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Abstract. Existence and uniqueness results are established for solutions to the
Becker-Dόring cluster equations. The density ρ is shown to be a conserved
quantity. Under hypotheses applying to a model of a quenched binary alloy the
asymptotic behaviour of solutions with rapidly decaying initial data is
determined. Denoting the set of equilibrium solutions by c(Q\ 0 ̂  ρ rg ρs, the
principal result is that if the initial density ρ0 ̂  ρs then the solution converges
strongly to c(ρo), while if ρ0>{?s the solution converges weak* to c(Qs\ In the
latter case the excess density ρ0 — ρs corresponds to the formation of larger and
larger clusters, i.e. condensation. The main tools for studying the asymptotic
behaviour are the use of a Lyapunov function with desirable continuity
properties, obtained from a known Lyapunov function by the addition of a
special multiple of the density, and a maximum principle for solutions.

1. Introduction

Consider a system of a large number of clusters of particles that can coagulate to
form larger clusters or fragment to form smaller ones. Becker and Dόring (1935)
proposed an infinite system of ordinary differential equations as a model for the
time evolution of the distribution of cluster sizes for such a system. In its original
form this system treated the number of one-particle clusters as fixed: it did not take
into account the depletion of the number of one-particle clusters as larger clusters
are formed. A modified version of these equations allowing for depletion, which we
still refer to as the Becker-Dόring equations, was described by Penrose and
Lebowitz (1979). In this paper we make a rigorous study of some fundamental
properties of solutions to the (modified) Becker-Dδring equations, and in
particular analyze aspects of the asymptotic behaviour of solutions as time £-»oo.

If cr(t) ̂  0, r = 1,2,..., denotes the expected number of r-particle clusters per
unit volume at time ί, then the Becker-Dόring equations can be written in the form
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where c = (cr),

Jr(c) = arclcr-br+icr+l9 (1.2)

and where the kinetic coefficients αr, br+1 (r^ 1) are non-negative constants. The
system (1.1)-(1.2) is a special case of the discrete coagulation-fragmentation
equations

+ Σ & . , A - Σ , , r £ l , (1.3)
s = r + l Γ s=ι

where the first and last sums are absent when r = 1 . The balance law (1.3) was first
derived by Smoluchowski (1917) for the case of pure coagulation (all ί?r s = 0). The
form quoted of (1.3) is taken from Spouge (1984), his derivation following that of
Melzak (1957) for an analogue in which the cluster size can be a continuous
variable. For other derivations of similar equations see Friedlander (I960), Binder
(1977) and the references cited in Drake (1972). These papers cite some of the
numerous applications of coagulation-fragmentation equations in pure and
applied science. To obtain (1.3) one assumes that clusters coagulate by binary
collisions, the probability per unit time that a given r-cluster will collide with some
s-cluster to form an (r + s)-cluster being given by αr scs (with flr>s = αS)r); it then
follows that the rate per unit volume at which r-clusters and ^-clusters combine to
form (r + s)-clusters is given by ar>scrcs if r Φ s and by \ar^ if r = s. As regards
fragmentation it is assumed that the rate per unit volume at which s-clusters are
formed by fragmentation of r-clusters (r > s) is given by brjScr; in the case of binary
fragmentation we have brtS = br > r_ s, and the last sum in (1.3) can be written as

c r~l

— -̂  Σ br s. To obtain (1.1) from (1.3) we assume that
2 s=ι

0r = flr,l= al,r> & r + l = & r + l , l = & r + l , r > r > 1 >
(1.4)

2α!=α l f l , 2&2 = & 2 f l ,

all other ar t S 9 b f ί S zero.
The Becker-Doring equations are thus intended to describe situations in which

the evolution is dominated by clusters gaining or shedding just one particle. The
validity of this assumption and of the underlying cluster picture has been discussed
by Abraham (1974), Penrose and Lebowitz (1979), Kalos et al. (1978) and others.
More recently Penrose and Buhagiar (1983) and Penrose et al. (1984) have
compared the results of computer simulations with numerical solutions of (1.1) for
a model of a binary alloy quenched from a high temperature, the clusters
consisting of atoms of the minority component. The coefficients αn br used [see
Eq. (5.8) below] were obtained by extrapolation from microscopic calculations
carried out in Penrose and Buhagiar (1983) for small values of r, and have the
property that ar ~ const r1/3, fcr~constr1/3 as r->oo. In the computer simulations
the atoms were confined to the vertices of a simple cubic lattice and moved by
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changes of nearest neighbour pairs. The solutions of (1.1) were computed by
solving the finite-dimensional system obtained by truncating the equations at
r = N and setting JN = 0. The initial data satisfied the condition cr(0) = 0 if r>r0,
where r0 was a small positive integer. For small values of the initial density

00

Σ rcr(Q), quite good agreement was found between the computer simulations and
r = l

the numerical solutions. [As explained in Sect. 5 the coefficients ar, br were allowed
oo

to depend on the density ρ = Σ rcr(t), but since, as is shown in Corollary 2.6, ρ is a
r = l

conserved quantity the solution of (1.1) in this case can be reduced to that for
constant coefficients.]

As far as we are aware there have been no general studies of the existence,
uniqueness and continuous dependence on the initial data of solutions to (1.1). For
(1.3) Spouge (1984) has proved existence, but under the hypothesis [apparently

\r-\

taken from Melzak (1957)] sup- Σ sbrs<oo which is violated by (1.4) when
r^ors=ι

limh r=oo. McLeod (1962a, b, c) has proved certain existence and uniqueness
r-> oo

theorems for (1.3) in the pure coagulation case and Spouge refers to various other
results on the pure coagulation case and its continuous analogue. We begin in
Sect. 2 by proving a general existence theorem (Theorem 2.2) for solutions of (1.1),
which in a special case (Corollary 2.3) implies global existence when the initial data
has finite density and when ar = 0(r). (Here and throughout the paper the o, 0
notation refers to behaviour as r-> oo.) The absence of hypotheses on br stems from
the identity (2.24), which enables estimates to be obtained independent of br and
indicates that fragmentation can be thought of as a dissipative mechanism. If

lim — = oo, there is in general no solution of (1.1) even on a short time interval
r-+00 Γ

(Theorem 2.7). In Corollary 2.6 we show that the density is a conserved quantity
for solutions. This crucial result is used frequently in the rest of the paper; it is not
true in general for the discrete coagulation-fragmentation equations, for which
density conservation can break down at a finite time, a phenomenon known as
gelation (Leyvraz and Tschudi, 1981; Hendricks et al., 1983).

In Sect. 3 we study the differentiability of solutions with respect to t
(Theorem 3.2) and the continuous dependence of solutions on the initial data both
(Theorem 3.4) with respect to convergence in the Banach space X of sequences

00

c = (cr) such that \\c\\ = Σ r\cr\<ao and (Theorem 3.5) with respect to weak *

convergence in X. We also give two uniqueness theorems, the first (Theorem 3.6)
assuming more about the initial data, and the second (Theorem 3.7) more about
the coefficients ar,br; as a consequence we give conditions under which the
numerical scheme used in the papers cited above to solve (1.1) converges to a
solution as the truncation mode N tends to infinity.

In Sects. 4, 5 we turn to the question of the asymptotic behaviour of solutions
as ί->oo. This is of considerable importance for applications; for example, in the
binary alloy problem the essence of the phase transition lies in the formation of
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larger and larger clusters as t increases. The asymptotic behaviour is also of
unusual mathematical interest, and in particular tests our understanding of the
convergence to equilibrium of infinite-dimensional systems endowed with a
Lyapunov function. In this introduction we describe our results for the case of the
binary alloy problem; for other cases the reader is referred to the main text. For the
binary alloy, as is well known, there is a critical density ρs, 0 < ρs < oo, such that if
0^ρ^ρs there is a unique equilibrium state cρ of (1.1) having density ρ, while if
ρ > ρs there is no equilibrium state with density ρ. For 0 rg ρ ̂  ρs,

<t = Qr (<W, r £ l , (1.5)

where Q ί = 1 , = — — for r ̂  1 . The equilibrium cρ is the unique minimizer of
Qr br+ί

V(c) = ΣcΛln - -1 (1.6)

on the set X* = < c = (cr) : ς. ̂  0 for all r, Σ rcr = Q f The "free-energy" function V
( r = ι J

is a Lyapunov function for (1.1), that is it is non-increasing along solutions, a fact
observed formally by Buhagiar (1980) and proved in Theorems 4.7 and 4.8. [We
remark that there is a similar Lyapunov function for (1.3) under additional
hypotheses on the αr)S, fcr?s; for a special case of the continuous analogue of (1.3) the
appropriate V has been given by Aizenman and Bak (1979).]

Whenever an evolution equation possesses a Lyapunov function V it is helpful
to consider the following question: for a typical solution, do the successive states of
the system at a sequence of times £,—>oo form a minimizing sequence for VI In
anticipation of a positive answer, a useful first step in understanding the
asymptotic behaviour of solutions is to characterize the behaviour of minimizing
sequences. [For many problems, though fortunately not for (1.1), the situation is
complicated by the need to consider "relative" as opposed to "absolute" min-
imizing sequences.] Such a characterization is provided for (1.1) by Theorem 4.4;
if c(j} is an arbitrary minimizing sequence of V on X* then, if 0^ρ^ρs, c

ϋ)

converges to cρ strongly in X as j-> oo, while if ρ > ρs, c
ίj) converges to cQs weak * in

