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Summary. We investigate models for the dynamical behavior of mechanical systems 
that dissipate energy as time t increases. We focus on models" whose underlying 
potential energy functions do not attain a minimum, possessing minimizing sequences 
with finer and finer structure that converge weakly to nonminimizing states. In Model 
1 the evolution is governed by a nonlinear partial differential equation closely related to 
that of one-dimensional viscoelasticity, the underlying static problem being of mixed 
type. In Model 2 the equation of motion is an integro-partial differential equation 
obtained from that in Model 1 by an averaging of the nonlinear term; the corresponding 
potential energy is nonlocal. 

After establishing global existence and uniqueness results, we consider the long- 
time behavior of the systems. We find that the two systems differ dramatically. In 
Model 1, for no solution does the energy tend to its global minimum as t -+ ~. In 
Model 2, however, a large, dense set of solutions realize global minimizing sequences; 
in this case we are able to characterize, asymptotically, how energy escapes to infinity 
in wavenumber space in a manner that depends upon the smoothness of initial data. 
We also briefly discuss a third model that shares the stationary solutions of the second 
but is a gradient dynamical system. 

The models were designed to provide insight into the dynamical development of 
finer and finer microstructure that is observed in certain material phase transformations. 
They are also of interest as examples of strongly dissipative, infinite-dimensional 
dynamical systems with infinitely many unstable "modes", the asymptotic fate of 
solutions exhibiting in the case of Mode1 2 an extreme sensitivity with respect to the 
initial data. 

Key words, nonlinear partial differential equations, minimizing sequences, loss of 
ellipticity, fine structure, phase transformation 
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1. Introduction 

The purpose of this paper is twofold: to introduce simple mathematical models that dis- 
play the dynamical development of "fine structure" and to exhibit strongly dissipative 
evolution equations that do not possess inertial manifolds or even finite-dimensional 
attracting sets. 

In connection with the first question, Ball and James (1987) have suggested that 
minimizing sequences may play a role in modeling the fine structure sometimes ob- 
served in phase transitions. A simple and classical example of a functional that pos- 
sesses such a minimizing sequence is provided by 

;0E I ( u )  = ';(U2x - 1) 2 + d x ,  
4 

(1.1) 

where u : [0, or] ~ N and u(0) = u(~') = 0 (cf. Young 1980). By considering the 
sequence u k ( x )  = k - l O ( k x ) ,  where 0 is the zr-periodic function with 

IX, 0--~ X--~ "/1" 
2 

O(x)  = _zr _< x -< 1r 
7 r - x ,  2 

(1.2) 

it is easily seen that the infimum of I subject to the boundary conditions (more 
k +1 a.e., precisely, in the Sobolev space W01'4(0, 7r)) is zero. In fact, since u x = _ 

OL fo r 0~ "3 
I ( u  k) = ~ - ~  0 2 ( x ) d x  - 24ke. (1.3) 

However, the minimum is not attained, since the conflicting requirements Ux = • 1 

a.e. and u -- 0 cannot be met. Note that every minimizing sequence, in particular u k, 
tends weakly to zero in W1'4(0, ~r), but that zero is not a minimizer. Ball and James 
(1987) suggested that incompatibility at boundaries between regions of a material in 
different phases could be overcome by two variants of one of the phases assuming 
a structure in which bands of each variant are finely interspersed. Such a spatial 
arrangement would correspond to an element of a minimizing sequence for the total 
elastic energy: in the (simplified) example above the two variants correspond to u x = 
+ 1 and Ux = - 1 .  We will enlarge on this remark in Sect. 7. Despite an expanding 
literature on the variational formulation of this problem, little is known of the dynamics 
by which such a fine mixture might be created or evolve. The models treated in 
this paper, although not directly derived from the underlying physical problem, are 
designed to provide insight into this question. 

The second area on which our examples shed light is that of the structure of attract- 
ing sets for infinite-dimensional, dissipative evolution equations. In several examples 
in which an associated linearized problem has a spectrum of stable eigenvalues sep- 
arated by suitable gaps, it is known that finite-dimensional attracting sets and even 
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inertial manifolds exist. (Constantin, Foias, Temam, and Nicolaenko 1988; Temam 
1988; Doering, Gibbon, Holm, and Nicolaenko 1988). An inertial manifold is a 
smooth, finite-dimensional submanifold of the phase space, invariant under the (semi-) 
flow, that attracts all solutions at an asymptotically exponential rate as t ~ + ~ .  
In such cases the long-time behavior is governed by a finite-dimensional dynamical 
system, a set of "determining modes", regardless of the initial data. In contrast, 
the present examples show that strong dissipation can coexist with an infinite set of 
unstable modes and that energy can cascade to arbitrarily high wavenumber as t 
+ ~ ,  but, consistent with energy decay, no periodic or other recurrent motions exist. 
Whether arbitrarily fine structure is realized or not depends on the form of the equation: 
we exhibit one example, based on the local energy function (1.1), whose solutions 
do not minimize energy dynamically, and two examples for which most solutions 
do in fact dynamically explore minimizing sequences. The latter share a feature of 
the Becker-D6ring cluster equations studied by Ball, Carr, and Penrose (1986), Ball 
and Cart (1988), and Slemrod (1988), who proved that mass asymptotically escapes 
to infinite clusters for initial data possessing supercritical density. As discussed in 
these papers, it is an open problem for the Becker-Drring equations to understand 
the details of how increasingly larger clusters develop. In one of our examples we 
are able to give an analogous description, showing how energy moves through the 
wavenumber spectrum as t ~ ~, and how the initial data strongly influence the 
dynamical development of solutions. 

The contents of this paper are as follows. In Sect. 2 we describe the model equations 
and obtain some basic results on energy decay, stationary solutions, and linearized 
stability. Section 3 contains existence and uniqueness results for the first two models. 
In Sect. 4 we begin to address the asymptotic behavior of solutions. We show that 
solutions of the "local" model do not minimize energy, whereas almost all solutions of 
the other models do so. A detailed study of how this occurs for one of the models is 
carried out in Sect. 5. Numerical simulations that illustrate these results are presented 
in Sect. 6, and concluding comments are given in Sect. 7. 

Throughout the paper Ilf[I -- (f0 ~ I f (x)[  2 d x )  j/2 and ( f ,  g) = f o ~ f ( x ) ~ , ( x )  d x  
denote the L 2 norm and inner product of (complex-valued) functions defined on the 
domain 0 --< x -< ~r. {f, g} denotes the ordered pair of functions f ,  g. For s = 
1, 2 . . . . .  1 <-- p <-- o% WS,p = WS,p(O, ~-) denotes the usual Sobolev space of 
functions whose derivatives of all orders m -< s belong to LP(O, ~). W I'p denotes the 
space of W I'p functions whose continuous representatives vanish at x -- 0, zr. We 
write H s = W s'2, H~ = W01'2 and denote the associated norms [[ [Is and [1. 111. 
We also use H s for noninteger values of s. If  I C ~ is an interval, we write 
C " ( I ,  C s) for the space of r-times continuously differentiable maps from I into the 
space C s = CS([0, 7r]) of s-times continuously differentiable functions on [0, ~-]. We 
write C O as C. For more details see Adams (1975) or Yoshida (1980). The basic tools ~ 
used are (i) existence and uniqueness results of Henry (1981) for abstract evolution 
equations with the modified definition of solutions due to Miklav~i6 (1985), and (ii) 
stable, unstable, and center manifold results for PDE and ODE (Carr 1981). Some of 
the results of this paper were announced in Ball (1990), where additional background 
material and references may also be found. 
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2. The Model Equations: Preliminary Analysis 

Here we introduce three model equations. Although the first has some mechanical rel- 
evance, all three, and especially the latter two, are presented mainly as mathematically 
tractable models that exhibit features relevant to the physics of fine structure. 

2 . 1  T h r e e  M o d e l s  

Model 1 is based on the potential energy (1.1), mentioned earlier. The associated total 
energy (kinetic plus potential) is 

I0 E l i " ,  " t ]  = Ilu,II z + ~(Ux - 1)2dx § 

and the evolution equation and boundary conditions are given by 

u t ,  = (u  3 - Ux + ~ U x , ) x  - a u ,  (2.2a) 

u(0, t) = u(Tr, t) = 0. (2.2b) 

The additional term ~ U x x t  in (2.2a) represents viscoelastic damping. The specific 
choice of  the function I0 1 2 ~r ~(Ux _ 1) 2 d x  = Io~lfl(Ux) d x  is not crucial. One can pick 
any two-well potential ~] ,  with corresponding, nonmonotone, cubic-like stress-strain 
function ~(u~) = ~;]'(u~), and obtain similar results. This model crudely represents 
the behavior of  a one-dimensional nonlinear viscoelastic continuum that is bonded, 
with "strength" re, to a rigid substrate. 

In Model 2, which is rather more tractable, we replace the local nonlinear term 
2 in (2.2a) by the spatially averaged term ]]uxll2u~x, obtaining a nonlocal model "x"XX 

with total energy 

and evolution equation 

u t t  = (lluxl[ 2 - 1)Uxx - a u  + [3uxx t ,  (2.4a) 

u(0, t) = u(Tr, t) = 0. (2.4b) 

Model 3 is obtained simply by replacing the second time derivative in (2.4a) by a 
first derivative, to yield the pseudo-parabolic equation 

. ,  = (lluxll 2 -  1).~x - ~ u  + ~Uxx,, i2 .5)  

which has the same stationary solutions as (2.4), but whose diagonal structure permits 
a complete characterization of the asymptotic behavior of  solutions. 

We concentrate on the first and second of these models. We are able to give a fairly 
complete analysis of  Model 2, but several open questions remain regarding Model 1. 

Assuming that solutions exist and are sufficiently smooth, facts that will be estab- 
lished in Sect. 3, a straightforward calculation reveals that the energy functions (2.1) 
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and (2.3), differentiated along solutions of  (2.2) and (2.4), respectively, both satisfy 

d E j  _ 
at /3llux'll2" (2.6j) 

For Model 3, we define a (purely potential) energy 

E3[u] = J([I.xll = -  1) 2 + ~llull = (2.7) 

and compute, integrating by parts, 

d E 3  _ ([luxll 2 _ l~Ux, u~,) + ~(u, u,) 
d t  

= - i1 . ,112  - ~ l [ . x , I i  2. 

Thus, in all three models the energy E j  is a Liapunov function; that is, E] is 
nonincreasing along solutions (and stricay decreasing provided II"~tll (or II~/tll and 
I1.,11) ~ 0). Since we also have the lower bounds 

E j  --> 0, j = 1, 2, 3, (2.9) 

we expect that solutions will in some sense approach stationary states or equilibria 
given by the boundary value problems 

(U3x - Ux)x - oeu = 0, u(0) = u(Tr) = 0; (2.10) 

(lluxn z - 1)Uxx - a u  = o, u(O) = u(~-) = 0r (2.11) 

in Models 1 and 2, 3, respectively. We now turn to a study of those equilibria. 

2.2 Equilibrium States  

Rewriting (2.10) as a system 

U x ~ V~ 

OLU 

Vx - 3v 2 _ 1' 

(2.12) 

we easily obtain the phase portrait of  Fig. 1, with solutions lying on the level sets of 
the first integral (obtained by multiplying (2.10) by u x and integrating): 

3 v  4 v 2 a u  2 

4 2 2 
= const. (2.13) 

There are singularities along the lines v = -+l/v/3.  The solutions of  (2.10) of  
interest to us are obtained by fitting together segments of  orbits in the range 
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?J 

v=+~ 

1 

Fig. 1. Phase portrait of (2.12) 

1/.if3 < Iv I < 2/~f3 with appropriate jump conditions. Let ~(x) be such a solution, 
and denote the L ~ and W 1'~ norms of  u by 

IlulL = ess  sup {u(x)[, Ilul{, ~ = I l u L  + I{uxll~. 
x~[O,~r] 

We recall that fi E Wo 1'1 is a strong relative minimizer of the potential energy 

(0 V[u] = ~ ( u ,  u x ) d x ,  (2.14) 

where ~ ( u ,  ux) def 1 2 = ~(U x -- 1) a + (au2/2), if for some e > 0, V[~] -- V[u] for all 
u E w~A(o, ~r) satisfying II. - ~IL --- e. In contrast, ~ is a weak relative minimizer 

if V[~] -< V[u] for all u E WI'I(O, ~r) satisfying Ilu - ~11,~ <- ~. Moreover, if ~ is 

a weak relative minimizer, then (cf. Cesari 1983, pp. 61ft.) the weak Euler-Lagrange 
equation 

O~ (~, ~tx)(X) (~, ~tx)(S)ds + const.  (2.15) 
OUx 

holds; in particular, 3~'/3Ux is continuous at jumps in ux. This continuity provides 
the condition we need to piece orbit segments together. Conversel Z, if ~ E W 1'= is 
a solution of  (2.15) such that [Ux[ lies in a closed subset of  (1A/3,  2/.,f3) for a.e. 
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x ,  then fi is a weak relative minimizer. This follows simply from a Taylor expansion 
with remainder, noting that (32~ fix) > y > 0 a.e. for some y.  

Using this we can easily construct uncountably many weak relative minimizers for 
3 (2.14), with ~r(ux) = ux - Ux continuous at jumps.  There can be arbitrarily many 

jumps in Ux, located with complete freedom apart from the minimal constraint that 
the trajectory begin a t x  = 0 o n t h e l i n e  u -- 0 a n d e n d a t x  = ~r o n u  = 0 t o  
satisfy the boundary conditions. 

We remark that there are no strong relative minimizers of  V. That f = 0 is 
not a strong relative minimizer follows by considering the minimizing sequence u k 
discussed in the introduction. On the other hand, if ~ ~ 0, let x0 be a point where 
Ifi] is maximized. Assuming, without loss of  generality, that f (x0)  > 0, it is easily 
proved that for e > 0 and sufficiently small, the function ~e defined by 

fie(x) = min[ f (x ) ,  fi(x0) - e + Ix - x01] 

belongs to W01'1 and satisfies V(fe)  < V(f ) ,  and lime-.0 [[fie - f i [ [= = 0 (see Fig. 2). 
When a = 0 the phase portrait of  Fig. 1 degenerates into horizontal lines. Then any 

solution for which v = Ux = -+ 1 a.e. is an absolute minimizer, while any solution for 
which 1/x/~ < ]v[ < 2 /v /3  is a weak relative minimizer. All these are exponentially 
stable in an appropriate norm, as shown by Pego (1987, Theorem 4.1). We obtain a 
similar exponential stability result for a # 0 in Sect. 3.4, below. 

