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Abstract. Let £2 Cc R® be a smooth bounded domain and consider the energy functional

T.(m; Q) ;:/ (i\pm|2+¢(m)+l|h—m\2) dx+1/ |2 d.

Heree > 0 is a small parameter and the admissible functiofies in the Sobolev space of
vector-valued function® "2 (£2; R?) and satisfies the pointwise constrdimt(z)| = 1 for
a.e.r € £2. The induced magnetic field,, € L*(R*; R?) is related ton via Maxwell's
equations and the function : S* — R is assumed to be a sufficiently smooth, non-
negative energy density with a multi-well structure. Finallg R? is a constant vector. The
energy functional7. arises from the continuum model for ferromagnetic materials known
asmicromagneticsleveloped by W.F. Brown [9].

In this paper we aim to construct local energy minimizers for this functional. Our ap-
proach is based on studying the corresponding Euler-Lagrange equation and plocalg a
existenceesult for this equation around a fixed constant solution. Our main device for doing
S0 is a suitable version of the implicit function theorem. We then show that these solutions
are local minimizers of7. in appropriate topologies by use of certain sufficiency theorems
for local minimizers.

Our analysis is applicable to a much broader class of functionals than the ones introduced
above and on the way to proving our main results we reflect on some related problems.

1 Introduction

The micromagnetic theory of ferromagnetic materials as developed by Brown [9]
consists of studying the minimizers of the energy functional

ﬂ(m;0)=/ <1|Dm2+w(m)+1lh—m|2> dx+3/ o |? d.
2 2e 2 2 R3

Heref2? C R3 is a sufficiently regular open set representing the region occupied by
the body and the unknown functiom : £2 — S? denotes an arbitrary magnetization
state for the body.

The various terms appearing in this energy functional are respectively
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(i) The exchange energyThis term penalizes spatial changes in the direction of
the magnetizatiom: and hence reflects the tendency of the body to maintain
a spatially uniform magnetization state.

(i) The anisotropy energy: This term describes the existence of preferred direc-
tions of magnetization or the so-calledsy axe$or the magnetic state of the
material. To be more specific the anisotropy energy densityS? — R is
such thaty(m) > 0 for all m € S? andy)(m) = 0 if and only if m € K
whereK is a finite set of unit vectors representing the preferred directions for
magnetization.

(iii) The external field energy: If the body lies in a region of space where an
external magnetic field : 2 — R? is present, the magnetization tends
to align itself with the direction of this field. The external field energy thus
penalizes any deviation from this field inside the body. In this paper we assume
that the applied field is spatially uniform.

(iv) The field energy: The magnetization state in the body generates a magnetic
field h,,, : R? — R? that satisfies Maxwell's equations:

curl h,, =0,
div (hy, + mxp) = 0.

The above equations show that the figld is nothing but the gradient part of
the Helmholtz decomposition efmx,.

We recall that James andiMer [20], following some earlier work by Lorentz
[23] (cf. also Toupin [28]), have obtained this field energy by studying the corre-
sponding energy for a lattice of magnetic dipoles and passing to the continuum
limit by letting a typical lattice parameter go to zero.

Inthis paper we are interested in studying the limiting behaviour of the family of
functionals7. as the parameter— 0. This is usually referred to in the literature
as the small particle limit, and can be justified by observing that the functional
J1 satisfies the simple rescaling properfy(m, ez 2) = £2 J.(m., £2) for any
e > 0, wherem,.(z) = m(e2x). Itis clear that this property enables one to keep
the domainf? fixed and instead study the rescaled functiogalase — 0.

Our primary aim is to construct local minimizers fot. We note that prior
work on this problem due to De Simone [11] employs ideas of De Giorgi, or
more precisely the notion af-convergence, which itself has been developed for
the study of local minimizers by Kohn and Sternberg [21]. Our method is more
direct. To be more specific wednstructstationary points for the energy functional
Je using an appropriate version of the implicit function theorem and then apply
certain sufficiency theorems to establish the desired minimality property for these
stationary points. It turns out that our results are stronger than the known ones
in the sense that the stationary points constructed are local minimizefs iaf
weaker norms. Our analysis can be regarded as a very modest first step towards
the rigorous study of the pattern formation problem for magnetic domains as
increases. A major difficulty in carrying out such a study is that of understanding
bifurcations of solutions that are not known explicitly.

At this stage we should like to remark that the idea of applying versions of
the implicit function theorem to achievecal existencdor various equilibrium
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equations of continuum mechanics has been employed before in different contexts
(cf. Stoppelli, Valent [30], Zhang [32], Badit. al.[5] for examples within elasticity
theory). The idea in this paper however is to combine such local existence theorems
together with certain sufficiency theorems to ensure the existence of a continuous
branch of local energy minimizers.

Throughout the paper we assume thatc R”™ is a bounded domain (open
connected set) with a smooth boundéax@. We denote the unit outward normal
to the boundary at a pointby v(x), and as usual™(-) stands fom-dimensional
Lebesgue measure. As regards the energy functigndahe dimensiom = 3.
However we do not restrict our analysis to this case only and allde be any
positive integer.

For the admissible class of functions we use the Sobolev spaces of vector-
valued functiong?¥™?(£2; RY) wherem is a positive integer and the exponent
1 < p < oo. Our terminology for these spaces is in accordance with [1], [15] and
[33] and we refer the interested reader to these books for relevant properties of
these functions.

Assume now thatd ¢ W™»(£2; RY) is a given set of admissible functions
andJ : A — R := RU{—o0, 0o} agiven functional. For later reference we state
the following

Definition 1.1. Let1l < r < oo. The functionng € AisanL” local minimizer of
J if and only if there exist§ > 0 such that

J(mo) < J(m)
for all m € A satisfying
|lm — mol|Lr(2my) <6

To gain a clear understanding of the energy minimization problem described
above we proceed by considering two related but slightly simplified problems each
having some ingredients of the original micromagnetic energy functional.

In the first problem we consider the family of functionals

I(u) = /Q (21€w2 + P, u)> dz,

with e > 0, andF € C%(£2 x R). Here the function: is assumed to belong to the
class
Ap = {u e WH3(0) : 7. is well defined.