X, but not strongly. This type of behaviour of minimizing sequences occurs in a
number of other variational problems in mechanics and physics. Perhaps the
simplest analogy is with the problem of filling up a hole in flat ground with water; if
the volume of water is less than or equal to that of the hole there is a unique
minimizer of the potential energy, but if the volume of water exceeds that of the
hole then the hole fills to the maximum level and the excess water runs away to
infinity. In the Thomas-Fermi theory of atoms and molecules (Lieb, 1981) there is
a competition between the repulsion of the electrons and their attraction to the
nuclei; if the total electron charge exceeds a critical value then an electron cloud of
the critical charge envelops the nucleus and the excess electrons disperse to
infinity. Another example, a rudimentary model predicting a finite height of the
atmosphere, is discussed briefly in Ball (1981). A useful framework in which to
study such examples can be the theory of concentration compactness (Lions, 1984).
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Our main result on asymptotic behaviour, Theorem 5.5, was motivated by, and
confirms, the numerical evidence in Penrose et al. (1984). We show that for rapidly
decaying initial data with density ρ0 the solution c(f) to (1.1) is minimizing for V on
Xρ0 as ί -> oo, so that, for 0 ̂  ρ0 ̂  ρs, c(t) -> cρ° strongly in X and, for ρ > ρs, c(t) -̂  cβs

in X. The proof is accomplished in two stages. We show first in Theorem 5.5 that
c(i) -̂  cρ as t-> oo for some ρ, 0 g ρ ̂  min(ρ0, ρs). This is achieved by an application
of the invariance principle for evolution equations endowed with a Lyapunov
function. As was first emphasized by Hale (1969), to apply the principle in its
simplest form one has to find a metric with respect to which the solution has
appropriate continuous dependence on the initial data, the Lyapunov function is
continuous, and the positive orbit of a solution is relatively compact. Since the only
obvious global estimate is that given by density conservation, to achieve relative
compactness of positive orbits we are almost obliged to choose for (1.1) the metric
induced by the weak * topology on bounded subsets oΐX. As so often happens, V is
not continuous in this preferred metric. However we are saved by a piece of
remarkable good fortune. Because density is concerved the functional

Vg(c)=V(c)-1nzΣrcr (1.7)
r = l

is also a Lyapunov function for every z > 0; it turns out (Proposition 4.5) that there
00

is exactly one value of z, namely the radius of convergence zs of the series Σ rQrz^
r=ί

such that Vz is sequentially weak * continuous. We are thus able to apply the
invariance principle using VZs. It turns out that we can do this under weaker
hypotheses on the coefficients ar9 br by applying a version of the principle (cf. Ball,
1978) that does not assume uniqueness of solutions. The idea of modifying V by
adding a linear combination of conserved quantities has proved useful for different
reasons in various fluids problems (Arnold, 1969; Holm et al., 1983). The second
stage of the proof involves identifying ρ by using a maximum principle for (1.1) to
control the "tail" of the solution in the case ρ <ρs; it is at this stage that we have to
make hypotheses on the decay of the initial data. We end the paper by studying the
stability of the equilibria and by describing how the assumptions of the various
theorems are verified for the binary alloy problem.

It would be interesting to find other infinite-dimensional examples in which an
energy cascade as ί-»oo into higher and higher modes in the presence of a
Lyapunov function can be rigorously established. Possible candidates for
examples are various non-linear partial differential equations arising in continuum
mechanics as models of materials that may undergo phase transitions (cf. Ball,
1984). One such example, from non-linear viscoelasticity of rate type, where the
corresponding free energy is a non-convex integral of the calculus of variations
whose minimizing sequences may converge to generalized curves in the sense of
Young (1969), has been studied by Andrews and Ball (1982); however, recent work
of Pego (to appear) indicates that the viscoelastic damping mechanism there
is too strong to allow the solution itself to tend to a generalized curve as ί->oo.

Aside from technical refinements, two of the main tasks left open by our
analysis are (a) to provide some detailed information on the asymptotic behaviour
of solutions to (1.1) and in particular give a rigorous treatment of some of the
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standard methods of nucleation theory for the study of metastable states, and (b) to
extend our analysis to the discrete coagulation-fragmentation equations (1.3) and
give a satisfactory treatment of gelation.

2. Existence, Nonexistence, and Density Conservation

In order to study the existence and other properties of solutions to (1.1) we
introduce the Banach sequence space

We write y^O if yr^0 for each r=l,2, ..., and set X+ = {yeX: y^O}.

Definition. Let 0<T^oo. A solution c = (cr} of (1.1) on [0, T) is a function c:
[0, T)-*X such that

(i) c(O^Oforallίe[0,T),
(ii) each cr: [0, T)->R is continuous, and sup ||φ)|| < oo,

ί6[0,Γ)

(iii) J Σ arcr(s)ds<oo, J Σ brcr(s)ds<ao for all ίe[0, T), and
O r = l O r = 2

(iv) c,(f) = cr(0) + ί [Λ-Λφ))- J,(φ))]<fo,

Σ Λf J
θL

for all t e [0, T), where Jr = arcrcί — br+lcr+l.
Note that by (ii) each cr is bounded on [0, t] for any t e [0, T), so that by (iii) and

(1.2) the integrals in (2.1) exist and are finite. It follows from (2.1) that if c is a
solution then each cr is absolutely continuous for ί e [0, T), so that c satisfies (1.1)
for a.e. ίe[0,Γ).

In common with earlier work on related equations (Reuter and Ledermann,
1953; McLeod, 1962a; Spouge, 1984) we prove existence of solutions to (1.1)
by taking a limit of solutions of the finite-dimensional system

(2.2)

Lemma 2.1. Γ/ze system (2.2) Λαs α unique solution for t ̂  0 w/ί/z cr(ί) ̂ 0, 1 ̂  r ̂  n,

and Σ ^r(ί)= Σ rcr(0) for ί^O.

Proof. Consider for ε > 0 the solution c(

r

ε} of the system obtained by adding ε to the
right-hand sides of each of the equations for cr, 1 ̂  r ̂  n, in (2.2). By considering the
sign of cj°(f) for ί such that cjβ)(ί) = 0, cj;ε)(τ) ̂  0 for 0 <; τ ̂  ί, r φ 5, it is easily shown
using standard results on ordinary differential equations that 4ε)(0 is non-negative
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and tends as ε->0 4- to a unique non-negative solution cr(f) of (2.2) defined for all t
n

in some interval [0, ί0), ί0>0. The fact that /(ί)= Σ r̂(ί) is a constant of the
r = l

motion follows by showing that f(t) = Q, and the global existence then results

from the bounds 0 ̂  cr(t) ̂  r~l Σ kck(0). D
fc=l

Remark. The device of adding ε to the equations can be found in Hartman (1964,
p. 25); the lemma may also be proved directly via appropriate positivity preserving
successive approximations (cf. the proof of Theorem 4.6).

Theorem 2.2. Let (gr) be a positive sequence satisfying gr+l—gr^
for some constant δ. Assume that

uυ

Let c0 = (c0r)^0 satisfy Σ ^rcor<0°- Then there exists a solution c of (1.1) on
r=l

[0, oo) with c(0) = c0 and satisfying

SUp Σ0A(0<°0> ί Σ (0r-0r-l)&rCΓ(ί)Λ<00. (2 4)
fe[0,T]r=l O r = l

/orα// T>0.

Setting gr = r we obtain the following important corollary.

Corollary 2.3. Assume that ar = 0(r) and that c0 e X +. Then there exists a solution c
of (1.1) on [0, oo) with c(0) = c0.

The theorem also shows that if the initial data decays rapidly as r-»oo then
there exists a solution with similar decay. The following easily proved proposition
gives two examples of this property.

Proposition 2.4. The hypotheses on ar, gr in Theorem 2.2 hold in the following cases:
(i) ar = 0(r); gr = r*> α > 1,

(ii) ar = 0(rΛ\ 0^α< 1; gr = QXp(μrί'Λ), μ>0.

If ar > 0 for all r the hypotheses of Theorem 2.2 imply that

arδ<>Dgr,
j i. iand thus that γ _

(2.5)

for some constants C>0, D>0. Conversely, if (2.5) holds then the hypotheses of
Theorem 2.2 are satisfied by taking g^ = 1 and

r > l . (2.6)

The example αw2 = n4, n = 1 , 2, . . . , ar = 1 otherwise, shows that (2.5) does not in
general imply that ar = 0(r).
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Proof of Theorem 2.2. Let c/I(0) = (c01,c025 ...,c0n). By Lemma 2.1 the system
(2.2) has a unique solution cn defined on [0, oo) with c"(ί)^0, l^r^n, and

Σ rc*(i)= Σ rcζ(0) for all ί^O. We regard cn(t) as an element of X by defining

c?(ί) = Oi f r>n.Thus ||c"(ί)|| ̂  ||c0|| andQ^cn

r(t)^r~l\\c0\\ for all ί^
Therefore, by (2.2),

2

for r ̂  2, where Mr is a constant. Therefore, for each r ̂  2 the functions {c"( )} are
equicontinuous on [0, oo). Applying the Arzela-Ascoli theorem and extracting a
suitable diagonal subsequence rcfc-»oo, we deduce that for each r^2 there exists a
continuous function cr: [0, oo)->R with c"k->cr uniformly on compact subsets of

i i
[0, oo) as fc-KX). Note that c,^0; also, since Σ rcr(ί)= lim Σ rcn

r

k(t)^\\cQ\\ we
r=2 /c-"oor = 2

have that

for all ί^O. (2.7)

Since we have made no growth hypothesis on the coefficients br we cannot bound
|cι(ί)l in a simple fashion. However, since |c"(ί)|^ ||c0|| we can extract a further
subsequence, again denoted nfc, such that

c^-^Ci in L°°(0, oo ) as fc-»oo

for some non-negative cx eL°°(0, oo); i.e. J Kk(ί) — ̂ 1(01^(0^^-^0 as fe-^oo for
o

each ^eL^O, oo). In order to pass to the limit in (2.2) we need further a priori
estimates. From (2.2) we obtain for any m Ξ> 2, nk>m,

d "k nk-ι
V π r

nk
 -I- V (n n Mi r"

k
 — n (π

 r

n
k
r
n
k
 L

 r
n

k
\

~Γ Ls 9r
C
r "I" 2-, (9r+i~dr)

()
r+i

C
r+l—9m(.

a
m-l

C
l

C
m-i~

D
m

C
m)

(2.8)

Setting m = 2in (2.8) and using the bound on c"k and the hypotheses on αn gr we
obtain

r=2 0 r=2

l Σgrc
n

r«(s)ds
0 r = 2

for all ί^O, where K is a constant independent of fe. By GronwalΓs inequality and
00

the fact that Σ 9rcor< °°> it follows that

r=2 0 r=2
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for all t ̂ 0, where M is a constant independent of k. Writing the sums in (2.9) as
I— 1 «fc / — I «fc— 1