In contrast to the uncountable continuum of equilibria satisfying (2.10), equations 
(2.4) and (2.5) have only countable sets of  equilibria. This is easily seen directly from 
(2.4a), or, as we now do, by expanding u(x ,  t) in the orthonormal Fourier series 

u(x ,  t) = Z ak( t )  s i n k x ,  (2.16) 
k = l  

and projecting (2.4a) onto each basis function in turn to obtain the infinite set of  
ordinary differential equations: 

/ik + /3k2~k  + k 2 ~-- .2 2 \ k  2 - 1 +  j a j  a t  = 0, k = 1 ,2  . . . .  (2.17) 

for the coefficients a t .  Here ( ')  denotes d() /d t .  In addition to the trivial solution 
a t  = 0, Vk or u -- 0 def U~, the equilibria of  (2.17) are seen to occur in pairs 

~t 

0 
, X 

zo\ ~ ~" Perturbation 

Fig. 2. A small [[. I[~ perturbation lowers V(u) 
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+ 1 / 
a-~ = + -  1 - - -  a j  = O, j C k ,  (2.18) 

- k  k 2'  

for all k such that k 2 > a .  That no "mixed-mode" equilibria exist is clear from 
the requirement, from (2.4a), that any nontrivial equilibrium is an eigenfunction of 
d 2 / d x  2 , or, in terms of the representation (2.16), 

ao 

~ . 2  2 O/ 
j a j  = 1 k2 (2.19) 

j= l  

for any ak ~ 0. Reconstructing the functions from (2.18) via (2.16), we have the 
countable set of  equilibria 

u g  = O, u-~ = 1 - s i n k x ,  k = K , K  + 1 . . . .  (2.20) 

where K = K(cQ = min[k : k 2 - o~ > 0]. We observe that, because 

E2[u k ,  0] = 1 - (2.21) 

-+- 
a p p r o a c h e s  the lower bound 0 as k + % {u~-, 0}e= K is a minimizing sequence for 
this functional. The same conclusions hold for (2.5), because it differs only in the 
dynamical term. The analogue of (2.17) in this case is the first-order equation 

k 2 o~ .2 2 
ak -- 1 + ~ 1 k2 J aj ak .  (2.22) 

2.3 Linear Stabi l i t y  

We now obtain the first results suggestive of the types of asymptotic behavior that 
might be expected. We consider the equations linearized about the equilibria described 
above. 

We first consider Models 2 and 3, because the analysis is elementary. Linearizing 
(2.4a) at the trivial solution u0 --- 0 we find the eigenfunctions {sin l x }  and eigenvalues 

A1 = - ~ ( - - 1  • ~/1-}- 4(12-0~))j~214 

- - r  2 -  , as l --+ ~.  

+ 2 Linearization about the nontrivial states u ; ( x ) ( k  > a )  gives the equation 

"-> 2 -4- -+- 
vtt = (llu;,xll - 1)Vx~ + 2 (u ; ,  x, Vx)ULx x - a v  + f lVxx t ,  

v(0, t) = v(rr, t) = 0, 

(2.23) 

(2.24) 
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and, using (2.20) and the fact that 

f0 / 
+ 2 2 ~ 2 O/ 

[lUg, x[ I = --~. 1 -  cos kx dx = 1--~-5, (2.25) 

(2.24) becomes 

o o)q0 ) Vtt = - - - ~  l~xx ~ ~ ~-5 Vx COS kx dx sin kx - t~v + flVxxt, (2.26) 

which has the eigenfunctions {sin lx} and eigenvalues 

( j A)) fll2 1 + 1 + 
2 - f l 2 / 2  \ k  2 ' 

2 - g '  

l r  

l = k .  

(2.27) 

Clearly all of  these equilibria are unstable, each one having a countable set of  positive 
eigenvalues corresponding to the positive square roots in (2.23) and, for l > k, in 
(2.27). As l ~ o0 for fixed k, the eigenvalues of  (2.27) take the forms 

12 a [ 1  a 

(2.28) 

Hence, every equilibrium u~ is exponentially unstable, albeit increasingly weakly, 
because the positive eigenvalues accumulate on a/[3k 2 from below as l ~ ~ and 

a/flk z ~ O + a s k ~ .  
In the case of  Model 3, a similar computation yields 

l 2 --O~ 
Al -- (2.29) 

1 + /312 

for the trivial solution and 

a ( l  2 -- k 2) ] 

k2(1 + fll2), l ~ k 
- 2 ( l  2 - a )  (2.30) 

(1 + /3l 2) ' l = k 

+ 2 for the equilibria u~(k > a) .  The eigenfunctions are again {sin lx}. These equilibria 
are also all exponentially unstable. 

These results suggest that typical solutions will not approach any of the equilibria 
as t ~ +0% because each equilibrium has a nonempty unstable manifold. In Sects. 
3 and 4 we prove that this is indeed the case. 
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Model 1, unfortunately, does not permit such a detailed analysis; instead we have 
an exponential stability result for solutions linearized about states ~(x) satisfying 

o"(fix) = 3flex - 1 -- or0 > 0 a.e. (2.31) 

and subject to perturbations that do not move or introduce new discontinuities in 
Ux. However, this result is best stated in terms of the transformed variables used in 
our existence and uniqueness theorems, and so we defer it until the end of the next 
section. 

3. Existence and Uniqueness 

The primary purpose of this section is to prove the global existence, uniqueness, and 
regularity of solutions for Models 1 and 2. For Model 1, consider the equations 

utt = (o'(ux) + [3Uxt)x - au ,  u(0, t) = u(Tr, t) = 0, (3.1a, b) 

with initial data 

u(x ,O)  = Uo(X), u t (x ,O)  = u l (x ) ,  0 < x < ~-. (3.1c) 

Definition. Let T > 0. By a solution of  (3.1) on [0, T), we mean a pair 

{u, v} ~ C([0, T ) , H  I • L 2) N CI((0, T ) , H  I • L2), 

with supo_<t< r Ilux(., t)[l~ < C(T), that satisfies {u, v} = {uo, Ul} at t = O. For 
t > O ,  

u~ = v, v~ = ( ~ ( u x )  + [ 3 V x ) x  - a u ,  

taking x-derivatives in the sense of distributions on (0, 70. 

Theorem 3.1. Global existence and uniqueness for  Model 1. 

(a) (Strong solutions) Suppose Uo ~ Wd '~, U l E L 2. Then for any T > O, a unique 
solution o f (3 .1)  on [0, T) exists. This solution is a "strong solution" in the sense 
that it also satisfies 

{U, Ut} ~ C([0, cx~), W01'" X L 2) f-~ CI((0, o~), W~'" X C) 

and 

u.  ~ c((o, ~), c) ,  o-(ux) + 3uxt ~ c((o, ~), c l ) ,  

while (3.1a) holds pointwise for  all t > O, for a.e. x .  Furthermore, we have 

supllu(., t)lll~ < 0% supllut(., t)]ll~ < ~ for all ~- > O, 
t-->0 t>'r 

and the energy identity (2.61) holds for  t > O. 
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(b) (Classical solutions) Suppose uo @ C 2, ua ~ H s for some s > ~/2, and uo(0) = 
Uo(~') = 0 = Ul(0) = ul(0r). Then the solution from part (a) also satisfies 

{U, at} ~ C([0, ~), C 2 x C) ('] CI((0, ~), C 2 x C), 

and (3.1a) holds for all t > O, 0 < x < ~r. 

For Model 2, consider the equations 

u .  = ((llux[[ 2 - 1)Ux + ~uxt )x  - au ,  u(O, t) = u(~r, t) = 0 (3.2a, b) 

with initial data 

u(x,  O) = uo(x), ut(x ,  O) = ul (x) ,  0 < x < 7r. (3.2c) 

The definition of the solution is as for (3.1), but the restriction on ]lux(., t)]]~ is 
dropped. 

Theorem 3.2. Global existence and uniqueness for Model 2. 

(a) Suppose uo E Hlo, Ul E L 2. Then for any T > O, a unique solution o f (3 .2)  on 
[0, T) exists. The solution also satisfies {u, ut} E C1((0, ~), H i • C) and 

u ,  E C((0, ~), C), (]]UxH 2 - 1)Ux + flu~t ~ C((O, ~), C1), 

and (3.2a) holds pointwise for all t > O, for a.e. x .  Moreover, for t >- 0 the 
map {u0, ul} ~ {u(t), ut(t)} is smooth on Hlo • L 2. The energy E2 of  (2.3) is 
continuous for t >- 0 and continuously differentiable for t > 0; (2.62) holds for 
t > O, and for t >- 0 we have 

fo e=(t) - E = ( 0 )  - -  I lux , ( s ) l l  = ds. ( 3 . 3 )  

(b) Suppose uo E W l'~, ul ~ L 2. Then the unique solution to (3.2) of  part (a) also 

satisfies {u, ut} E C([0, oo), Wo 1,~~ x L 2) N CI((0, ~), Wo l'~ • C). 

3.1 Preparatory Transformations 

Both proofs use a transformed equation, as in Pego (1987). We define new variables 
p(x ,  t), q (x ,  t), where 

fo c l fo~fo~ p(x ,  t) = ut(s,  t) ds - --  ut(s,  t) ds dx ,  q = 19 Ux - p, (3.4) 
~r 

observing that Px = ut and that p and q have zero mean. Let B denote the solution 
operator for the Neumann problem Bw = U, where 

Uxx = w - -- w dx  for O < x  < I t ,  
7r 

2 Ux(O, ") = Ux(~r, ") = O, U dx  = O, 
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fOcfO ~ l('rrlx(Y U = w d z d y - - -  w d z d y d x ,  
"/r jo 3o 3 o 

or  

U ( x ,  ") = G ( x ,  y ) w ( y ,  ") dy,  

where the Green's function is 

1 2 ~" 
y - ~--~(x + y 2 ) _  3-' 

G ( x ,  y )  = 1 2 7r 
x -  ~--~(x + y 2 ) - - 3 ,  

Equations (3.1) and (3.2) then transform to 

Pt = ~Pxx  + ~j ( (P + q)/~) ,  

qt = - ~ j ( (P + q)/~) ,  

(3.5a) 

x < y ,  

y < x .  

where the ~j  are 

for (3.1) and 

(3.5b) 

(3.6j) 

~I(W) = O ' ( W ) -  ~ O'(W) d x  - a B w  (3.71) 

~2(w)  = (llwll 2 -  1 ) w -  o~Bw (3.72) 

zt + Az  = f j ( z ) ,  (3.9j) 

where z = {p, q}, Az = { - /3Ap ,  0} and f j ( z )  = ~ j ( (p  + q)//3){1, - 1}, j = 1, 2, 
respectively. Here A denotes the Laplacian. The space X will differ for each case. 
As in Pego (1987), we appeal to results of Henry (1981). 

Note that, unlike Model 1 with a = 0 (Pego 1987, Eq. 2.9), the q equations are not 
ODEs for each x E (0, ~r): they involve nonlocal integral "coupling" terms. However, 
most of the techniques of Pego's paper carry over for these problems. 

In both cases we will treat (3 .6j-3.8)  as an abstract parabolic equation on a Banach 
space X, of the form 

px(O, t) = p~(Tr, t) = O. 

for (3.2). In both cases the boundary conditions become 

(3.8) 
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3.2 Proof of  Theorem 3.1 

The uniqueness of a solution of (3.1) on [0, T) may be proved in a standard fash- 
ion by subtracting two solutions, obtaining energy estimates, and applying Gron- 
wall's inequality. We omit the details. Regarding global existence, we first consider 
the simpler case of classical solutions. Thus, for part (b) we take X = L~ x C 1, 

qr  ~"  

where L2a = {w ~ L 2 I fo w dx = 0} and Cla = {w E C 1 I ~o w dx = 0} are spaces 
of functions having zero mean. Since D((-A)~') C C ] for Y > 4 s-, fa is smooth from 
X ~ = D((-ZX) ~) x Ca 1 to X for �88 < 6 < 1. Also, a is a sectorial operator [Henry 
(1981, Sect. 1.3)]. Now u0 E C 2 and ul E H ~, s > �89 so, via (3.4), the initial data 
{p(x, 0), q(x, 0)} lie in some such X ~, and thus Henry's Theorems 3.3.3 and 3.5.2 
yield a local solution for some T > 0 with 

z E C([0, T), X ~) ('1 C1((0, T), X ~) f3 C((O, T), D(A)) 

for all y < 1. This corresponds to a solution of (3.61-3.8) with 

p E C([0, T), C]) f-1 C1((0, T), C1)f ) C((0, r), H2), 

q E C([0, T), Caa)71 cl((0, T), C1), 

and, via u = fo((P + q)/fl)dx and utt = Pxt: 

{/,/, b/t} ~ C([0, T), C 2 x C) ("l C1((0, T), C 2 x C), bltt ~. C((O, T), C). 

In view of these local results, E1 E C~((O, T), [R) and the energy identity (2.61) 
holds on (0, T). In terms of {p, q}, the energy function is 

E1 [p, q] = + N((P + q)/fl) + + q)/fi dx, (3.10) 

where ~Fl(w) = 1 2 g(w - 1) 2. To obtain global existence, it will suffice to show that 

ILpII  + IlqlL - c ,  independent of t, T, (3.11) 

for then we may estimate 

Ilfl(z)llx --- K(1 + Ilzllx ) 

and appeal to Henry (1981, Corollary 3.3.5). 
Now because E1 is nonincreasing, bounds on the initial data and the form of ~1 

imply that each component of (3.10) is uniformly bounded. Poincar6's inequality then 
yields 

[Loll  -< cl, [[B((p + -< c l ,  (3.12) 

and, using the fact that [o-(w) I --< ~Vl(W) + C2, it follows that 

I ;  ~r(ux)dx C3. (3.13) 
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From (3.61) we have 

qt = -o'((p + q)/~)+ el (3.14) 

where el = (1/Tr)IoCr((p + q)/fl)dx - aB((p + q)/fl)and [[elll~ + [Loll  ~ c4, for 
some Cj independent of  T. We now interpret (3.14) as a classical ODE holding at 
each x ~ [0, ~]  so as to obtain pointwise information about q. For this purpose p 
and q are taken as the unique representatives of the solution that are continuous in x 
and t, supplied by the Sobolev Imbedding Theorem. From o-(w) = w 3 - w we see 
that, for each x ~ [0, ~-], q(x, t)qt(x, t) < 0 for q(x, t) sufficiently large. Thus for 
all x ,  the ODE (3.14) considered at x has a compact,  positively invariant interval. 
So, for some C5, 

Ilq[]~ ~ C5. (3.15) 

Picking C = max[C1, C5] we have (3.11), and so global existence follows. This 
concludes the proof of  part (b). 

To prove part (a) we set X = L ] • L ~~ with initial values in X1/2 = Ha 1 • L ~. 
Henry's results yield a strong local solution of (3.61-3.8) with 

p e C([O, T), Hla) n C1((0, T), C 1) n c((o, r), W2'~), 

q ~ C([O, T), L ~) t~ C1((0, T), L~), 

and hence 

{u,u,} e C([O,T), Wd '~ x L2)N CI((O,T), W~'~ x C)). 