By well defined we mean that the functidni(-, u(-)) has a well-defined inte-
gral, i.e. that at least one of the functioAs := max{F(-,u(-)),0} or F~ :=
min{F(-,u(-)),0} has a finite integral. It is therefore to be understood fhat
.Al — ﬁ

Note that we have dropped the pointwise constraiit)| = 1 for the ad-
missible functions that occurs in the micromagnetic problem. In addition we have

restricted attention to scalar valued functions, that &te- 1. However this latter
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assumption is not a technical obstacle and almost all the statements and results in
this case extend to the cade> 1 without any difficulty.

In our analysis special attention is paid to a limiting problem corresponding to
the casee = 0. We start by imposing conditions on the integraiicind a given
point % € A; that turn out to be sufficient fofi to be a local minimizer of an
appropriate functional corresponding to the= 0 problem. We then apply the
implicit function theorem to prove the existence of a branch of stationary points
u® for Z. whene > 0 is sufficiently small. Note that the Euler-Lagrange equation
corresponding td@. takes the simple form

Au=eF,(x,u) in (2
u _ onorn.

Having established the existence of such stationary points we then proceed
to study the second variation of the functiorfal at these points. Our starting
assumptions o’ and @ imply that the second variation at eaah is indeed
positive and thus according to the sufficiency theorem in Section 2 (Theorem 2.2)
these points aré” local minimizers of the correspondifg, where the exponent
r depends on the growth &f at infinity.

By imposing further assumptions on the integraneve are able to show that
for a sufficiently small range of the parametehe stationary points &f. obtained
by the application of the implicit function theorem are thdy stationary points of
Z.. This in particular means that if the limiting functional has only a finite number
of nondegeneratstationary points the same holds true Torwhene is small.

Having a clear understanding of the first problem we then proceed to the second
family that consists of functionals of the form

Fu(u) 22/9(215|Du|2+V(x7u)) da,

whereV € C?(2 x S¥~1). Here we aim to deal with the pointwise constraint
|u(z)| = 1 and leave out the only remaining task, i.e. handlingrtbe-localterm

in the original micromagnetics problem, to the final stage. Thus we introduce the
class of admissible functions

Ay = {u e WH(2;RY) s Ju(z)| =1 ae}.

It follows immediately from the constraint anand the continuity assumption on
V that 7 is well defined and in fact finite oved,. In this setting it is also possible
to assume without loss of generality thate C2(§2 x RY) and vanishes for large

As in the first problem our analysis is linked to studying a limiting functional
corresponding to the = 0 case. We impose conditions on the integr&hdnd a
givena € SNV~ that in turn imply% to be aconstrainedocal minimizer of this
latter functional.

It can be shown that here the Euler-Lagrange equation correspondifig to
takes the form

Au+ |Dul?u — (I —u®@u)V,(x,u) =0 in 2

{ u _ ) onarn.
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We again apply the implicit function theorem to prove the existence of a continuous
branch of solutions to the Euler-Lagrange equation correspondifig. to

To deal with the pointwise constraift(z)| = 1 in applying Theorem 2.2, we
extend the functionaF, to 7. : W2(2; R") — R in such a way that

() Fo(u) = F.(u) foreveryu € A,

(i) If u is a stationary point afF. it is also a stationary point of., and

(iii) 62]:'5(u5) > 0 for ¢ sufficiently small provided a similar condition hold for
the solution to the = 0 problem.

It then follows from Theorem 2.2 thaf is anL! local minimizer of F. and so (i)
implies the same to be true féi. asu € A,.

To end this introduction we give a brief description of the plan of the paper.
In Section 2 we gather some known results and key tools that will be frequently
referred to throughout the article. This in particular includes the statements of both
an appropriate version of the implicit function theorem and a sufficiency theorem for
L™ local minimizers of certain functionals. In Section 3 we study the first problem,
namely the family of functionalg.. Section 4 continues with the first problem
and includes a detailed analysis of the second variatiaf @long the branch of
stationary points constructed in Section 3. In addition we study the number of such
solutions for fixed values af when this parameter is sufficiently small. In Section
5 we move on to the constrained problem, that is the study of the functiéhals
Finally in section 6 we return to the micromagnetics problem and apply the same
ideas to construdt! local minimizers for the functionaf..

2 Preliminaries

In this section we gather some well-known results needed for our later analysis.

As pointed outin Section 1, our main tool for constructing solutions to the Euler-
Lagrange equations is the implicit function theorem. For the following version we
refer the interested reader to the monographs by Ambrosetti and Prodi [2] or Zeidler
[31] for the proofs and further discussions.

Theorem 2.1. Let X, Y, and Z be Banach spaced/ an open subset ok x
Y,andT = T(g,u) a C' map fromU into Z. Let (g9, ug) € U be such that
T(eo,up) = 0 and D, T(=9,up) is a bijection of Y onto Z. Then there exist an
open neighbourhoot, of (g¢, uo) in X x Y, an open neighbourhook, of ¢ in
X, and aC"* functionw : V; — Y such that

{(e,u) €Up: T(e,u) =0} ={(c,u) : € € Vo,u = w(e)}.

Furthermore, U, can be chosen so th@,T'(¢, u) is a bijection of Y onto Z for
all (e,u) € Up. Inthis case, it € 1}, then

Dw(e) = —(D T (e, w(€))) ' D.T (e, wl(e)), (2.1)

while if T' is analytic at(e, w(¢)) thenw is analytic ate.
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While the implicit function theorem can be applied to the Euler-Lagrange equa-
tion to establish the existence of a branch of solutions starting from a given function,
we need certain sufficiency theorems to guarantee that such stationary points are
under suitable conditions local minimizers for the corresponding functional.

We now state a sufficiency theorem fbf local minimizers of functionals of
the type appearing in this article. For this IEt: 2 x RN — R be given and
consider the functional

Z(u) = /Q (;|Du|2 + F(a:,u)) dx,
over the class of admissible functions
A= {ue WH2(2;R") : T is well-defined.
We can now state the following result from [26].

Theorem 2.2. Let F € C?(2 x RY) and assume that there are consta@ts> 0
andp > 1 such that
Fa,u) = —C(1 + [ul?) (22)

for all z € 2 and allu € RY. Furthermore letu, € A be of classL>®(2; RN)
and satisfy

L od P
() ZT(wo+t)lmo=0, (i) 5 T(uo+1e)lio = el acamn:
for all o € WY2(2;RY) and somey > 0. Finally let r = r(n,p,2)
= max(1, 5 (p — 2)). Then there exist, p > 0 such that

Z(u) — Z(uo) = ol|u —uo|[fy12(oma)
for all u € A satisfying||u — uo|| - (2.r~) < p.