Σ + Σ> Σ + Σ and letting fe-^ oo and then/-^cx) we deduce by the monotone
r = 2 r=ί r=2 r=l

convergence theorem that

oo ί oo

Σ 9rcr(t)+ ί Σ (gr+ί-gr)br+1cr+1(s)ds^MeKt, (2.10)
r=2 O r = 2

for all f^O.
Replacing #,. by 1 in (2.8) and integrating we obtain

Σ cω- Σ c0r = ίK^c^^c-iω-^cω)^ (2.11)
r = m f ^ m 0

for all t^0 AWitins c^ίs)cnk \(s\ — c^Cs^c 1 f s^~f~c'? ίcf5^(cnk (s} c Γs^ we
have that for m > 2 and any t ̂  0,

- I * f / H / \ H / \ T M / \ \ 7 Γ /
11 •»-»-> 1 1 / 7 /^ "kι o i /ΊΓtk / c I ΛΊ /^ "k/ c l l //c — l ί / 7 / ^ i C l / ^ ι c ι r» /° I C I 1 /7 Ciim j ^αm _ x c x ^5; cw _ x ̂ s; — f?mcw î s;; as — j ^am _ λ c x ̂  cm _ 1 (S) ~ omcm(S)) as.

k->oo 0 0

(2.12)

Furthermore,

tik oo f I— 1 oo

r£C(0- rΣm

cr(0= I £ + Σ(

and since by (2.7)

we deduce that

lim Σ c?fc(ί)= Σ cr(ί) for all ί^O. (2.13)

From (2.11)-(2.13) we obtain for m>2

gm\(am-,cί(s)cm.,(s)-bmcm(S))ds = hm(t) for all t^O, (2.14)
0

where

Let Γ>0. Note that

|A»(OI^ Σ ?A(ί)+ Σ ffrCor,
r = m r = m

so that by (2.10),

lim hm(f) = 0, |Λm(ί)| ̂  const for all t e [0, T] .
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T
Thus lim J \hm(t)\dt = Q, and so given ε>0 there exists M>2 such that

m->oo 0

Γ oo

j IMOI dt < s and Σ Wβr < e - (2.15)
0 r = M

By (2.14), (2.15),

ί S

#M ί ί OM- i^iCO CM- iCO - ^^0)) dτ ds < ε for all ί e [0, T] .
o o

By (2.12) and the bounded convergence theorem there exists fc0 such that

0M ί ί (*M- ιcϊ<(τ) cSf- Λτ) - &McSϊW) dτ ds < 2ε
0 0

for all ίe[0, Γ] and all fc^fc0 (2-16)

Returning to (2.8), we have that

Σ gtf"(s)- Σ 0rCor+ΓΣ (dr + ί-gr)br+1c
n

r

k

+1(τ)dτ
r = M r = M 0 f = M

^ ̂ M ί («M- tCΐ'W c"M-_ !(T) - fcMcS(τ)) dτ + K, f £ 0,CW ̂
0 0 r = M

for all 5^0, (2.17)

where K1 is a constant independent of k and ε. Integrating (2.17) over (0, t) and
applying GronwalΓs inequality, we deduce using (2.15), (2.16) that for all /c^fc0,

ί Σ 0r<?Ws+fΓΣ tor+ι-^r)6r+ι^ι
0 r = M 0 0 r = M

ϊ1)eKίt for all ίe[0,Γ]. (2.18)
oince

Π Σ tor+l-ffr)fer+lίΐ5.l(τ)dtds=}(ί-s) Σ (^r+ 1 " 9r) br+

0 0 r = M 0 r = M

it follows from (2.18) that for fc^fe0,

ί «k f f / 2 n k - l

ί Σ ^C(s)ds+-ί Σ (gr+l-gr)br+1c"r'<+ί(s)ds

Γ1)βKlί for all ίe[0,T]. (2.19)

For /c, / ̂  fe0 and ί ̂  0 we deduce from (2.2) that

πnk{+\ fni(t\ O f Γ/7 (r>nk( v\ rn

•Ί \ / 1\ / — J L^*l\ 1 v1^/ 1
0

ί / M - 1 «k

-! Σ + Σ [βrCcϊ-ωc?

(2.20)
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Using the bounds on c"k, the uniform convergence of c"k for r ̂  2 and the weak *
M-l

convergence of c"k, it is easily shown that the integrals of the Σ term and of the
r=2

b2(cn

2

k(s) — cn

2

l(s)) term in (2.20) converge to zero as /c, /-> oo uniformly for t e [0, T].
On the other hand, putting t = T in (2.19) and using ar — 0(gr), gr+1—gr^δ>Q,we

Λfc-l

see that the integral of the Σ term *s bounded absolutely by K2ε, independently
r = M

of ί 6 [0, T/2], for some constant K2. Therefore if fc, / are sufficiently large,

l<t(ί) - cϊ'(ί)| ̂  K3 (e + ί kΐk(s) - c?(s)l ds\te [0, T/2] ,

for some constant K3. It follows using Gronwall's inequality and the arbitrariness
of s that c"k is a Cauchy sequence in C([0, T/2]), and since T is arbitrary c1 has a
continuous representative in [0, oo) with ct[k-^cΐ as fc->oo uniformly on compact
subsets of [0, oo).

We are finally in a position to pass to the limit in (2.2). For r ̂  2 we have that for
k sufficiently large

and the first equation in (2.1) follows from the uniform convergence of each c"k,
r^ 1. Writing the c1 equation in (2.2) in the form

M-l n k-l

Σ + JM/

(2.21)

we note that by (2.19) there is a constant K4 such that for k^k0,

f "V (n rnk(?Λ rnk(v\ J_ h rnk (v\\s1v<i Ίf P fnr ^11 f c: ΓΠ ΊΓ/9ΊJ / „ ^Wj.C^ v^oy Cj. \^ι3y ~t~ ί/j -f ^t-'f -(- 1V"// ^" ~ί -^4*> HJi dll t t l_vy, JL /-^J

(2.22)

Writing the sum in (2.22) as Σ + Σ and using the uniform convergence of the

c"k we deduce from (2.22) that also

ί oo

J Σ (αrcι(s) CXS) + br+ γCr + i(s)) ds^K 4s for all ί 6 [0, T/2] .
0 r = M

(2.23)

From (2.21)-(2.23) and the uniform convergence of the c"k we deduce that

Σ Λ '
r = l

for all ίe[0,T/2],

and since ε, T are arbitrary the second equation in (2.1) follows. The relations (2.4)
and property (iii) in the definition of a solution are an immediate consequence of
(2.10), while property (ii) follows from (2.7). D
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Remark. The proof of existence is much easier in the special case ar — o(r), br = o(r).
Then |c"(OI is bounded from (2.2) and Lemma 2.1, so that we may suppose c"k

converges uniformly on compact subsets of [0, oo). Passage to the limit in the cί

equation is then simple (cf. the proof of Theorem 3.5).
We now derive a priori estimates for solutions of (1.1) whose analogues for

approximating solutions were used in the proof of Theorem 2.2. As a consequence
we show that any solution of (1.1) conserves density; the corresponding statement
for the general coagulation-fragmentation equations is false (Ley vraz and Tschudi,
1981).

Theorem 2.5. Let (gr) be a given sequence. Let c be a solution of (1.1) on some
Ϊ2 00

interval [0, T), 0 < T ̂  oo. Suppose that 0 ̂  tl < t2 < T, J Σ \9r+1 - 9r\
 arcr dί < oo

ί j r = l
?2 oo oo

and either that gr = 0(ή and J Σ \dr +1 ~~ 9r\ br +1 cr +1 dt < oo or that Σ 9rcr(tϊ) < °°

for i= 1,2 and gr+1^gr^0 for sufficiently large r. Then for m^2,

00 00 Ϊ2 OO

Σ 9rcr(t2)- Σ g^r(tl)+ ί Σ (βr+ 1 ~θr) br+ tCr + j dt

= ! Σ (gr+1-gr)arc1crdt+ Igjm-Mt))dt (2 24)

Corollary 2.6. Let cbea solution of (IΛ) on some interval [0, Γ), 0< T^ oo. Then
/orα//ίe[0,T)

£^^0= Σ^cXO), (2.25)

for m^2

00 00 ί 00 ί

Σ rcr(t)— Σ rcr(0)= j Σ Jr(c(s))ds + m$ Jm-ί(c(s))ds, (2.26)
0 r = n

t

rΣMCr(ί)- rΣw^(°)= J J»-ι(Φ))<k. (2.27)

Proo/ o/ Theorem 2.5. From (2.1) we obtain for n>m^2

n n

Σ 9rCr(Ϊ2)~ Σ 9rCr(tί)
i"== m r — w

+ |2 Σ (gr+ι-gr)br+ίcr+1dt= j Σ (gr+1-9^0^1

- ί ^n+ l JB(C(0) Λ + ί ffm^m- 1 WO) Λ - (2.28)

By properties (ii) and (iii) of a solution lim J Jπ(c(ί)) dt = 0. Thus, setting #,. = 1

for all r in (2.28) and letting n-»oo, we obtain

Σ cr(ί2)- Σ cr(iO= ίj^^cWdt. (2.29)
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Replacing m by n-}-1 in (2.29), and noting that for ί= 1,2 we have either that

00 GO

lim \gn +11 Σ c

r(tt) ^ const lim (n -f-1) Σ cr(tϊ)

00

^ const lim Σ rcr(tι) — 0,
w-* oo r = n-f- 1

or that

l im|gf n + 1 | Σ c,(ίj) ̂  const lim Σ fi'rcXίi) = 0,

we deduce that

(2.30)
H-» oo ίi

ί7 00

Since c± is bounded in [ί1?£2]
 an(3 J Σ l^ + i ~~g r \a r c r dt<co, we have

ί2 n t2 oo

lim j Σ (9r+l—βr)arclcrdt= ί Σ (^r+ 1 ~ ̂ )αrC!Cr ̂  -

(2.31)

The theorem follows from (2.28), (2.30), (2.31), property (ii) of a solution and
either the monotone or the dominated convergence theorem. D

Proof of Corollary 2.6. Equations (2.26), (2.27) are obtained by setting gr = r,gr=l
in (2.24) respectively. Putting m = 2 in (2.26) and adding the cί equation in (2.1) then
gives (2.25). D

We now adapt a technique of Reuter and Ledermann (1953) to show that if

n7
c0eX

lim — = 00, then solutions to (1.1) do not in general exist for all initial data

Theorem 2.7. Suppose lim — = oo and that br 5Ξ zar for all sufficiently large r, where
r—> oo r

z^:0 is a constant. Let c0 = (c0r)eX be such that cQί>z and, for every <5>0,
00 a

eδy™ Σ (r~ m)cQr-/*Oasm-^co, where ym

a=rm& — . Then there is no solution c of
r = m+ 1 r^.m r

(1.1), defined on any interval [0, T), T>0, and with initial data c(0) = c0.

