in V and satisfying [z~ p(v) dv=1. Formula (2.1) is valid (Nirenberg [17, Th.
1.5.5)) if u is continuously differentiable in E. If E is strongly Lipschitz and
ue W'(E), a>n, then there exists a sequence of smooth functions u, converg-
ing to u in W"“*(E), and hence in C**(E). The right-hand side of (2.1) is a
continuous functional on W'*(E). By passing to the limit in (2.1) using the
continuity properties of the degree we deduce that (2.1) holds for u. We remark
that for functions in W"(E) the fact that the degree depends only on u |,z
follows from (2.1) and the observation that for smooth p the Euler-Lagrange
equations for g p(u(x)) det Vu(x) dx are identically satisfied.

THEOREM 1. Let (A=R" be a nonempty bounded connected strongly Lipschitz
open set. Let u,: 4 — R" be continuous in Q) and one-to-one in Q. Let p>n and let
ue W(Q) take values in R" and satisfy u |,o= ug |y, det Vu(x)>0 almost
everywhere in (). Then

() u(@) = ug(), i i

(ii) u maps measurable sets in ) to measurable sets in uo(Q)), and the change of
variables formula

j f(u(x)) det Vu(x) dx = f(v) dv (2.2)

(A)

holds for any measurable A =Q and any measurable function f: R" >R, provided
only that one of the integrals in (2.2) exists.
(iii) u is one-to-one almost everywhere; i.e. the set

S ={veuy(): u'(v) contains more than one element}

has measure zero,
(iv) if v e uy(Q) then u='(v) is a continuum contained in €, while if v € duy(Q)
then each connected component of u™"(v) intersects ().

The following examples show that nontrivial behaviour of the type described in
(iv) can occur.
ExampLe 1. Let n=2, and consider the cylinder
'={xeR":0=R <1, |x"|<2},
where x =(x",...,x"), R=((x")?+-- -+ (x" )% Let u = (u', ..., u") be defined
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by

u'(x)=R™x', i=1,...,n—-1,

u"(x)=RPfx" for |x"|=1,

=[2(]x"|-1)+(2~|x")R®]sgnx" for 1=|x"|=2,
where 0=a <1 and g>0. o
It is easily verified that u(I') =T, u |, = identity, that for xeT
|[Vu'(x)|=const. R™=, i=1,...,n—1,
|Vu"(x)|=const. R®,
and that
detVu(x)=(1-a)R®#™""1) for |x"|<1,
=(1-a)2-R®)R™™D for 1<|x"|<2.
Choosing first « =0, B=1, we deduce that ue W'=(I'), det Vu(x)>0 almost
everywhere, but that u~'(0)={\e,: |\|=1}, where ¢,  (0,...,0, 1), so that u
is not a homeomorphism. In this example det Vu(x) is not essentially bounded
away from zero. Secondly, let n>2 and let n<p<n(n—1); then choosing
B=a(n—1) and
1 1 n—1
T T s—
n—-1 p p

we obtain that u € W*?(I'), det Vu(x)>1—a almost everywhere, but that u is not
a homeomorphism. Note that if p>n(n—1), ve W"?(T") and det Vo(x)>k >0
almost everywhere in I', then

L [Vo~*(x)|* det Vo(x) dx <«
for some q>n. In the two cases described above
L [Vu=(x)|" det Vu(x) dx = .

ExampLE 2. Let n=2, let S"'={xeR": |x|=1}, let K be an arbitrary closed
subset of "7, and let f be a C” real-valued function on ™! satisfying 1=f<3,
f~(1)=K (for the construction of f one can use, for example, the argument in
Golubitsky and Guillemin [13, p. 17]). Let Q={xeR": f(x/|x|)<|x|<2}, and
define w:Q—>R" by w(x)=(1—|x|")x. Then Q@ has C~ boundary, we
C=(Q), det Vw>0 in Q, w is one-to-one in Q, and w=(0)=K.