Remark 2.1.Following exactly the same argument as in the proof of Theorem
2.1 in [26], one can show that the conclusion above holds if we replaby
F(z,u) + a(z) - u+ b(x)(Jul? — 1) wherea € L2(£2; RN) andb € L>=(12).

Remark 2.2.The lower bound off (u) — Z(uo) in the theorem shows th@(u) >
T(up) wheneven, # ug and||u — uol||1-() is sufficiently small, i.eu is astrict
local minimizer ofZ. But it says more than this. Suppose, for example, thi
bounded from below, so that= 1. Then there is @otential wellatw, in the sense
that for all sufficiently smalk > 0,

I(Uo) < B inf I(u)
{u€A:||lu—uoll 1 oy=¢}

(The same holds if we use th&!2 norm in place of thel.' norm.) We refer the
interested reader to [3] and [26] for more discussion on this and its connection to
dynamic stability ofug.
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As pointed out earlier, the magnetizationand the field,,, are related to one
another by the following system of differential equations

{CUI’| hm =0,

div (h,, + mxqn) = 0. (2:3)

In the next theorem we gather some of the important properties of the solution
operator of this system.

Theorem 2.3. There exists a continuous linear operatf : L?(R3;R?) —
L?(R3; R?) such that

(i) Givenm € L*(£2;R3), (2.3) holds in the sense of distributions &?, for
hom = H(mxa)-
(i7) For everym; andms € L?(2; R3),

/ oy * By do = — my - A, do = — Ry - Mo dx,
R3 I7) 7}

and soin particulamhmlH%ZQR:»,;RS) =—[,m1 hp,.

(i17) There exists a positive definite, symmetric maklixsuch that for every con-
stant functionmn

/ hpy,de = —D.m.
2

For a proof of (i) we refer the reader to [18]. Part (ii) follows from (2.3) and a
simple integration by parts. The proof of (iii) is a consequence of the linearity of
‘H and (ii). See [11] for more details.

3 The unconstrained problem

We begin this section by formally deriving the Euler-Lagrange equation corre-
sponding to the functiondl. In its weak form this is the condition

d

gfe(u +tp)li=0 =0, (3.1)
where the variationp € C°°(2). First, since equation (3.1) holds for al €
C§°(£2) we deduce that

Au=eF,(z,u). (3.2)

Second, since (3.1) holds for alle C>°(§2) we get the natural boundary condition

ou

— =0. 3.3

5y — 0 (3.3)
Now we introduce the setting for the application of the implicit function theorem
(cf. Theorem 2.1). A key point in the application of this theorem is the choice of
the spacesY,Y and Z in order to ensure that the linearization Bfat (g9, uo)
is a bijection. To discuss this, as a first attempt in applying the implicit function
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theorem to (3.2) and (3.3) let us consider the Miap R x W25 (02) — L*(2) x
Wi=%2(012) given by

e = (10l o),

5(90)

for somes > Z. Clearly if u* € W?%*(£2) is such thatl’ (e, u®) = 0, then
u would be the required branch of stationary points/gfthat is a continuous
family of solutions to (3.2) and (3.3) iflV>*(§2). However it is a trivial matter
to see that for the above choice of spaces the linearizatich aft any point
(0,u) € R x W?25(£2) is not a bijection. To overcome this difficulty and also to
motivate the proof of Theorem 3.1 let us formally seek a solution to (3.2) and (3.3)
in the form

u(e) =u+ev+ 2w+ ...

Substituting this into the equation it immediately follows that @ is constant.
Moreover other powers aflead to further equations, namely

Av = Fy(x,a)
v 34
{ o (@) =0, =4
for the coefficients of, and similarly
Aw = Fyy(x, ) v
ow 3.5
{ 9 (2) =0, (3:9)

for the coefficients ot2. It follows that a necessary condition for solvability of
(3.4) is that

Fu(xz,u)dx = 0.
7

Moreover the solution obtained in this way is unique up to an additive con-
stant. Substituting this solutioninto (3.5) and using the necessary condition for
solvability of (3.5), that is

/ Fu(z,0)v(x)de =0,
2

it follows that this constant is uniquely determined provided

/ Fuu(z,0)dx #0.
2

Following this informal discussion we proceed with the detailed analysis by
introducing the map

T:RxW*(0) = E*(2) xR

defined by
Au(z) — e (Fu(z,u(z)) — £, Fulz,u(z)) dz)
T(e,u) = a—Z(:c) ,
f, Fulz,u(zx))dx
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wheref(, denotes averaging ovér,

B (2) = {(f,g) € L(2) x WI2(992) : /Qfdx - /aggdHn_l}’

(3.6)
and we set

s > (3-7)

n

5"

It is clear that for= # 0 a functionu € W?24(£2) is a solution of the Euler-

Lagrange equation (3.2) with boundary condition (3.3) if and only if it satisfies
T(e,u) = 0.

We now claim that for the choice afgiven by (3.7)1 € C1(R x W25(£2);
E*4(£2) x R). To show this we look at the partial Gateaux derivathgT" at an
arbitrary point(e, u) € R x W24(£2). Indeed we have

AU — ¢ (Fuu(fﬂ, U)U — JCQ ELu(IE,U)U dx)
D T(e,u)(U) = ( ou ) |
fo Fuu(z,w)U(z) dx

for eachU € W?2:5(£2). Now D, T is continuous if and only if for all sequences
u®) — win W2(02), ande®) — ¢ in R, it follows that

sup {|[(D.T(®, u™) = D, T(e, u))(©)

ex(@)xR  |[Ullw2s(2) < 1} — 0.

But this is an immediate consequenced? — win L>°(£2) as aresultof (3.7) and
the continuity of the embeddinig’"*(£2) — W'~%5(d£2). A similar argument
can be applied t®.T and so the claim is justified.
To check that the remaining assumptions of Theorem 2.1 are true we begin by
solving the equatiof’(0, u) = 0, i.e.