Proof. Let c be a solution on [0, T) with c(0) = c0. Then there exist ε>0 and
τ e (0, T) such that c^t) ̂  z + ε for all t e [0, τ). For t E [0, τ) and m sufficiently large
we have by Corollary 2.6 and property (iii) of a solution,

00 00 ί 00

Σ (r-m)cr(ί)= Σ (r-m)c0r+f Σ
f = m + l r = m + l 0 r=m

oo ί Γ

= Σ (r - m)c0r + ί £>mcm(s) + Σ (flrCiίs) - &,) cr(s)
r = m+ 1 0 |_ r = m

00 ί 00

^ Σ (r-m)c0r + ε$ Σ arcr(s)ds.
r—m+l O r = m
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Hence

00 00 ί 00

Σ f .\ ^̂  T—\ / \ I f V~* / \ Jγr> I f I J> X I γ γyi \ f* _1_ p<\) I > γr* I C 1 /J Cι^r\l')^ / . \ι '"Jt-Όr r oym J / , A c^ύy αύ ,
r = m r = m+l 0 r = m

and therefore
00 00

Σ rc/ί)^"1' _Σ (r-m)c0r, ίe[0,τ).

00

This contradicts lim Σ rcr(t) = Q. D

We remark that there are always c0eX+ satisfying the conditions of the
theorem. In fact, since ym-»oo as w-»oo, there is a sequence m7--»oo such that

00 1 1
Σ—<oo. Let c01>z, c0)2mj.= for j=l,29 ...,c0r = Q otherwise. Then

c0eX+, but
oo ^^y^

<5ym \^ /^ \ ^> ^7m
έ? J / , \Γ 777//^Or = ̂  ^^ΐ^Q 2m == ^ OO

as j-»oo for every ^>0.
We end this section with some observations concerning the case when

lim — = oo. In this case any solution c of (1.1) on [0, T) with initial data c0 eX+

r-> oo r
00

satisfies, by property (iii), Σ brcr(t) < oo for a.e. t e (0, Γ), and hence has in general
r=l

more rapid decay as r-»oo than c0. Under additional hypotheses a slightly
stronger result can be proved.

Proposition 2.8. Assume that br+1^br for sufficiently large r, and that (br+ί— br)ar

= 0(br). Let c be a solution of (1.1) on some interval [0, Γ), 0<Γ^oo. Then
00

Σ brcr(f) is an absolutely continuous function of t on compact intervals of (0, Γ).
r = l

00 00

Proof. Let 0<ί1<ί2<T with Σ fcrcr(ί1)<oo, Σ brcr(t2)<ao. We apply
r=l r=2

Theorem 2.5 with gr = br. Since (br+ί— br)ar = 0(br), and by properties (ii) and (iii)
ί2 00

of a solution, we have that J Σ (br+1~br)arcrdt<co. Hence, choosing m
ίi r = l

sufficiently large for gr+ί^gr when r^m, we have that

Σ b,cr(t2)- Σ ^cXO^^l + Σ b,cr(t)dt.
r = m r = m \ ίi r = m J

where the constant K does not depend on ίx or £2 By Gronwall's inequality we
00

deduce that Σ 9rcr(£) ^s finite for all ίe[0, T). The absolute continuity now
r = m

follows from (2.24). D

The hypotheses of Proposition 2.8 are satisfied, for example, if br = rβ, ar — rα,
where β > 1 ̂  α ̂  0. In fact in this case, by iterating the proof and using the fact that
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ί? 00 00

ί Σ (br + ι—br)br+ίcr+1dt<co, one can prove that Σ ^vcr(ί) is absolutely
f ι r = l r = l

continuous on compact intervals of (0, Γ) for any γ > 1.

3. Differentiability, Continuous Dependence, and Uniqueness

We first consider the continuity of solutions in t.

Proposition 3.1. Let cbea solution of (I Λ) on some interval [0, T), 0 < T^ oo . Then

c:[0, T)-+X is continuous, and the series Σ rcr(0 ™ uniformly convergent on
r=l

compact intervals of [0, Γ).

Proof. Let fn(f) = Σ rcr(t). Then /„ is continuous, fn+i ^/Π5 and by Theorem 2.5
r = l

lim /„(£)= \\c(0)\\ for all ί e [0, T). The uniform convergence follows from Dini's
π— *• oo

theorem. The continuity of c( ) is then an obvious consequence of the continuity
of cr for each r. D

So as to study the differentiability of solutions with respect to t we introduce
some notation. If λ = (λr), μ — (μr) are sequences we set (λμ)r = λrμr, (Δλ\ = λr+ί — λr,

)r = λr+ΐ, (P~M)r = ,l r_i- Thus, for example,
1)λ. (3.1)

Theorem 3.2. Let k be a positive integer. Assume (Aja)r — 0(rl ~j), (Ajb)r = 0(rv ~j)
for ΰ^j^k—l. Let cbea solution of (I. I) on some interval [0, T), 0 < T^ oo . Then
cr is Ck on [0, Γ) for each r= 1, 2, ... .

Proof. We first note that it suffices to prove that cl is Ck on [0, Γ), since then an
obvious induction using (2.1) shows that each cr, r^2, is Ck. To carry out the
successive differentiations of the cv equation in (2.1) we make use of Theorem 2.5.
This leads to consideration of the operators

(3.2)

We note that if Mz is a product of / TJ's, ί^fc-1, then by (3.1), (3.2) and our
assumptions on αr, fcr,

(3.3)

c
Fix m > k. We prove by induction that for s = 1 , . . . , k cv is C

s on [0, T) and -—j- is

00

expressible as a polynomial in finitely many of the cr and the sums Σ (Mlά)rcr,
r = m

Σ (Mlb)rcr, where Ml runs through all products o f / 7]'s, 0^/^5- 1. This is true

for s=l from the cx equation in (2.1), since the hypotheses ar,br = 0(r) and
00 00

Proposition 3.1 imply that Σ <W and Σ brcr, are continuous functions of t on
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[0, Γ). Suppose that the assertion is true for some s ̂  fc — 1 we prove it holds for
5+1. We note that from the case 5=1 and (2.1) each cl is C1 on [0, T) with cl

00 00

expressible as a polynomial in finitely many cr and the sums Σ arcr> Σ brcr. From
r = m γ — m

the induction hypothesis it thus is enough to show that for any M1, 0 :g / ̂  5 — 1 , the
00 00

sums Σ (Mla)rcr, Σ (Mlb)r cr are C1 on [0, T) and have derivatives expressible as
r = m r — m

oo oo

polynomials in finitely many cr and the sums Σ (Mla)rcr9 Σ (Ml'b)rcr9 O^Γ^5.
r — m r = m

But by (3.3) and Theorem 2.5 we have

00 00 ί 00

Σ (M'fl)rc,(f)- Σ (M'α)ΓCr(0)+ί Σ (T2M
la\crds

r = m r = m 0 r = m

t oo ί

= f c ι Σ (T1M
Iα)rcrds + ί[(MIα)mJm_1(C(s)) + (Γ2M'α)1IlCJdS,ί6[0,T)s

0 r = m 0

where the integrands are continuous on [0, T) by Proposition 3.1. Thus
00 / 00 \

Σ (Mla)rcr ( and similarly Σ (Mlb\cr ] has the desired property. D
r = m \ r = m J

Note that if ar = 0(r) but lim — = oo, then cί cannot be continuous up to zero
r->oo T

oo

if the initial data c0 satisfies Σ brc0r= oo. However, in this case differentiability
r = 2

results for t > 0 can be proved by combining the methods of the theorem with those
of Proposition 2.8 and the subsequent remark.

Before discussing the continuous dependence of solutions on the initial data we
introduce some terminology.

Definition. We say that a sequence {y(ί)} of elements of X converges weak * to
y ε X (symbolically yω -̂  y) if

(i) sup \\y(j} || <oo, and

(ii) y¥*-+yr asj'-»oo for each r— 1,2, ... .
To justify the terminology, we note that (cf. Dunford and Schwartz, 1958,

p. 374) X can be identified with the dual of the space Y of sequences y = (yr)
satisfying lίmr~1yr = 0 with norm ||y||y= maxr"1^!, and that weak * conver-

gence as defined above is exactly weak * convergence in X = 7*. (We thank M.G.
Crandall for pointing this out to us.)

For ρ > 0 let Bρ = {y e X : \\ y \\ ̂  ρ} . We make Bρ into a metric space by giving it
the metric

d(y,z)= Σl3V-z,|.
f = l

Clearly a sequence {yω} C Bρ converges weak * to y e X if and only if y e Bρ and
d(y(j\ y)->Q asj-^ oo. Also Bρ is compact; equivalently, any bounded sequence in X
has a weak * convergent subsequence.
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Let E C X. A function θ : £->]R is sequentially weak * continuous if θ(y(j)) -̂  θ(y)
00

whenever y(j\ yeE with y(j) -̂  3; as j -> oo . For example, the function Σ gryr is well
r = l

defined for all y e X if \gr\ = 0(r), but is sequentially weak Continuous if and only if
\9r\ = o(r\

We will make frequent use of the following elementary lemma, whose proof we
include for the convenience of the reader.