From (3.61) and (3.71) it now follows that 

1 o'(ux)dx + ceBux + Pt E C((O, T), C1). o'(ux) + ~Ux~ = rr 

The energy identity (2.61) holds as before, as do the a priori bounds (3.12)-(3.13). 
To obtain the analogue of (3.15) we use the fact that p,  el ~ C1((0, T), WI'~ The 
local solution q(t) lies in an equivalence class of essentially bounded measurable 
functions. Fixing any to ~ (0, T), we can pick any pointwise-bounded representative 
q~ ~ q(to) and solve (3.14) for every x in [0, 7r] to obtain a unique bounded q*(x, t), 
with q*(x, to) = q~(x); that is, C 1 is in t for each x (on a neighborhood of to that 
may depend on x) ,  but not necessarily C O in x. Again q*(x, t)q~(x, t) < 0 for large 
q*(x, .) implying that sup,>_t0lq*(x, t)l -< C, for some C independent of  x, to and 
T, and therefore that q*(x, ") E Cl([t0, T), ~) with IIq*L -< c .  Finally, considering 
p as given, q is a unique solution of an initial value problem for (3.14) considered as 
an ODE in L ~, so q*(., t) ~ q(t) for all t E [to, T); hence (3.15) holds, and global 
existence follows. This concludes the proof of part (a). [] 

3.3 Proof of Theorem 3.2 

In this case, for par t (a)  w e p i c k X  = L 2 •  2 , w i t h L  2 = { w ~ L  2[Io w d x  = 0} 
as before. Again, A is a sectorial operator. The initial values {u0, Ul} E H01 • L 2 
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correspond to {p,q} ~ H i • (Ha ~ = H 1 fq 2 La), and it may be verified that 
H 1 • L~ = X 1/2 = D((A) v2) C X and f 2 :  X 1/2 --~ X can be seen to be smooth [see 
(3.7z)]. Henry's Theorems 3.3.3 and 3.5.2 then yield a local solution: 

z E C([0, T), X 1/2) ('7 CI((0, T), X "/) n C((O, T), D(A)), 

for all 7 < 1, withX ~' = D((-A)~)• . Moreover, for 7 > �88 we have the inclusion 
C 1 D D((-A)r) .  In terms of {p, q}, this implies that 

p E C([O, T), H i ) n  cl((o, T), C 1) ('~ C((O, T), H2), 
(3.16) 

q E C([0, T), LZa)f3 C1((0, T), L~), 

and using ut = Px, u = fo((P + q ) /~ )dx ,  we have 

. 

u, C([0, T), C2) n cl((o, T), c )n  C((o, T), Hi). 

To obtain global existence we again examine the energy, which is, in terms of 

{P, q}, 

19l 
E2[p, q] = ~l[Oxlle + l(]](p + q ) / ~ l l 2 _  1)2+ 2 (B((p + q)~))x 2. (3.17) 

In view of (3.16), Ee E C([0, T), ~) f3 C'((0, T), ~), and so the energy identities 
(2.62) and (3.3) hold for t < T. Once more, from this and Poincar6's inequality, it 
follows that 

ILolll i< c ,  IIq[I- C, (3.18) 

for some C independent of T. Note that the bound on q is immediate in this case, 
due to the "simpler" form of E2. We conclude that the solution z = {p, q} remains 
bounded in X 1/2 independent of t and T, and hence, via Henry (1981, Corollary 
3.3.5), that it exists globally in time. Smooth dependence on initial data follows 
from Henry (1981, Corollary 3.4.6). Uniqueness is proved as in Theorem 3.1. This 
concludes the proof of part (a). 

For part (b), we take X = L ] • L~ with initial values in X 1/2, corresponding to 
the hypotheses on {u0, ul}. As before, A is sectorial, and f2 : X 1/2 ~ X is smooth. 
Henry's Theorems 3.3.3 and 3.5.2 yield a local solution 

z E C([0, T), X '/2) n C1((0, T), X ~) f3 C((O, T), D(A)) 

for all y < 1, with X ~' = D ( ( - A ) r ) •  L~. Taking 7 > 3 as in part (a), we have local 
existence on [0, T) for some T < ~ with 

p ~ C([0, T), Ha 1) n CI((0, T), C')  fq C((0, T), H2), 

q E C([0, T), L~) fq C1((0, T), L~), 
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or 

U e C([0, T), W 1'') n CI((0, T), W"~ 

U t E C([0, T), L 2) n CI((0, T), C) N C((0, T), H1), 

uxt E C((O,T),L~). 

Now f2 takes bounded sets in X 1/2 to bounded sets in X, and so, from Henry 
(1981, Corollary 3.3.5), solutions will either exist for all time or blow up in the L ~ 
norm in finite time. From part (a) of the theorem, [~o[[ 1 is bounded for all time, and so 
the latter alternative is equivalent to []q][~ --~ o~ in finite time. That this is impossible 
follows from the study of the second component of (3.62) viewed as an ODE in q at 
each x.  As in the proof of Theorem 3.1(b), we have that 

qt = (1 -[[UxH2)q/[3 + e2, (3.19) 

where e2 = (1 -[]uxl]Z)p/~ - aB((p + q)fi) with p, e2 E Cl((0, T ) , H  1) and 
(1 -][uxll 2) E c1((0, T), R). As before, a nonincreasing E2 together with Poincar6's 
inequality yields 

0[L + I(1 -Iluxll2)l + Ile21L -< C, (3.20) 

for some C independent of T. Fixing any to E (0, T), we can once again pick any 
pointwise-bounded representative q~ E q(to) and solve (3.19) for every x in [0, 7r] 
to obtain a unique bounded q*(x, t) on a neighborhood of to with q*(x, to) = q~(x). 
From the form of (3.19), (3.20), and Gronwall's inequality, it follows that for no x can 
q*(x, t) blow up in finite time; hence q*(x, .) E cl([ t0,  T), ~). From the uniqueness 
of q in L ~, q*(t) E q(t) for all t E [to, T); hence [Iq(t)][~ cannot blow up in finite 
time, implying global existence. This completes the proof of part (b). [] 

3.4 Linear Stability for  Model I 

As we promised in Sect. 2.3, we now give a linearization result for (2.2). It is more 
convenient to state it in terms of the transformed system (3.61-3.8). It is a modest 
generalization of Theorem 4.1 of Pego (1987), but now we have a simpler proof. 

Theorem 3.3. Linear Stability for Model 1 
Suppose fi(x) is a stationary solution of (2.2) with possibly discontinuous strain, 

satisfying 

cr'(~tx) = 3~t 2 - 1 >- O'o > 0 a.e. 

Then, for any 8 < min[cro/fl,/3/2] there exists Co > 0 such that a unique solution 
{p, q} of (3.61-3.8) exists globally for t > 0 and satisfies 

ILo(t)ll, -< Coe- 1b(o)ll , }lq(t) -/3Ox[[~ -< C o e - ~ ' l l q ( O )  - #~11~, 

provided that b(0)lll and Ilq(0) - ~ x l l ~  are sufficiently small and f o P ( X ,  O)dx = 
7g 

0 = fo q(x,O) dx .  
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Remark. Note that we require that the strain perturbation (q - f lSx)  be small in the 
L = norm. This implies that new strain discontinuities cannot be introduced, and it 
corresponds to the notion of  a weak relative minimizer (Sect. 2.3). This stability 
result is difficult to interpret physically, since the class of  permissible perturbations is 
restricted. However, see Sect. 4.4. 

Proof. As in the proof of  Theorem 3.1, we employ the abstract form (3.91) of (3.61- 
3.8) with X = L ] • L~. Appealing tO Theorem 5.1.1. of  Henry (1981), it suffices 
to show that the spectrum of the linear operator A - B1 lies in {a E C [ ReA -> 6}, 
where B1 is the linearization of f l ,  

BI(p, q) = (o"(Sx)w - ~ o"(f ix)w dx  - aBw){1,  - 1 } ,  (3.21) 

with w = (p + q)/fi .  
We first show that no eigenvalue of A - B1 satisfies ReA < 6. Suppose that A 

is such an eigenvalue with eigenfunction z = {p, q}. Then both real and imaginary 
parts of  p lie in H 2, and the eigenvalue problem (A - B1)z = Az for the linearized 
equation [from (3.61)] yields 

fo - flPxx - o"(Sx)w + _1 o"(Sx)W dx  + ceBw = Ap, (3.22a) 
7"g 

tfo' o"(Sx)W - -~ cr'(~x)W d x  - a B w  = Aq. (3.22b) 

Thus A(p + q)/~ = Aw = - p x ~ ,  and because Bpxx = p [see (3.5)] we have, from 
(3.22a), 

fo (A 2 + ce)p + (A/8 - o"(ftx)~Oxx + _1 o"(~x)pxx dx  = O. (3.23) 
7 7 "  

Now let A = a + ib,  multiply (3.23) by/3xx (/3 denotes complex conjugate), and 
integrate to obtain 

fO{  (a2 - b2 + 2 iab  + a)[px] 2 

= 0 .  

(3.24) 

Note that the final term in (3.23) does not appear in (3.24) because we work in L 2 
q'g 7 r  _ 

and Io Pxx dx  = - (1 /A)  f o  w dx  = Io Pxx d x  = 0. Taking real and imaginary 
parts, this yields 

- - (a  2 -- b e + ce)[~xll 2 + ( a f t  - o-'(~x))lpxx[ 2 d x  = O, (3.25a) 

b{-2al~Ox]l 2 +/3]~0xxll 2} = O. (3.25b) 
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If  b = 0, then clearly a -> (min [o-'(Ux(X))])/[3 = o'0//3, from (3.25a), and if b # 0, 
Poincar6's inequality and (3.25b) imply that a >- /3/2. Thus ReA - rain[o'0//3,/3/2], 
as claimed. 

We next show that the essential spectrum (i.e., the spectrum with discrete eigen- 
values of  finite multiplicity deleted) also lies in {A ~ C I Re A >- 6}. We split 
A - B1 = A - B2 -- B3 with 

B2(p, q ) =  o " ( ~ x ) ( ~ ) { l , - 1 } ,  

(o- (~) 110~ ' ~ ){ - - -  o - ( U x ) W d x - a B w  1, -1} ,  B3(p, q) = '(fix) 7r 

with w = (/9 + q)//3, as before. The resolvent of A - B 2  may be explicitly characterized 
for ReA < min(o-0//3,/3) as 

(A - a + Be) -1 = [(A + f lA)  -1 - ( A  + / 3 A ) - 1 ( O - ' / / 3 ) ( A  - 0"//3) -1 ] 
0 (A - o-7/3) -1 " 

Since B3 is bounded in p and compact in q and (A + f lA)  -1 is compact,  it follows that 
B3(A - A + B2) -1 is compact. Thus A - B2 - B3 is a relatively compact perturbation 
of A - B2 and has the same essential spectrum as A - B2, contained in (A E C [ 

Re A --> min[o-0//3,/3]]. [] 

4. Asymptotic Behavior 

In this section we obtain several results that partially characterize the asymptotic 
behavior of  all solutions of the three model equations. 

4.1 Model 1 Does Not Minimize Energy 

Pego (1987, Theorem 5.4) showed that an equation similar to (2.2), with a = 0 
and boundary conditions (o-(ux) + [3Uxt)(rr, t) -- P replacing u(r t) = 0, exhibited 
convergence to equilibria having discontinuous strain; moreover, he showed that, if 
the (smooth) initial strain data Uo,x(X) have "near discontinuities" at x l, x2  . . . .  then 
these "sharpen up" and do not move much (Pego 1987, Theorem 6.1). When a # 0 
the energy El[U] contains the displacement term ( /2)11.112, and one naturally asks if 
this can promote the creation of new discontinuities not present in the initial data. 
In particular, do "typical" solutions realize global minimizing sequences? The latter 
behavior is excluded by the following result. 

Theorem 4.1. There is no solution of(2.2)  that minimizes energy globally as t ~ 0% 
i.e., there is no solution such that E l ( t )  --~ 0 as t --* oo. 

Proof.  Again we work with the transformed equation (3.61-3.8). Assume that some 
(global) solution {p, q} of (3.61-3.8) satisfies limt--,oo El(p ,  q) = 0 [cf. (3.10)]. Then 

I[~xl[ 2 - ~  O, I[ull-~ O, and Ux - p + q -~ •  in measure (4.1) /3 
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qr  

as t ~ o~; hence, via Poincar6's inequality and the facts that ~oP dx = Io Bu~ dx = 
O, (Bux)x = u, 

ILolI  0, tls((p + q)//3)ll~ ~ 0. (4.2) 

By Theorem 3.1(a), ux(., t) is bounded in L ~, and so o-(u~) is bounded in L ~176 Since, 
by (4.1), o-(ux) --> 0 in measure, it follows from the bounded convergence theorem 
that 

1 f~r(r(p -q- q)dx-- '>0 
~-J0 /3 

as t ~ oo. (4.3) 

As in the proof of  Theorem 3.1(a), we take q*(x, t) to be a classical solution of  
(3.14) with q*(., t) ~ q(t) for t ~ to > 0. The results (4.2) and (4.3) imply that, 
for each x ,  

p ( x , t ) ~ O  and e l ( x , t ) ~ O  as t ~ o %  (4.4) 

and so, from (3.14) viewed as an "asymptotically autonomous" ODE, q*(x, t) con- 
verges for each x E (0, ~-) as t --> oo (cf. Pego 1987, Lemma 5.5). In fact let 

q-  = l iminfq*(x,  t), q+ = l imsupq*(x,  t). (4.5) 
t ---->co t _..> o o 

Then for any qo E (q_, q+) there exist sequences t~ ~ co as i ~ oo with 
q*(x, t~) = qo and - q t ( x ,  t~) > 0. From (3.14) we see that o'(qo//3) 0. But ~r 
is not constant on any nontrivial interval, and so qo -- q -  = q+ = limt--,oo q*(x, t). 

Finally, because q*(x, t) converges as t --~ oo, by (4.4) so does ux(x, t). But from 
the boundedness of  Ux in L ~176 and (4. lb), it follows that 

l i m u x ( x , t )  = 0 a . e .  
t ----~o0 

This contradicts (4. lc). 

Remarks. 1. Theorems 3.3 and 4.1 suggest that every solution of  (2.2) converges to 
some stationary solution as t ~ oo, but we have been unable to prove this. If  this 
is true, one would further expect that, for generic initial data, the limiting stationary 
solution is a weak relative minimizer; recall that there are uncountably many such 
minimizers (see Sect. 2.2). 