Ay =0,

B=0

fo Fulz,u(z)) dz = 0.
It follows from the first two equations thatis a constant. Call this constait\We
are therefore left with the third equation,

][ Fy(z,a)dz = 0. (3.8)
Q

Assume there existssuch that (3.8) holds. To check the second assumption of The-
orem 2.1 we need to show that the linear oper@gr'(0, @) : W2* — E*(2)xR
is bijective. This amounts to proving that the system
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has a unique solutioti € W24($2) forall (£, g,t) € E*(£2) x R. Itis well known
(see e.g. [8] or [30]) that givefyf, g) € E*(£2), the system

)
&=y

has a solutioi/ € W?4(2), which is unique up to an additive constant. If

][ Fou(z,0)de #0
Q

this constant can be determined in a unique way by solving the third equation,

][ Pz, @) U(z) dz = 1.
(9]

Thus we have proved

Theorem 3.1. Suppose there exists a constarguch that

/ F.(z,a)dx =0 (3.9
Q

and that
/ Fou(x,t)dx # 0. (3.10)
2
Then fore small enough the Euler-Lagrange equati@m) subject to the boundary
condition(3.3) has a solution:® which is contained in the Sobolev spagé-*({2)
and is close ta: in the corresponding norm. Furthermore if the neighbourhood of

@in W?23(£2) is taken small enoughy® is the only solution t@3.2), (3.3) lying in
this neighbourhood.

Having proved the existence of a continuous branch of stationary poirfs,for
we proceed to address the question of under what conditions on the intdgrand
andw the solutionu® is a local minimizer forZ.. We pursue this in the following
section.

4 Local minimizers and the positivity of the second variation

We first consider the question of positivity of the quadratic functional
QAp) = /Q (IVel? + a(x)p?) da, (4.1)

overW1:2(02) for givena € L*°(£2). Settingy to be constant it follows immedi-
ately that the condition

/ adr >0 (4.2)
17

is necessary. We can however prove
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Proposition 4.1. Let Q be as in(4.1) and leta satisfy(4.2). Then there exists
~ > 0 such that

Q) = ll¢lliva(e) (4.3)
provided||a|| ) is sufficiently small.

Proof. Giveny € W'2(£2) we can writep = ¢ + f,, ¢ dz, wheref,, ¢ dz = 0.
Thus setting: = f,, ¢ dz we can write

o) = [ (1voP +alp+e) do

:/ (|V¢|2+a¢2+2ac¢+a02) dx
2

1 1
z/ {V@de—i—/ <|V¢2+a¢2> dCE—T/ ¢* dx
(22 (93 2 2

+c? /Q (a(1 - 9)) dz, (4.4)

T

that holds for every- > 0. If now ||a||z= () < 3A2 whereX; > 0 denotes the
second eigenvalue of the Laplacian subject to Neumann boundary conditions on
042 andr is sufficiently small the sum of the second and third terms in (4.4) will
be positive. Choosinga|| .~ () smaller if necessary, it follows from the Poinéar
inequality that there existg > 0 such that

Q(p) 2 lellfyr2)-
The proof is thus complete. O

As a consequence of the above proposition and Theorem 2.2 we can state the
following

Theorem 4.1. Assume that the hypotheses of Theorem 3.1 hold and that

/ Fou(z,a)dz > 0. (4.5)
2

Then the solution® given by Theorem 3.1 is ab* local minimizer ofZ.. Fur-
thermore if the growth of’ from below is restricted by

F(z,u) > —C(1+ |ulP)

for someC > 0 andp > 1, thenw® is an L" local minimizer withr(n,p) =

max(1, Z(p —2)). In particular if F'is bounded from below therf is anL* local

minimizer ofZ..
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Proof. We start by calculating the second variatiorYpfat the stationary point.
Indeed forp € C>°(12)
2

d
P, ¢) = ST +19) iy

1
o)
Note that
/ Fyy(2,u®) do 2/ Fuu(, ) dm—/ | P (2, u%) — Fop(,7)| dz > 0
(] 0 0

providedk is sufficiently small. Thus it follows from Proposition 4.1 that famall
enough

8L (u, ) > V¢l fr12(0)
for somey = v(g) > 0 and allp € W2(£2). The result is now a consequence of
Theorem 2.2. O

Remark 4.1.Consider the functiod, : R — R given by
Io(u) := | F(z,u)dz,
2

and the corresponding functiori&l(u) = Iy (u) if u € A; is constantand,(u) =

+o00 elsewhere. Itis clear that conditions (3.9) and (4.5) are sufficient folbe a
local minimizer ofl,. In Theorem 4.1 we have shown that under these conditions
one can construct a continuous branch of local minimizer<fathat starts off
from a local minimizer ofZ,.

We now wish to make a simple observation regarding the global minimizers of
7. and their possible connection to thoseZgf

Proposition 4.2. Let F(z,u) > C; + Cs|u| for someCy; > 0 and letu® be
a sequence such thdt (u®) < M for some constand/. Then by passing to a
subsequence if necessary — @ in W12(§2) whered is a constant.

Proof. It follows from the coercivity condition above that

u® is bounded inL!(£2),
Vuf is bounded inL?(2; R™).

Henceus is bounded iV +2(£2) and therefore by passing to a subsequence
ut —a  inWh2(90), u® — 4 a.e. 4.7

for someu € Wh2(£2). Also it follows that
1
7/ |Vuf|?de < M — C4
2e 0

and soVu® — 0in L?(£2;R"). HenceVa = 0 which meansi is constant and
consequently the weak convergence in (4.7) is strong. O
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Remark 4.2.It can be easily checked that under the assumptions of Proposition 4.2
from every sequence of global minimizersZpfwe can extract a subsequence that
converges strongly ifiV1:2(£2) to a global minimizer ofZ,. Indeed let:* be such
a sequence; then

T (u®) < Z.(u) = Zp(u) (4.8)

wherew is an arbitrary constant. It now follows from the above proposition that,
by passing to a subsequengé,— @ in W12(£2) for some constant. According
to Fatou's Lemma

/ F(z,a)dx < liminf/ F(z,u)dz
Q Q

e—0

and thereforeZy(u) < liminf._oZ.(u®), which together with (4.8) gives the
result.

Proposition 4.3. Let the partial derivative of” with respect ta: satisfy

F,(z,u) = +o0 asu — +oo uniformly inz,
(G) " oo uniformly |
F.(z,u) = —o0 asu — —oo uniformly inx.

If n > 3 assume further that for sonie< ¢ < 2*
|Fy(z,u)| < C(1+ |u]9), (4.9)

for all z € 2 and allu € R whereC > 0. Then ifu is a sequence of stationary
points ofI. in W1:2(£2), by passing to a subsequence if necessary wetrave i
in W12(£2) where is a constant.