ExampLE 3. Let n =2. We combine Examples 1 and 2. Let I, Q, K, w, f, be as
in these examples, and let u be as constructed in Example 1 with a =0, 8= 1. Let
I'" =T'N{x" >0}. Suppose further that f(a,)=1forr=1,2,..., where the a, e K
are distinct. Let U, be a family of disjoint open subsets of Q, ¢,:T*— U, a
corresponding family of diffeomorphisms mapping the base I'N{x" =0} of I'* into
the inner surface of 9 and such that ¢,(0)= a, |V¢,(x)|=const. ¢, [Vo,'(x)|=
const. ¢; ', where ¢, >0 are suitable constants. Such U, ¢, are easily constructed.
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Define v(x)=(¢, cu°¢;")(x) if xe U, v(x)=x if xe O\ U=, U, z=wov. Then
ze W'(Q), det Vz(x) >0 almost everywhere in Q, z |,o =W |»q, and z~(0) is the
union of w™'(0) and the countable set of disjoint continua ¢,(u"(0)).

Proof of Theorem 1. We first prove (i). The invariance of domain theorem
implies that u, is a homeomorphism of { onto the open set uo(Q2). Therefore
uo(Q) = ug(), dug(Q) = uy(3Q). Furthermore

d(ug, Q, uy(Q)) = +1, }
d(ug, 0, p)=0 if peR™\uy).

(This is a consequence of the multiplicative property of the degree; a detailed
discussion is given in Rado and Reichelderfer [18, Section IV 4.6].) Since
U |aa = Ug |sn, det Vu(x) >0 almost everywhere, it follows from (2.1) that

d(u! Q, uo(ﬂ)) = ls }

. _ 2.3)
d(u, Q,p)=0 if peR"\uyQ)

Therefore if p € ug(2), u'(p) is nonempty. Hence u(Q)) > uy(f).

Let p¢ uy(€)) and suppose for contradiction that u(x) = p for some x € Q. Apply
(2.1) with V' the component of R™\ uy({}) containing p and with p strictly positive
in a neighbourhood U of p. The continuity of u implies that a small ball around x
is mapped into U. Since det Vu(x)>0 almost everywhere the right-hand side of
(2.1) is positive. This contradiction completes the proof of (i).

Since ) is strongly Lipschitz, we may extend u to a function @e W'?(D),
where D is a bounded open set in R" containing { ([16, Th. 3.4.3]). For A <R",
w: A —R", veR", we write N(w | A, v) = cardinality {w(v) N A}. Let fR">R
be measurable, and let A be a measurable subset of D. Since p > n, it maps sets of
measure zero to sets of measure zero (Bony [10], Marcus and Mizel [14]), and
hence maps measurable sets to measurable sets. Furthermore, by a result of
Marcus and Mizel [14] (see also [18], Vodop’yanov and Goldshtein [20],
Vodop’yanov et al. [21])

I f(v)N(@ | A, v)dv= I f(ia(x)) det Vii(x) dx (2.4)
aA) A

whenever one of the two integrals exists. In particular, taking f=1, and noting
that @(3Q)) = duy(()), we deduce that

Nu|Q,v)dv= .[‘ det Vu(x) dx. (2.5)
ua(02) “Nual)
By (2.1), (2.3) we have that
1= L p(u(x)) det Vu(x) dx (2.6)

for any continuous function p =0 with supp p =< uy(Q) and fg- p(v) dv=1. Let
0, € C[R") satisfy 6,(p) =1 if p € uy(Q) and dist (p, agn(ﬂ)) = 1/r, supp 6, < < uy(Q)
and 0=6,(p)=1 for all peR". Applying (2.6) to p,= 6,/f 6, dv, and passing to the
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limit r — o using dominated convergence, we obtain

m(uy(Q)) = [ det Vu(x) dx. 2.7

“NuglD))
Combining (2.5), (2;?) and using the fact that N(u |Q, v)=1 for ve uy(Q2), we
deduce that N(u|Q,v)=1 almost everywhere in uy((). Since m(duy(Q))=
m(ii(3€2)) = m(aQ2) = 0, this proves (iii), while (ii) follows from (2.4).

