
Z angew Math Phys 43 (1992) 0044-2275/92/060943-31 $ 1.50 + 0.20 
(ZAMP) �9 1992 Birkh/iuser Verlag, Basel 

Elastostatics in the presence of a temperature distribution 
or inhomogeneity 

By J. M. Ball, P. K. Jimack* and Tang Qi~', Dept of Mathematics, 
Heriot-Watt University, Edinburgh, EHI4 4AS, U.K. 

Dedicated to Klaus Kirchgdssner on the occasion of his 60th birthday 

1. Introduction 

We consider the problem of the equilibrium of an elastic body subjected 
to a temperature gradient. The boundary of the body is free to move, and 
there are no applied body or surface forces. Suppose the body occupies in 
a stress-free reference configuration the slab ~ = co x (0, 6), where co c R 2 is 
bounded and c~ > 0, and that the temperature gradient is then imposed in 
the vertical x3-direction, so that the temperature 0 is a given function 
0 = 0(x3) with 0"(x3) < 0. Due to thermal expansion the layers co x {x3} will 
tend to expand with respect to those layers co x {x;} with x ;  > x3, produc- 
ing in the case of  a thin slab of  isotropic material with a small imposed 
temperature gradient an approximately spherical deformed shape. 

If we', consider the corresponding two-dimensional problem of  the 
deformation of an elastic strip f~' = (0, l) x (0, 6) under an imposed temper- 
ature gradient in the vertical x2-direction, an interesting difference emerges. 
In this two-dimensional problem (which is similar to that of the deforma- 
tion of  a bimetallic strip) an equilibrium solution in which each line 
(0, l ) x  {x2} is uniformly stretched to form a circular arc is possible. 
However, as observed by Davies [16], no surface x3 =cons tan t  can be 
deformed so that its principal stretches are equal and independent of 
(xl, x2) e co, while at the same time its principal curvatures kl, k2 are equal, 
positive, and independent of (Xl, x2) e co. Up to a dilation, such a deforma- 
tion would be an isometry, and thus preserve the Gaussian curvature; but 
the Gaussian curvature is zero in the reference configuration and equals 
klk2 > 0 in the deformed configuration. (This is the familiar difficulty 
encountered when trying to wrap a sphere with paper without forming 
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creases.) Thus in the three-dimensional problem some nonuniform deforma- 
tion must arise. A probable scenario (but one for which we have no hard 
evidence) is that if ~o is a disc or rectangle, say, then a breaking of symmetry 
occurs as the temperature gradient is increased. 

We regard the problem as that of minimizing the total elastic energy 

I(y) = j~ W(x, Oy(x)) dx (1.1) 

of an elastic body in the absence of any boundary conditions. Here 
y:~---~R 3 denotes a typical deformed configuration of the body, and 
W = W(x, A) is the stored-energy function of the material. Because W 
depends explicitly on x the material is inhomogeneous. However, as de- 
scribed in Section 3 below, such an inhomogeneity arises naturally from the 
free-energy function of a homogeneous thermoelastic body when a tempera- 
ture distribution is imposed. In order for this reduction to a problem for an 
inhomogeneous elastic body to be appropriate the temperature distribution 
must be independent of the deformation, one situation in which this is a 
reasonable assumption being when the material is a poor heat-conductor. 

The present study was motivated by an attempt to understand the 
striking but puzzling phenomenon of columnar jointing in basalt, in which 
columns of polygonal (often hexagonal) cross-section are formed in cooling 
lava. It is generally agreed that these columns are produced via a fracture 
process driven by thermal stresses, the cracks which eventually form the 
surfaces between adjacent columns propagating in an incremental manner 
into the solidified region in a direction roughly perpendicular to isotherms 
(see Ryan and Sammis [29], DeGraaf and Aydin [17]). In the initial stages 
of the cooling process of a lava pond, and ignoring an uppermost layer of 
material that is separated from the rest of the lava via the action of 
expanding gases (see Ryan and Sammis [29]), the surface of the pond can 
be regarded to a first approximation as forming a thin slab of solidified rock 
subject to a given vertical temperature gradient, as in the present paper. 

There is a large engineering literature on the deformation and thermal 
stresses induced in a plate by a transverse temperature gradient, a problem 
of wide technological interest. See, for example, [35, 21, 34, 18, 27, 39]. 
However, this article differs from other work we have encountered on the 
subject in its use of nonlinear elasticity, its attempt to prove some rigorous 
results, and the method of linearization employed. 

The principal results are as follows. First, under reasonable hypotheses 
on W we prove rigorously in Proposition 2.1 the intuitively plausible fact 
that for a genuinely inhomogeneous isotropic material there are no stress- 
free configurations. In particular, for an isotropic body with an imposed 
temperature gradient in the x3-direction the thermal stresses are nonzero. In 
Section 3 an isotropic stored-energy function is proposed for the problem of 
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cooling basalt, for which the existence of a minimizer of  (1.1) is guaranteed 
by known existence theorems. The small parameter e is given by e = e A0, 
where e is the coefficient of thermal expansion and A0 the temperature 
difference between the bot tom and top of the slab. Then, in Sections 4 and 
5 we analyze the case when the inhomogeneity (or variation in temperature) 
is 'small'. That is, we assume that W =  W(e, x, A), where e is a small 
parameter and W(0, x, A)a~ Wo(A) is independent of x. We formally ex- 
pand the energy minimizer y~ of  

Is(y) = jn W(r x, Dy(x)) dx (1.2) 

as a power series in e, i.e. 

y~ = y(0) +~u +~2v + . - - ,  (1.3) 

and show that u minimizes the quadratic functional 

J(u) = 5 [a(x) + 2G(x) �9 Du(x) + C(x)Du(x) �9 Du(x)] dx, (1.4) 

where 
def def 

G(x) = D~DA W(O, x, Dy(~ C(x) = DZA Wo(Dy(~ 

The corresponding Euler-Lagrange equation 

div(C(x)Du + G(x)) = 0 (1.5) 

differs from the usual equilibrium equation of  linearized elasticity on 
account of  the source term div G(x). If W is isotropic then G(x) = p(x) l  for 
some scalar function p = p(x). By a piece of good fortune, if Dyo(x) = I and 
p(x) = rx3 + s then the minimizer u can be determined explicitly by minimiz- 
ing the integrand in (1.4) (see Theorem 4.1). This applies in particular when 
W has the form proposed in Section 3. The solution shows that to first order 
in e the deformed planes x3 = const, are approximately spherical of radius 
~ = ((32 + 2~)/r~), where 2, p are the Lam~ moduli  of W0 at 1. 

In Section 5 we justify the expansion (1.3) by means of the implicit 
function theorem, showing that under suitable hypotheses there is a solution 
y" of  the form (1.3) to the Euler-Lagrange equations and natural boundary 
condition for (1.1), provided e is sufficiently small. The analysis is a 
straightforward adaptation of techniques originally due to Stoppelli 
[30, 31, 32, 33], though our treatment owes much to the book of Valent [36]. 
In common with previous work the analysis has the unfortunate feature that 
it assumes 0f~ is smooth. An example is presented, having the perhaps 
undesirable property that Wo has more than one natural state (modulo 
rotations), showing that even under favourable growth and polyconvexity 
conditions y~ need not necessarily minimize I~. 
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The analyses of Sections 4 and 5 can also be thought of as describing 
the behaviour of an arbitrary inhomogeneous body of small dimensions. In 
fact letting x = ez, y(x) = ep(x/e), we see that 

W(x, Dy(x))dx = f W( z, Dp(z))dz, (1.6) 

so that minimizing ~a W(x, Dy(x))dx is equivalent to minimizing the 
functional 

I~(.9) = fn W(~x, D P(x)) dx, (1.7) 

whose integrand has the form studied in Sections 4 and 5. 
In Section 6 the minimization problem for (1.1) is studied numerically 

using a finite-element algorithm and the stored-energy function proposed in 
Section 3 for the problem of cooling basalt. In the limit e ~ 0 the results 
agree well with the exact solution to the linearized problem given in Section 
4. A typical numerical result showing the deformed configuration of an 
initially square slab is illustrated in Fig. 1. 

One idea for explaining the polygonal columns in basalt, explored in 
Davies [16], is that a polygonal stress pattern might arise from an elastic 
instability, perhaps having its origin in the geometrical considerations 
described at the beginning of the introduction, and that the subsequent 

Figure 1 
The deformed configuration for a slab ~ = ( - 1 ,  l ) 2 x  (0, f) under a vertical temperature gradient, 
calculated by numerical minimization of the total elastic energy. The stored-energy function is given by 
(3.6)-(3.8) with the constants chosen as in (3.12) and with & = 0.1, e = 0.016. 
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cracking follows this pre-existing pattern. The theoretical analysis in this 
paper, based as it is on linearization about  a natural  state, has nothing to 
say on this matter,  while there is no evidence of  a polygonal pattern 
emerging in the numerical results. Nevertheless it seems premature to reject 
this idea in the absence of  a better understanding of  what elasticity theory 
in fact predicts. A more conventional approach to explaining the hexagonal 
columns might be to consider a model in which the crack geometry is an 
unknown,  and to try and show that  a hexagonal crack geometry minimizes 
the total elastic plus surface energy. Such an approach (which might be 
at tempted either in the context of  a plate theory or a three-dimensional 
model) would still necessitate a calculation of  the elastic energy in un- 
cracked regions, as discussed in this paper. 