2. Following the arguments of  Pego (1987, Sect. 5), one can show that ILoxll 2 ~ 0 
for any solution, so that, for large t, q approximately satisfies 

qt = -o'(q/f l)  + -~ o'(q//3) dx + aBq//3. (4.6) 

This is an interesting equation in its own right. One can ask if almost all solutions of  
(4.6) [or of  (2.2) or (3.61)] converge to a stationary state q~, p = 0 with o-'(qoo) > 0 
a.e., as the linearization result of  Theorem 3.3 suggests. Do "new" discontinuities 
appear in q? See Sect. 4.4. 
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4.2 Almost All Solutions of Model 2 Do Minimize Energy 

We first obtain a dichotomy that implies either that solutions behave in a "finite- 
dimensional" fashion, essentially involving only a finite set of  Fourier modes, or that 
all Fourier modes are active, and energy cascades out to infinity in wavenumber space. 
We then show that almost all initial data lead to the latter behavior. 

Proposition 4.2. Let {u, ut} @ X = H~ x L 2 solve (2.4). Then as t ~ + %  either 

{u, ut} ~ {u~, 0} strongly in X for  some equilibrium u~ o f  (2.20) and E2(t) 
(c~/2k2)[1 - (a/2k2)], or 

I[u,II ~ o, u ~ 0 weakly in H~, 

Iluxll ~ 1, and Ee(t)  ---> O. 

Proof. We first recall the uniform bounds established in the proof of  Theorem 3.2, 
based on the fact that E2[u( ' ,  t)] is nonincreasing in t and increases in Iluxt[ for 

Iluxll > 1, namely, 

I1~11, Iluxll, Ilutll < c (determined by initial data). (4.7) 

Since (3.3) holds and E2 is bounded below (2.9b), we also have 

f [  llux~llZ(t) dr < ~, (4.8) 

and, via Poincar6's inequality, 

Io ~ Ilu,ll2(t) at < ~ ;  (4.9) 

hence, for any r > 0, 

t + r  

lim IlUtII2(S) MS = 0. (4.10) 
t--+oa l t 

Also, (2.62) and the lower bound E2 --> 0 imply that E2(t) approaches a limit, say 
E ~ , a s  t ~  + ~ .  

We shall use three lemmas that characterize the asymptotic behavior of  u t and 

II,xll 2 and that we prove later. Throughout r > 0 is fixed. 

L 2 

L e m m a  4.3. (i) ut ~ 0 as t -+ co; (ii) lim>-,~(ut, u) = 0. 

L e m m a  4.4. 

l i m  I luA 2 r = o .  
t -->oo t 
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L e m m a  4.5. 

and 

 imfr t Iluxll4(s) ds - ~-I[Uxllg(t) = 0 
dt 

{f'+ t l im II.[IZ(s) d s  - ,l[ull2(t) = 0. 
t " ~  c~ 3 t 

In addition to these lemmas we use various manipulations of  the energy identity, 
which are justified in view of  Theorem 3.2. We first compute 

Z { ( U t ,  u)  + Iluxll 2} = Ilutll 2 + ( u . ,  u) + t3(Ux, Ux,) (4.11) 

_- iru,ii 2 _ [luxll 4 + iluxl[2 _ .llul12 de=f F(t) ,  

using the evolution equation (2.2a) and integration by parts. From (2.3), we have 

r ( 0  -= 211.~112 - Iluxl[ 4 - 2 E 2 ( 0  + 2 '  (4.12) 

and so, integrating (4.11) we obtain, for any fixed ~- > 0, 

f(/,tt, b/)..}_ ~]]UXH2}[,+, r /'t+'r[" Z '  "" ~} =lluxll4(s) - 2E2(s) + ds. = j, (4.13) 

Taking the limit t ~ w and using (4.10), Lemmas 4.3-4.5,  and the fact that E2(t) 
E~, yields 

0 = ~ t__,~" lira Iluxll4(t) + 2 t~j t l i  , ~ - ds, 

or 

lim Iluxlr = ~/1 - 4 E ~ .  ( 4 . 1 4 )  
t --->~ 

On the other hand, integrating ( 4 . 1 1 )  without using (4.12) and taking the limit once 
more yields 

0 = ft t+~" ) i m  (lludl 2 - I [ux[I  4 + Iluxll 2 - ~l lu[12}(s)as ,  

or, with (4.10), (4.14), and Lemma 4.5, 

c~- lim Ilul12(0 = ~-( ~/1 - 4E~ - 1 + 4E~). 
t---> r 

(4 .15)  

Consequently, from the definition of  E~ in (2.3), we have 

( 1 +  ) E= = lim E2(t) = lim Ilutll 2 + 1 - 4E~ - 1) 2 -[- O/ ~/1 4E~ 4Eo~ 
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which implies that 

Ilk,lib(t) - - ,  0 as t ~ ~ .  ( 4 . 1 6 )  

It remains to describe the behavior corresponding to different limits E~. To do 
this we turn to the Galerkin projection (2.17). Since ak = (u, s inkx) ,  Theorem 3.2 
implies that ak is C ~ for t -> 0 and C 2 for t > 0 and that (2.17) holds for all t > 0. 

�9 2 2 ~/1 -- 4E~, and so the system (2.17) is asymptotic Moreover ~ ' . j= l  J a j  = Iluxll 2 --,  
to the infinite set of  uncoupled linear ODEs, each one having the form 

2(~ gtk + [3k2Ctk + k -s - 1 + ak = O, k = 1, 2 . . . .  

and having only the equilibrium {ak,  t i k } =  {0, 0} provided that 

(4.17) 

a 

N o w  s i n c e  Ilull = ~ = ~ = Z 1  a k and Ilu,II = = ~"1 ak are uniformly bounded by (4.7), 
each {ak,  irk} remains bounded for all t. A standard result for asymptotically au- 
tonomous ODEs implies that, for fixed k, the m-limit set of  the kth equation in 
(2.17) is invariant for the limiting autonomous equation (4.17); cf. Ball (1978, Sec- 
tion 4). But provided (4.18) holds, the only such invariant set is {ak,  hk} = {0, 0}. 
Hence [ak( t ) ,  h~(t)} --~ 0 and since Ux is bounded, it follows that 

lim Ilull2(t) = 0. ( 4 . 1 9 )  
t ----> oz 

In that case, from (2.3) again we find that: 

1 
E= = ~(~/1 - 4E~ - 1) 2 ~ E~ = + ~  or 0. (4.20) 

The first case corresponds to convergence to the trivial solution uff, and, via (4.14), 
we have [lUxll--~ 0 so that u --~ 0 strongly in H~. In the second case, from (4.14) 
and (4.15), 

limllUxll2(t) = 1 and limlluli2(t) = 0. (4.21) 
t - - - ~  t - ~  

This, together with (4.16), establishes the second alternative of  the proposition. 
To deal with the remaining cases of  convergence to a nontrivial equilibrium, sup- 

pose (4.18) is violated and E~ = (a/2k2)(1 - (a/2kZ))  for some k --> 1. Then, by 
the previous argument, a j  ~ 0 for all j ~ k, and 

u /5-  \ Hx 
- a ~ ( t ) ~ / ~  sin k x  ) - -  0.  ( 4 . 2 2 )  

Thus Ilu - ak(t)(2,j(,j(,j(,j(,j(,j(~sinkxll 2 --" 0 and Ilull 2 - I l a k ( t ) ~ s i n k x [ I  2 --~ 0 as 
t ~ ~.  However, from (4.15) we see that 

I1.11 z ~ - ~ - ~ ~ ' 7  
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so that 

~ 

ak(t)---~ +-+- 1 -- k--- ~, 

and we have strong convergence in H i to one of  the equilibria u k,  k --> 1 of (2.20). 
1 This, with (4.16) and the case E~ = +~  of  (4.20) concludes the proof of  the first 

alternative. [] 

Proof of  Lemma 4.3. Pick 05 ~ C~ with 110511 -- g o  and let f ( t )  = (ut, 05)2. Then, 
by the Schwarz inequality and (4.9) 

fo f ( t )  d t  ~ go~llu,ll = dt < ~. (4.24) 

However, 

d f  
dt 

- 2(u,. 05)(u.. 05) = 2(ut. 05)([(llu~ll 2 -  1)Uxx - a u  + ~UxxtI, @ 

= 2 ( u t ,  05)((1 -Iluxll2)(ux, 6 ~ )  - o,(u,  05) + t 3 ( u .  05~x)) 

and so, by (4.7) 

where  1105xll = K1, 

d-~t ~ 2CKo(I1 C2]CK, + aCKo + ~CK2) 

1105xA = K2. Thus IJ~l is bounded, and f is uniformly continuous 
on 0 --< t < 0% so f ( t )  ~ 0 as t ~ o% in view of  (4.24). 

L2 
Next suppose ut --~ 0 as t ~ ~,  so that there is a sequence t j  --~ oo and a ~0 E L 2 

such that, for some e 

I(u,, q,)(tj)l -> e > 0 Vj .  

If  we pick 05 E C~ with 105 - ~0 1 < e/2C a.e., then, because (ut, ~O)(tj) = 
(ut, 05)(t j)  + (ut, 0 - 05)(t j) ,  we have 

e < f ( t j )  1/2 + C 2 C ,  

which yields a contradiction, for f ( t j )  ~ 0 as j ~ ~. This establishes (i); (ii) 
follows because u is bounded in H i and is thus relatively compact in L 2. [] 

Proof of Lemma 4.4. Using the Schwarz inequality twice, we have 

= UxI[2(S) ds = 2(Ux, Uxt)(s) ds ll.xii 2 , ~, 

ft t+'r r t+'r <-- 2 ]lUxi[]lUxtl](s)ds <- 2 ClluxtU(s)ds -It 

But the last term approaches zero as t ~ % by (4.8). [] 
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Proof of Lemma 4.5. As above, we compute 

ft'+'~llUxll4(s)ds-rllu~ll4(t) = f[+ {ll, ll4  )-Iluxll4(,)}as 
= ftt+r{Itsff-~HUxi[g(r)dr]ds 

4lluxll2(r)(ux, Ux,)(r) = 5 { f 5  

-- 4 at tat c3]IUx'll(r) 

ft t+q" <-- 4C 3r ]tUx,ll(r) dr 

IlUx,II 2 <_ 4C3r3/2(ftt+'~ dr) 1/2. 

The first statement follows from the observation that [ t+~ ,t IlUxtH 2 dr --+ 0 as t -+  m, 
as in Lemma 4.4. The proof of  the second statement follows in a similar fashion, 
considering 

f t t+r{ftSdllu]le(r)dr)ds 

as t -+  ~ and using the fact that (u, ut) --+ O, from Lemma 4.3. [] 

Remark. The use of Lemmas 4.3-4.5  in establishing (4.14) and (4.16) can be avoided 
by appeal to the first conclusion of  Proposition 4.11, to follow. But since the proof of 
the latter is considerably more difficult, we include the elementary arguments above. 

Proposition 4.2 establishes a dichotomy. It is easy to exhibit solutions that realize 
the first alternative. From the Galerkin representation (2.17) of the evolution equation, 
it is clear that each 2N-dimensional subspace of  the form XN C X = H01 x L 2 with 
XN {{~/, y} ] {/~, y} N = = Z j=l {a j ,  b j}s in jx}  is invariant. Suppose that we select 
initial data containing only a finite set of  Fourier modes, so that aj(O) = ~tj(O) = 0 
for all j > N and 

uo(x) = ~ _ a  ~ sinkx, ua(x) = Z a k  s inkx;  (4.25) 
1 1 

then the solution {u, ut} will remain in XN for all t --> 0. Now XN contains a finite 
collection of  equilibria; specifically, it contains all those u ~ with indices satisfying 
, f ~  < k -< N [cf. (2.20)1, along with the trivial solution u0. Examination of  the 

eigenvalues and eigenfunctions of  (2.23-2.27) reveals that, restricted to XN, the pair 
of equilibria u~ having "lowest energy" are linearly stable, provided c~ < N 2 and 
they exist. All other equilibria have unstable manifolds that intersect XN in nonempty 
sets, unless o~ ~ N 2, in which case the unique equilibrium u0 -- 0 in XN is stable in 
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that subspace. (A center manifold calculation--cf.  Henry (198 1, Chap. 6)- -covers  the 
cases c~ = N 2.) We conclude that almost all initial data satisfying (4.25) will approach 
u u if a < N 2 and u0 if ~ -> N 2. Thus the first alternative essentially corresponds to 
finite-dimensional behavior, in which the initial data lie in the stable manifold of  an 
equilibrium contained in some XN , N < o~. 

It is tempting to argue that, since typical initial data contain arbitrarily high Fourier 
wavenumbers, almost all solutions will contain "unstable" Fourier components and 
hence realize the second alternative. That this is indeed the case is the content of  the 
next result. 

T h e o r e m  4.6. Let X = H 1 x L 2. Then X is the disjoint union of  two dense sets At ,  
A2, of  first and second category, respectively, such that: 

(i) /f {u0, ul} E A1, then {u, ut} ~ 05 strongly in X ,  for some 05 = {u~,0} or 
{u~-, 0}; 

(ii) /f{u0, Ul} E A2, then l i m t ~ E z [ u ,  ut] = O. 

Before proving this theorem, we need a little notation. Let T(t)  : X ~ X,  X = 
H~ x L 2, be the solution operator given by Theorem 3.2: 

(u(t), u,(t)} = T(t){u0, ul}. 

Let 05 E X denote one of the equilibria of  (2.20) and let 

WS(05) = { ~0 E X T(t)tO ~ 05 as t ~ oo strongly inX}  

denote its stable manifold. We will show that WS(05) is a set of  first category in 
X. Hence the union of stable manifolds of  all equilibria is a set of  first category in X. 
The theorem follows from this and Proposition 4.2. 

Recall that a set of  first category is a countable union of nowhere dense sets. 
This result therefore implies that, apart from a meager set of  initial data, so- 
lutions approach no equilibrium and do indeed minimize energy, realizing the 
second alternative of  Proposition 4.2. As in the preceding discussion, we use 
the fact that T(t )  has the explicitly known finite-dimensional invariant sub- 
spaces X x [{U, V}I{U, V} N = = ~ _ ~ j = l { a j ,  b j } s i n j x } ,  so that ~p E X u if and only if 
T( t )~  E XN. The eigenvalue computations of  (2.23-2.27) show that 05 = {u~, 0} is 
linearly unstable in XN for N > k ( >  V/-~), and 05 = {0, 0} is linearly unstable in XN 
for N > ~/-~. The fact that the union of the stable manifolds forms a set of  first 
category will follow from: 

Lemma 4.7. For any 05 and N sufficiently large, WS(05) N XN. is of  first category in 
XN. 