It remains to prove (iv). Let v € uy(Q2) and suppose that the closed set u~'(v) is
not connected. Then there exist nonempty subsets M,, M,, E,, E, of Q) with
E, E, open, such that M;NM, and E,NE, are empty, u '(v)=M,UM,,
M, < E, and M, < E,. By covering M,, M, by a suitable finite collection of cubes
we may suppose that E,, E, are strongly Lipschitz. Since v¢ u(0E,) U u(3E,), and
since det Vu(x)>0 almost everywhere, the degrees d(u, E, p), i =1, 2, given by
(2.1) are defined and positive for p in a neighbourhood U of v. Hence Uc
u(E,) Nu(E,), contradicting (iii). A similar argument shows that if v e Auy(Q) then
any connected component of u (v) intersects 3. W

The main result gives conditions under which a function u satisfying the
hypotheses of Theorem 1 is a homeomorphism.

THEOREM 2. Let the hypotheses of Theorem 1 hold, let uy(Q) satisfy the cone
condition, and suppose that for some q > n,

I [Vu='(x)|" det Vu(x) dx <. (2.8)
(93
Then u is a homeomorphism of Q onto uy(Q), and the inverse function x(u) belongs
to W' (uy(0)). The matrix of weak derivatives of x(-) is given by

Vx(v) =Vu~'(x(v)) almost everywhere in uy((Q).

If, further, uy(Q) is strongly Lipschitz, then u is a homeomorphism of Q0 onto
uo((D)).

Proof. The idea of the proof is to construct a function x(-) € W4 (u,(€2)) as the
limit of a sequence of mollified functions. Roughly speaking, in the first instance
x(v) represents a weighted average of the set u'(v). Theorem 1 and the
continuity properties of u(-) and x(-) then imply that x(-) is the inverse of u, so
that u~'(v) is a singleton for each v € uy(().

To motivate the construction of x(-), suppose that x() is indeed the inverse of
u. Let € >0 be given and let p, =0 be a smooth function with supp p, =< B, (0),
Jrepe(v) dv=1. Let

xE(U)=[ p.(v—u)x(u) du.
olf2)
Changing variables we have
%)= [ o.0-u(y)y det Vu(y) dy. 2.9)

Proceeding rigorously, we now define x,: R" —R" by (2.9). Our assumptions
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ensure that x, is smooth. We have that

a’i(iv) = L Pei(v—u(y))y* det Vu(y) dy

- L 667" (0—u(y)Vu(y)Py* det Vuly) dy

= - L ;i; (v—u(y))y* adj Vu(y)? dy,

where adj Vu denotes the transpose of the matrix of cofactors of Vu, and where

def 9p,
Pei(v) = 30’ (v).

_Let D be an open subset of R" with piecewise smooth boundary and satisfying
D < uy(Q)). Let u, be a sequence of smooth functions converging to u in W?((Q)
and thus uniformly in (). If ¢ is small enough there exists 8 = 8(€)>0, ro=ry(e),
such that if r=r, and dist (y, 3Q) < & then

p.(v—u(y)=0 forall veD.