2 Nonexistence of stress-free deformations for inhomogeneous 
isotropic materials 

We consider an elastic body occupying in a reference configuration a 
bounded open subset f~ c R 3, and with bulk energy 

I(y) = jn W(x, Dy(x)) dx. (2.1) 

Here y(x) denotes the position in a deformed configuration of  the particle at 
x in the reference configuration, so that y: f~ --, R 3. For  each x, the deforma- 
tion gradient Dy(x) can be identified with an element of  the subset 
M3+• 3 = {A ~ M 3 x 3: det A > 0} of  the set M 3 x 3 of  real 3 x 3 matrices. 

a x 3 x 3  ~ ltl In (2.1), W: f~ x M +  --,~t denotes the stored-energy function of  the 
material. We assume that W(.,  A) is measurable for all A e M3+ • 3, and that 
W(x, .) is C 1 for a.e. x e f~. Since W is assumed to depend explicitly on x, 
the material is inhomogeneous. Of particular interest to the calculations in 
this paper is the case when the inhomogeneity results f rom a given temper- 
ature distribution; this is explained in Section 3 below. We suppose that 
W(x, ") is frame-indifferent, so that for a.e. x e f~ 

W(x, QA) = W(x, A) for all A e M3+ • 3, Q e SO(3). (2.2) 

and isotropie with respect to the given reference configuration, so that for 
a.e. x e f ~  

M 3 • 3, R ~ 8 0 ( 3 ) .  ( 2 . 3 )  W(x, AR) = W(x, A) for all A e + 

As is well-known, (2.2) and (2.3) are equivalent to the existence of  a 
function q~: f~ x (0, oo) 3 --,R, symmetric with respect to permutations of  its 
last three arguments, such that 

W(x, A) = ~(x, vl, v2, v3) (2.4) 
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for all A ~ M 3• 3 ,  where U i = U i (A), i = 1, 2, 3, denote the singular values of 
A (that  is, the eigenvalues of  the positive symmetric matrix ~ rA). 

The Piola-Kirchhoff stress tensor TR is given by TR = DA W. Thus a 
configuration y is stress-free if 

O A W(x, Dy(x)) = 0 a.e. x e fL (2.5) 

Since any A e M3+ • 3 can be written in the form 

A = QDR, (2.6) 

where Q, R ~ SO(3) and D = diag(vt, v2, v3), it follows that 

DA W(x, A) = Q dlag ' ~?v2' 

Hence (2.5) holds if and only if 

~?--~ (x, vl(x), Vz(X), v3(x)) = 0, a.e. x e f~ (2.8) 

for i = 1, 2, 3, where the vi (x) are the singular values of  Dy(x). 
In the following proposition, and the rest of  the paper, we denote by 

wm'P(~; Rn), where n > 1, m > 1 are integers, 1 < p  < oo, and ~ c R  n is 
bounded and open, the Sobolev space of  mappings y: ~ R  n which to- 
gether with their distributional derivatives up to and including order m 
belong to LP(n). Thus y e WI'P(f~; R ~) provided (lyl" + IDyIP) dx < oo. 
By W~of(f~; R n) we mean the space of  mappings y which belong to 
wm'p(E; R n) for every open E wi th /7  a f~. In Section 5 we will also use the 
spaces WS'P(8f~; R") with s not  necessarily an integer; we refer to Valent [36, 
Chapter 2] for the definitions. 

Proposition 2.1. Assume that the Baker-Ericksen inequalities 

V i - -  m Vj- 
8v~ Ovj 

> 0 ,  vi #v j  (2.9) 
U i - -  Uj  

1,3 . hold for a.e. x e f~. Let y e Wloc(fL R 3) with det Dy(x) > 0 for a.e. x e f~. If  
y is stress-free then y is conformal,  i.e. 

Dy(x) = v(x)R(x), a.e. x e f~, (2.10) 

where v(x) > 0 and R ( x ) e  SO(3). Hence either y (x )=  e + 2Rox, where 
c e R  3 , 2 > 0 , R 0 e S O ( 3 )  or 

x - a  (2.11) 
y ( x )  = c - ; ~ R o  i x  _ al 2, 

w h e r e  c e R 3, ,~ > 0, R 0 E S O ( 3 )  a n d  a e R 3 - ~ .  
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Remark. As is well-known, the Baker-Ericksen inequalities are a conse- 
quence of  strong-ellipticity of  W(x, .); in fact (el Ball [2, p. 563]) they 
follow f rom the weaker condi t ion of  strict rank-one convexity, which says 
that  

W(x, tA + (1 - t)B) < tW(x, A) + (1 - t)W(x, B) (2.12) 

~t3 • 3 with A - B = 2 | # for some nonzero whenever 0 < t < 1 and A, B e ~,~ + 
2, /t ~ R  3. 

Proof of Proposition 2.1. Let y be stress free. Then by (2.8), (2.9) we 
have v l ( x ) = v 2 ( x ) = v 3 ( x ) = v ( x )  a.e., where v e L~(~) ,  v(x) > 0  a.e., so 
that  by the decomposi t ion  (2.6) y is conformal .  The characterization of  
conformal  mappings  in R 3 given in the theorem is known as Liouville's 
theorem, which was first proved under  the assumpt ion that  y is of  class C 4. 

1 , 3  . Proofs of  Liouville's theorem for mappings  y e Wloo(fl, R 3) are given by 
Bojarski and Iwaniec [9] and Reshetnyak [28]. As is suggested by Iwaniec 

rl/-1,3/2/0. R3) .  [ ]  [19], it seems likely that  this result holds even if only y ~ ,, ~oc ~o, 

Now suppose that  ~ b ( x , . , . ,  .) has a unique critical point  given by 
Vl (x) = v2(x) = v3(x) = v(x), and that  v(x) is not  constant  and does not  have 
the form 

2 
v ( x )  - ix _ a[ 2 ( 2 . 1 3 )  

for any 2 > 0, a ~ R 3 - ~. (Note  that  (2.13) corresponds to (2.11).) Then by 
1 3  . Proposi t ion 2.1 there is no stress-free deformation y ~ Wloc(fL R3). In partic- 

ular this holds for the case when v(x) = v(x3) and is not  constant.  A class of  
stored-energy functions having these properties and appropria te  for the 
problem of  cooling basalt is described in Section 3. 

1 , 2  . In two dimensions (i.e. y e Wloo(fL R 2) with f~ ~ R2), the funct ion v(') 
in (2.10) must  satisfy 

A(ln v) = 0, (2.14) 

since if the conformal  mapping  y is represented by the analytic function f(z)  
then In v is the real part  of  the analytic funct ion logf ' (z ) .  Conversely, if In v 
is harmonic  then there exists locally a conformal  mapping  y whose principal 
stretches both  equal v(x); in fact, if w is a harmonic  conjugate to In v a 
suitable analytic function f can be obtained f rom the formula  i f ( z ) =  
exp(ln v + iW). Said differently, (2.14) is equivalent to the vanishing of  the 
Riemann-Christoffel  tensor of  the metric gij = v26;j. I f  now we consider the 
case, analogous to that  in the previous paragraph,  when @(x , . ,  .) has a 
unique critical point  Vl(X) = v2(x) = v(x2) with v(x2) not  constant,  we find 
that  there exists a stress-free configurat ion if and only if v(x2) -- rxz + s for 
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some constants r and s. Up to a rigid rotation and translation the corre- 
sponding stress-free deformation is given by 

Yl (xl, x2) = 0~ - 1 e~X2 + ~ sin ~Xl, 
-1 (2.15) 

y Z ( X l ,  X2) = ~ e ~ COS ~ X l ,  

which maps each line x2 = constant to the circle centre the origin with 
radius ~-1 e~X2+, and lines xl = constant to radial lines. 