Lemma 3.3. // yP^y in X and ||;yω||->|l)ΊI, then y(j)-+y in X.

zr

ω^ Σr=l

Proof. Define z^ = \y(

r

j}\ + \yr\-\y(

r

j}-yr\^Q. Then z^-»2|j;r| as j-*oo for each r.
Since for any m

it follows that

Hence

liminf Σ rz^2Σ r\yr\.
j->oo r= 1 r = 1

lim sup || j/J>) - y || - 21| y || - lim inf Σ rz® ̂  0,
j-»oo j-*oo r = l

which proves the assertion. D

Definition. A generalized flow G on a metric space Y is a family of continuous
mappings φ: [0, oo)->7 with the properties

(i) if φ e G and τ ̂  0, then ^τ e G, where ^τ(ί)
 d^f (̂ί + τ), ί e [0, oo),

(ii) if y e 7, there exists at least one φ e G with <^(0) = y, and
(iii) if ψj e G with <^ (0) convergent in 7 as 7 -> oo, then there exist a subsequence

φjk oϊφj and an element φ e G such that φjk(t)-^φ(t) in 7 uniformly for ί in compact
intervals of [0, oo). A generalized flow G with the property that for each y e Y there
is a unique φeG with (̂0) = y is called a semigroup; we then write T(ί)y = φ(t), so
that the mappings T(ί): 7-* 7, ί^O, satisfy

(i) T(0) = identity,
(ii) T(s + i) = TO) T(ί) for all s, f ̂  0,

(iii) the mapping (t,y)-+T(i)y is continuous from [0, oo) x 7->y.
[For the purpose of this paper we have used a somewhat stronger definition of

a generalized flow than in Ball (1978, p. 232).]

Theorem 3.4. Assume ar = 0(r). Let G denote the set of all solutions c of (1.1) on
[0, oo). Then G is a generalized flow on the closed metric subspace X+ of X.

Proof. That each solution c\ [0, oo)->JΓ+ is continuous was proved in Proposi-
tion 3.1. Property (i) in the definition of a generalized flow is obvious from (2.1),
while property (ii) follows from Corollary 2.3. It thus remains to prove the upper
semicontinuity property (iii). Let c(J) be a sequence of solutions of (1.1) on [0, oo)
satisfying cω(0)-^c0 in X as -^oo. Repeating the proof of Theorem 2.2 with gr = r,
with c0) playing the role of the approximating solutions, and using the relations
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(2.25)-(2.27), we obtain a subsequence c°'k) and a solution c such that c(

r

jk}(t)^cr(t)
uniformly on [0, T] for every Γ>0 and r = 1,2, Also, by Corollary 2.6,

00

Σ rc*«(ί) = Σ rc^ίO)-* Σ rc,(0)= Σ rcr(ί)
r = l r = l r = l r = l

as fc-»oo, for every ί^O. Property (iii) follows by Lemma 3.3. G

For ρ > 0 set B* = BQr\X +. Clearly B* is a closed metric subspace of Bρ (with
metric d).

Theorem 3.5. Assume ar = o(r), br = o(r). For ρ>0 let Gρ denote the set of all
solutions c of (1.1) on [0, oo) wiί/i c(0) e £*. Then GQ is a generalized flow on B^ .

Proof. We must check property (iii) in the definition of a generalized flow. Let c(j)

be a sequence of solutions of (1.1) on [0, oo) with c(j\ϋ)^cQ as 7-^00. It follows
from (2.1), (2.25) and Theorem 3.2 that c<7)(0 exists for each r=l,2,. . . and is
absolutely bounded independently of 7 and ί^O. Hence by the Arzela-Ascoli
theorem there exist a diagonal subsequence c°k) of c(7) and a function
c: [0, oo)->X + such that cγk)(t)->cr(t) uniformly for t in compact subsets of [0, oo)
for each r. This implies also that d(c(jk\t), c(ί))->0 uniformly on compact subsets of
[0, oo). Clearly c satisfies the first equation in (2.1) for r ̂  2 and t ̂  0. To pass to the
limit in the cλ equation we use the sequential weak * continuity of the functions

00 00

Σ a

ryr> Σ bryr and the bounded convergence theorem. Thus c is a solution. D
r=\ r=2

If either αr = 0, br = r for all r or ar = r, br = Q for all r the conclusion of
Theorem 3.5 is false. For example, in the latter case any solution satisfies

where ρ = Σ rcr, and hence

1(0))e«'-c1(0)

Therefore if cω(0)-^c0 with lira Σ rc^(0) = ρ>ρ= Σ ί*c0p and C 0 1ΦO, then
j-> oo r = 1 r= 1

L01

We have not found a general uniqueness theorem for solutions of (1.1). Instead
we give two different uniqueness results; the first assumes more about the initial
data, the second more about the coefficients ar, br.

00

Theorem 3.6. Assume that ar = 0(r). Let c0 = (c0r)^0 satisfy Σ drcor < °° for some

r = l

positive sequence gr satisfying the conditions gr+l — gr^δ>0 for some (5>0,
ar(9r+ ι~9r) = 0(gr) and rar = 0(gr}. Let T> 0. Then there is exactly one solution c
of (1.1) on [0, Γ) satisfying c(0) = c0 (that proved to exist in Theorem 2.2).
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Proof. For λ e IR define sgn/l to equal 1, 0 or - 1 according as λ > 0, λ = 0 or λ< 0.
Note that if ψ( - ) is an absolutely continuous function of ί then so is ί h-> |̂ (ί)|, and

^(ί) a.e.
Let c be the solution proved to exist in Theorem 2.2, let d be another solution

with d(0) = c0, and let x(f) = c(ί)-d(t) Let JV^2. Then for a.e. ί e [0, T) we have

~ Σ r|xr|= Σ [Jr(c)-Jr(d)][(r+l)sgnxr+1-rsgnxr]

(3.4)

Now
JΓ(c) - Jr(d) = αΛ^x, + x ,̂.) - fer+ 1xr + ! ,

and so

[Jr(c) - Jr(έO] [(r -M) sgnxr + ! - r sgnxj = dλar \xr\ [(r + 1) sgn(xrxr + 0 - r]

Integrating (3.4) we therefore obtain for t e [0, T)

r(Ol^i Σ ΛrW + l^l Σ
0\

(3.5)
0

We now note that since rαr = 0(gr), we have by (2.4) that

sup £ (2^+ V)arcr(t)< oo . (3.6)
ίe[0,T)r = 2

d *
Also, computing — Σ |x | as above and arguing as in Theorem 2.5, we deduce that

dtr=2

lim (N+l)]ss*xN+1UN(c)-JN(d)'] ds = 0, ί e [0, T) . (3.7)
]V-^oo 0

By Corollary 2.6, Σ rcr(ί)= Σ ^r(ί)= Σ rc0r, and thus
r = l r = l r = l

MOI^ Σ r W O I (3-8)
f = 2

Using (3.5)-(3.8) and αr = 0(r), we therefore obtain

Σ r|xr(ί)l^ const} Σ r\xr(s)\ds, ίe[0,T).
r = 2 O r = 2

oo

By GronwalΓs inequality Σ r|xr(ί)l = °» fe[0,T), and thus [by (3.8)] c = d, as
r=2

claimed. D
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Theorem 3.7. Let k be a non-negative integer and assume that

(^H = Ofr(k + 1)/(* + 2)"OX^Ife)r = 0('l(*+1)/(* + 2)"1) (3.9)

for 0^/^/c. Letc0eX + and let T>0. Then there is exactly one solution c of (1.1)
on [0, T) satisfying c(0) = c0 ( that proved to exist in Corollary 2.3) .

Remark. The special cases k = Q, 1 give uniqueness when (i) ar,br = 0(rί/2) or (ii)
ar,br = 0(r21*), ar+l-ar = 0(r~^\ br+1-br = 0(r-^) respectively.

fe+1
Proof of Theorem 3.7. Let α= - — -, let c, d be two solutions of (1.1) on [0, Γ)

rC ~r .Z

satisfying c(0) = d(0) = c0, and set x = c — d . Fix m > k + 1 . Consider the functional

0(0= Σ r'-'W Σ (M'α)r*, + (3-10)

where Z"fc _ t indicates summation over all products M1 of / 7]'s, 0 ̂  / ̂  fc — 1 , where
T15 T2 are defined by (3.2). If fc = 0 we set Σ" fc_ ![...] =0. Note that by (3.1), (3.9)

(MH^^^^'1^ (Mί6)Γ = 0('lβ+I(β"1))J 0^/^fc, (3.11)

so that by Proposition 3.1 θ is well defined (and continuous) on [0, T). We will
show that

0{ί) ̂  const } 0(5)ds, ί e [0, T) , (3.12)
o

from which it follows by GronwalΓs lemma that θ(t) = 0 and c = d.Ύo this end we
first note that for N^2 and a.e. t e [0, T),

d N

— V r1"*!* I
A 2L ' I S I
αί r =2

ΛΓ

= Σ (αrίdiXr

But (3 1J)

A7 N

a ι / j ι*j4.Xj.\^f ~τ~ i j ^&n .Xw -|_ ι / sgn x») —— fl i / ^ ct|.|Λy,| γ\^* ι~ i j j
r=2 r = 2

^const Σ |XrU (3.14)

and
A/

Σ T // , ι \ 1 — α 1 — α \ ^̂ ^ f\ /i i c\
r) V 11V -4— I I Q! O"Π V Y Q O"Π V I ̂ . 1 1 ί Λ I i IUr _(_ i Λ.. -L i V \« 1̂  1 / "&•*•* -̂ Ί +1 * "&" ̂ r) —i '-' \^ -L ^/

Also

AT A/

*ι Σ αrc f.((r+l)1~αsgnxr+1-r1"αsgnxr)^const|x1| Σ
 rcr^constl^iI

r = 2 r=2

(3.16)
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Further, it follows easily from Proposition 3.1 that

lim
N ^oo 0

Combining (3.13)-(3.17) we deduce that
ί 00

= 09 ίe[0,Γ).

0 r=l
, ίe[0,Γ).