Since
d . By _
3y® (adj Vu(y)f) =0,
it follows that

;:; (v—u(y))y* adj Vu,(y)? = p, (v —u,(y)) adj Vi, (y)¢

- a% [o. (0= w,(y))* adj Vi, (y)8],

and so

- L :::; (0= (y)y* adj Vu(y)? dy = _L P (v = () adj Vi (y)r dy

for all ve D and r=r,. Passing to the limit we obtain

a—?;(:v) = L p.(v—u(y)) adj Vu(y); dy, veD. (2.10)

Let K =sup |y|. Then

yefl

ng(v)l‘éKL p.(v—u(y)) det Vu(y) dy
=Kd(u,Q,v)=K (2.11)
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for all veD, provided ¢ is sufficiently small. Also, from (2.9) and Holder’s

inequality

axg(v)
v

= (L pe(v—u(y)) det Vu(y) dy)”q

1/q

X (L p. (v —u(y)) |adj Vu(y):/*(det Vu(y))* dv)

= (L . (v—u(y)) |adj Vu(y)s|*(det Vu(y))-9 dy)lm,

for all ve D and & sufficiently small. Thus

l

9x¢(v)
av’

‘do= L (L 0. (@ - u(y)) da) ladj Vu(y)7|* (det Vu(y))'=@ dy

= L ladj Vu(y){*(det Vu(y))'~* dy. (2.12)

Thus {x.} is bounded in W"4(D) for any D if & is sufficiently small, and therefore
there exists a diagonal subsequence, again denoted {x,}, converging weakly in
every W'4(D) to a function x(-). On account of the imbedding W"4(D)< C(D)
the convergence is uniform on compact subsets of u,({2). Since the bounds (2.11),
(2.12) are independent of D, it follows that x(-)e W% (u,(2)).

We next prove that x(-) is a right inverse of w, that is

u(x(v))=v forall veuyQ). (2.13)

First, let v € uo(Q)\ S, where S is defined in Theorem 1. By Theorem 1 there exists
x € with u(x)=v, and x is unique. From (2.6), (2.9)

x.(v)—x= L e (u(x)— u(y))(y — x) det Vu(y) dy, (2.14)

for e = ¢,, say. Given any 1 >0, the uniqueness of x and the continuity of u imply
the existence of §>0 such that |y —x|<m whenever |u(x)—u(y)|=é. So if
€ =min (§, g,),

% (v)—x|=n d(u, Q,v)=n.

Hence x(v)=x and u(x(v))=v. Since x(-) is continuous in uy(Q2) and m(S)=0,
(2.13) holds.

We now prove that u: Q— uy(Q). Let uy(Q) satisfy the cone condition with
respect to the finite cone C={x =(x', x")eR": 0<|x’| < ux", |x| <o}, where u, o
are positive constants. Let K be an integer greater than m(B, (0))/m(C). Given
7 >0 there exists § = 8(r) >0 such that of any K cones congruent to vC and with
vertices in a ball of radius §, two must intersect. Suppose for contradiction that
x €} with u(x) =p €duy((2). By Theorem 1 the connected component of u~*(p)
containing x intersects d(), and in particular u~'(p) contains K distinct points
Yi,--.5 V& Let € =r‘nj}1 |y —y;|>0. By the estimate of Morrey [16, p. 83], there

exists a constant k>0 such that for any finite cone C contained in u,((}) and
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similar to C,
[x(v) = x(W)| =k |[o—w['" ™ |Ix()lwraay forall v,wel.  (2.15)
Choose 7>0 small enough so that
e >4k(ro) "™ "x(°)"W“(uo(ﬂ)) . (2.16)

Since u is continuous and m(u~*(S))=0, there exist points z, € Q\u"*(S) such
that |z —y;|<e/d, |lu(z)—pl<d(r), i=1,...,K. Since u,(Q) satisfies the cone
condition there exist cones C, < u,({2) with vertices u(z;) and congruent to C. By
the above, two of the cones vC; must intersect, so that there exists v € 7C, N7C,,
say, i#]. Since x(-) is continuous at u(z), u(z;) we deduce from (2.15), (2.16),
that

|21 = z| = |z — x(v)| + |z, — x(v)]

= kflu(z) = o™ +u(z) — o] [ (lwrawoo»

= 2K(10)' " Jx (Nt <5 -
But
|z —z| =y “Yj"')’a_zi'_')’i -z

which is the desired contradiction. Hence u: Q—u(Q). Let yeQ and y,—y
with u(y,) ¢ S. By (2.13),

x(u(y,) =y,
Passing to the limit using the continuity of x(-) and u(-) we obtain
x(u(y))=y forall yeQ. (2.17)

Thus u is a homeomorphism of  onto uy((}).