3. A class of stored-energy functions 

In this section we construct a class of stored-energy functions appropri- 
ate for the problem of cooling basalt, and having desirable mathematical 
properties. We model the solidified lava as a homogeneous thermoelastic 
material with free-energy function if = if(0, A) occupying in a reference 
configuration the slab ~ = 09 x (0, 6), where ~o c R 2 is bounded and 6 > 0. 
We suppose that the temperature distribution is linear in the vertical 
x3-direction, so that the absolute temperature 0 is given by 

X3 
0(x3) = 00--~-  A0, (3.1) 

where 0o > 0 and A0 is the temperature difference between the bot tom and 
top of the slab. Regarding the temperature distribution as fixed, we obtain 
the corresponding inhomogeneous stored-energy function given by 1 

W(x3, A)  = i(O(x3),  A). (3.2) 

For the minimization problem (2.1) to be relevant in this case the tempera- 
ture must vary sufficiently slowly with time to be assumed time-independent; 
in the columnar-jointing problem this is reasonable since basalt is a very 
poor heat-conductor (a lava pond takes many years to reach thermal 
equilibrium). For thermoelastic bodies with certain constitutive equations 
for the heat-flux vector that do not depend on the deformation gradient, a 
thermodynamic justification of the minimum principle (2.1), (3.2) is given in 
Ball and Knowles [5]. 

1 The assumption that the dependence of  W on x 3 is given by (3.2) could be questioned on the grounds 
that the material may be solidifying under stress, leading to a body which after cooling to a constant 
temperature is still inhomogeneous. An attempt to take this into account would be to replace (3.2) by 
a stored-energy function of  the form 

W(x3, A) = ~(O(x3), D(x3)A), 
where D(x3)=  diag(,~(x3), 2(x3),/~(x3)) and 2(% #(-) are suitable functions. If 0(x3) = const, then a 
calculation in the spirit of  Proposition 2.1 shows that in general there is no stress-free configuration, 
unlike for (3.2). Note, however, that the body is still uniform in the sense of  Wang and Truesdell [38] 
(i.e. it is composed of the same material at each point). 
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We suppose that  ~(0, ") is isotropic, so that  

~(0, A) = ud(O, /31, /32, /33), 

where/3i = v~ (A) are the singular values of  A and W(O, �9 
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(3.3) 

�9 , .) is symmetric, 
and choose q~(0,. ,  , .) to have a unique minimizer at v~ =/)2 =/33 =/~(0), 
where f(0) = 1 + ~(0 - 00), corresponding to a constant  coefficient of  ther- 
mal  expansion ~ > 0. A simple way to arrange this, which we adopt ,  is to 
suppose that  

~ ( 0 ,  U1,/32 ' U3 ) =/~(02)kI/o (/3~ /32 I)3 ) ) '  f(0)' f ~ )  ' (3.4) 

where tP 0 has a unique minimizer  at /31 = v2 =/33 = 1. The reason for the 
choice for the factor ~(0)2 is explained below. Let e = ~ A0 and 

X3 
v( x3) = 1 - T "  (3.5) 

Note  that  if e < 1 then v(ex3) > 0 for all x ~ fL Combin ing  (3 .1)- (3 .5)  and 
writing W(x3, A) = W(e, x3, A), we have that  

W(e, x3, A) = O(ex3, vl, v2, v3), (3.6) 

where 

(vVl  v2 v3 ) (3.7) vl, /32, /33) = v( x3)  v0 " 

Essentially following Ciarlet and Geymona t  [15] (see also Ciarlet [14]) 
we choose W0 to have the form 

q"0(/31, v2, v3) = al(v 2 + v~ + v~) + a2(v 4 + v 4 + v 4) 

+b(v2v~+ v3v12 2 + v12/32 ) + c(/31/32v3)2dln(vlv2v3), 

w h e r e a l > 0 ,  a2 > 0 , b > 0 ,  c > 0 ,  d > 0 a n d  

d = 2al + 4a2 + 4b + 2c. 

Let 

(3.8) 

(3.9) 

2 = 4 b + 4 c ,  # = 2 a l + 8 a 2 + 2 b .  (3.10) 

Let Wo(A) = q"0(vl, v2, v3). Note  that  Wo(A) = ~(0o, A). This homogeneous  
isotropic stored-energy funct ion has the following properties: 

1. Wo is strictly polyconvex; i.e. W o ( A ) = g ( A ,  c o l A ,  de tA)  for some 
strictly convex function g: M 3 • 2 1 5  M 3 • 2 1 5  (0, ~ ) ~ R ,  where c o f A  de- 
notes the matrix of  cofactors of  A. 
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2. q~0 has a unique critical point  at v 1 = V 2 = V 3 = 1 ,  which minimizes 
tlJ 0 . 

3. The Lam~ moduli of W0 at the identity are 2 and #, i.e. (eft L e m m a  
4.1 below) 

 IH+H I =, H e M  3• (3.11) D2Wo(1)(H, H) = 2(tr  H)  2 + -~ 

4. W o ( A ) ~ o e  as d e t A ~ 0 + .  

The strict polyconvexity of  1410 follows f rom Ball [1, Section 5]. Proper ty  
2 follows easily f rom the observation that  by the Baker-Ericksen inequalities 
any critical point  of  tlJ0 satisfies vl = v: = v3. Proper ty  3 is easily verified by 
choosing H diagonal,  while Proper ty  4 is obvious since det A = vl VzV3. 

The inhomogeneous  stored-energy function (3.6) inherits the following 
properties f rom those of  Wo. 

1'. W(e, x3, ") is strictly polyconvex. 
2". rb (ex3 , . , . ,  .) has a unique critical point  v~ = v2 = v3 = v(ex3), which 

minimizes r ", "). 
3'. The Lam6 modul i  of  W(e, x3, ") at the identity are 2 and p, and in 

particular are independent  of  x3. 
4'. W(e, x3, A) ~ oe as det A ~ 0 + .  

Note  that  Proper ty  3' is a consequence of  having chosen the factor ~(0) 2 in 
(3.4). 

In the numerical  computa t ions  in Section 6 the constants  were chosen as 
follows: 

al = 0.65 

a2 = 0 

b = 0.45 (3.12) 

C = 0  

d = 2al + 4a2 + 4b + 2c = 3.1. 

These values correspond to the Lam~ modul i  

2 = 1 . 8  and 2 = 2 - 2 ,  

which are, in appropriate  units, equivalent to a Young 's  modulus  E of  
5.4 x 101~ dynes cm -2, and a Poisson's ratio v of  0.22. These are the values 
for basalt at a temperature  of  approximately 700~ as reported by Ryan  
and Sammis [29]. The Lam6 modul i  of  basalt are not  exactly independent  of  
temperature,  as given in Proper ty  3', bu t  this simplification is probably not  
impor tan t  for our  purposes. An appropria te  value of  e can be est imated 
f rom the coefficients of  thermal  expansion given for basalt at different 
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temperatures  in [29]. Taking the representative value a = 8 x 10-6~ -1, 
and a temperature  difference A0 of  675~ (corresponding to a temperature  
00 = 700~ at the bo t tom of  the slab and an air temperature  of  25~ 
suggests the approximate  value e = 5 x 10 -3. A much  smaller value of  A0 
might  well be appropriate;  for example, Ryan and Sammis suggest that  
cracking will occur if A0 exceeds 53~ 

We are not  aware of  proposals  for a three-dimensional  nonlinear  
free-energy funct ion for basalt, so that  (3.6), (3.7) should be regarded as a 
guess that  is consistent with measured linear modul i  and general principles 
of  frame-indifference and isotropy. Our  model  ignores several other features 
of  the actual si tuation in cooling basalt as described in [29], such as creep 
and the glass transition. 

In Section 6 it will prove convenient  to express W(e, x3, A) in the form 

W(e, x3, A) = H(e, x, I1,12, 13) 

= a l I, + a212/v 2(ax 3) + (b - 2a2)I2/v 2(ex3 ) + eI3//) 4(ex3) 

d 2 - -~ v (ex3)[log/3 - log v6(ex3)], (3.13) 

where 

I, = tr(A T A) = v 2 + v 2 + v 2, 

I2 t r [ ( co fA ) rco fA]  2 2 2 2 2 2 (3.14) = ~ / ) l / )2  -Ji- /)2/)3 -'[- U3UI~ 

/2 = det A = vl v2v3. 

The following result is a consequence of  known existence theorems for 
nonlinear  elastostatics (see Ball [1]). 