677

(3.17)

(3.18)

From (2.1) we have that

ίΓ
\x1(t)\^ί\2ai(cl + di)\xi

o|_
ί Γm-l

^ const J Σ MS)\ +
0\_r=ΐ

If fc = 0, then

r=3

Σ 0Λ Σ brxr(s) ]Λ,

Ί
C l I Σ β r C r <

r=2 J

ίε[0,Γ). (3.19)

Σ βΛ
' = m

and (3.12) follows from (3.18), (3.19). [It is because a similar estimation cannot be
directly carried out for fc^l that the extra terms in (3.10) are necessary.] So
suppose fc^rl and that 0^/^/c—1. For any product Ml of / 7]'s we have by
Theorem 2.5 that for t e [0, T),

Σ (Mla\xr(ί)=ϊ\ Σ (ΓiM'α),fen-Sic,)- Σ (T2M
la\xr

r — m 0 |_r = m r = m

+ (M'α)m (Jm_ t(c)- Jm_ ̂ d)) + (Γ2M'α)mxml ds. (3.20)

It follows from (3.11), (3.20) that

Σ (Mla\xr(t) ^const} Σ W
o[_> =ι

If l<k— 1 it follows immediately from (3.21) that

Σ (M'α)rxr(ί)
r = m

If l = k-1 we note that by (3.11)

^ const J θ(s) ds, ί e [0, T).
o

s, ί6[0,Γ). (3.21)

(3.22)

Σ (IJ gconst Σ r
uu

Σ yl ~«(V I
' l-^i l ?

r = l

for i=l,2, so that (3.22) again holds. Clearly a similar inequality holds for

Σ (Mz&)r*r Combining (3.18), (3.19), (3.22) we therefore obtain (3.12), which

completes the proof. G
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Corollary 3.8. Assume ar, brsatisfy (3.9) for some k^G. For COE X + , define T(f)c0

= c(t), where c(t) is the unique solution of (I. I) on [0, oo) satisfying c(0) — c0. Then
Q is a semigroup on X+ and on B*.

We end this section by giving conditions under which the approximation
scheme in Theorem 2.2 converges to a solution without extraction of a subse-
quence. For c0 = (c0r)eX+, we denote by cw:[0, oo)->X the solution of the
truncated system (2.2) with initial data (c0ι, ...9c0ll), the components cn

r for r>n
being set to zero.

Theorem 3.9. Let c0εX + , and suppose that either the hypotheses of Theorem 3.6
or those of Theorem 3.7 hold. Then as w-»oo cn(i)-*c(i) in X uniformly on compact
intervals of [0, oo), where c denotes the unique solution of (1.1) on [0, oo) with
c(0) = c0.

Proof. This follows by a contradiction argument, applying the proof of
Theorem 2.2 to a subsequence of cn assumed to lie outside some neighbourhood of
c in C([0, T] X). By the proof and uniqueness of solutions, any such subsequence
possesses a further subsequence, cnj say, such that cn

r

j^cr uniformly on compact
intervals of [0, oo) for each r. Also, by Lemma 2.1 and Corollary 2.6 we have that

Σ rcr(t)= Σ rc0r,
r=l r=l

It follows from Lemma 3.3 that c"J-»c in C([0, T] X), and this contradiction
proves the theorem. D

4. Equilibria and Lyapunov Functions

By an equilibrium state we mean a time-independent solution of (1.1) on [0, oo).
From the definition of a solution it follows that c is an equilibrium state if and only
if ceX+ with Jr(c) = 0 for all r. We consider three cases. The first is pure
fragmentation, in which we assume that ar = 0, br>0 for all r; in this case the
equilibria satisfy brcr = 0 for r^2 and are thus given by c = cρ, 0^ρ<oo, where

cί=ρ, c? = 0 for r^2. (4.1)

The second is pure coagulation, in which we assume that αr>0, br = 0 for all r; in
this case we must solve the equations arc1cr = Q, r^ 1, and thus the equilibrium
states are given by thpse ceX+ with c1 = 0. Note that there are infinitely many

00

equilibria with fixed density ρ = X rcr for each ρ > 0. The fact that there are non-
r = l

zero equilibria in the pure coagulation case highlights the limitations of the
Becker-Dόring assumption (1.4). The third and most interesting case, which we
study in the remainder of this section, is that of coagulation-fragmentation, in
which we assume that

α,>0, br>0 for all r. (4.2)
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In this case the equilibria satisfy

^-j^-ci, r*l , (4.3)
Cr 0r+1

and therefore have the form

cr = QA, r^ l , (4.4)

where the Qr are defined by

In order for c = (cr) given by (4.4) to be an equilibrium state, cί must be chosen so
that c e X+ . For z ̂  0 define

F(z)= ΣrQJ. (4.6)
r = l

The radius of convergence zs of this series is given by

zf^lίmsupβ^. (4.7)
!•-» 00

We shall always assume that

limsupQ r

1 / r<oo, (4.8)

so that 0<zs^oo. Note that F is smooth and strictly increasing for 0^
Define

ρs= sup F(z). (4.9)
Q^z<zs

If zs=co, then ρs=oo. If 0<zs<oo, then 0<ρs^oo, and in the case when
0<ρs<oo, we have ρs = F(zs). We thus obtain the following characterization of
equilibria.

Proposition 4.1. Let (4.2) hold.
(i) Let ρ<oo, Q^Q^Qg. Then there is exactly one equilibrium state cβ with

density ρ, and it is given by

(4.10)

where z(ρ) is the unique root of F(z) = ρ.
(ii) If ρs<ρ<oo, there is no equilibrium state with density ρ.

For ceX+ let

îX'-d)-')- <""
where the summand is defined to be zero when cr = 0.

Lemma 4.2. The function

G(c)= Σcr(\ncr-l) (4.12)
r = l

is finite and sequentially weak * continuous on X + .
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Proof. Let 0<ε<^. If c = (cr)€X+ and l^m^n, then by Holder's inequality

ί c Γ ' ^ ί i r c X Yir1-1")'. (4.13)
r = m \r = m / \r = m J

In particular, setting m = 1 and using the inequality

x|lnx| ̂  constίx1 +ε + x1 ~ε), x > 0, (4.14)

it is easily seen that the series defining G is absolutely convergent. To prove the
sequential weak * continuity, let c0) e X + fory =1,2,... with c0) -̂  c as j -»oo. Then

(m— 1 oo \

V -J- V i / Λ / V l n / Λ J) Π2-ι ' Z-i I ̂ r l,m^r — * / >
r = 1 r = mj

and by (4.13) the second sum is bounded in absolute value by

const _ + L + ||cθ )||i- Σ r1'
\ flϊ m \r = m

and therefore tends to zero as w-κx> uniformly in j. Since c(j}-^cr for each r we
obtain lim G(c(j)) = G(c) as required. D

J-+00

Note that it follows either directly from the proof of the lemma or from the
sequential weak * continuity that G is bounded above and below on B* for each
£ = 0.

We note that by (4.11), (4.12),

r=ί
(4.15)

It thus follows from (4.8) that V is bounded below on B+ for every ρ ̂  0. In general
V may take the value -j- oo, but if

0<liminfβ r

1 / r, (4.16)

then V is bounded above on B* for every ρ^
For 0<z<oo, we define

Fz(c) = F(c)-lnz rcr= c t a - l . (4.17)
r = l r = l \ VGX/ /

Proposition 4.3. Let ρ<oo, 0^ρ^ρs. T/i^n

7,(c*)=Ilnf^>)dσ. (4.18)
o \ z /

Proof. Since
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we have that

The result follows since z(ρ)~ρ as ρ->0 + . D

ί °°
For 0<;ρ< oo, define X+ = <ceX+: Σ rcr = ρ>.

r = l

Theorem 4.4. Assume (4.2) and (4.8) hold.
(i) Lei ρ < oo, 0 ̂  ρ ̂  ρs. Γ/ien cρ is the unique minimizer both of V on X* and of

Vz(ρ} onX + . Furthermore, every minimizing sequence c0) of Von X* converges to cρ

strongly in X.
(ii) Letρs<ρ<ao. Then

inf 7(c)= F(cρ*) + lnzs(ρ-ρs) , (4.19)
ceX +

inf K,.(c) = V,.(c« ), (4.20)

and ei ery minimizing sequence c0) o/ K or o/ ί̂ s on X^ converges to cθs weak *, frwί
not strongly, in X.

Proof, (i) It is easily verified that the function cr-+cr ( In I 1 — 1 ) attains a
) / /

unique minimum at cr = Qrz(ρ)r = c°. Therefore cρ is the unique minimizer of Vz(ρ}

on X + , and thus also of V on X* . Let cω be a minimizing sequence of V on ̂  . By
the preceding argument c^-+c* as j-+ao for each r. Therefore c°)J^cρ, and so by
Lemma 3.3, c0)-*cρ strongly.

(ii) By the argument in part (i) we have that VZs(c) ^ VZs(c6s) for all cεX+.
Define cω by

where δjr = l if j = r, =0 otherwise. Then cα)eXρ

+ and

where

-1

It is easily verified that lim β, = 0, and it follows that (4.20) [and hence (4.19)] holds.
j ->00

Now let cα) be an αrtorar^minimizing sequence of V on X+. By (4.20), F2s(cα))
~^VZs(cQs) as 7 -KXD, so that c(j) is also a minimizing sequence for VZs on Xρ

+. As in
part(i) this implies that c^-^cQ

r

s as J-+QQ for each r. Therefore c0)-^cρs. The
convergence cannot be strong since ||cω|| =ρ>ρs= \\cQs\\. D
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By (4.15), (4.17) and Lemma 4.2, Vz( - ) is sequentially weak * continuous on X+

00

if and only if the functional c-> Σ cr ln(Qrz
r) is, that is, if and only if ln(Qrz

r) — o(r).
r=l

Since r~l In(βrz
r) = ln(βr

1/l'z) we have proved

Proposition 4.5. Vz( ) is sequentially weak * continuous on X+ if and only if
lim βr

1/r exists and z = zs.
r-> oo

Remark. Dickman and Schieve (1984) prove that for various lattice gas and
continuous space models Iimβr

1/r exists and 0<zs<oo.
r-»-oo

As a preliminary to showing that V is a Lyapunov function we prove a strict
positivity result for solutions of (1.1).

Theorem 4.6. Suppose (4.2) holds. Let c be a solution of (1.1) on some interval
[0, T), 0<T^αo, with c(0)Φθ. Then cr(t)>Q for all ίe(0, T) and all r = 1,2,....