If uo(Q) is strongly Lipschitz then x(-) belongs to C* 1"“"‘”(u{,(!'l)) and it follows
easily from (2.13), (2.17) that u is a homeomorphism of ) onto uy({2).

It remains to identify the generalized derivatives of x(-). Let G be open,
G < uy(), and m(8G)=0. Integrating (2.10) over G and passing to the limit as
€ — 0, we obtain

I ax" (.U)d _[ Vu'(x)f det Vu(x) dx,
c 0v “HG)

which thus holds for all compact G < u,({2) by approximation. By (2.2) we deduce
that

I : (u(x)) det Vu(x) dx = L Vu ' (x)f det Vu(x) dx
wiG) v “4G)

for all compact G, which implies that Vx(v) =Vu '(x(v)) almost everywhere in
uo((2).



324 J. M. Ball
Remarks

1. Example 1 shows that in the absence of (2.8) u need not be a
homeomorphism.

2. If the assumption that u,({2) satisfy the cone condition is omitted, the proof
still establishes the existence of a continuous right inverse x: uy(Q2) — Q of u, that
x() € W (uy(02)), and that x(ue(Q2)) is an open subset of Q of full measure. The
author does not know whether in this general case u is a homeomorphism. The
point at issue is whether u(x) can belong to duy(Q) for some x €. Any such x
must be the limit of a sequence x, such that u(x,)e duy(2) and u(x,) #u(x,) if
r# s. If not there would exist a ball B,(x) < Q such that u(B,(x)) N (due(Q)\u(x)) is
empty. Let y,€B,(x), i=1,2,3, be distinct points such that u(y,)=u(x), i=
1,2,3, and choose z;¢ u~'(S) sufficiently close to y,. Then for each i the largest
open ball B, =B, (u(z)) contained in uy(2) has u(x) on its boundary, since
otherwise (2.15) would imply that some point in B,(x) is mapped to p €duy({2),
p# u(x). Two of the B; must intersect, so that applying again (2.15), as in the
proof of Theorem 2, we obtain a contradiction. It is hard to believe that such a
complicated counterexample could exist for n = 2.

3. It would be interesting to decide whether Theorems 1 and 2 are valid when
P=q=n>1, in the sense that a representative of u exists satisfying the conclu-
sions of the theorems. For information that may be relevant here, see [20] and
[16, Th. 4.3.4]. If p<n, g<n then unless continuity of u is assumed the theorem
can fail drastically in that u(€2)\u(2) may contain a ball, even if det Vu(x)=1
almost everywhere in (); for examples from nonlinear elasticity see [7]. If n=1,
then the theorem holds with p=q=1. In this case the existence of the inverse
x(u) is obvious.

4. The reader may be surprised that in the proof of Theorem 2 we did not
smooth u, rather than its putative inverse, in such a way that the smoothed
functions u, satisfy detVu,(x)>0 and are thus locally invertible. There are
actually serious obstacles to such a procedure. Firstly, the set of n X n matrices F
such that det F=m, m €R, is not convex. If p, is a mollifier then