Theorem 3.1. If  W =  W(e, x3, A) is given by (3 .6)- (3 .8)  and ~ is 
strongly Lipschitz with infx ~ v(ex3) > 0 then 

[~ (Y) = t~ W(13, x3, Dy(x)) dx (3.15) 

attains an absolute m in imum in d de---f{y e WI'I(f~; R3): det D y ( x ) >  0 a.e. 
x 

4. Linearization with respect to an inhomogeneity 

4.1. A formal expansion 

Consider  a general stored-energy funct ion W ( e , x , A )  such that  
A ) ~  ~ W(O, x, W(A) is independent  of  x. Thus  when E = 0 the material  is 
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homogeneous, while for ~ > 0 it is inhomogeneous. Proceeding formally, let 
y(~ be a minimizer of 

/~(Y) = t~ W(~, x, Dy(x)) dx, (4.1) 

subject to 

Yl0nl = Y, (4.2) 

where ~?f~l cOf~ and )~:r 3 is given. We suppose that y~ can be 
expanded as a power series in e, i.e. 

y~ = y(O) + eu + e2v + �9 �9 (4.3) 

for some mappings y(0~, u, v etc. Thus 

I~(y~) = [~ W(~, x, Dye) dx 

fo W~176 dx 

+ e fo [D~ W(0, x, Dy (~ + Da Wo(Dy (~ �9 Du] dx 

+ 2  [D~ W(0, x, Dy (~ + 2D,DA W(0, x, Dy (~ �9 Du 

+ D 2 Wo(Dy(~ �9 Du + 2DA Wo(Dy (~ �9 Dr] dx + o(~2). (4.4) 

Since y(O3 minimizes 

.[. Wo(Dy(x)) clx (4.5) I(y) 

subject to (4.2), we have that 

f~ (0~ (4.6) DA Wo(Dy (x)) " D4) dx = 0 

for all q~: fi--* R 3 with ~b lanl = 0. Since u l0n 1 = 0 it follows from (4.6) that the 
coefficient of ~ in (4.4) is independent of u. Similarly, the last term in the 
coefficient of ~2 vanishes. Hence the coefficient of e 2 c a n  be written as 

�89 fa [a(x) + 2G(x) �9 Du(x) + C(x)Du(x) �9 Du(x)] dx, (4.7) J(u) 

where 
def 2 def 

a(x) = D~ W(0, x, Dy(~ G(x) = D~DA W(0, x, Dy(~ 

def 2 
C(x) = D A Wo (Dy (~ 
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A minimizer u of  J subject to ulna 1 = 0 satisfies 

div(C(x)Du + G(x)) = O, x e f~, 

(C(x)Du + G(x))v len\anl = O, (4.8) 

UlO~')I = 0,  

where v = v(x) denotes the unit  outward  normal  to 0• at x. 
Note  that  (4.8) differs f rom the usual mixed boundary-value  problem of  

linearized elasticity on account  of  the source term div G(x). Of course (4.8) 
may  be obtained directly as the coefficient of  e in the expansion of  the 
Euter-Lagrange equat ion 

div D Am@, x,  Dy ~) = O, x ~ f~, (4.9) 

and natural  boundary  condi t ion 

DA W@, x, Dy~)vl~n\anl = 0,  ( 4 . 1 0 )  

for I~. Similarly we find that  v solves the system 

div(C(x)Dv + G1 (x)) = O, x ~ D,, 

(C(x)Dv + G, (x))v lon\an~ = 0, (4.11) 

/)[6qnl = 0,  

where 

def 1 2 
G1 (x) = 5D~ DA W(O, x, Dy(~ + D~D2A W(O, x, Dy(~ 

1 3 Wo(Dy(O)(x))Du(x) " D u ( x ) ,  q-SDA (4.12) 

and so on. 

4.2. The zero traction problem: an exact solution 

We now consider the zero traction problem, for which Of~l is empty,  
and present an exact solution to the linearized problem (4.8) in a special 
case. We suppose that  W(e, x, .) is isotropic, and that  Dy (~ = 1. To simplify 
the expression for G(x) and C(x) we use the following well-known lemma. 

2 3 x 3 )  Lemma 4.1. (cf. [3, p. 724]) Let I~ ~ C (M+ be isotropic. Then there 
exist constants  p, 2, # such that  

DA VV(1) = p l ,  (4.13) 

and 

# 1 H + H r [  2, H ~ M  3X3 D2A I~V(1)H �9 H = 2(tr H)  2 + (4.14) 
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Applying Lemma  4.1 to the isotropic function f ie(A)= D~ W(0, x, A), 
we find that  

G(x) =p(x) l  (4.15) 

for some scalar function p = p(x). Applying the lemma with fie(A) = Wo(A) 
we also have that  C(x) = C is independent  of  x, and 

# I H + H T ]  2, H e M  3• (4.16) CH" H = 2(tr H)2 + 2 

for constants  2, # ( the Lamk moduli). Setting wi thout  loss of  generality 
a(x) - 0  in (4.7) we obtain 

�89 In Q(x, Du(x)) dx, (4.17) J(u) 

where 

# I l l  + H~I ~ Q(x, H)  = 2(tr H)  2 + ~ + 2p(x) tr H. (4.18) 

We suppose that  Q(x, .) is strictly convex on symmetric matrices; equiva- 
lently, the Lam6 modul i  satisfy 

32 + 2/~ > 0, # > 0 .  (4.19) 

As a final simplification, mot ivated by the discussion in Section 3, we 
suppose that  p = p(x3). 

To find an explicit minimizer of  J(-) we determine the minimizers H(.)  
of  

](H) = ~ Q(x, H(x)) dx (4.20) 

in L2(f~; M 3 • 3), and see if one of  them is a gradient,  i.e. H(x) = Du(x) for 
some u e Hl(f~; R3). Surprisingly, this strategy works in a useful special 
case. 

�9 A r 3 x 3  . It) C 2 Theorem 4.1. Let W: ( - ~ o ,  Co) x f2 x iv1 + ---,,a be and isotropic, 
where eo > 0. Assume that  the Lam6 modul i  2, ~ given by (4.16) satisfy 
(4.19), and that  p = p ( x 3 ) .  Then there exists a minimizer H of  aY(.) in 
L2(f~; M 3 • 3) which is a gradient if and only if 

p(x3)  ---= rx3 q- s (4.21) 

for some r, s e R. The corresponding u e Hi(f2; R 3) with Du = H are then 
given by 

u(x) = Ct(x) § g x  + c, (4.22) 
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where 

/gl (X)  = - -  N - I X  1 ( r x  3 -~- S) ,  

u2(x) = -- tc - lx2(rx 3 + s), (4.23) 

/~3(X) = ~/~1 -1[r(x ~ + x22 -- x~) -- 2sx3], 

c e R 3, K is a skew 3 x 3 matrix, and x = 32 + 2#. These are the only weak 
solutions of  the linearized problem (cf  (4.8)) 

div(CDu + (rx3 + s)l) = O, x ~ f~ 

(CDu + (rx3 + s)l)v = O, x ~ ~f2. (4.24) 

Proof. The unique minimizer  of  the integrand Q(x, H) among  symmet- 
ric matrices H is easily calculated to be 

H ( X )  -= - -  tr - l p ( x  3 ) 1.  (4.25) 

Since Q(x, H + K) = Q(x, H) for any skew K it follows that  the minimizers 
of  J in L2(~; M 3 • 3) are of  the form 

H(x) = - x - 'p (x3) l  + K(x), (4.26) 

where K(x) is skew. If  H(x) = Du(x) then 

Ul,1 = /'/2,2 = /13,3 = - -  K - - l p ( x 3 )  , (4.27) 

ul,2 + u2,1 = u2,3 + u3,2 = u3,1 + ul,3 = 0. (4.28) 
--1 Hence 0 = ~/3,311 = u3,131 = - U l , 3 3 1  = - u 1 , 1 3 3  = ~ P ,33 in the sense of distri- 

butions, which implies (4.21). I f  (4.21) holds, then (4.27) implies that  
Du(x) - D ~ ( x )  is skew for a.e. x, where K(x) is defined in (4.23). As is well 
known  (cf  Valent [36, p. 55]) and easily verified, this implies that  
Du(x) - D ~ ( x )  is a constant  skew matrix, so that  u has the form (4.22). It 
is easily verified that  if u is given by (4.22) then H = Du(x) satisfies (4.26), 
so that  u is a minimizer of  J. Fur thermore  

CDu + (rx3 + s)l  = 0, (4.29) 

so that  (4.24) holds trivially. 
By definition, u is a weak solution of  (4.24) if u ~ Hl(f~; R 3) and 

f n (COu  + (rx3 + s)l) Oq~ = (4.30) dx 0 o 

for all q~ ~ Hl(f~; R3). Thus the difference z between any two weak solutions 
satisfies 

f n C D z  = 0, (4.3t) Dz dx I 
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so that Dz(x)  is skew for a.e. x ~ f~. Thus z(x) = Kx  + c for a constant skew 
matrix K and some e e R. This shows that the only weak solutions of (4.24) 
are given by (4.22). [] 

The following lemma verifies that condition (4.21) holds for the stored- 
energy function W(e, x3, A) given by (3.6)-(3.8). 