Proof. It follows from (G) that there exists a constan§ > 0 such thatr, (x, u) u
> —Cyp forall z € 2 and allu € R. Asw® is a stationary point af., it satisfies
(3.2) and (3.3). This in particular implies that

/ |Vuf|? do = —5/ Fy(z,u®)u® de < eCy L™(£2). (4.10)
7} I7;

Henceu® = v° + ¢ with ¢¢ = §, u® dz andv® — 0 in W2(£2). We now claim
thatc® is bounded and therefore by passing to a subsequence if necessary.
Indeed ifc® is unbounded without loss of generality we can extract a subsequence
such that® — +oo. Now let K > 0 be such thaF, (z,«) > 1 whenu > K. We

can write

/Fu(x,us)dx:/ Fu(x,ue)dx—l—/ Fy(x,u®)dx,
n {u=>K} {us<K}

where the first integral

/ Fu(w,uf)dz > Lr({uf > K}) — L7(9),
{ue>K}
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and using the fact that® (x) < K implies|u®(z)| < max(K, |v*(z)|), the second
integral converges to zero asif> 3

/ | Fou(z, u®)| do < C’/ (1 + max(K9,|v°|?)) dz — 0.
{us<K} {us<K}

The contradiction now follows by recalling that

/ Fu(z,u®)dx =0 (4.11)
0]
forall e > 0 asu® is a stationary point of.. O

We now look at the set of stationary pointsfwhene > 0. Let us assume
thatZ, has at most finitely many critical points all of which satisfy (3.10). In other
words there is a finite s®° C R containing all the pointg satisfying (3.9) and
such that (3.10) holds for eveflyc P°. According to Theorem 3.1, for any sugh
there is a continuous branch of solutions starting fiarivioreover afP? is finite
there exists amy > 0 such that for anyi € P° the solutionu® obtained by the
application of the implicit function theorem exists foralk ¢,. We denote the set
of all such solutions for each fixdl< ¢ < ¢q by P=.

The following result shows that under certain growth conditiodpythe above
class contains all possible solutions wheis sufficiently small.

Proposition 4.4. Let F' satisfy conditionG) in Proposition4.3 and suppose that
ifn>3
|y (z,u)| < C(1+ |ul9) (4.12)

for somel < ¢ < Z—’:g Then there exists; > 0 such that the complete set of
stationary points of. for 0 < e < &, is given byP<.

Proof. We argue by contradiction. Assume the conclusion of the proposition does
not hold. Then there exist a sequenge— 0 and corresponding stationary points
u®* of Z., which do not lie inP#*. According to Theorem 3.1 this sequence is
bounded away fronP<, i.e. there existg > 0 independent ok such that

[u™ = vllw2s(2) = p (4.13)

forallv € S¢+, wheresis as (3.7). It follows from Proposition 4.3, that for a further

subsequence s — @ in W12((2) for some constani.
Itis clear that:°* satisfies

{Aus’“ = fek in 2

(4.14)

Ouk __
5, =0 onof?,

for eachk with f&+ = &1, F,, (2, u®*). Asu* is bounded i 1:2(2), using (4.12)
forn > 3 we can bootstrap this t&°* being bounded if2?(£2) for everyp < oo
and hence ilL>°(£2). Thusf — 0in L>°(£2) and sous* — @ in W2(§2). This
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contradicts (4.13) provided we can show thids a stationary point of,. But by
integrating (i) in (4.14) and using the boundary condition (ii), we deduce that

/ F,(z,u"*)dz =0
7

for all k. Thus by passing to the limit the same holdsidpwhich is thus a stationary
point of I;. O

5 The constrained problem

This section is devoted to the study of the second problem introduced earlier in
Section 1. Here the energy functional is defined over the space of vector-valued
functionsu : 2 — R whose values are restricted to lie on the unit spi&éYe’.

Let us recall that the energy functional in this case is given by

1
Folu) = / (Du|2 + V(x,u)) d, (5.1)
o \ 2¢
where the admissible functianbelongs to the class
Ay ={u e WH2(2;RY) : ju(z)| =1 ae}.

The integrand’ is initially assumed to belong to the clag$(2 x SV —1). However
we may extend’ to a function inC?(£2 x RY). We proceed by showing one such
extension that is convenient for later purposes. Gives SV !, we denote by
u' the tangent space ®" ! atw, i.e. the orthogonal complementR?” of the
subspac@®u. The projections oR”™ ontoRu andu' are given byP* = u ® u
andP" =T —u®u respectively. We now claim that for arfy > 0, V has an
extensionV X € C2(£2 x RY) such that/ X (z,u) = 0 for |u| sufficiently large,
and in addition for allr € 2,u € SN, V.X(z,u) -u =0 and

VE (z,u)v-v > Vﬁ(x,u)P"Lv Py — C|PUU||PUL’U| + K|P“v|?
forallv € RN, wherec > 0 is a constant depending only &h

To this end, forr € 2 andu # 0, we first defineV (z,u) = V (z, ru7)- Then

clearlyV € C%(2 x (RV\{0})). A simple calculation now shows that fore 2,
ue SNl yveRN

Vlz,u)-v= EV(:U, u 4 tv)|i=0

= Vu(z,u) ~P“Lv, (5.2)

so that in particular

Vulz,u)-u=0. (5.3)
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Similarly
2 —
EV(x,u + tv)|i=0
= Viu(z, u)P“Lv Py
—Vau(z,u) - <2P“Lv(u -v) + u|P“iv|2) . (5.4)

Vau(z,u)v-v =

Itis clear that the right-hand sides of (5.2) and (5.4) are independent of the particular
extension of// to £2 x R". Note that we can repladé by V in the right-hand side
of (5.4) so that by (5.3)

Voulz,w)v-v =V, u)P“Lv Py — 2V (z,u) - P“Lv(u -v).

We now letp € C5°(0,00) with p(s) = 1 for s in a neighbourhood of, and
p(s) =0fors > 2. ForK > 0 we set

VK(;[, u) = p(|u|) (V(x, u) + % (|u|2 — 1)2) . (5.5)

Clearly VX € C?(2 x RY), andV,X (z,u) -u = 0 forz € 2, |[u| = 1, and
VE(z,u) = 0for |u| > 2. Therefore forr € 2 and|u| = 1,
VE (2, u)v-v =V, u)P“Lv Py — 2V, u) - P“Lv(u v) + K (u-v)%

uu
HenceV.X (z, u)P“Lv Py = Vou(z, u)P“Lv . P" p and so

VE(z,u)v-v=VE(z, u)P”Lv Py — 2V (x,u) - P“Lv(u )+ K(u-v)?
K ut ut u ut u, |2
> Vo (2, u)P* v -P* v —c[P%“|[P" v| + K|P"0|".