Proof. Suppose for contradiction that cr(τ) = 0 for some r and some τ 6(0, T). If
r>l, then since

Cr = ar_lCr_lCl+br+lCr+l-θrCr,

where

we have that

0 = cr(τ)exp
0

' t

= cr(0) .+ J exp
o

Hence α r_ ̂ ^ _ ^(f) c±(t) = 0 for all t e [0, τ], and thus either cr _ j(τ) = 0 or c^τ) = 0.
By induction we deduce that in all cases cl(τ) = 0. Let

Σ &Λ(ί
r = l r=2

By the definition of a solution ^ 6 L1^, τ), h e L^O, τ) and

cί(t)=-c1(ήφ(t) + h(t) a.e. ίe(0,T).

It follows easily that

Λ \ ^ ft \
Cl(τ) exp I φ(s) ds = cx(0) + J exp N θ(s) ds h(f) dt .

o \o

Hence c^O^O and h(t) = 0 a.e. ίe(0,τ). Since each cr is continuous, we obtain
cr(0) = 0 for all r^2, and thus c(0) = 0, a contradiction. D

Theorem 4.7. Suppose that (4.2), (4.8), (4.16) hold and that ar = 0(r/lnr)9

for = 0(r/lnr). Let c be a solution of (1.1) on some interval [0, T), 0< T^ oo, wiί/i
cm(0) > 0 for some m. Then

ίe[0,T), (4.21)
o



Becker-Dόring Cluster Equations 683

where

00

£>(c)=f Σ (αrclCr-&r+1cr+0(ln(αAcr)-ln(&r+1cr+1)) . (4.22)
r = l

Proof. For n = 2, 3, . . . , define

Dn(c)= Σ (αrc1cr-br+1cr+1)(ln(αrc1cr)-ln(6Γ+1cr+1)).
r = l

By Theorem 4.6 and an easy computation we find that for a.e. t e (0, T),

-A.-iW-Onc Σ J- J l

(4.23)
r = ιι+l

For sufficiently large n we have that lncπ<0 on (0, T), and hence

-JJnc^-a^^Jnc^ ~Jn\ncn + 1^bn+1cn + 1lncn+1. (4.24)

Note that by Proposition 3.1 we have that w;n-»0 as n-> oo uniformly on (0, T), so
that by our hypotheses on αn br the right-hand sides of (4.24) also tend to zero
uniformly. Furthermore, by Theorem 4.6 and the definition of a solution,

l imf( lnc 1 )ΣΛ^ = 0, 0<τ<ί<T, (4.25)
n->oo τ r = n

and by (4.8), (4.16), and (2.30) (with gr = r)

t t

lim$JnlnQnds= lim J Jn\nQn + 1 ds = Q, 0<τ<ί<T. (4.26)
n-^oo τ n-^oo τ

Combining (4.23)-(4.26) we deduce that as 7i-»oo,

ί Dn _ ̂ φ)) ώ + o(l) ̂  F^(c(τ)) - F(w)(c(ί))
o

£\Dn(c(s))ds + o(l)9 0<τ<t<T. (4.27)

Since

(x-y)(lnx-ln);)>0 for x,y>Q,xή=y, (4.28)

we deduce from (4.27) and the monotone convergence theorem that

Since, by Proposition 3.1, c: [0, T)-*X is continuous, and since, by Lemma 4.2,
(4.8), and (4.16), F:X+-»]R is continuous, the result follows from letting
τ-+0 + . D
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Theorems 4.4, 4.7 suggest that V and Vz are thermodynamic free energy
functions, a view supported by some formal calculations we have carried out for
the case of a binary alloy. We do not know if the energy equation (4.21) holds
without the supplementary hypotheses on the αr, br; however, the following result
can be proved.

Theorem 4.8. Let the hypotheses of Theorem 2.2, (4.2) and (4.8) hold, and suppose
further that CQ ή= 0, F(c0) < oo. Then there exists a solution c of (1.1) on [0, oo) with
c(0) = CQ satisfying (2.4) and the energy inequality

F(c(ί)) + ί D(c(s)) ds ̂  F(c(0)) for all t ̂  0. (4.29)
o

Sketch of Proof. For n sufficiently large the approximating solutions cn defined in
the proof of Theorem 2.2 satisfy, by the same argument as in Theorem 4.6, cn

r(f) > 0
for all f >0, 1 ̂ r^rc, and hence, using the notation in the proofs of Theorem 2.2,

4-7,
V(cn(t))+ J Dπ 1(cnk(s))ds=F(cΪIk(0)), ί^O. (4.30)

o

Since F(c(0))< oo, we have lim F(c"k(0))- F(c(0)). Since βBk-1(cBk)^Dm(c"k) for

wk > m, we have

liminf ί DΠk_ ̂ ""(s)) ds^ J £(φ)) ds.
fc->oo 0 0

Finally, by (4.8), Lemma 4.2, and the fact that (cf. the proof of Theorem 3.9)
c"k(ί)->c(0 strongly in X,

fc-»oo

The inequality (4.29) follows by passing to the limit in (4.30). D

5. Asymptotic Behaviour of Solutions and Stability

In this section we study the behaviour as ί-»oo of solutions c(t) of (1.1). We
consider the same three cases as in Sect. 4, beginning with that of pure
fragmentation.

Theorem 5.1. Suppose that ar = Q, br>0 for all r. Let c be a solution of (1.1) on
00

[0, oo) and let QO= Σ rcr(0). Then c(i)-*cQQ strongly in X as ί->oo, where cρ° is
r=l

defined by (4.1).

Proof. By Corollary 2.6

m m t Γ oo ~~|

Σ rcr(ί)- Σ rcr(0)= Π mbm+lcm+l(s)+ Σ brcr(s) Ids, t£0, (5.1)
r=ί r=l 0\_ r = m+l J

m

so that Σ rcr(t) is non-decreasing in t for each m. Therefore cγ(f) tends to a limit cr
r=l

as ί^oo for each r. Writing q(£+ 1) —q(ί) as an integral using (2.1) and letting
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ί->oo, it is easily shown that cr = 0 for r> 1. Passing to the limit ί-»oo in (5.1) we
find c1 ^ρ0>

 and doing the same in (2.25) yields c1 ̂ ρ0. Since ||c(ί)|| = ||cρo||, the
result follows using Lemma 3.3. D

Next we consider pure coagulation.

Theorem 5.2. Suppose that ar>0, br = 0 for all r. Let c be a solution of (1.1) on
00

[0, oo ) and let ρ0= Σ rcr(Q). Then c(t)-^ceo strongly in X as ί->oo for some
r=l

equilibrium state cρo with density ρ0.

Proof. For m — 1 , 2, . . . define

P»(0= Σ <V(ί).
r = m

Then by (2.27) pm(t) is nondecreasing in t for wΞ>2, while by (2.1) p^t) is
nonincreasing in ί. Since each pm(ί) is bounded, it follows that lim pm(f) = pm exists,

ί->oo

and since cr(i)=pr(i)—pr+1(i), we have also that \\mcr(t) = cr exists. By the
monotone convergence theorem it follows that ί~*°°

00 00 OO OO

ρ0= Σ rcr(ί)= Σ P»(0-» Σ Pm= Σ rcr as ί^co.
r — 1 m= 1 m= 1 ι = 1

Therefore, by Lemma 3.3, c(t)-*c strongly in X as ί-*oo. Since by (2.1)
oo

ί aίcl(t)dt<ao, we have ct = 0, completing the proof. D
o

In order to handle the coagulation-fragmentation case we recall some facts
concerning the asymptotic behaviour of generalized flows. Given a generalized
flow on a metric space Y and some φ e G we denote by & + (φ) = (J φ(t) the positive

ί^O
orbit oϊφ and by ω(^) = {y e 7: φ(tj)->y for some sequence i7— > 00} the co-limit set of
.̂ A subset £ C 7 is said to be quasi-invariant (cf. Barbashin, 1948) if given any y e £

and ί^O there exists φ e G with ^(0 = ̂  an(i @ + (ψ)CE. The following result is
standard, and we include the proof for the reader's convenience.

Proposition 5.3. Let Gbea generalized flow on 7, letφeG and suppose that &+(φ) is
relatively compact. Then co(φ) is nonempty and quasi-invariant, and
dist(φ(i)9ω(φ))->0 as

Proof. We prove the quasi-invariance, the other assertions being obvious. Let
yeω(φ\ so that φ(tj)-+y for some sequence £,— »oo. Let ί^O and consider the
sequence φ(tj—t). Since @+(φ) is relatively compact there is a subsequence tjk such
that φ(tjk — t) = φtt(0) is convergent. By property (iii) in the definition of a
generalized flow there exist a further subsequence, again denoted tjk, and an
element ψ e G such that φtjk_t(s) = φ(tjk — t + s)-^ιp(s) as fc-»oo uniformly for 5 in
compact intervals of [0, oo}. Clearly @+(ψ)Cω(ψ) and ψ(t) = y. D

A function ΊΓ : 7->R is called a Lyapunov function if t ^i^(φ(f)) is nonincreas-
ing on [0, oo) for each φ e G. For generalized flows the simplest form of the
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"invariance principle" consists of the following immediate consequence of
Proposition 5.3. If ̂  is a continuous Lyapunov function and if (9+(φ) is relatively
compact, then ω(φ) consists of complete orbits along which V has the constant
value V °° = lim i^(φ(t)). This information may determine ω(̂ ). For a complete

t->00

bibliography and more details see Ball (1978).
We begin by studying a case in which zs = oo .

Theorem 5.4. Assume αr>0, frr>0 for all r, ar = 0(r) and

Iimβr

1/r = 0. (5.2)
r-> oo

Let c be any solution of (1.1) on [0, oo) satisfying c(0)φO, F(c(0))<oo, and the
00

energy inequality (4.29). Let ρ0 = Σ rcr(0). Γ/zeπ c(ί)-»cρ° strongly in X as ί-»oo,
r=ί

where c60 is the unique equilibrium state with density ρ0 (given by (4.10),).