Lemma 4.2. Let W(e, x3, A) be given by (3.6)-(3.8). Then 

32 + 2/, 
D~DAW(O, x3, I )  = p ( x 3 ) l  where p(x3) = 6 x3. (4.32) 

Proof. The first equality follows immediately from (4.13) of Lemma 4.1. 
Also we have from (3.7) that 

W(/3, X3, A )  = v(~x3) 2 Wo(v (13x3)  - 1A) 

where, as usual, 

So 

~X 3 
v(ex3) = 1 -- --7-'- 

O 

D A W(e, x3, 1) -= v(ex3 )D a Wo(v(ex3)-'1)1 

and 

D~DA W(O, x3, 1) = x3 r~2 Wo(1)l .  b "-'A 

Hence 

X3 
p(x3) l  . 1 = --g D]  W o ( t ) t  . t 

and by Lemma 4.1 we have the required result. [] 

In order to fix the arbitrary translation and linearized rotation in (4.22) 
we pick a point ff e f~ and require that 

y,(~) = ~, Dy~(~) = Dy,(~)r .  (4.33) 

so that there is no local rotation at ~. Since y ' ( x ) =  x + ~ u ( x ) + . ' .  this 
implies that 

u(~) = 0, Du(~) = Ou(.~)r. (4.34) 
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Taking wi thout  loss of  generality )~ = 0 we deduce f rom (4.23) that  K = 0, 
c = 0, so that  u = ~. Hence 

y (x) = xl (1  -   c-l(rx3 + s)) + 

y~(x) = x2(1 - e~c-~(rx3 + s)) + o(e), (4.35) 

y~(x) : x3 1 - ~ ~- l ( rx3 "{- 2s) + ~ tr - i t (x2  + x 2) + o(e). 

Hence to first order in e, y = y" satisfies 

2y3 = ge(x3) + f fz l (y  2 q- y2), (4.36) 

where 

( e _ ( ) )  Q~ =--.~c (4.37) g~(x3) -= 2x3 1 - - 2  ~-l"rx3 + 2s ' re 

For  fixed x3 the surface (4.36) is a parabolic spheroid which to first order in 
e is spherical of  radius 0,. 

In the case when W(e, x3, A) is given by (3.6)-(3.8) ,  it follows f rom 
Lemma  4.2 that  

6 
~o~ = - .  (4.38) 

e 

This is the same result as given for the radius of  curvature of  a thin elastic 
plate in a temperature  gradient by T imoshenko  [35] (see also Johns [21]), 
who uses an elementary, but  approximate,  geometric argument.  He also 
points  out  that  to this approximat ion  the corresponding thermal  stresses are 
zero; this corresponds in our calculation to the fact that  DHQ(x, Du(x)) = 0 
when p(x) = rx3 Jr-S and u is given by (4.22). 

5 Justification of the formal expansion via the implicit function theorem 

In this section we use the implicit function theorem to study the 
problem 

div DAW(~ ,x ,  D y ) = O ,  x ~f~, (5.!) 

D A V~(g, x ,  Dy)v = O, x E ~f~, (5.2) 

for small e. In (5.2), v = v(x) denotes the unit  outward  normal  to ~?f~. 
Equat ions  (5.1), (5.2) are respectively the Euler-Lagrange equat ion and 
natural  boundary  condi t ion corresponding to the minimizat ion problem 
(4.1). They express the balance of  forces in f~ and the condi t ion of  zero 
surface traction on ~?f~ respectively. The analysis uses classical ideas for 
applying the implicit function theorem to the traction problem of  nonlinear  
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elastostatics (see Stoppelli [30, 31, 32, 33], Van Buren [10], Chill ingworth,  
Marsden and Wan  [11, 12], Wan  and Marsden [37], Marsden and Hughes 
[22], Valent [36]). We follow Valent 's  careful t reatment  quite closely. 

Let m be a non-negative integer, and let f~ c R 3 be a bounded  domain  
of  class C ~+ 2. We make  the following hypotheses on W = W(t, x, A) 

(H1) (domain of definition) W: D --.R where D = ( - t o ,  eo) x ~ x M 3• and 
e 0 > 0 .  

(H2) (smoothness) W e  C1(D) and W(e,., .) e cm+3( f i  X M3+ • for every 
t e ( - t o ,  to). 

(H3) (frame-indifference) W(e, x, QA) = W(e, x, A) for all (e, x, A) e D and 
all Q e SO(3). 

(H4) (homogeneity at t = 0) W(0, x, A) ~f Wo(A) is independent  of  x. 
(H5) (behaviour of Wo at the identity) 

DWo(1) = 0, (5.3) 

D2Wo(t)(H, H) >- colHI 2 for all symmetric H e M 3 • 3, (5.4) 

where Co > 0. 
I f  W0 is isotropic then, as is well-known and follows f rom L e m m a  4.1, 

(5.4) holds if and only if the Lam6 modul i  of  W0 at I satisfy 

3 2 + 2 # > 0 ,  # > 0 .  (5.5) 

In Theorem 5.2 below we will also use the stronger smoothness  hypo- 
thesis 

(H2) '  (analyticity) W e C~ and W( ' ,  x, ") is analytic at t = 0, A = 1, 
uniformly in x, i.e. the Taylor  expansion of W(-, x, .) at t = 0, A = 1 
converges to W(-, x, ") for all x e fi and all (t, A) in some open 
ne ighbourhood  of  t = O, A = 1 (cf Valent [36, p. 38]). 

We denote  by L~' the finite-dimensional vector space of  linearized rigid 
motions ,  i.e. 

~q~de=f{f:R3---~R3:~(x)=a+Kx forsomeaeR3, K=--Kr~M3• 
def  

Let H = L2(f~: R 3) • L2(~f~; R3), which is a Hilbert space under  the natural  
inner-product .  We say that  a pair ( f l , f 2 )  e H is equilibrated if 

fnf,  dx+faf2da=O,~ (5.6) 

fnX AfldX + fa x (5 .7)  
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where a denotes surface measure on ~f~, and write 

E ~f {(fl ,f2) s H: (fl  ,f2) is equilibrated}. (5.8) 

The following result is easily proved (cf. Valent [36, p. 108]). 

Lemma 5.1. The orthogonal complement E • of E in H is given by 

Let P denote the orthogonal projection of H onto E. Then (cf. Valent [36, 
p. 108]) we have 

Lemma 5.2. P: H ~ E is continuous with respect to any topology on H 
finer than that of L2(f~; R 3) • L2(0f]; R3). 

Proof. This follows from the fact that E • is finite-dimensional. [] 

We will prove the existence of solutions to (5.1), (5.2) for sufficiently 
small e by applying the implicit function theorem to solve the equation 

r(~, y) = 0 (5.9) 

with 

F(e, y) d erp( - d i v  DA W(e, x, Dy), DA W(e, x, Dy)v). (5.10) 

In order to show that (5.9) is equivalent to (5.1), (5.2) the following lemma 
will be used. 

Lemma 5.3. (cf. Valent [36, p. 109]) There exists a neighbourhood N of 
the identity mapping id(x) = x in Ll(f~; R 3) such that if~b e N a n d  ( s s with 

io f ((x) dx + ~(x) da = 0, (5.11) 

f ~(x) Af(x)dx +; ~(X) (5.12) 

then f = 0. 

Proof. If  not there would exist a sequence q~(J)~/d in L l ( ~ ,  R 3) and 
{(k)(x) = a (k) + K(k)x with la(k)[ + IK(k)[ = 1 and K (k) + K(k)r = 0 such that 

fnf(k)(x) dx + fa f(k)(x) da = (5.13) 

(5.14) 
3n ,Jo 
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We may  without loss of  generality suppose that a (k) -~ a, and K (k) ~ K, with 
(a, K) r (0, 0). Let Y(x) = a + Kx. Passing to the limit in (5.13), (5.14) we 
find that (fin, lion) is equilibrated, so that by Lemma 5.1 ~ = 0, a contradic- 
tion. [] 

The following version of the implicit function theorem is useful in our 
context. For  a proof  see [26] and [40]. 

Theorem 5.1. Let X, Y, and Z be Banach spaces, U an open subset of  
X • Y, a n d f = f ( x ,  y) a C 1 function from U into Z. Let (x0, Y0) ~ U be such 
that f(xo,  Y0) = 0 and Dyf(Xo, Yo) is a bijection of  Y onto Z. Then there 
exists an open neighbourhood Uo of  (Xo, Y0) in X • Y, an open neighbour- 
hood V0 of  x0 in X, and a C ~ function g: V o ~ Y  such that {(x,y) ~ U0: 
f ( x ,  y) = 0} = {(x, y): x ~ V0, y = g(x) }. Furthermore,  U0 can be chosen so 
that Dyf(X, y) is a bijection of  Y onto Z for all (x, y) e U0; in this case, if 
x e V0 then 

Dg(x) = - (Dyf(X, g(x)) - 1Dxf(x, g(x)), (5.15) 

while if f is analytic 2 at (x, g(x)) then g is analytic at x. 

To apply the implicit function theorem to F given by (5.10) we make the 
following choice of  spaces. Let p(m + 1) > 3, choose a point s s f~, and let 

X = R, 

Y = {y e w m + 2 ' P ( n ;  R 3 ) :  y()~) = 0, Dy(2) = Dy(.g)'r}, 

Z = (wm'p(~'~; R 3) • wrn+l-(1/p)'P(l~'~; R 3 ) )  c~E. 