This justifies the claim. In what follows we always assume tha C?(2 x R").

We proceed now by formally deriving the Euler-Lagrange equation associated
to .. For this we consider variations € C*°(£2;R”) and deduce from the
condition

d U+t
dt e lu + tg]

Ni=0 =0

that
n 1
/ (Du-D(P“ ) + eVi(z, u)P" <p) dz = 0,
(]

from which we obtain the equation
P’ (Au — eVy(z,u)) =0
in £2, and the natural boundary condition

0
wtOu_ o

P ov
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on d52. Noting thatV (Ju|?) = 0, we can rewrite the above as

Au+ |DulPu — (I —u®u) Vy(x,u) =0 in 2 (5.6)
gu =0 onorn. '
Whene = 0 the Euler-Lagrange equation reduces to
Au+ |Dul?u =0 in {2
{ gu—0 ono, -7

which is the well-known equation of harmonic maps into the unit sphere. Itis clear
that in this case any function = @ with @ € SV~ is a solution to this system in
As. However such functions are far from being the only solutions to this system.
For example whe? = B is the unit ball inR™ with n = N > 3 the function
u(z) = z/|x| is asolution to (5.7) that lies ir». In fact this function is the unique
global minimizer of the Dirichlet integral oveds subject to the linear boundary
conditionu = x on 942 (cf. [7], [22]).

In a similar way to Section 3 we proceed by formally seeking a solution to the
system (5.6) in the form

u(e) =u+ev+e2w+---, (5.8)

whereu = @ for somei € SV . Notice that unlike the problem studied in Section
3, the fact that: = @ is constant does not follow by substituting the above ansatz
in the equation and solving it far. Indeed as explained in the previous paragraph
the system (5.7) in general has non-constant solutions.

Substituting (5.8) into (5.6) we get

Av=(I—-ua®a)V,(x,a) in 2

v-ii =0 in 2 (5.9)
v =0 on o,

for the coefficients ot. A necessary condition for the solvability of the system
(5.9) is that

/ (I — @ @)Vi(z, @) dz = 0,
2
Moreover in this case the solution is unique up to an additive constant vector. Note

that the second equation in (5.9) implies that this constant vector is normial to
The coefficient ok? gives

Aw + |[Dv?a = (I — 0 ® )V (z,0)v
—(G®@v+vea)Vy(x,a) in 2

[v]2 +2w -7 =0 in (5.10)

duw —0 onofn.

ov

Again a necessary condition for the solvability of (5.10) is that

/ (I —a® @) Vyu(z, 0)v — (@ v+ v @ @)V, (2, @) — |[Dv* @) dz = 0.
? (5.11)
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Multiplying the first equation in (5.9) by and integrating ovef? we get
/n (|Dv]* 4 Vy(z, @) - v) dz =0,
and therefore (5.11) can be written as
/Q (1 = & ® @) Vi (2, 0) — 0 - Viy (0, 3) T) v dax = 0.
Note that the linear transformation
Vo ::]{2 (I -2 ®u)Vyy(z,0) — @ Vy(z,a)I) dz

mapsat to 4+, and thus the constant vector mentioned above (norma) tan
be uniquely determined providdd : @+ — @ is invertible.

Following this informal discussion and to establish rigorously the existence of
a continuous branch of solutions to (5.6) we proceed as follows. Assume that the
coordinate system is such that

i=ey=(0,0,--,1).
Letu(x) = (u1(z), u2(x), -, un(z)) where
un(z) = /1 — IV 2 (2) (5.12)
and||u|| L (¢ are small for alll <4 < N — 1. Then clearly
u(z) € SN!

for a.e.z € {2. Furthermore we claim that ifuy, ..., ux) satisfy the firstv — 1
equations in (5.6), then the last one is automatically satisfied. Indeed proceeding
formally, it follows from the constraintEY ;u? = 1 that X~ ,u;Vu; = 0 and so

N

> Vil + uiAu;) =0

i=1

As|Dul? = XN, |Vu;|?, we have thatiy Auy = — XN T u; Au; — |Dul?. The
result now follows by multiplying thé-th equation bwz, summing ovel = 1to

N —1andrecalling that( —u®u) Vy,(z,w))-u = 0. Similarly, fromdu; /0v = 0
forl <i < N —1,wededuce thaluy /0v = 0. These computations are rigorous
foru; € W25(92),s > 5 and||u;|[ L () sufficiently small,l <i < N —1,asis
the case for the solution constructed via the implicit function theorem below.
Let us now set/ = (u — en) /e and solve the firslV — 1 equations of the system

AU +¢|DU|?(ey +¢eU)
—(I—(eny+eU)®(eny +eU)) Vy(z,ey+eU)=0 inf2
W =0 onosn.
(5.13)



Local minimizers in micromagnetics 19

For this we introduce the map
T:Rx (W25 ()N w5 (B5(Q)N 1 x RN !
for s > 3, defined by

AUy — e(hy(e,2,U") — £, ha(e, 2, U’) da)

aal{f (x)

AUy — e(hn1(e,2,U") = f, b1 (6,2, U") da)

T(e,U') = oUN s (5.14)
o (m)

fo hale,z,U') da

fohn-1(e,2,U") dx

firstfore # 0, whereU’ = (Uy, ...,Uy—1) and
1
hie,z,U") ::fz€|DU|2UJﬁ8 (I —(en +eU)® (eny +eU)) Vi(x,en +€U)),

whereUy = ¢~ !(uy — 1) is calculated using (5.12). As a simple Taylor expansion
shows,

Vi(z,en 4 eU) = V(x, en) + eViulx, en)U + O(£?).
We can therefore write
][h(s,:lc7 U')dx =
(0]

][ (—e|DUPU + (I — eny @ en)Vau(x, en)U
2

—(en@U+U®en)Vu(z,en) + O(e)) du, (5.15)

where we have assumed the following to hold
/ (I —ey ®en) Vu(z,en)dx = 0.
2

This suggests that we can extend the rfaf ¢ = 0 by substituting (5.15) into
the lastN — 1 columns in (5.14). Extending@’ in this way we find thatl’ €
CLU; (E*(02))N=1 x RVN~1), whereU = {(¢,U’) € R x W25(2;RN~1) :
lexy +eU| < 1}. (Here we use, for example, thit € W2<(2; RV 1) implies
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|DUPU € L*(£2;R"Y) sinces > 2.)
AUl - Vul(x,eN)