Proof. XN is finite-dimensional, so we may invoke the center-stable manifold theorem 
(Pliss 1964; Kelley 1967; Carr 1981) to construct a locally invariant manifold W~(05) 
in XN. This manifold contains 05 such that if ~O E WS(05) N XN, then for t sufficiently 
large, T(t)tp ~ W~v(05). But because XN is finite-dimensional and 05 is linearly unstable 
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in  XN, we may choose W~(05) to be closed and nowhere dense. Now 

WS(05) N XN : U T(m)-lWN(05) 
m>_O 

and because T(m) is a homeomorphism o n  XN, T(m)-lW~v(05) is also closed and 
nowhere dense for each m, and consequently WS(05) N XN is of first category, as 
claimed. [] 

Proof of Theorem 4.6. Let B0 be a closed ball containing 05 in its interior. B0 may 
be chosen so small that 05 is the only equilibrium point in B0 (since equilibria are 
isolated), and I[uxll < 1 for u E B0 (using (2.25)). Define 

W~(05, B0) = {~O E B0 I T(t)6 E Bo for all t > 0}. 

By continuous dependence this set is clearly closed, and by Proposition 4.2 it follows 
that W~(05, B0) C WS(05). Hence WS(05, B0) defines a local stable manifold for 05, and 

WS(05) = U T(m)-IW~(05'B~ 
m_>l 

is the union of closed sets. We claim that for each m, T(m)-1WS(05, Bo) is nowhere 

dense. Suppose instead that this set contains some open ball B. Since U = N=I XN is 
dense in X, we may choose N as large as desired so that B n XN is an open nonempty 
set in XN. But then B n XN is contained in WS(05) n XN, contradicting Lemma 
4.7. This establishes the claim, and WS(05) is a set of first category because UM_>I 
T(m)-IW s (05, Bo) is the countable union of nowhere dense sets. Taking the countable 
union of stable manifolds of all equilibria {u~, 0} delivers the desired set Aa of the 
theorem. That A1 is dense follows from the density of U~v= iXu. The properties of 
A2, the complement of A1, follow directly. [] 

This is a striking result. Arbitrary initial data in X can be approximated as closely 
as we wish by data in Al or A2, but the asymptotic behavior of the resulting solutions 
differs utterly in the strong topology. The numerical simulations of Sect. 6, which can 
of course only realize data in A1, nonetheless illustrate this fact in their suggestion 
of a "crossover time", after which a solution started in A1 settles toward a classical 
equilibrium, whereas one started arbitrarily close but in A2 continues to explore a 
minimizing sequence. The asymptotics of this process are derived in Sect. 5. 

4.3 Model 3 Also Develops Fine Structure 

Equation (2.5) shares many features of the second model, (2.4), including, as we 
have seen, its countable set of unstable equilibria. We have not included detailed 
existence and uniqueness results for this pseudo-parabolic problem, because our main 
concern is with "mechanical" systems having an inertial driving term u tt. However, 
it is perhaps of interest to consider this problem's asymptotic behavior. For a related 
"local" problem, see Novick-Cohen and Pego (1990). 
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Inverting the operator I - f l ( c 9 2 / c g x 2 ) ,  (2.5) with boundary conditions (2.4b) can 
be written as 

/3ut = -u(l]ux[[ 2 - 1) + (I - 13 - 1) - a/3), (4.26) 

and considered as an ODE on H01 . It may be shown that solutions are smooth in t and 
exist globally for t --> 0, so that the identity (2.8) makes sense for the energy E3 of  
(2.7). As (2.29-2.30) show, the equilibria are all linearly unstable, and the Galerkin 
projection (2.22) reveals that each N-dimensional subspace XN = span{sin j x}N= 1 C 
H 1 is invariant under the flow generated by (4.26). Because the dynamics of  each 

c~ 

individual mode is now one-dimensional, the characterization of U N = 1 XN' which is 
dense in H01 , is somewhat simpler than for Model 2. Specifically, we have 

T h e o r e m  4.8. Consider (2.5) with initial data u(x ,  O) = uo: 

(a) Suppose uo can be expressed as a finite Fourier sine series 

N 
uo = ~ aj  sin j x ,  aN ~ O, (4.27) 

j = l  

then, i f  N 2 <-- a,  u (x ,  t) ~ 0 strongly in H 1, whereas if N 2 > a, u(x ,  t) ~ u N 
if  aN > 0 or aN < 0, respectively. 

(b) For any initial data with infinitely many nonzero Fourier coefficients, u(x ,  t) ~ 0 
weakly in H 1 and minimizes energy as it does so. 

Proof. The eigenvalue calculations of  (2.29-2.30) and the observations regarding the 
Galerkin projection (2.22) show that each subspace XN = span{sin j x}N= 1 is invariant 
and equal to the tangent space of the stable manifolds of u~ and u N, the equilibria 
of  (2.20). Thus XN contains the entire stable manifolds of  u N. From (2.22) we see 
that no coefficient aj(t) c a n  change sign, for if aj  ---- 0 then hj  = 0; hence these 
manifolds are explicitly given by 

W (uN) = uo = a j s i n j x  with 2 a n  > 0  . (4.28) 
j = l  

Otherwise, from (2.29), i f a  < 1 WS(0) = O and, i f 0  < N 2 --< a < ( N +  1) 2, u -= 0 
is the only equilibrium in XN, SO W'(0)  = XN. This proves part (a). 

For part (b) we proceed as in the proof of  Proposition 4.2, observing that, from 
the energy E3 (2.7) and the identity (2.8): 

E3(t) ~ E~ as t --* ~ (4.29) 

and 

Ilux[I + {llu,II 2 +/311ux,ll2}(s) ds <- C, (4.30) 
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o~ 2 
for some C determined by the initial data. From (2.8) one concludes that I0 {11",11 + 
~ll.x,ll2}(s) < oo; the fact that, because we have an evolution equation in Ho l, I1.,112 
and IlUxt]l 2 have bounded time derivatives implies that 

Ilu,(t)ll + II.x,(t)ll ~ 0 as t ~ oo. (4.31) 

However, we compute 

~(~ll.lld 1 2 + ~11.,<11 ~) = (u, . , )+ e(.x, .~,) 
= (.. [(11.~11 ~ -  1)u~x - , ~ .  + :8 .xx , } ) -  ,8(., .xx,) 

= - ( l l . x l l  ~ - 1 ) l l . x l l  ~ - <~t1.11 ~ 

1 2E3(t) ~lluxll ~, 
2 

(4.32) 

1 and this quantity must approach zero as t ~ +w in view of (4.31). Thus 0 --< E= --< 
and 

li,.,x(,)ll ~ ~ W1 - 4E~ and 211.(,)11 ~ ~ ~-(.,/1 - 4E= - 1  + 4E=) (4.33) 

as t ~ 0% the latter from examination of E3 (2.7). 
From the Galerkin projection (2.22) and the hypothesis that there are infinitely 

many nonzero aj  satisfying 

( 
lira @(t)  _ j2  1 j2 (4.34) 
, - ->~  a j ( t )  1 + ~ j 2  ' 

and because aj  remains bounded for each j (NuN 2 =  Z a~), we must have 
, j l -  4E= > 1 - ( a / j  z) for infinitely many j .  Hence E~ = 0 and 11uii2---> 0, 
]].xlr -+  1 as t ~ +co. This concludes the proof of  part (b). [] 

Remarks. Equation (2.5) written as 

I 0 - ~ ) u ,  = (11.~112 - 1)Uxx - o~u (4.35) 

is a gradient dynamical system for the energy 

E3t,.,] = �88 ~ -  1) ~ + 211.11 ~ (4.36) 

in X = H01 equipped with the inner product 

(u, v) = (u, v) + ~(Ux, vx). (4.37) 
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Novick-Cohen and Pego (1990) have considered a related "local" gradient system 
of the form 

ut = A ( f ( u )  + rut)  (4.38) 

with nonmonotonic f and shown that global minimization typically fails to occur in 
this case. 

4.4 Jumps Do Not Move 

Theorem 3.3 shows that equilibrium solutions of Model 1 having discontinuous strain 
can be exponentially (dynamically) stable in an appropriate norm, and Theorem 4.1 
shows that the final equilibrium state of a typical process governed by this model 
never minimizes energy globally. There are several open questions (cf. the remarks 
of Sect. 4.1)i Theorem 4.10 gives a little more information. In particular, it implies 
that jumps in the initial data for ux cannot disappear or move in finite time, nor can 
new jumps be created in finite time. 

Because we only have ux �9 L ~ from Theorems 3.1-3.2 and we want to use 
the ODE for q much as in the global existence proofs, we need to define a notion of 
pointwise continuity for an L ~ function. We do this in terms of bounded representatives 
of such functions. 

Definition 4.9. For any f E L ~ we will call f*  a bounded representative of f if f *  
is a pointwise-defined and bounded measurable function belonging to the equivalence 
class of f .  Let f E L=([0, 7r], R). We will call f essentially continuous at the point 

x0 E [0, ~'] if there exists a bounded representative f*  �9 f that is continuous at 
x0, and we will call it essentially discontinuous at xo �9 [0, 7r] if it is not essentially 
continuous there. 

Much as in Pego (1987), we can use the ODE interpretation of the q component 
of the solution to show that essential discontinuities present in q(to) (i.e., Ux) for 
any to -> 0 cannot be created or destroyed in finite positive time and so are unable to 
migrate into a region of essential continuity in u x. This is an interesting characteristic 
of an ODE coupled to a parabolic partial differential equation [cf. Hoff and Smoller 
(1985)]. 

Theorem 4.10. Persistence of  Strain Discontinuities: Let {u, u t} be a strong solution 
to (2.2) or (2.4) with initial data {u0, ul} ~ W 1'~0 x L 2. Then, if for any to >-- O, xo 
is a point of  essential continuity of  u x (to), it will remain so for all t > to. Likewise, 
if xo is a point of  essential discontinuity of  Ux(to), it will remain so for all t > to. 

Proof. Theorems 3. l(a) and 3.2(b) guarantee the existence of a unique solution 

{u, u,} �9 c([0, w 1," • L 2) n C'((0, Wo"" • C) 

o r  

{p,q} �9 C1((0, o~), H1) x Ca((O,w),L ~) 
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for (2.2) and (2.4), respectively. As in the proofs of  Theorems 3.1(a) and 3.2(b), we 
write the evolution of  the q component as an ODE in the forms 

qt = -cr((p + q)/Ci)+ el (3.14) 

and 

q, : (1 - I l u x l l 2 ) q / f  + e2 (3.19) 

with el and e2 as before. We know that el, e2, and p E C1((0, ~), C) and that 
q ~ C1((0, ~), L~). Since flUx = p + q and p ~ Ha ~ for t > -- 0, it follows that a point 
of essential continuity (resp. discontinuity) of ux (t - 0) corresponds to a point of 
essential continuity (resp. discontinuity) of q. For any to -> 0, let q~ ~ q(to) be a 
bounded representative of  q(to). As before, let q*(x, t) denote the unique solution at 
each x of  the respective ODE satisfying q*(x, to) = q*(to). As was shown in the 
global existence proofs, q*(x, t) is bounded for all t -> to, and by uniqueness of  q 
in L = we must have that q*(., t) E q(t)  for all t - to. To prove the theorem, we 
therefore only need to show that, if xo is a point of continuity (or discontinuity) of q~, 
then it must remain so for all t -> to. Now assume that q~ is continuous at xo, i.e., 
for any sequence xn ~ Xo, qo(Xn) ~ q~(x) as n --~ ~. Viewing x as a parameter 
on which solutions of  the ODE depend, it follows from continuous dependence of the 
solution on initial data and parameters that q*(x~, t) --~ q*(x, t) as n ~ w for any 
t > to. Therefore q*(x, t) cannot develop a discontinuity at (xo, t) for t >-- to. 

On the other hand, if q~ is discontinuous at xo, and we assume that for some 
tl > to, q*(x, ta) is continuous at xo, then running the ODE backward leads to a 
violation of continuous dependence on x of  the data at t l, yielding a contradiction 
and completing the proof. [] 

4.5 Decay o f  Strain Rates for  Model  2 

In Sect. 5 it will be useful to have more information regarding the asymptotic behavior 
of the strain rate and its time derivative for weak solutions of Model 2. 

Proposi t ion 4.11. Suppose {u, ut} is a weak solution of  (2.4) as given by Theorem 
3.2a. Then as t ~ ~ we have 

[[uxtll--, 0 and IlUx.II--' 0. 

Proof. From the transformation (3.4) used in the proof of  Theorem 3.2a, fUx t  = 
Pt + qt, so it suffices to show that Ilz,ll, [[z.lL - - ,  0 as t -~  ~,  where z = (p, q). 
Recall (3.92): zt + Az -- fz(z)  where f2 is smooth on X = L ] x L 2. Because the 
solution z is globally bounded in Xx/2 for t >- 0, f2(z)  is globally bounded and we 

1 may apply Lemma 4.3 of Pego (1987) to obtain, for t -> 0, a = 5, 
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Now, Corollary 3.4.6 of  Henry (1981) implies that z is smooth in t for t > 0, with 
z E C~((0, ~), X). It also implies that Z = zt satisfies, for t > 0, 

Z~ + AZ = g(z)Z,  (4.40) 

where, wi th/3w = p + q = {1, 1}. z and f lW  = {1, 1}. Z,  

II I; ] g(z)Z = w[[ 2 - 1)W - a B W  + 2w w ( x ) W ( x ) d x  {1, -1} .  

Because [[z[[, Ilzt[[-< c for t --> 1, we obtain the estimate, for 1 - t -< s, 

Ilg(z(t))z(t) - g(z(s))Z(s)]l <- C(K(t) l t  - sl + IIz(,)- z(x)ll ), 

where K(t )  = sup,>_ t IIzt(s)ll. We may therefore apply Lemma A.3 of  Pego (1987) to 
(4.40), with a = 0, to conclude that for t -> 1, 

IIZt(t + 1)1[ <-- C(lIZ(t)ll + K( t )  + sup tlZ(t + s)ll) <- CK( t ) .  (4.41) 
O<--s <- 1 

This bound implies that t~--~ llux,ll 2 is Lipschitz for 2--< t < oo and hence that 
[lUx,II -- ,  0, because f o  II"x'(t)ll 2 dt < ~. This yields the first claim of  the proposition. 