Vi, * u)(x) =L 0. (x—y)Vuly) dy

is a convex combination of values of Vu, so that even if detVu(x)=m>0
everywhere detV(p, * u) may take negative values. Secondly, consider the

example
1
u: (r,0)— &r, 26)
) 2

discussed in the introduction. We claim that even though det Vu(x)=1 almost
everywhere there is no sequence {u,} < C'(D) such that det Vu, >0 and u, — u
uniformly on D. Suppose such a sequence existed. Fix r large enough so that
u,(By(0)) = By(0), u,'(0)< By(0), u ' (By0) =D and (tu,+(1—t)u)@D)N
By(0) = for all te[0, 1]. Let p € By(0). Then d(u, D, p) =2, so that by homotopy
invariance d(u,, D, p)=2. Since det Vu, >0, by the definition of degree u; '(p)
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consists of exactly two points. In particular u;'(0)={y,, y,} for yo, v, € B3(0),
Yo ¥ ¥1- By the implicit function theorem there exists a unique C' solution Xo(°) of
u, (xo(v)) = v, x4(0) = y,, defined for v in a neighbourhood of 0. Since u"Y(By0)) =
D, x, may be extended to the whole of By(0). Similarly there exists a unique C"*
solution  x,: B0)—>D of u (x,(v))=0v,x,(0)=y,. The open sets
xo(B3(0)), x,(B1(0)) are disjoint, since if p e xo(B3(0)) N x,(By(0)) then u, (x(v)) =1,
x(u,(p)) = p, has a unique C* solution in a neighbourhood of u,(p). Thus x, and
x, coincide in this neighbourhood, and hence in the whole of By(0), contradicting
Yo# y1- Therefore on the line segment joining y,,y, there exists a point
y € x0(By(0)) Ux,(B3(0)). Hence p=u,(y) has at least three inverse images, a
contradiction.

3. The displacement boundary-value problem
of nonlinear elastostatics

Consider an elastic body which in a reference configuration occupies the
bounded open set Q<R*®. We suppose that () is non-empty, connected, and
strongly Lipschitz. In a typical deformed configuration the particle P with position
vector x € () moves to the point P’ having position vector u(x) with respect to
fixed Cartesian axes. The deformation gradient F is defined by

F=Vu; F,=u',.
The mechanical properties of the material are characterized by a stored-energy
function W(x, F) in terms of which the total stored-energy is
E(u)= L Wi(x, Vu(x)) dx. (3.1)
We consider a pure displacement boundary-value problem in which u is pre-
scribed on (), so that
| u oo =Uo o (3.2)

where u, is a given function. If the body forces are conservative with potential
Y(x, u) then the equilibrium equations are the Euler-Lagrange equations for the
functional

1(u)=E(u)+'L W(x, u(x) dx. (3.3)

Notation: M** denotes the set of real 3x3 martrices,
M7 ={Fe M*3: det F>0}, K =M>3xM*3x(0, ).

We make the following hypotheses on W, ¢ and u,: _
(H1) W: QxMP*—R is polyconvex; i.e. there exists a function g: O X K —R
such that g(x, -) is convex for almost all x e and

Wi(x, F) = g(x, F, adj F, det F) (3.4)
for all Fe M3 and almost all xe). We suppose that g is a Carathéodory
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function, i.e. g(x, -) is continuous for almost all x € Q and g(-, a) is measurable for
every ac K.

(H2) There exists a function keL'(Q2) and constants C>0, p>3, q>3,
§>2g/q—3 such that

W(x, F)Z k(x)+ C(|F° +|adj F|? + (det F)™*) (3.5)

for all Fe M>** and almost all x € ).

(H4) ¢: OXR*—>R is a Carathéodory function which is bounded below on
Qx G for any bounded set G <R>.

(H4) upe W'P(Q) is one-to-one in €, det Vuy(x)>0 almost everywhere in
Q, uo(Q) satisfies the cone condition, and I(u,) <.

The reader is referred to [4,5] for an extensive discussion of the physical
implications of (H1) and (H2). Note that (H2) implies that (1.1) holds almost
everywhere.

We now define a set & of admissible functions by o ={we W (Q):
det Vw(x)>0 almost everywhere in Q, I(w)<, and w |.q = g |50}-

THEOREM 3. Under the above hypotheses there exists u € sf which minimizes I on
o, u is a homeomorphism of () onto ue(Q) and the inverse function x(u) belongs to
W (ug(Q)), where o = q(1+5)/q+ s. If, further, uy(Q) is strongly Lipschitz, then u
is a homeomorphism of ) onto uy({}).