Since (m + 1)p > 3, Win+ 2'P(f~; R 3) is continuously embedded in Cl (~;  R3). 
Hence Dy(~) in the definition of  Y is well-defined. By standard embed- 
ding theorems Y and Z are closed linear subspaces of  wm+2'e(f~; R 3) 
and wm'P(O; R 3) • wm+I-(1/P)'P(~3~; R 3) respectively, and are thus Banach 
spaces with the corresponding norms. We define Y+--- {y ~ Y: 
infx ~ n det Dy(x) > 0}, which is an open subset of  Y. 

Lemma 5.4. Let (H1), (H2), (H4) hold. Then F defined by (5.10) is a C 1 
mapping from ( - S o ,  So) x Y+ into Z, and its differential with respect to y 
at e = 0, y = id is the mapping 

Lv = P( - div(D~ Wo(1)Dv), D 2 Wo(1)Dv �9 v). (5.16) 

If  further (H2) '  holds, the F is analytic at e = 0, y = id. 

2 i.e. f h a s  a power series expansion about (x, g(x)) with nonzero radius of convergence; see [26], [40], 
[36] for more details. 
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Proof. We first note  that  the mapping  

y ~ ( - d i v  DA W(s, x, Dy), D~4 W(e, x, Dy)v) 

is C ~ f rom ( - e 0 ,  eo) x Y+ into Wm'P(fk R 3) x W m+l --(1/p),p(~"~; R3). This is 
proved in [36, p. 105] for the case when W is independent  of  e, and the 
addi t ion of  the extra variable presents no difficulties. Since, by Lemma  5.2, 
P is a bounded  linear operator  f rom wm'P(s R 3) x W m+l -(1/p).p(~f~; R 3) 
into Z it follows that  F is C ~. That  DyF(O, id)v =Lv follows as in 
[36, p. 105], as does the analyticity of  F at e = 0, y = id when (H2) '  holds. 

[] 

Proposition 5.1. Let (H4), (H5) hold. Then L given by (5.16) is a linear 
h o m e o m o r p h i s m  of  Y onto  Z. 

Proof. This is a consequence of  the regularity theory for linear elliptic 
systems, and is proved in [36, p. 38]. (Valent defines Y slightly differently, 
replacing the condit ions y(37) = 0 ,  Dy(2) =Dy(s by ~nydx =0, 
~n Dy(x) dx = ~ Dy(x) r dx respectively, but  this does not  affect the proof.) 

[] 

We can now prove our  main  result. 

Theorem 5.2. Let ( H 1 ) - ( H 5 )  hold. Then there exist numbers  et > 0 and 
> 0 such that  

(a) if e e ( - e ~ ,  el) there exists a unique solution y~ e Y of  (5.1), (5.2) with 
Ily idli y < 6. 

(b) the mapping  e ~ y ~  is C 1 on ( - a ,  e~), and for each ~ e ( - e ~ ,  e~) y~ is a 
di f feomorphism of  ~ onto  y~(O). 

If  further (H2) '  holds then e ~ y~ is analytic at e = 0. 

Proof. We apply Theorem 5.1 with X, Y, Z as chosen above, U = 
( - e o ,  e0) x Y+, f =  F and (xo, Yo) = (0, id). By Lemma  5.4, F: U ~ Z and 
is C ~. By (H4), (H5) we have F ( 0 , / d )  = 0 ,  while by Proposi t ion 5.t 
DyF(O, id) is a bijection of  Y onto  Z. Hence by Theorem 5.1 there exist 
eo > 0, and ~5 > 0 such that  for e e ( - e o ,  eo) there exists a unique y~ ~ Y+ 
with I[y ~ -  idll r < 6 and F(e, y~) = 0, and such that  the mapping  e ~ y" is 
C 1. Fur thermore ,  if (H2) '  holds then by L e m m a  5.4 and Theorem 5.1 the 
mapping  e ~-. y~ is analytic at e = 0. 

We can suppose that  e0 is chosen sufficiently small so that  y~ belongs to 
the ne ighbourhood  N specified in Lemma  5.3 for all e ~ ( - e o ,  e0). For  any 
e a ( --eo, e0) let ( f ~ , f ~ )  = ( - d i v  DA W(~,', Dye(')), DA W(e,., Dy~(.))v). 
By (H3) we have that  for any (e, x, A) e D the corresponding Cauchy stress 
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tensor is symmetric, i.e. D~4 W(8, x, A)A T is symmetric. Hence (cf. Valent 
[36, p. 107]) 

f f ,dx+f f dG=O, 
f~ 

fnYe A f]  dx + fo y" A f~ da = 

Since P ( f ] , f g ) = F ( s , y " ) = O  we have by Lemma  5.1 that  f ] = g ~ [ n ,  
f~ = t~lm for some t'~ ~ ~ .  Hence by Lemma  5.3 we have ( f ] , f~ )  = (0, 0). 
Thus y~ solves (5.1), (5.2). 

It remains to prove that  for ~ sufficiently small y " : ~ y " ( f i )  is a 
diffeomorphism. But this follows since y~e  Cl(f i ;  R3), using a remark  in 
[36, p. 18] and the fact that  det Dye(x) > 0 for all x ~ ~.  [] 

Remarks.  1. Note  that  the hypotheses ( H 1 ) - ( H 5 ) ,  (H2) '  of  Theorem 
5.2 are satisfied by the stored-energy function W = W(e, x3, A) given by 
(3 .6)- (3 .8)  provided v(ex3) > 0 for all x e ft. 

2. The p roo f  of  Theorem 5.2 assumes that  f~ is of  class C m + 2, and thus 
does not  apply when f~ = co x (0, 6). In the case m = 0 it would be possible 
to prove the existence of  a solution y~ ~ W2"P(f~; R 3) if it were known that  
an appropriate  version of  Proposi t ion 5.1 holds in this case. This seems 
plausible for the case when ~?co is smooth  or even when co is a rectangle, but  
we have been unable to locate such a result in the literature for linear 
elastostatics. Thus  as it stands Theorem 5.2 does not  apply to the case when 
f~ = ( - 1, 1) 2 x (0, 6) that  is treated numerically in Section 6. 

3. Note  that  due to the special form of  our problem the fact that  the 
applied loads have maximal  symmetry (they are zero) does not  cause 
difficulties as it does for the pure tract ion problem. 

We now turn to the question of  whether  the solution y~ to (5.1), (5.2) 
given by Theorem 5.2 is in fact a minimizer of  

I~ (y) = fn W(e, x, Dy(x)) dx. (5.17) 

Since the only convexity hypothesis  made  in Theorem 5.2 is (H5), which is 
local in nature,  there is no reason to suppose that  y" is a minimizer unless 
W satisfies addit ional  convexity and growth hypotheses.  We therefore 
suppose that  W satisfies the two following conditions: 

(H6) W(~, x, .) is strictly polyconvex for e ~ ( - e 0 ,  co), x ~ fL 
(H7) There exist constants  p > 3, C > 0, Co such that  

W(e, x, A) > Co + C[A [P, for all (e, x, A) e D. 
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It was shown by Zhang [41] that for a large class of  smooth stored- 
energy functions W = Wo(A) satisfying ( H 5 ) - ( H 7 )  the solution y of  the 
displacement boundary-value problem 

div DA Wo(Dy(x)) = f ( x ) ,  x ~ f~, (5.18) 

Ylaa = id + g, (5.19) 

given by the implicit function theorem for small smooth f ,  g is in fact the 
absolute minimizer of  

I(y)  = .In [Wo(Dy) - f " y] dx (5.20) 

subject to (5.19). 
By contrast, we show that for an isotropic W = W(e, x, A) satisfying 

( H 1 ) - ( H 7 )  it is not  true in general that y~ given by Theorem 5.2 minimizes 
/ ,( .)  for e sufficiently small. We choose W to have the form 

W(e, x, A) = @(e, x, vl, v2, v3) 
3 3 

~- 2 U2 § 2 ~(Vi) § (/)2/33)5/4 § (/33/)1) 5/4 § (/)t/)2) TM 
i=1 i=1 

§ h(/)l/)2/)3) § e Ix 128(/),/)2/)3), ( 5.21) 

where as usual the vi denote the singular values of  A. We suppose that 
7: [0, oo) ~ [0, oo) is convex and smooth with 7(v) = 0 for 0 <- v -< 4 and 
7(v) ~ v 4 as/) ~ oo, and that H: [0, oo) - ,  [0, oo) is convex and smooth with 
H(8) > 0 for 0 < c~ -< 2, H(6) = 0 for 6 > 3. Following Ball [2], Ball and 
Marsden [7], Ball and James [4] we choose h: [0, oo) --,R to be a smooth 
function satisfying h" > 0, lima__,0 h(6) = oo, h bounded below, and such that 
g(8) d-----ef3~2/3 § 385/6 § h(6) is non-negative with g(1) = g(8) = 0, g(t) > 0 for 
8 r 1, 8, g"(1) > 0. Such a choice of  h is possible since --332/3 -- 385/6 is a 
strictly convex function of 8. 