Now, we have/311Ux,II = lED, + q,l[---' 0. Proposition 4.2 implies that IIf2(z)ll ~ 0 
as t --+ ~ [cf. (3.72)], which yields Ilq,lt --> 0 using (3.62). Hence as t --~ ~ ,  we have 
Ilz, ll ~ 0,  so g ( t )  ~ O, and (4.41) implies that IIz,II -- ,  0. But ~Ux,t -= {1, l } .  Z,,  
so the proposition is proved. [] 

5. Asymptotics of Model 2: Energy Transport to High Wavenumbers 

Theorem 4.6 establishes that almost all solutions of  (2.4) do minimize energy. We 
now wish to investigate in more detail how this occurs. As the second alternative 
of  Proposition 4.2 is realized, and Ilul[ ~ 0, Iluxll -- ,  1, what do solutions look 
like? How does the fine structure, which evidently must result, develop from and 
depend on the initial data? At what rate does the process of refinement proceed? In 
this and the next section we attempt answers to such questions. Our main result is 
most conveniently stated in terms of  the Galerkin projection written for the Fourier 
components bk = kak of the strain, 

ux = ~ ' . b k ~ / - ~ c o s k x ,  
k = l  

(5.1) 

specifically: 

[)k = Ck ,  

kk -= k e 1 -~2 ~ b bk -- ~ck , k = 1,2 . . . .  
1 
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5.1 Modal Dynamics of Model 2 

T h e o r e m  5.1. Assume that the second alternative o f  Proposition 4.2 holds, and pick 
any ~ > 0 and K < oz. Then there exists T = T(v ,  K,  a,  8 )  < oz such that, for  all 
t >- T and k <-- K the solutions of(5 .2)  satisfy 

o o  

I{bk, ck}(t)l <-- v and 1 - Z b2 -< u2. (5.3) 
1 

Moreover, for  all k ~ 1 with k , l  > K and t >- T, the modal ratio Pkl = b J b l  
satisfies 

pkl(t) = exp l: k2 IXk,z(t - T) pkt(T) (5.4) 

where IXk,l(s) = S(1 + O(1/K 2) + O(lZ/k2K2)). 

This result shows that any specific Fourier mode bl eventually dies, and it describes 
how energy escapes to k = oz. In fact, for k -> l > K ,  (5.4) shows that high 
modes grow exponentially at the expense of low modes and, because each bk remains 
bounded, this implies that every mode eventually decays at an exponential rate. We 
will use this to determine the asymptotic fates of various sorts of initial data. 

The proof of Theorem 5.1 is rather long, so to illustrate the main idea we first 
give a formal derivation of the linear ODE from which (5.4) is derived. Because 
Ilull 2 = Z~ 2) and Ilu,II = = Z~ 2) - - ,  o [(4.19), (4.16)], we conclude that, 
after sufficient time has elapsed, Ibk(t)l and Ick(t)l are small for low k, and the 
behavior of  (5.2) is dominated by the high-mode equations, k > K.  In this sit- 
uation, each pair of equations forms a singularly perturbed system, and because 
Ilu/. l l  2 = 2 ~  ~ --,  0 by Proposition 4.11, we conclude that, as t --e oz, 

Ck = 1 kZ ~ "  b bk + o(1); (5.5) 

i.e., solutions rapidly approach and thereafter lie within a boundary layer near a slow 
manifold. Replacing ck in the first component of (5.2) by (5.5) and ignoring the error 
term, we formally obtain the reduced equations 

])k = 1 ke b bk, k = K , K + I  . . . . .  (5.6) 

Now let Pkl = bk/bt and compute 

/ ~ l  - b~ 

(1 - (~ /k  2) - Z b~)bkbz- (1 - ( ~ ' I  s) - Z b~)blbk (5.7) 

which yields (5.4), with tx~,t(s) = s. 
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Before justifying this calculation, we observe that (5.6) can also be formally derived 
by ignoring utt in (2.4) or, altematively, by considering the asymptotic equation 

q, = -~2((P + q)/[3) 

from (3.62) and using the fact that ][vll---~o. Note that, in the limit, 
q ~ t3ux = 13 Z bk ~ c o s  kx. 

We also observe that integrating (5.6) yields bk(t) = bk(O)e-~t/#k2/D(t), where 

(2f0t 1 b~(s))ds) D(t) 2 = exp ~ ( - 1  + 

= ~ "  bj(O)2e-2~t/t3J2/~ bj ( t )  2. 

If we suppose that [[Ux[I 2 = Z bj ( t )  2 ~ l as t --+ ~ (cf. Proposition 4.2), then 

bk(O)e-~t/t ~k2 
bk(t) = (~. bj(O)2e_2at/~jz)l/2 . (5.8) 

An heuristic description of the evolution suggested by (5.8) is that components of the 
solution with wavenumbers k < O( , i t )  are rapidly suppressed, while components 
with k >> ,/}- are synchronously amplified, so as to normalize the solution with 
][uxll ~ 1. This suggests that the dynamics is sensitive to the initial data, in a manner 
reminiscent of the chaotic dynamics in the standard shift map on the space of semi- 
infinite sequences. This strong influence of initial data will be investigated further in 
Sect. 5.2. 

The main tool in the proof of Theorem 5.1 is the following proposition. 

Proposition 5.2. Let 0 < e, 61 << 1, 62 >> 61, and Y2 > Yl > 0 be realparameters, 
and consider the singularly perturbed linear problem 

(5.9) 1 
= ~(a(t)u - b(t)v),  

where [a(t)l-< 61, la(t)l--< 62, ~/1 -< b(,)--- Y2, and ff)(t)l <- 3/2 for all t. Then 
(5.9) possesses a global, normally hyperbolic slow manifold v = h(t,  e)u, with h 
satisfying 

e(h + h e ) = a(t)  - b(t)h (5.10a) 

and 

h(t,  e) = a(t) /b( t)  + O(B62/3/2) q- O(B613/2/')/~) (5.10b) 

for t --> T -- O(sln(1/er2)). Moreover, if  w(t)  solves the reduced system 

fv = h(t ,  e)w (5.11) 
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and (u(t) ,  v(t)} solves (5.9), then there exist constants C, c > 0 such that 

l{ u(t), v(t)} - { w(t), h(t, e)w(t)} I <- Ce -c`/e. (5.12) 

Proof. The proposition is essentially a special case of the global center manifold 
theorem of Fenichel (1979, Theorem 9.1), [cf. Carr (1981, Section 2.7)], but be- 
cause we need sharper estimates on h(t, e), we sketch the proof. Let t = er ,  so that 
(d/dr)O a__ef 0 '  = e( ')  and (5.9) becomes, after adding a trivial component: 

u't, == e,ev' e'V' == o.a(t)u - b(t)v ,}  (5.13) 

For e = 0 the linearization of  (5.13) has the matrix 

0 0 0 0 

a(t) - b ( t )  h(t)u - b(t)v 0 
0 0 0 0 
0 0 0 0 

and the (global) manifold v = a(t)u/b(t) is filled with equilibria, each of  which 
has an eigenvector (0, 1 ,0 ,0)  r with eigenvalue - b ( t )  <- -3'1.  The usual center 
manifold theorem ensures existence of  a local manifold v = g(u, t, e) tangent to 
u = t = e = 0 at (0, 0, 0, 0), and Fenichel's results show that the manifold is, in 
fact, globally defined in u and t. 

For our system, linear in u, v, we may take g(u, t, e) = h(t, e)u. To see this 
and derive (5.10a,b), we differentiate v = hu with respect to r and substitute from 
(5.13): 

v' = Ohtlu + Ohe'u + hu'  = ehu + hev 
O t 0e (5.14a) 

= e(~l + h2)u.  

The second component of (5.13) gives 

v' = au - bv = (a - bh)u, (5.14b) 

and equating (5.14a,b) gives (5.10a). To obtain (5.10b) we integrate (5.10a): 

~t + b(t) h = a(t) h2 

to yield 

h(t) = e-B(t)/~h(O) + e -B(t)/~ Iot eB(S)/~(a(s)  _ h2(s))ds, (5.15) 

where 

fO 
t 

y l t  <- B(t)  = b(r) d r  <-- T2t. 
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Now the integrand of (5.15) may be written as 

b(s) B(s)/e/a(s) -- ehZ(s) 
-~ e I b~s-) ) 

and integration by parts employed to yield 

1 
a(t) - eh2(t) -8(t)/~ ( 

b(t) e J0 e~(S)/~F(e, s) ds, + 
(5.16) 

where 

F(e, s) = [(h -b2ehh)  b(a - eh 2) ], . 
-~2 VJ" 

To estimate terms in (5.16) we first observe that, since 

_ a - bh h2 ' (5.17) 
8 

with lal --< 61, b --> Yx, the interval ( -K161/y l ,  K161/yx) is positively invariant for 
(5.17) provided that Kx > 1 + O(e31/y~). Thus if Ih(0~l -< K1</~1, then [h(t){ < 
K13z/y1, for all t > 0. Furthermore, from (5.17) 

K2~ 2 Kx3x + e 1 1 
I & l  = la - b h  - eh21 -< 31 + ~2 ~1 ~1 ~ ' 

and so, using [a] <- 31, I~[ <- 62, [b[, [bl <- Y2, and b >-- Yl,  F(e,  s) can be estimated 
by 

K;7 v232 '  (~ K2~ 2' 
K181 + - -  3/2 1 + 72 ] _ _  g*Xl 1 ] 8*~ lVl  ] 62 + 2 1(31 "}- 72 "Y1 "Yl 2 ] ..}_ 

IF(e, s)[ ----- Yl Yl z 

62K2 + 61T2K3 
"~1 "Yl 2 

for some K2 = 1 + O(6dyl) .  We therefore have, for the third term in (5.16), 

Io e-(~(t)-B(s))/~F(e' s ) d s  <, (~2K2\ '~1 + ~-'-'-12 Jjo~I'~2K3 ~ft e- f*tb(r)/edr ds 

(~2K2 + (~l'y2K3 ~(t 
' 'Yl - - -~12  }J0 g-yfft-s)/e ds 

8 31"y2K3 ~( e_3qt/e)" 
~212(81K2 + 3/1 / 1 -  

(5.18) 
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Now (5.18) and the fact that [eh2(t)/b(t)[ <- eK262/y~ imply that, if we pick t 
e In(i/e82) large enough so that the first term in (5.16) is 0(882), we have the estimate 

h(t) - a(t)  + 0(882/72 ) "+- 0(1381,}/2/]1~), (5.10b) 
b(t) 

as claimed. 
Finally, exponential attraction of solutions toward v = g(t,  e)u follows from the 

fact that when e = 0 the manifold v = [a(t)/b(t)]u attracts solutions at the rate yl  
in the "fast" time r [cf. Fenichel (1979)]. [] 

cr ~ "2 = 2 = Z~(b~/ j2 )  _._) O, Ilut[[ 2 = Z 1  aj = Proof of Theorem 5.1. Since I[ul[ 2 2 i a j 
oz 

~fi'Z(c~/j 2) ~ O, and Iluxll 2 = Z 1  b~ ~ 1 as t - ,  ~ ,  we may pick T(v, K) large 
enough so that I1.112, I1.,112 < ~2/2K2 for t --> T, in which case 

oo 2 
= k 2 ~ ~ ( b J  4 1 <  z k 2//2 

I {bk' Ck}(t)] 2 b2 + c2 <-- Z-(_,l\- ~ + j 2 ] - -  K---T- <-- p2, 

2 __ b,2. for k --< K.  Possibly by taking T larger, we can also guarantee that I1 - ~ 1  bkl < 
This proves the first claim (5.3) and enables us to focus on the modal equations (5.2) 
for k > K .  

We shall derive an exact second-order equation for the modal ratio Pkl. Computing 

bkbl -- i~lbk 
Pkt -- b~ 

l)k = ~ 1 k2 ~ b2 bk -- V 

and using 

from (5.2), we obtain 

l__l_[ bk bl bl bk 
" } - f i b 2 \  12 k2 ). (5.19) 

Differentiating bk = blpkl we may express 

2-. bzbk = blblPkl + 2blbliakt + blPkl 

= bkbt + 2blbl~kl + be~kI 

and rewrite the final term of (5.19) so that the equation becomes 

1 /q+ 2b~ ]jbkz 1 1 

We will use Proposition 5.2 first to bound Ibl/bll and [[~t/bt I and then again to 
determine the asymptotics of (5.20). Consider the equations 

bl ~ Cl, 

bi = l 2 1 12 ~ b bl - jScz , I = K + I , K  + 2 . . . .  
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and take T(oz, K ) l a r g e  enough so that ( 1 - t l u A  2) = I 1 - 2 6 2 1  <_ ~ /K 2 and 
] (d /d t ) (2  b2)[ = ]2(Ux, Uxt) I <- 2 Ux Uxt <- o~/K 2, for some large K.  The latter 
is possible because IlUxtll--~ 0 as t ~ ~,  by Proposition 4.11. Then (5.21) satisfies 
the hypotheses of  Proposition 5.2 for each 1 > K ,  with e = 1/l 2, 61 = 62 = 2a/K 2, 
and y,  = T2 = /3. Also, after sufficient time (0(1/12)) elapses, we have from (5.10b) 
and (5.11) 

161 61 O(E:62~< 2OL O( ~___~___.~< o~C1 
b7 = Ih(t' e)l <-- --3', + \3  ' 2 / -  ~ K  ----~ + \ f l l2K 2 / -  2/3K 2' (5.22) I 

for some C1. Also, differentiating bt = hbl ,  we have 

"bt = hbl + hbi = (h + h2)bl, 

or 

so that, from (5.10a,b) 

b__ L = j~ + h2 = a(t)  - b ( t )h ,  (5.23) 
bl e 

l 0(e~272/72 ) t:]tC2 
I g [  5 --e -- /3K 2' (5.24) 

for some C2 > 0. 
We can now write (5.20) as 

I)kt + k2[b(t)[akl - a(t)Pkl I = O, k, l > K,  (5.25a) 

where 

and 

/3 c~Cl 2 bt 
< b(t) = / 3 + - -  <- /3 + - -  /3k2K 2 -- k2 

aCt  
/3k2K 2' 

'{, ] - O 1 a(t)= (~- ~2)(c~+-~)= a(~ ~ + (~-~) 

so that 

(5.25b) 

(5.25c) 

la(t)[ <<- c~C3 ~--~ - ~--~ (5.25d) 

for s o m e  Cj > O. TO obtain bounds 
Ib(t)[ = (2/k2)](d/dt)(bJbl) l  and 

= b, l < 

dt \b tJ l  ~ -  b Z l -  /3K 2 

from (5.22) and (5.24). Thus for (5.25a) 

c~C4 Ib(t)l <- /3k~K-----~' 

on the time derivatives we first observe that 

( o~C1 )2 o~C4 
+ \2/3K 2] --< 2/3K ~ ,  

(5.25e) 
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for some C4. Finally, from (5.25c)la[ = I(1//2- l/k2)(d/dt)(f~,/b,)l and, from the 
equation of motion (5.21), 

( a ' l  = J  •  - - - 
27 \-bll l / at ~ \ 12 ~ ' b  - /3V,  - 2 b j c j + / 3 2 7 V ,  ' 

1 

so that, using the a priori bound on I~, bjbj l  = I(ux, .x,)l and that on (d/dt)(bJb,) 
derived above, we have 

la(t)l ~ ( 1 -  12~/~ ~ a C s ( 1 -  s / 
k: AK e + 2K 2 J k: ) K 2, (5.25f) 

for some C5. Thus (5.25a) satisfies the hypotheses of Proposition 5.2 with s = 
1/k 2, t~l = ac3l l / l  2 -  1/k2l , 62 = ~cs l  1 -12/k2 l, "Yl = /3 --OgCl//3k 2K2, and 
3/2 = /3 + a(C1 + C4)//3k2K 2. 