G ()

, AUn—1 = Vuy_, (x,en)
T(O, U ) - AUN_1 (x) bl
ov

fo Varu, (z,en)Uj(x) = Vuy (z,en)Us(2)) da

fo Vax_yu, (z, en)Uj(x) = Vuy (z,en)Un—-1(2)) da

where the repeated suffixis summed froml to N. Assume now that the map
Vo : @+ — @t is invertible. With our choices of coordinates this reduces to the
requirement that the matrix

][ (Vuiuj (z,en) — VuNJZ-j) dx (5.16)
Q
with 1 < 4,57 < N — 1 is nonsingular. We proceed by considering the equation
T(0,U") = It is well known that for all( f, g) € (E*(£2))V ! the system
{AU’ =f
5 =9

has a solutiorV’ € (W?2#°(£2))N~1, which is unique up to an additive constant

c € RN~1 This constantis determined uniquely by solving the Mst1 equations

in T(0,U") = 0 because of (5.16). Corresponding to the formal expansion (5.8)
we denote the unique solution 850, U’) = 0 by v’. So as to apply the implicit
function theorem we need to show that the linear map

Dy/T(0,0) : (W2 ()N — (E5(2))N ! x RN !

is a bijection. This amounts to showing that the system

Az = f1
Oz _
ov -5

Azn_1 = fn-1
0zZN—_1

=gN-1

][Q (VuluJ (z,en)zj(x) — Vup (, eN)zl) dr =1

][ (Vulw1 u; (T, en)zi(x) = Vi (, eN)zN,l) dr = ty_1
Q
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has a unique solutione (W?2(82))N~forall (f,g,t) € (E*(2))N "I xRN~
But this follows easily from our assumptions.

By the implicit function theorem we thus have a solutioh = (U¢)’ of
T(e,U’) = 0 which is aC' map from some small interval—sg,g9) —
W2s (2, RN=1) with (U°) = +'. Clearly (u®)’ = e(U?)" is C' in ¢ for || < &o.
Since the map — /1 — [t|? is smooth fort € RV 1, |¢| sufficiently small, and
sinces > n/2, it follows also thatug, = /1 — |(u¢)’|? is C* from (—&1,¢1) to
W2s(02) for some0 < &1 < &g, with u;, = 1. Therefore we have proved the
following

Theorem 5.1. Leta € SV~ satisfy
/Q(J—aem) Vou(z, @) dz = 0 (5.17)
and let the linear map/, : @ — @+ corresponding to the matrix
Vo ::]{2 (I —a®u)Vyu(z,0) — - Vy(z,a)]) dx (5.18)

be invertible. Then the syste®6) has a solution:€ that is aC* map from some
small interval(—¢;, ;) to W22(£2; RY) that lies in. Ay with u° = 4.

Remark 5.1.Note that it follows from the proof of the theorem tHat = (u® —
@) /e — vin WHe°(£2; RN) ase — 0, wherev is the unique solution of (5.9). In
fact we already showed in the proof ti{ats)’ — v’ ase — 0in W25 (2; RV 1),
In the coordinates of the proof we have that

(U = 1 ( =20 - 1)

|2/
1_62\ ) Ps

= —59( ‘(UE

whereg is smooth or(—exs, enr) X [0, M], M = 2[| |v'| || o (), ens > O'is suffi-
ciently small. HencéU¢) y — 0in W?2:5(£2), and thud/¢ — vin W23(2; RY).

So DU® — Dv in L* (£;RV*™), where as usuak* = -“* is the Sobolev
conjugate ofs. Using this together with a simple bootstrap argument on equation
(5.13) and recalling that > 5 implies the claim.

Remark 5.2.It does not seem obvious whether or not the solutibmbtained in
the above theorem is unique for sufficiently smakhnd in a sufficiently small
neighbourhood of:c.

Having proved the existence of a continuous branch of stationary points for the
functional 7., we now study conditions under whiehi is a local minimizer for
Fe.
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Theorem 5.2. Assume that the hypotheses of Thedsgrhold and that;, : 4+ —
at is positive definitéequivalently there exiss > 0 such that the matrix

% :][ (Vi (@, 1) — - Vi (2, @) 1) da (5.19)
(9]

satisfiesVv - v > plv|? for all v € a1). Then the solutiom® given by Theorem
5.1is anL! local minimizer ofF..

Proof. Consider the unconstrained functional
~ 1 9
Fe(u) = 5| Dul” + V(z,u)
o\ 2¢
1 2 1 g2 €
+5(uf? = 1)(— ~|Du[? — Vu(x,ue))> dz.

As the integrand” has compact suppotk. is well defined and finite over the class
of admissible functiongV'-2(£2, RN). Moreover it is clear thaf. (u) = F.(u)

for everyu € As. The Euler-Lagrange equation associated with this functional can
be easily checked to be

Au+ |Duf|Pu — e(Vi (2, u) — uf - Vi (z,u)u) =0 in 2
9u — onof

Thuswe is a stationary point ofF. as a consequence of being a solution to the
system (5.6).

Letus now consider the second variatiotFofatu<. Indeed forp € C> (2; RN)
we can write

- 4?2 -
52f5(u8, QO) = —Qfs(ug + t(p)|t:0

dt
! 1
N /('2 (5|DS0|2 * Vu7u7 (l',us(;y))splsp] + ‘@|2(7E‘DU6|2 —uf . Vu(l,ue)) dx
1
= */ (|DSO|2 =+ E((Vuluj (l‘,us(m)) _ UE . Vu($7u5>51j)
€Jo
1 €12
—Z|1Dv’] %)sﬁz%) da,

Proceeding in a similar way as in Proposition 4.1 we can show this to be uniformly
positive if and only if the matrix

Ve :]{2 <(Vuu(x,u€(m)) —u® - Vy(z,u)I) — i|Du€|21> dx
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is positive definite. But for the extension B¢ of IV constructed at the beginning
of this section, withK" sufficiently large, we have

uu

VKvm:][VK(x,ﬂ)dwi
o)
K(,. ~ at at m at a2
>+ Vi (z,a)de PY v -PY v —c|P“||P" v| + K|P“v|
Jo

> 1P| — ¢|P™||P™ o] + K|P%|?
o2

> = .