We now note that W: D ~ R  is smooth (cf  Ball [3]), that W(e, x,-)  is 
strictly polyconvex (cf Ball [1]), and that W satisfies (H7) with p = 4. Also 
the only minimizers of  q)(0, x , . , - ,  .) are given by v, = v2 = v3 = 1 and 
vl = / ) 2 = v 3 = 2 ,  while if e 5 0 ,  x 5 0  then the only minimizer of  
q)(e, x, �9 , �9 , .) is /)1 = /)2 = V3 = 2. 

Next we note that 

d 2 
D2A Wo(1)(1, 1) = ~ Wo(tl)[t= , = 9g"(1) > 0, 

while, since each of  the terms in (5.21) is rank-one convex, 

d 2 
D2 Wo(1)(el @ e2, e I @ e2) ~- ~ T  2 I t  § "gel @ e212 > O, 
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where e~, e2 denote unit vectors in the x~, x 2 directions respectively. Hence 
by Lemma 4.1, 32 + 2# > 0 and # > 0, which again by Lemma 4.1 gives 
(H5). 

Now let y~ be the solution of (5.1), (5.2) given by Theorem 5.2. For e 
sufficiently small Dy ~ takes values in the neighbourhood of  1 and therefore 
I~(y ~) > 0. But I(2id) = 0, and so y~ is not a minimizer of 1 and therefore 
L(y  > 0. 

The above example has the unusual feature that the natural state 
vl = v2 = v3 = 1 is not unique. It would be interesting to find hypotheses 
which guarantee that when there is a unique natural state (modulo rota- 
tions) then the solution y~ given by Theorem 5.2 is an absolute minimizer. 
(A related open problem is to give reasonable hypotheses on the stored- 
energy function under which at least one of the solutions to the dead-load 
traction problem found for small loads via the implicit function theorem by 
Chillingworth, Marsden and Wan [11, 12] and Wan and Marsden [37] is an 
absolute minimizer of the energy.) 

6. Numerical calculations 

In Section 4.2 we found an exact solution to the minimization problem 
(4.1) in the special case where W(e, x, Dy(x)) is such that p(x) defined by 
(4.15) is an affine function of x3 alone. This solution was obtained using the 
formal expansion of Section 4.1, which was justified via the implicit function 
theorem in Section 5. In this section we introduce a numerical scheme for 
solving the minimization problem based on the finite element method. This 
numerical approach is not restricted to the case of small ~, nor does it 
require that p(x) be an affine function of x3. However for the purposes of 
this paper we restrict our computations to examples of this kind, thus 
making it possible to make comparisons between the results obtained by the 
two different methods. 

6.1. The numerical method 

Let X = W~'l(f~; R3), where f~ = ( -  1, 1) x ( -  1, 1) x (0, 6), and let 
y e X solve the minimization problem 

min ~ W(x, Dy) dx, (6.1) 
y ~ X  Jn 

where W: f~ x M 3• 3 ~ R is sufficiently smooth. In the actual computations 
we take W(x, A )=  W(e, x3, A) with W(e, x3, A) given by (3.6)-(3.8). We 
seek to approximate y by yh ~ S h c X. To choose an appropriate trial space 
S h we divide fi into n2m rectangular bricks, of side-lengths 2/n in the x~ and 
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x2 directions and (~/m in the x3 direction, with a total of (n + 1)2(m + 1) 
vertices or node points. We then let S h be the space of continuous piecewise 
trilinear vector functions on the finite element grid; this choice assigns to 
each node point three linear degrees of freedom, one for each component of 
the displacement yh. (See [13] for more details of this space.) 

Our numerical approximation now consists in solving the finite dimen- 
sional problem: 

min ~ W(x, Dy h) dx. (6.2) 
yh~Sh J, 

In practice however we do not numerically solve precisely this problem, 
since the integral is approximated by numerical quadrature. 

The spirit of the method is that as n, m ~ ~ ,  the space S h becomes 
dense in X, so that we expect that the minimizer yh in (6.2) converges to y 
(for example, strongly in X). This would not be hard to prove if it were 
known that y is sufficiently smooth, but unfortunately there is no suitable 
regularity result guaranteeing this available in the literature. For minimizers 
y that are not smooth there is the danger that the Lavrentiev phenomenon 
may occur, according to which the infimum of the total energy among 
Lipschitz mappings (such as those considered in the finite-element method) 
is strictly greater than the infimum among all mappings in X. In this case 
one might expect convergence to a minimizer in a smaller space than X. For 
information on the Lavrentiev phenomenon and its implications for finite- 
element methods see Ball and Mizel [8], Ball and Knowles [6]. Ntgron- 
Marrero [23] has proposed a numerical method for three-dimensional 
nonlinear elasticity which theoretically circumvents the Lavrentiev phe- 
nomenon. We did not employ this or related methods because (a) their 
numerical implementation in three dimensions is unexplored, and (b) they 
significantly increase the number of unknowns in an already computation- 
ally intensive calculation. Also, as explained at the end of Section 5 it is 
possible that the result of Zhang [41] could be modified to show that for 
sufficiently small ~ the minimizer y is the same as that given by the implicit 
function theorem (see Theorem 5.2), and hence is smooth. Furthermore, 
there is no evidence that the Lavrentiev phenomenon actually occurs for 
integrands with polyconvexity and growth conditions of the type satisfied by 
(3.6)-(3.8). Thus for small e we probably do not go far wrong by assuming 
convergence, and the numerical results below do indicate that convergence 
occurs. For larger e, even in the absence of the Lavrentiev phenomenon 
there is the danger of getting caught in the local but not global minimum. 

In our algorithm we used the conjugate gradient method in the form of 
[25] (described by [24]) in order to solve (6.2). This is a descent algorithm 
which requires the computation of the derivatives of Sn W dx with respect to 
each finite element degree of freedom at every iteration. These derivatives 
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can be computed using the chain rule on the function H(e, x, I1, 12, 13) given 
in (3.13), (3.15) provided the user supplies functions for calculating OH/Oli 
for i = 1, 2, 3, as well as for calculating H itself. This leads to the selection 
of a downhill search direction along which the functional is then minimized 
(again this happens at each iteration). The computations were performed on 
a parallel architecture consisting of an array of 16 Inmos T800 transputers. 
The communications between these processors were handled via Meiko's 
CStools software. A full description of the implementation of the algorithm 
is given in [20]. 

In practice, computational considerations imply that n and m can never 
be chosen to be particularly large. This is because problem (6.2) is an 
unconstrained optimization problem with 3(n + 1)2(m + 1) degrees of free- 
dom, and it is only in recent years that the hardware has become available 
to solve such problems even for moderate values of n and m. If W were a 
quadratic form, then, in the absence of rounding errors, we would be 
guaranteed to find the unique minimizer for this discrete problem in precisely 
3(n + 1)2(m + 1) iterations. Hence if n and m were both doubled, the amount  
of time required to solve the problem would increase, very roughly, by a 
factor of about 64. Of course the function that we are minimizing is not 
quadratic, so that the finite termination criterion does not hold, and in 
practice the increase in computat ion time with n and m is not actually as 
severe as this. Nevertheless it is still apparent that for practical computations 
we are restricted to choosing only moderate values for n and m. 

Despite the above reservations, our numerical method appears to be 
quite robust even for fairly large values of e. 

6.2. A comparison of  results 

We now present a comparison between the numerical solution of the 
non-linear problem given by (6.1) and (3.6)-(3.8) for small ~, and the 
linearized solution 

Xl x3 
= - 

X2 X3 
y ~ =  x 2 -  e -~ + o(~) 

+ 

Y~3 = x3 + 26 
+ 

(6.3) 

given in (4.35). (Note that by Lemma 4.2 r = ~c/6.) Before doing this, 
however, we give some numerical results which suggest convergence of the 
numerical scheme to some mapping y as the mesh is refined. In all of the 
computations which follow, the integration was performed using eight point 
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Table 1 
Convergence of the numerical method as the number of elements, m - 1, in the vertical direction is 
increased. 

N o .  of vertical No. of degrees Largest value of Differences in the 
elements (m - 1) of freedom (3n2m) the displacement displacements 

= 0.001 2 5625 0 .00786  - -  
6 = 0.1 4 9375 0 .00748 0 .00038 

8 16875 0 .00734  0 .00014  

= 0 .004 2 5625 0 .03492 - -  
= 0.1 4 9375 0.03321 0.00171 

8 16875 0 .03283 0 .00038 

Gaussian quadrature on each element. This degree of  accuracy appears, 
from numerical experiment, to be the least one may use with confidence. 