We conclude from Proposition 5.2 that the solution pkt(t) of (5.25a) is close in the 
sense of (5.12) to that of the reduced equation 

~Okt = h(t, k, l)pkt, (5.26) 

where 

h(t, k, 1) = 

or 

a(1/l 2 - l/k2)(1 + O(1/K2)) 
/3 + O(1/k2K 2) 

l 2 a 1 

~ 1 I ) l) 
h ( t , ~ , l ) : ~ ? -  l + O k - ~  + ~ . (5.27) 

\ 

Integration of (5.26-5.27) yields the final statement (5.4) of the theorem. Note that 
throughout the proof of Theorem 5.1, the constants Cj depend only on a and/3 but 
that the time T that must elapse before the various a priori estimates hold also depends 
on K and v. [] 

5.2 Influence of Initial Data on Modal Dynamics 

In view of Theorem 5.1, for any v > 0 and K < oo we may pick T(a,/3,  v, K) large 
enough so that 

k~=lb 2 - 1  <-- v 2, 

co ( 5 . 2 8 )  

2 b2 ~ Z b2 q- v2K" 
k=l k=K+l 

Thus, from the definition of pkl(t), we have 

co 

b2(t) ~ "  pZl(t) = ~ "  b~(t) = 1 + O(veK) 
K+I K+I 
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and so, from (5.4) 

b2(t ) = (1 + o(vzK)) (5.29) 
[2o~{ 1 

~+lP2l(T) e x p [ - - ~ 7 -  ~-g)lxk,,(t-T)] 

for t ----- T. Writing s = t - T and recalling that IX~,t(s) = s(1 + O(1/K 2) q- 
O(12/kZK2)), we may split terms in the sum of (5.29) to obtain 

b~(s + T) = 

2 2 --2CeS 
(1 + O(v K))bt(T)exp[-- -~( l+ O(K---f))l 

l 2 r-2=s, o@)+ ~K+I b2(T) e x p [ ~ (  1 + 

(1 + O(v2K))b~(T)exPLt~)(  1[,-2,~s, + o(~_~2)) ] 

+ 

ZK+lb2(T ) ~-2~s/  (~2) 12 ))j, e x p [ ~ ( 1  + O + O(k--g~K2 

2CeS o( l 2 ~] 
,VUq 

or 

b~ ( T) exp( -  2a s / fl l 2) 
b~(s + r) = D(a,/3, v, K, r, t, s) '  (5.30) 

where, if T is taken large enough so that v and 1/K 2 are small, we have D as close 
as we wish to 

Z 2 / - 2as  
D~ = b A T ) e x p [ - - ~ )  

K+I 

for all l for which O(12/k2K 2) < C12/K 4 is small. This permits us to explore the 
behavior of the "modal energy" b2(t) over a (finite) range of wavenumbers starting at 
K and ending at, say, K~/C. In fact, because D~ decays monotonically with s (or t), 
the wavenumber spectrum b2(t) is maximized for fixed t > T at/max(t) satisfying 

d @2 - 2 a s  
0 

or 

s = t -  r = /3 t3b l ( r )  (5.31) 
2a bl(T) ' 

We give two examples. Suppose first that the initial data are analytic and, more 
specifically, that at time T the coefficients bt satisfy 

bl(T) = Ae -cl (5.32) 
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b~ 

/max(t1) lmax(t2) 

Fig. 3. Evolution of modal energies 

for some A, c > 0. Substitution of (5.32) into (5.31) yields 

l m a x ( S  -t- T )  = \ [ ~ c  ] " (5 .33)  

Thus as t ~ ~ the peak of the energy in wavenumber space moves out to k = 
at the rate [(t - T)/c]1/3 and, because ~ l  b2 ~ 1, the area under the modal energy 
curve b 2 versus k converges to 1; see Fig. 3. We next ask how this "bump" behaves 
in wavenumber space as t ~ ~; does it concentrate or spread out? To answer this we 
compute the half-power bandwidth B(t) = lb - l a ,  where lb, l a  satisfy 

b~(T) / -2as  e x p ~ ]  (~b2(T) /-2ces,~ 
= exp~---~T-}) l = I m a x ( S  ) �9 (5.34) 

Substituting (5.32-5.33) into (5.34), we have 

e x p [ - 2 ( c / +  c ~ ) ]  1 [ ( 2c~s /1 
= ~ exp - 2  C/max + ~- - -~ax]J ,  

or, after some rearrangement, 

~c ln2 + + 2 ) l + /3---~ = 0. (5.35) 

To estimate the two relevant roots la, lb of (5.35) we let l = /max q- m, we expand 
about the peak, and we neglect terms of O(m3). Solution of the resulting quadratic 
equation in m yields 

2((3/c)ln2(2~xs/~c)) 1/2 (~c2)1/2(~cS) 1/6 
B(s + t) = la  - I b  ~ m a  - -  m b  = ( 3 ( 2 o ~ s / ~ c ) 1 / 3  _ (1 /c) ln2)  ~ 2 
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for large s 

( 2 ~ ( t -  T))l/3 ( t )  1/3 
lmax(t) = ~ ~ C  , c ,  ' 

the bandwidth spreads as 

B( t )  - 2 /max(t) ~ c2/3. 

For the second example, suppose that 

b t (T )  = A l  - r ,  

so that u is C r - 1  . In this case (5.31) yields 

( 2 a s  / 1/2 
/max(S q- T) = \--~--]  

and, from (5.34) and (5.37-5.38), the half-power points are given by 

l_2r e_(2as/fll2 ) 1 [ [3r ~r - - r  = ~ )  e 

Letting 

(5.39) becomes 

57 

= t - T. Thus, while the peak/max(t) moves to infinity at the rate 

(5.36a) 

(5.36b) 

(5.37) 

(5.38) 

(5.39) 

l ( f i r  ]1,2 
/max = 1\2--'~S/ = 1 + L, (5.40) 

(1 + L)_ 2 _- __ln2 + 1 - 21n(1 + L). 
r 

Expanding in a Taylor series and including terms up to O(L 2) we obtain 

La'b ~ --~1 2r " 

This leads to 

(21n 2]l/Z(2ees ] 1/2 
B ( s  + T)  = la -- lb = lmax(La - Lo) "~" \ r / \ f i r  / " 

We conclude that the peak moves out at the rate 

~ ( t ) 1/2 

L ~r J ,7, 

(5.41) 

and spreads out as 

(5.42a) 

2 In 2 )1/2 t 1/2 
B ( t )  -~ /max(t) ~ - - .  (5.42b) 

, r , r 
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Now Theorem 5.1 gives asymptotic results for t >-- T sufficiently large, and the 
modal ratio estimate (5.4) contains the awkward term txk,l(t), which we can control 
only for l contained in some band (K, K2/C). Specific results such as (5.36a,b) and 
(5.42a,b) must therefore be interpreted with care. However, noting that 1/k 2 decreases 
quickly, we might expect that we need only wait for the first few modes to decay 
before the asymptotic results become quite accurate. During this period the higher 
modes, which start very close to zero, will not have time to adjust much, for the 
unstable eigenvalues of the trivial solution in those directions are uniformly bounded 
[cf. (2.23)]. We can therefore hope that the modal energy evolution results of this 
section will provide a reasonable indication of how specific initial data develop; i.e., 
we can effectively take T = 0. In the next section we describe numerical results that 
show that this hope appears to be justified. 

6. Numerical Results 

We now describe some numerical experiments that seem to validate the estimates 
obtained for the nonlocal problem. These indicate good agreement with (5.36) and 
(5.42), which describe the manner in which the modal energy organizes and subse- 
quently crawls out to the higher Fourier modes. 

As our numerical model we investigate the 2N-dimensional truncated system 

bk = Ok, 

bk = k  2 1 - - s  b k - - f l c ~ ,  k = 1 . . . . .  N, ( N 2 > a ) ,  (6.1) 

obtained from the Galerkin projection (5.2) by ignoring the behavior of modes higher 
than N. This corresponds to restricting solutions of the nonlocal problem (2.5) to lie 
in the invariant 2N-dimensional subspace XN = { {u, ut} E Hg x U I (u, sinkx)  = 
(ut, sinkx)  = 0 Vk > N}. As was shown in Sect. 4, the only stable solutions in this 
subspace are the two high-mode equilibria {u, ut} -- {u~, 0}. Solutions with initial 
data in XN and with the Nth mode {bu, CN} initially present eventually end up with 
all the energy in this mode; in fact, u(x, t) ~ +( l /N)  ~/(2/Ir)(1 - a/N 2) sin Nx and 
Ilu/ll 2 ~ 1 - a/N 2 > 1 as t ~ ~, so that by choosing N large enough, we can come 
arbitrarily close to minimizing the energy E2. Nevertheless, the asymptotic shape of 
the solution changes remarkably when components of the initial data with wavenum- 
bers greater than N are absent. To illustrate the effect of this truncation, let u(t) be a 
solution of the nonlocal problem with u(0) contained in the set Az of Theorem 4.6, 
and let UN(t) E X N be the solution corresponding to the initial data uN(O) ~ X N C A1 
obtained by removal of all modes higher than the Nth. We assume u(0) [and therefore 
also Uu(0)] to be close to the slow manifold. In the numerical experiments we chose 
Ilux(0)]]- 1 and ut(0) = 0 to ensure this. 

The numerical simulations can be characterized as follows. After an initial time 
that is short compared to the rate of change in IlUxll, the kth mode of both solutions 
lies within a layer of thickness -- (1/k 2) of the slow manifold. The power spectrum 
k ~ b~ is concentrated in the low-wavenumber range, with almost no energy yet 



On the Dynamics of Fine Structure 59 

present in the higher modes. Evolution on the slow manifold now causes the modal 
energy to crawl out to the higher wavenumbers, broadening its bandwidth as it goes. 
Both u and UN can in this process sustain coherent spatial structures that are slowly 
refining with time. For UN this continues for a time interval dependent on the initial 
degree of smoothness and the size 2N of the finite-dimensional approximation. When 
the active band in the power spectrum of UN reaches the high-mode ceiling, the 
delicate modal balance responsible for the coherent spatial structures is destroyed, 
and as all the energy accumulates in the highest mode, more and more of the finite 
(sinNx) oscillations characteristic of the stable equilibria u N develop in the solution. In 
contrast, after this "cross-over" time, the corresponding infinite-dimensional solution 
u continues to evolve as the modal bump crawls out to still higher wavenumbers, 
allowing arbitrarily fine structures to develop. 

It is the close correspondence between u and UN before the cross-over time that 
motivates studying (6.1) to gain insight into the asymptotic behavior of solutions 
starting in A2. The system (6.1) of 2N ODEs is quite stiff and was numerically 
integrated using the backward differentiation algorithm DDEBDF from the SLATEC 
library using IBM Fortran double precision. When integrating more than 100 modes for 
periods in excess of 10,000 time units, we found it profitable to use the vector facilities 
of the IBM3090 supercomputer of the Cornell National Supercomputer Facility. The 
spatial solution was reconstructed by performing a Fast Fourier Transform on the modal 
data. In Fig. 4 we show the evolution of the modal energy of (6.1) using 40 modes 
with the parameter values a = �89 /3 = 1, bk(0) = Ce -k, and ck(O) = 0. Note 
how after a short transition time the energy b~ is concentrated in the lower modes, 
but that the lowest modes have decayed essentially to zero. Following this, energy 
slowly mOves out to the higher wavenumbers, spreading as it does so, and finally all 
the energy accumulates in the 40th mode. 

t = 0  

�9 " -  - . .  

Fig. 4. Development of the spectrum b2(t) 

t - -  6 0 0 0  

I ! k 
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The next example displays (see Fig. 5) the formation of  fine structure as well 
as sensitive dependence on initial conditions characteristic of  the truly infinite- 

1 dimensional problem. Using 100 modes, with c~ = ~ and /3 = 1, the initial data 
bk(O) = (A/k 2) sin(kTr/2) were chosen to display how C t initial data can sharpen up 
and display a localized structure (here at x = 7r/2) that refines until the active band in 
the power spectrum starts accumulating in the highest mode. Already at t = 5000 one 
can observe the fine oscillations (characteristic of  the high-mode equilibria) superim- 
posed on the infinite-dimensional solution. As in the previous example, the low modes 
quickly decay, and the bk's evolve within an envelope that sweeps out to the higher 
wavenumbers. For nonsmooth initial data the active band in modal space quickly 
reaches the highest modes, requiring high-dimensional (and extremely stiff) systems 
to resolve the large-time behavior of  the infinite-dimensional problem. Figure 5a also 
clearly shows the sensitive dependence on initial conditions that is characteristic of  
the truly infinite-dimensional nonlocal problem. Initially, the higher modes are almost 
unnoticeably small, yet after sufficient time has elapsed these modes become active 
and, because we started close to the slow manifold, even preserve their sign at t = 0 
(cf. Sect. 4.3). 

In Fig. 6 we see the finite-dimensional version of  the "persistence of  strain discon- 
tinuities" property of  the nonlocal problem. Here N = 200, a = �89 /3 = 1, and we 
take b~(0) = A [ ( s i n k ) / k ] ,  c~(0) = 0, approximating a piecewise constant "strain" 
ux a t t  = 0 w i t h a j u m p i n u x  a t x  = 1. 

In Sec. 5.2 we described by means of  two examples how the smoothness of the 
initial data influences the manner in which the modal energy moves out to the higher 
wavenumbers. We now test the estimates (5.36) and (5.42) concerning the peak Imax 
and the half-power bandwidth B of  the power spectrum corresponding to analytic 
and C r initial data. The values Imax and B are computed by assuming b 2 to depend 
smoothly on the parameter k ~ [0, N]. For initial data of  the form ck(0) = 0 and 
bk(0) -- e -ok o r  k - r  , we found it useful to approximate the function k ~ b2(t)  

by C1 exp[C2k + C3/k2]k C4, where the Ci are determined by a least-squares fit over 
the "active" modes. This approximation, inspired by crude asymptotics based on the 
balance 

~ u  ~- /3U~xt (6.2) 

of  linear terms in (2.4), proved to be quite accurate. For the choice c~ = �89 /3 = 1 
and times as large as 50,000 s, C3 remained within 0.01% of the theoretical value 
- 2 ~ t / / 3 ,  while C2 and C4 remained within 0.01% of their initial values, providing 
the finite-dimensional version of  the preservation of the initial degree of  smoothness. 