> 5ol

We now note that

(VE)e —vK :][

2

(VS ) = VIS, 0) o — (][ Du|? dx) I
0

satisfiedim. o |(V5)s—VE| = 0 using Remark 5.1, and the positive definiteness
of (VE)e follows. The proof is completed by applying Theorem 2.2 (see Remark
2.1). O

6 The energy functional of micromagnetics

In this section we focus on the energy functional of micromagnetics in the case of
a spatially uniform applied field

1 1
js(m):/ﬂ <2€Dm|2+W(m)> d:p+§/Ra | P |2 daz. (6.1)

Here we have sét/(m) := 1(m) + 3|h — m|? for the functional to agree with
the original form introduced in Section 1. Itis initially assumed that the anisotropy
energy density) € C?(S?). However as explained in Section 5 we can exténd
to any neighbourhood d82, and in particular tdR3. Since a substantial part of
the analysis in this section is similar to that of Section 5, we shall abbreviate the
arguments and refer the reader to the earlier discussions. We also mention that our
main device in dealing with the non-local term is Theorem 2.3.

Recallthather€? c R?isabounded domainwith smooth boundary. Regarding
the admissible functions we set

Az = {m e W' (2;R?) : Im(z)| =1 a.e.}.

It is clear that7. is well-defined and finite over this class. The Euler-Lagrange
equation associated t@. is easily seen to be

{Am—i—|Dm2m—5(I—m®m)(Wm(m)—hm) =0 in (2 6.2)

om _ () on df.

In a similar way to Section 5 we proceed by formally seeking a solution to (6.2) in
the form
m(e) =m+ev+ew+---, (6.3)
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wherem € S2. Substituting this into (6.2) we get

Av = (I - @m)(Wy(i) — hy)  in Q2
v =0 in (6.4)
gv =0 onofn

for the coefficients of. It follows that a necessary condition for solvability of (6.4)
is that
/ (I —m®m)(Wy,(m)— hsz)de =0.
2
Moreover in this case the solution is unique up to an additive constant. Note that the
second equation in (6.4) implies that this constant is normal.tdhe coefficient
of 2 gives

Aw + |Dv?Pm = (I — m @ m)(Wm (m)v — hy)
—(mev+vem)(Wy,(m)— hsz) in 2

[0]? + 2w - = 0 ino (65
9w — ondn.

Again a necessary condition for the solvability of (6.5) is that
/Q((I —m @ MmM)(Wym(m)v — hy) — (M@ v+ vQm)(Wy(m) — hy)
— |Dv|?m) dx = 0. (6.6)
Multiplying the first equation in (6.4) by and integrating ovef? we get
/Q (|Dv]? + (Wi (1) — hyn) - v) dz =0,
and thus (6.6) can be written as
/Q (1 = 170 @ 170) (W (70)0 — ) — i - (Wi (1) — b)) da = 0.

Thus the constant mentioned above (normafitpcan be uniquely determined
provided the linear ma@’, : mt — m=* corresponding to the matrix

Wo ::][ ((I -m® m)(Wm’m(m) + De) —m: (Wm(m) - hﬁl) I) dz
2

isinvertible. This informal discussion leads us in exactly the same way as in Section
5 to the following

Theorem 6.1. Let/ € S? satisfy
/(I—ﬁz@ﬁl) (Wi () — hop) daz = 0 6.7)
2
and let the linear magh, : m* — m* corresponding to the matri¥/, be

invertible. Then the syste6.2) has a solutionn® that is aC' map from some
small interval(—cy, 1) to W24 (£2; R3) that lies inAz with m® = .
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Remark 6.1.Similarly to Remark 5.1 it follows from the proof of this theorem that
%|Dm€\2 — 01in L>(£2). We recall that equation (2.3) together with standard
elliptic theory and the fact thah® — m in W24 (2; R3) imply thath,,, — hs

in L>=(£2; R?). We use this fact later in the proof of Theorem 6.2.

Remark 6.2.Similarly to Remark 5.2, it is not obvious whether or not the solu-
tion m* obtained in the above theorem is unique for sufficiently smalhd in a
sufficiently small neighbourhood o#°.

Having proved the existence of a continuous branch of stationary points for the
functional 7. we now study conditions under whiehF is a local minimizer of7..

Theorem 6.2. Assume that the hypotheses of Thedselniold and that the linear
mapW : m* — m'’ corresponding to the matrix

W= / (Winim, () — - (Wi () — b ) 1) da (6.8)
2

is positive definite. Then the solutien. given by Theoren6.1 is an L! local
minimizer of 7.

Proof. Consider the unconstrained functional

~ 1

Gem) =3 [ Mot | (216|Dm2+W(m) (6.9)

1 2 1 €12 € €\ _
_§(|m| - 1)(E\Dm | +m® - (W, (mF®) hms))> dx.
As we may assume that the integraiithas compact supporf, is well-defined
and finite over the class of admissible functiofis-?(2; R?). MoreoverJ.(m) =
Je(m) for everym € Az. We now use Theorem 2.3 to write
~ ~ — — 1
T=(me + ) = Te(me) = Te(me + @) — T(me) + 5/ |h¢|2dx,
R3

wherep lies in W12(2; R?) and

T.(m) = —/thi -m+/9 (21€|Dm|2+W(m) (6.10)
—%(|m|2 - 1)<§|Dm5\2 +m® - (Wp(m®) — h/ms))) dx.

Thus the conclusion of the theorem follows if we show thatis an L' local
minimizer of 7.. It is easy to verify that the Euler-Lagrange equation associated
with this functional is

Am + |Dm|*m — e(W,,(m) — h,

Le

om __
S5, =0 onof?.
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Thusm? is a stationary point of7. as a consequence of being a solution to the
system (6.2).
We now look at the second variation Gt atm?. For this letp € C>(2; R?)
and consider
2

— d
BT, ) = S To(m® + 80l

1
= /Q ({_:Dapl2 + Winim,; (m®)@ip;

1 1> 1> 1>
—<g|Dm I +m - (Wp(m®) — hms)) <p|2> dx

-2, (iw (W, (m) = 7 - (W ()

e
1 12
,hmg)&;j) — E|Dm | 51])997993 dz.

Proceeding in a similar way to Proposition 4.1, in particular choosing an appropriate
extension oW, we can show this to be uniformly positive if and only if the matrix

1
ij = /Q <(Wmimj (me) -—m° - (Wm(me) — hms)éij) — EDmElQéij) dx

is positive definite. But this follows in a similar way to Theorem 5.2 recalling Re-
mark 6.1. O
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