Proof. Since uq € s, o is nonempty. Let w € of; then by (H2) w e W'*(Q2) and
J T Pwa)f -+ (et T )] e <o
Using Holder’s inequality we deduce that
L [Vw™(x)|” det Vw(x) dx = L ladj Vw(x)|” (det Vw(x))' ™ dx <.

Since >3, the hypotheses of Theorems 1 and 2 are satisfied by w. In
particular, w() = uo(Q2), and so by (H3) I is bounded below on s{. The existence
of a minimizer u for I now follows as in [8, Th. 6.2] (see also [4, Th. 7.6, 7.7] and
[S, Th. 4.1], where a slightly stronger version of (H2) is assumed). Since u € s the
proof is complete. W

Since we have made no smoothness assumptions on W and #, u will not in
general even be C'. Note that in order to ensure invertibility of u we imposed
stronger conditions on p, q in (H2) than those in [4, 5, 8], where it was assumed
only that p=2, q=p/p—1. Provided p >3, however, Theorem 1 still gives some
information concerning invertibility.

We remark that by Theorems 1 and 2,

I(u)= [ W(x(v), Vx(v)) do + Y(x(v), v) det Vx(v) dv,
o) )
where

W(x, G) € det GW(x, G™).
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See [5] for more information on W, including a proof that W(x, -) is polyconvex
for almost every x. For a one-dimensional example see [6, Th. 4].
We now give an example of a function w satisfying (H1) and (H2). For
a=1,821, let
p(a) =05+ 05+ 03— 3, x(B) = (v,05)® +(v30,)® +(v,0,)° -3,

where the v, are the eigenvalues of VF'F. Let

W(x, F)= Y, a(x)p(a)+ X b(x)x(B)+h(det F),
i=1

i=1

where a; = -Zay =1, ;= *ZBy =1, and where g, b; are continuous func-
tions on () satisfying,

a,(x)=0, bj(x)=0, for 1si=M,1=j=N, xe,

a,(x)>0, by(x)>0, for xe.
Suppose further that h: (0, %) —R is a convex function satisfying

h(8)=const. +y8~°,

with y>0, and that a;,>3, B;>3,5s>2B:/(B:1—3). Then W is isotropic and
satisfies (H1) and (H2); for details see [4, 5].

Finally, we indicate the modifications to Theorem 2 that are necessary for
incompressible materials. In this case we seek a minimum for I in the set

oA, ={we W"(Q): det Vw(x) =1 almost everywhere in {2,
I(w) <o, w |30 =1 |sa}-
We replace (H1)-(H4) by (H1)'-(H4)' below.
Let V={FeM*>: det F=1}.

(H1) W:0XxV—R, and there exists a Carathéodory function g: QX
(M>3x M***) - R such that g(x, -) is convex for almost all x € and

W(x, F)=g(x, F, adj F)
for all Fe V and almost all x e ().

(H2)' There exists a function k € L*(2) and constants C>0, p>3, q>3 such
that

W(x, F) = k(x)+ C(FP +|adj FI%)

for all Fe V and almost all x ().
(H3)' = (H3).
(H4)' uye s, is one-to-one in (1, and u,({2) satisfies the cone condition.
We then have the following theorem.

TueoreM 4. Let (H1)'—(H4)' hold. Then there exists u € 4, which minimizes I on
A, u is a homeomorphism of Q onto uy(Q) and the inverse function x(u) belongs to
W (uy(Q)). _

If, further, uo(Q) is strongly Lipschitz, then u is a homeomorphism of () onto
uo(Q2).
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Proof. This is the same as for Theorem 2, except that we use the incompressible
existence theory from [4, 5], modified as in [8] to accommodate the weakened
form of (H3). W
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