1 Using a 100-mode approximation, a = ~, /3 = 1, and modeling analytic initial 
data by bt(0) = Ae  -c I ,  cl(0) = 0 with c = 1, 0.3, and 0.1, we found remarkable 
agreement with (5.36). Choosing A such that ~ b2(0) = 1 ensures that we start close 
to the slow manifold and hence can take T ~- 0 in (5.36) to give/m,x(t) -- ( t /c )  v3 and 
B ( t )  ~ tl/6/c 2/3. The numerical results are summarized in Table 1 and Fig. 7. Note 
that natural logarithms have been used. Similarly, using a 200-mode approximation, 
a = �89 /3 = 1, and modeling C r-1 initial data by bl(0) = Al  -~,  cl(0) = 0 with 
r = 1, 2, and 3, we found remarkable agreement with (5.42), which predicts in this 
case that /max(t) -- ( t / r )  1/2 and B ( t )  ~ t l /2/r.  When r is fixed, a sharper estimate 



On the Dynamics of Fine Structure 61 

b 
k 

(a) 

20000 

10000 

100 

4" 
du 
dx 2 

(b) 3.14159 

Fig. 5. Localization and creation of fine structure. (a) Fourier spectrum of bk(t); (b) ux in 
physical space 
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2000 

b 
k 

( a )  100 

2000 

4 ~ 

d__~u 
dx 

(b) 3.14159 

~3g. 6, Preservation of a strain discontinuity. (a) Fourier spectrum (first 100 modes); (b) u x 
in physical space 



Table 1. 

Initial Condi t ions  Asympto t i c  Es t imates  Numer ica l  Resul ts  

c = l  

A = 2 . 5 2 7 6  

c = 0 . 3  

A = 0 .90671 

c = 0 . 1  

A = 0 . 4 7 0 5 3  

in lmax = 0  + 0 .33333  In t 

in B = 0 + 0 .16667  in t 

in l , , ~  = 0 . 4 0 1 3 2  + 0 ,33333 In t 

In B = 0 .80265  + 0 .16667  In t 

In/max = 0 .76753  + 0 .33333  In t 

l n B  = 1.53531 + 0 .16667  In t 

In lmax = 0 .00122  + 0 .33333  in t 

In B = - 0 .02152  + 0 ,16517  In t 

In l~.ax = 0 ,40124  + 0 .33337  In t 

l n B  = 0 . 8 0 1 5 8  + 0 ,163401n t 

In l m~ = 0 .76729  + 0 .33337  In t 

l n B  = 1.57386 + 0 .15997  In t 

4 .  

loglmax 
3' 

c = 0 . 1  
c = 0.3 

c =  1.0 

I I I I 
6 8 10 12 

logt 

logB 
3i t 
2.5"1" 

2, 

1.5- 

12 

0.5 

c =  0.1 

C= 0.3 

c =  1.0 

.1 

1.000 

I I I ! 
6 8 10 12 

logt 

Fig. 7. Asympto t i c  escape  o f  energy  for analytic initial data. (a) lmax vs. t; (b) 
B v s .  t 
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r = l  

A = 0 . 7 8 0 2 9  

J. M .  B a l l ,  R J. H o l m e s ,  R.  D.  J a m e s ,  R .  L .  P e g o ,  and  R J. S w a r t  

I n i t i a l  C o n d i t i o n s  A s y m p t o t i c  E s t i m a t e s  N u m e r i c a l  Resu l t s  

r = 2  

A = 0 . 9 6 1 2 2  

r = 3  

A = 0 . 9 9 1 4 4  

logB 

In l ~ x  = 0  + 0 . 5 0 0 0 0 I n  t 

in  B = 0 . 3 8 2 0 4  + 0 . 5 0 0 0 0  in  t 

I n / m a x  ---- - -  0 . 3 4 6 5 7  + 0 . 5 0 0 0 0  in  t 

I n B  - - 0 . 4 2 2 1 8  4- 0 . 5 0 0 0 0  In t 

in  Imax = - 0 . 5 4 9 3 1  + 0 . 5 0 0 0 0  In t 

in  B = - 0 . 8 6 3 9 1  + 0 . 5 0 0 0 0  in  t 

In l . . . .  = 0 . 0 0 1 0 0  4- 0 . 4 9 9 8 8  In t 

l n B  = 0 . 3 8 3 1 8  + 0 . 4 9 9 8 7 1 n  t 

in  l m ~  = - 0 . 3 3 9 8 3  + 0 . 4 9 9 2 2  in  t 

l n B  = - 0 . 4 1 5 3 3  4- 0 . 4 9 9 2 1  In t 

in  lmax = - 0 . 5 3 6 6 8  + 0 . 4 9 8 5 5  In t 

l n B  = - 0 . 8 5 1 0 8  + 0 . 4 9 8 5 3  In t 

5- 

4- 

r = l  

r = 2  

r = 3  

3- 
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Table 2. 

logt 

4. 

l o g lmax 
3" 

r ~ 3  

logt 

Fig .  8.  A s y m p t o t i c  e s c a p e  o f  e n e r g y  for  C r-1 in i t i a l  da ta .  (a)  / m a x  VS .  t ;  (b) B 
vs .  t 
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for B = lb - la may be obtained by setting 0 = 2as/~l  2 in (5.39) and numerically 
solving the resulting nonlinear relation 

OeO'r = (6.3) 

to obtain la and lb. We compare our numerical results against these slightly sharper 
estimates for r = 1, 2, and 3. A is once again chosen to start close to the slow 
manifold and be able to take T --~ 0 in (5.39) and (5.42). The numerical results are 
summarized in Table 2 and Fig. 8. 

7. Conclusions and Physical Implications 

As explained in the introduction, the models discussed in this paper were designed 
to provide insight into the dynamics of the formation of microstructure in crystals. 
Specifically, the local model (2.2) is related to a theory of martensitic transformations 
in single crystals described by Ball and James (1987, 1990). This theory is based on 
a free energy ~b(F, 0) defined on the domain [(F, 0) E M 3x3 x R : detF > 0}. Here 
~3• is the set of 3 x 3 matrices, and 0 is the temperature, which, for the purpose 
of this discussion, we fix at a value below the transformation temperature. We write 
dp(F) = O(F, 0). Deformations of the crystal are described by mappings y : f l  ~ N3, 

C N3 lying in the Sobolev space wl ' l ( f l ;  ~3). The mappings y are required to 
be invertible, but we ignore this here; see Ball and James (1990) for details. The 
conditions of frame indifference and symmetry imply that ~b is not rank-one convex, 
and in fact there are matrices F +, F -  E M3x3 with the properties 

F + - F -  = a |  
(7.1) 

qS(V +) = qS(F-) --< oh(F), VF E dom~b. 

Let Fx %f AF + + (1 - A)F- for some A E (0, 1). For a crystal subject to the linear 
displacement boundary conditions y(z) = F~z, z E Of~, the total energy is 

Ia6(Dy(z))dz,  E sg = E W"'(I'~; R3) ly = {y Y Faz, Of~} . z (7.2) 

Alternatively, we can impose the boundary conditions in a weakened form and consider 
the energy 

fa[4)(Dy(z))+ ~ l y ( z ) -  F,~zl2]dz, (7.3) 

with /x > 0. The energy (7.3) can also be thought of as that of a thin crystal plate 
glued to a rigid foundation, with/x representing the bond stiffness. 

It turns out (Ball and James 1990) that with free energies appropriate to a cubic- 
to-tetragonal transformation, neither the minimum of (7.2) nor that of (7.3) is 
attained. If  we put y(z) = F - z  + �89 n) + z" n)a, let h = �89 and assume 
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~'~ = {Z ~ ~ 3 : 0 ~  Z "n  --< "n', IZ X n l 2 ~  ~--1}, then,  sett ing x = z . n ,  the energy 
(7.3) becomes 

1. lal2 where ~ = ~/x I I , and ~1 is a double-well energy with strict minima at Ux = +-1. 
Note that (7.4) is of  precisely the same form as the potential part of  our total energy 
El .  If  {u k} is a minimizing sequence for the energy I of (1.1), then 

1 k n)a  yk ( z )  : F - z  + ~(u (z �9 n) + z "  (7.5) 

provides a minimizing sequence for (7.3). In fact, in the cubic-to-tetragonal case such 
sequences are comprehensive in the sense that the deformation gradient of  any other 
minimizing sequence for (7.2) or (7.3) has the same Young measure as that for Dy k. 

Model 2 seems not so closely related to an energy of physical interest, although free 
energies for ferromagnetic materials are both nonlocal and do exhibit nonattainment 
for some crystal symmetries (James and Kinderlehrer 1990). 

In both Models 1 and 2 the parameter a represents a bond strength or boundary 
constraint: as ~ increases, the displacements u ( x )  are penalized more severely. This 
feature appears explicitly in analysis of  the equation linearized at the trivial solution 

Utt ~" - - U x x  - -  OgI~ "}- ~ b t x x t ,  

which, in common with the nonlocal Model 2, has the eigenvalues 

(7.6) 

}t = - 1  -+ 1 + ~2~4 ' l = 1, 2 . . . . .  (7.7) 

[see (2.23)]. We note that, for l < ~ ,  these pairs of  eigenvalues have negative 
real parts. Hence for L < ~ < L + 1, the trivial solutions of  both Models 1 and 
2 are locally exponentially stable to perturbations in the directions of  the first L 
eigenfunctions {sin lx}~= 1. In fact, for Model 2 it is clear that the nontrivial equilibria 

+ + i/2( ~7) sin kx  ' (7.8) 

of (2.20) exist only for k > , f d ,  and all perturbation components of  the form 
{sin l x,  l < ,/~-} decay exPNonentially. (Recall the structure of the invariant subspaces 
XN = {{u, V} [ {u, V} = Z j = l { a j ,  b j } s i n j x } . )  Thus large a acts to establish a min- 
imum degree of fineness (O(,/-~-)) in Model 2. 

The same conclusion holds for Model 1, as the following argument demonstrates. 
Observe that, under the transformation 

(5 5) (u,  v, x )  ~ , v, , (7.9) 
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the equilibrium equation (2.12) and integral (2.13) respectively become 

U x ~ V~ 

U 

V X  - -  3 v  2 _ 1 '  

(7.10) 

and 

3v 2 V 2 U 2 
= const. (7.11) 

4 2 2 

Thus if u (1) is an admissible equilibrium for a = 1 with the minimum possible number 
of jumps on 0 < x < ~-consistent with the requirement that l / v /3  < Iv] < 2/V~, then 
for any solution u ('~) = . f f - a u O ) ( x / . f a )  with a << 1 the number of jumps must be of 
O(.f~-). On the phase plane of Fig. 1, the effect of (7.9) is to shrink the u-coordinate 
and restrict the sectors between the unbounded components of the separatrices in 
which admissible trajectories lie. 

In simple semilinear systems possessing Liapunov (energy) functions, such as the 
Chafee-Infante (1974) problem, 

u t  = Uxx + f ( u )  (e.g., f ( u )  = u - u3),  (7.12) 

or the damped nonlinear wave equation, 

u ,  = Uxx - f l u t  + f ( u ) ,  (7.13) 

one expects typical solutions to approach a stationary solution corresponding to a local 
minimum of energy. The traditional proof of this begins by establishing precompact- 
ness of positive orbits [cf. Ball (1990)]. In the present case precompactness fails in 
general for Models 2 and 3, and for Model 1 it is an open question. However, all three 
models are strongly dissipative, with energy decreasing monotonically on solutions, 
excluding any chaotic or even time-periodic motions. 

As we have seen, the fate of solutions differs radically from model to model, and 
in all cases it is dramatically influenced by the initial data. In Model 1, no solution 
minimizes energy; so, while a determines a minimum degree of fineness and there 
is no limit to the maximum possible fineness, in practice typical solutions appear to 
approach equilibria with only finitely many jumps in strain u x, and these asymptotic 
states seem to be closely related to the initial data. In fact the results of Theorem 4.10 
prevent the motion of strain discontinuities and formation of new ones in finite time. 
A physical interpretation of the nonminimization result is that the kinetic energy 

�89 - 

is used up so quickly, due to the smoothing action of the parabolic part of (3.60, 
that after a short time has elapsed, insufficient additional energy is present to form 
new jumps. To form such jumps, and hence further reduce E l [ U ,  ut], would require 

1 2 a temporary increase in the local potential energy density ~(u  x - 1) 2 + a ( u 2 / 2 )  as 
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Ux(X) passes through zero on some set of positive measure. The rapid decrease in 
total kinetic energy acts to prevent this. If  a similar phenomenon occurred for re- 
alistic dynamical models of crystals, this could provide a mechanism for limiting 
fineness additional to effects such as surface energy. For a discussion of this, see 
Ball and James (1990). In Model 2, in contrast, almost all solutions do minimize 
energy. Here the nonlocal nonlinear term allows new zeros to appear in u x without 
appreciable kinetic energy expenditure. However, our asymptotic results show that 
the rate at which and manner in which the "modal strain energy" of Iluxll 2 escapes 
to arbitrarily high Fourier wavenumbers is controlled by the smoothness of the initial 
data. 

This rather delicate influence of initial data--a  sensitive dependence very different 
from that familiar in chaotic dynamical systems--is of possible relevance in relation to 
"dynamic relaxatioff' methods for determining equilibrium states of nonlinear elastic 
continua with nonconvex strain energies. For example, in Silling (1988a,b; 1989), 
the equilibrium equations for antiplane shear cracks and screw dislocations in two- 
dimensional continua were supplemented by the addition of inertia and dissipation 
terms (~(Ou/O t); p(x)(O2u/Ot2))~ initial value problems were solved numerically and 
allowed to run until IOu/O t I was less than some prescribed value at every mesh point. 
A variety of two-phase equilibria were obtained and analyzed statistically in the light 
of energy stability considerations such as those of Sect. 2.2. 

If, as in the present models, initial data can so acutely affect either the fineness 
of the resulting equilibria or the rate at which fine structure develops, then such 
a dynamical process run for finite times from specific (sets of) initial data might 
yield results of doubtful statistical significance. Of course, if the underlying physical 
mechanism displays sensitive dependence (on initial defects and grain boundaries, for 
example), then this type of behavior may reflect the true situation. In this respect we 
particularly wish to point out that in our models the velocities u t, both in L ~ and in 
L 2, decay quickly to extremely low levels. Although in Model 1 this does appear to 
signal the "lock-in" of strain discontinuities (and thus the cessation of computation 
might give reasonable approximations of equilibria), in Model 2 refinement continues 
on the extremely slow time scales such as k - t ~/3 or t 1/2 in Fourier wavenumber 
space. 
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