In Tables 1 and 2 we show the results o f  some computations made for 
an energy density of  the form (3 .6 ) - (3 .8 ) ,  with the constants chosen as in 
(3.12). For the problem of  cooling basalt our choice of  ~q corresponds in the 
case 6 = 0.1 to a slab, say, o f  thickness 1 metre and lateral dimensions 20 
metres square. 

Table 1 shows what happens to the maximum displacement, 

max [yh(x) - x[, 
x f f ~  

in the computed solution as the number of  elements in the vertical x3- 
d i rec t ion  is increased. In both cases (e = 0.001 and e = 0.004) there is very 
little difference in the numerical solution when 4 or 8 vertical elements are 
used. 

Table 2 shows the results o f  similar computations when the number of  
elements in each horizontal direction is increased. Here there is a noticeable 
difference in behaviour between the cases of  e = 0.001 and e = 0.004. In 
the first case, convergence seems to begin for quite moderate values of  n, 

Table 2 
Convergence of the numerical method 
increased. 

as the number of elements, (n - 1) 2, in each horizontal plane is 

N o .  of horizontal No. of  degrees Largest value of Differences in the 
e l e m e n t s ( n -  1) of ffeedom(3n2m) the displacement displacements 

e = 0.001 8 1215 0.00341 - -  
= 0.1 12 2535 0 .00542  0.00201 

16 4035 0 .00678 0 .00136  
24 9375 0 .00748 0 .00070  

= 0 .004 8 1215 0 .01372  - -  
6 = 0.1 12 2535 0 .02168 0 .00796  

16 4035 0 .02718 0 .00550  
24 9375 0.03321 0 .00603 
36 20635 0 .03683 0 .00362 
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whereas for the larger value of e convergence appears to be delayed 
somewhat. Nevertheless, it does show signs of  occurring for a sufficiently 
fine sequence of meshes. 

Having demonstrated consistent behaviour of our numerical scheme, we 
can now compare some computed solutions with the linearized solution 
(6.3). We recall that the justification of (6.3) in Theorem 5.2 does not 
strictly speaking apply to our domain fl (see Remark 2 after the theorem) 
unless the edges and corners of f~ are smoothed off. In making the 
comparison we use the fact that in all of  the numerical solutions that we 
obtained for small values of e the following two symmetries were present, 
although they were not imposed: 

y I ( X l ,  X2, X3) ~--- - - Y l ( - - X I ,  X2, X3) 

Y2(xl ,  x2, x3) = Y2( - x l ,  x2, x3) 

Y3(XI, X2, X3) ----" Y3( - - X I ,  X2, X3) 

and 

yl (x~, x2, x3) = yl (x~, - x 2 ,  x3) 

y2(x l ,  x2, x3) = - -y2(xx,  --X2, X3) 

y3(XI ,  X2, X3) : y3 (Xl ,  - -X2 ,  X3). 

Since these symmetries can only be obtained from (4.22) and (4.23) in the 
case where K = 0 and c = 0 it is thus reasonable to compare these numerical 
results with (6.3) which was obtained from (4.22) with K = 0 and c = 0. 

Table 3 shows the difference between numerical solutions and the 
linearized solution (6.3) as the parameter e decreases. The computations are 
made for two different values of f (the thickness of the plate) and for each 
of these cases we show how the numerical and linearized solutions differ, and 
the effect of dividing these differences by e. The reason for choosing the 
parameter ~/6 in the table is simply that the linearized solution (6.3) then has 
the same formula for each of the two values of f used. The norm that is 
referred to is the discrete maximum norm over the finite element node points. 

Table 3 
A comparison between two numerical solutions 07, when & = 0.1 and 375 when 6 = 0.2) and the linearized 
solution as ~ --* 0. 

~/& (6 =0.1) (& =0.1) (6 =0.2) (6 =0.2) 

0.16 0.038733 2.421 0.016433 0.513 
0.08 0.015220 1.903 0.004771 0.298 
0.04 0.006916 1.729 0.001767 0.221 
0.02 0.003332 1.666 0.000773 0.193 
0.01 0.001597 1.597 0.000336 0.168 
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It can be seen that as ~ - ,  0 the difference between the numerical and the 
linearized solutions tends to zero faster than e. This is clearly most satisfac- 
tory since it seems to confirm that the numerical solution and the linearized 
solution agree up to terms of order e, as we would hope. It would be even 
more pleasing to observe the difference between these solutions behaving 
like e 2 as e ~ 0 ;  however this does not appear to be the case. The main 
reason for this is likely to be the lack of accuracy in obtaining a 3-dimen- 
sional finite element solution with 9375 degrees of freedom, the number 
used for these computations. In addition, there are bound to be integration 
errors present due to the use of 8 point Gaussian quadrature on each 
element, so it would be unreasonable to expect the finite element solution 
with fixed values of m and n to behave precisely like the true solution as 
e ~ 0 .  

At this point it may also be observed that the order s terms in (6.3) are 
independent of the specific values of the constants in (3.12). Hence the 
pattern of results shown in Table 3 should also be observable for all similar 
choices of stored-energy function (see (3.8)), not just that given by (3.12) 
which corresponds to the Lam6 moduli 

2 = 1 . 8  and /~=2.2. 

For all of the examples of possible stored-energy functions of this form that 
we tried this did indeed appear to be qualitatively true. However, the values 
of e at which this convergence began to take place was not always the same. 
The worst case that we encountered was for the choice of constants 

al=a2=b=c=l ,  d = 1 2 .  (6.4) 

(Hence 2 = 8 and /~ = 12.) Table 4 shows the difference between the 
computed solutions and (6.3) in this case. As with the results shown in 
Table 3 it can again be seen that the numerical solution does eventually 
appear to converge to the linearized solution at a faster rate than e tends to 
zero, although smaller values of e need to be considered. It is still true that 
there will be errors present in the finite element solution due to the 
coarseness of the discretization and the use of numerical quadrature, but 

Table  4 
A c o m p a r i s o n  between ano the r  two numer ica l  so lu t ions  
l inear ized so lu t ion  as e ~ 0. 

(Yl when  5 = 0.1 and  )~2 when 6 = 0.2) and  the 

~/5 (6 = 0.1) (5 = 0.1) (6 = 0.2) (6 = 0.2) 
IIY, -- (y(O) + eu)]l 1/s [kO, -- (y(O) + eu)[I 113~ 2 _ (y(O) + ~u)[I 1/~ I 1 ~ -  (y(O) + eu)II 

0.020 3.5550 x 10 -3  1.777 8.8461 x 10 - 4  0.221 
0.010 1.7688 x 10 -3  1.769 4.2783 x 10 - 4  0.214 
0.005 8.8281 • 10 -4  1.766 2.1118 x 10 -4  0.212 
0.0025 4.4026 x 10 - 4  1.761 1.0514 x 10 - 4  0.210 
0.00125 2 . !782 x 10 - 4  1.743 4.6761 x 10 -5  0,187 
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there is no reason to suspect that they will be any more significant in this 
case than in that considered in Table 3. A more likely explanation for the 
need to consider smaller values of ~ in Table 4 is that the terms of 0(5) in the 
solution to the nonlinear problem (6.1) will themselves depend upon the 
choice of constants at, a2, b, c and d in (3.8). Hence the significance of these 
terms will vary with this choice of constants. 
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Abstract 

The equilibrium of an inhomogeneous elastic body is analyzed theoretically and numerically, with 
special emphasis on the case when the inhomogeneity arises from a given temperature distribution. The 
case when the inhomogeneity (or variation in temperature) is small is treated via linearization, the 
corresponding expansion of the solution in terms of an appropriate small parameter e being justified by 
means of the implicit function theorem. For certain stored-energy functions suggested by the problem of 
cooling basalt rock, an exact solution to the linearized problem is found. A direct minimization of the 
energy using a finite-element algorithm is found to agree with the linearized solution as ~ ~ 0. 

R6sum6 

L'6quilibre d'un corps 61astique inhomog6ne est 6tudi6 th6oriquement et num6riquement, en parti- 
culler dans le cas oh l'homogen6it~ r6sulte d'une distribution de temp6rature donn6e. Le cas off 
l'inhomogen6it4 (ou variation de la temp&ature) est petite est trait6 par lin6arisation, le d6veloppement 
correspondant de la solution en termes d'un param~tre ~ convenable 6rant justifi4 par le th6or6me des 
fonctions implicites. Pour diverses fonctions d'4nergie interne sugg&6es par le probl6me du refroidisse- 
ment du basalte, on donne une solution exacte du probl~me lin6aris6. Une minimisation directe de 
l'6nergie utilisant une m6thode d'61ements finis est en accord avec les solutions lin~aris6es quand ~ ~ 0, 
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