Proof. By Theorem 3.4 the set G of all solutions of (1.1) on [0, oo) is a generalized
flow on X+. By (4.29) V(c(t))£V(c(QJ) for all ί^O, and by (4.15), Corollary 2.6 it
follows that

oo

- Σ rcr(t)\n(QΪ/r)^M«x for all ί^O. (5.3)
r = l

As is easily shown, (5.2) and (5.3) imply that Θ+(c) is relatively compact in X+.
Since Fis not continuous on X + we cannot apply the invariance principle directly
to determine ω(c). Instead we note by (4.29) that for any n, any T>0 and any
sequence £,— »oo,

lim f Dn(c(tj + s)) ds = lim '' f DH(c(s)) ds = Q. (5.4)
j-*oo 0 7-* oo tj

Let ceω(c), so that c(tj)-+c in X for some sequence ί7 - > oo. By the proof of
Proposition 5.3 there is a subsequence, again denoted tj9 and a solution d of (1.1) on
[0, oo) such that d(0) - c and c(ί; + ) -+d( - ) in C([0, T] X). Since

00

Σ rdr(t) = QQ>U, we have by Theorem 4.6 that dr(t) > 0 for all r and all ί > 0. Thus
r = l

by (5.4) and Fatou's lemma,

ίDB(d(s))ώ = 0. (5.5)
o

Since n is arbitrary, it follows from (5.5), (4.28) and the continuity of each dr( ) that

In particular, cr — Q^rc\ for r^l, and since Σ rcr = ρ0, this implies that c = cρ°.
r = l

Hence ω(c) = {cρ°} and the result follows from Proposition 5.3. D

We now discuss the case 0 < zs < oo . This is more difficult because if

= Σ rcr(0) > £5? Λen the positive orbit of c is never relatively compact in X.
r = l
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Theorem 5.5. Assume αr>0, br>0 for all r, ar = 0(r/\nr), br = 0(r/\nr), and that

lim Qr/r= — exists with 0<z s< oo. Let c be a solution of (1.1) on [0, oo) and let
r^co Zs

oo

ρ0= Σ rcr(0). T/ien c(ί)-^cρ as ί-»oo /or some ρ vvzί/z 0^ρrgmin(ρ0,ρs).
r=l

Proof. The case ρo^O being trivial, we suppose ρ0>0. By Theorem 3.5 Gρo is a
generalized flow on £ρ

+

0. By Proposition 4.5 VZs is continuous on £ρ

+

0, and by
Theorem 4.7, Corollary 2.6

7,.(c(ί)) + ί D(φ))ώ= 7,.(c(0)), ί£0 . (5.6)
o

00

Since X rcr(ί) is bounded, 0+(c) is relatively compact in B*0. By the invariance
r= 1

principle ω(c) is nonempty and consists of solutions c( - ) along which VZs has the

constant value Fz°° = lim F2 (c(f)) Applying (5.6) to a nonzero such solution c( - )
S t-+αθ *

we see that necessarily cr(f) = Qrcί (t)r, r ̂  1 , and by density conservation it follows
that c is an equilibrium. Hence ω(c) consists of equilibria cρ with 0 ̂  ρ ̂  min (ρ0, ρs)
and F2s(cρ) = V™. But by Proposition 4.3 F2s(cρ) is strictly decreasing in ρ, and thus
ω(c) = {cρ} for a unique ρ, 0^ρ^min(ρ0,ρs). The result follows from
Proposition 5.3. D

In order to determine the density ρ of the limiting equilibrium in Theorem 5.5,
and thus show that c(tj) is a minimizing sequence of V on X*o for ί,— > oo, we need to
control the "tail" of a solution. At the expense of making further hypotheses, this
can be done using a maximum principle.

Theorem 5.6. In addition to the hypotheses of Theorem 5.5 assume that there is a
constant M such that

M^br+ί-arzs^0,br-arzs^0, (5.7)

oo c (Q)

for r sufficiently large. Assume further that Σ ~τr~τ <oo, and that, in the case
r=lQrZS

ρs= oo, lim rQrz
r

s = Q. Suppose finally that c is the only solution of (1.1) on [0, oo)
r->oo

with initial data c(0). Then
(i) if 0^ρ0^ρs, c(t)-+cρo strongly in X as ί-*oo, and

(ii) if ρ0>ρs, c(t)^cQs as ί->oo, and

Proof. We will show that if c(ί) -̂  c6 as t -> oo for some ρ < ρs then c(ί) -»• cρ strongly,
so that by density conservation ρ = ρ0. The assertions in the theorem for ρ0 < ρs and
ρ0 > ρs follow immediately from Theorem 5.5. If ρ0 = ρs, then we deduce that ρ = ρs

and the strong convergence follows by Lemma 3.3. The statements concerning
lim V(c(t)) follow from Proposition 4.5.
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For K chosen sufficiently large define

Then

for all r and some constant <5, and since ar = 0(r\ it is easily shown that
αr(0r + 1 ~~ Qr) — 0(gr). It follows from Theorem 2.2 and the uniqueness assumption

oo £ /A

that Σ *r(0 < oo for ί ̂ 0, where xr(ί) =f 7^7, and by Theorem 2.5 and the same
r = l βrZs

proof as Proposition 3.1 the series is uniformly convergent on compact intervals of
[0,0)).

Let (5.7) hold for r>r0. Since c(t)^cβ with ρ<ρs, there exists tl such that
xr(t)<ί for all ί^*! and I^r^r0. Let K = sup{xr(t1):r^ I}. We show that xr(t)

^ X -f 1 for all t ̂  ̂  and r ̂  1 . If not, by the uniform convergence of Σ xr(t), there
r = l

exist £2 = ̂  and a minimal n>r0 such that xπ(ί2) = K 4- 1 ̂  xΛί2)> Fφn, and xπ(ί)

Xn = (X1 - 1) (bn - anZs)Xn + Ml(^n- 1 -

Supposing without loss of generality that cφO, we have by Theorem 4.6 that
x1(t2) > 0. By (5.7) and xn _ ^(t2) < xn(t2), *n + 1^2) ̂  ̂ (^2) we deduce that xn(t2) < 0.
This contradiction proves that

for all ί^ί^r^l.

oo \

Since lim rQrz
r

s = 0 1 in the case ρs < oo because Σ r6rzs < oo it follows easily that
r-»oo \ r=ί )

&+(c) is relatively compact in X+, and hence c(t)-*cQ strongly as claimed. D

For brevity we study the Lyapunov stability of the equilibria just when
0 < zs < oo the case zs = oo can be treated similarly.

ί r\ ( r \
Theorem 5.7. Assume αr>0, br>Q for all r, ar = 0\ - — , br = 0\ - — and that

! \lnrj \lnrj
lim Qllr = — exists with 0 < zs < oo .
r->oo Zs

(i) Let ρ<oo, 0^ρ^ρs. Then CQ is stable in X* i.e. given ε>0, there exists
δ>0 such that any solution c of (1.1) on [0, oo) with ||c(0)-cρ|| <δ, ||c(0)||=ρ
satisfies ||c(ί)-cρ|| <ε for all ί^O.

(ii) Let ρs<ρ< oo. Then cρs is weak * stable in X* i.e. given ε>0 there exists
δ>0 such that any solution c of (1.1) on [0, oo) with d(c(ty,cβs)<δ, ||c(0)||=ρ
satisfies d(c(i),cQs)<s for all ί^O.

Proof, (i) Since F is a continuous Lyapunov function on X* , standard results on
Lyapunov stability [convenient references are Knops and Payne (1978) and Ball
and Marsden (1984)] imply that we need only show that cρ lies in a potential well,
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that is for δ > 0 sufficiently small

uύ{V(c):ceX;,\\c-c°\\=δ}>V(c*).

But this follows immediately from Theorem 4.4.
(ii) Since VZs is a sequentially weak Continuous Lyapunov function on X* , we

similarly need only show that for <5>0 sufficiently small,

inf { VZs(c} :ceX^ d(c9 c« ) = δ}> VZs(c*ή .

This also follows from Theorem 4.4. D

We end this paper by indicating how the hypotheses of the various theorems
are satisfied for the binary alloy problem discussed by Kalos et al. (1978), Penrose
and Buhagiar (1983), and Penrose et al. (1984).

In the zero-density limit the corresponding kinetic coefficients for tempera-
tures less than but not too close to the critical temperature are strictly positive, can
be calculated for small r, and extrapolated for large r using the formulae

(5'8)

where w,.̂ - ,̂ and the constants D, fc0, fcl5 k2, ζs are strictly positive. The r1/3

dr

power is motivated by the work of Lifshitz and Slyozov (1961). Since, by (5.8),

it follows from Theorem 2.2, Corollary 3.8 that (1.1) generates a semigroup on X +

and B£, ρ^O. Both the cases in Proposition 2.4 hold, guaranteeing appropriate
decay of cr(t) as r-»oo for each ί^O. Furthermore, by Theorem 3.9 the
approximation scheme in Theorem 2.2 converges to a solution without extraction
of a subsequence. It is also not hard to check that the hypotheses of Theorem 3.2
hold for all fe^ 1, so that each cr(t) is C°° in ί. Taking logarithms in (4.5) we see that
as r->oo

Qr = const C s - e x p - r 2 / 3 ( l + o ( l ) ) , (5.9)

and it follows that

and thus that zs = ζs, ρs< oo. Hence Theorems 5.5, 5.7 hold. The inequalities (5.7)
also follow from (5.8), so that the conclusions of Theorem 5.6 hold provided the
initial data satisfies the decay estimate

Σexp(μr2/3)c,(0)<oo (5.10)

2for some μ> ——.
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The authors cited above also consider low density corrections to (5.8) in which
the coefficients αn br are allowed to depend on the density ρ. In one such correction

αr(ρ) is defined by the first equation in (5.8) with D = D(ρ) > 0, and r+1~) - wr(ρ),
where for sufficiently small ρ, fl/^'

W1(ρ) = (l-ρ)2w1, wr(ρ) = (l-ρ)3wr for r^2, (5.11)

00

with vvr as in (5.8). Since the αr(ρ), br(ρ) depend on ρ = Σ rcr? ̂ e resulting Becker-
r = l

Dόring equations are not of the form considered in this paper. However, with an
appropriate definition of solution one can reprove Corollary 2.6 and hence reduce
the problem to that for constant coefficients. Note that Qr given by (5.9) is now
replaced by

&(<?) = !, (5.12)

so that the radius of convergence zf of Σ rQr(Q)zr is given by
r = l

2? = (l-ρ)3Cs. (5.13)

Define ^

QM = Σ
ι =l

Then

where ρs= X rQrζ
r

s is as above. Given O^ρ < 1, the Becker-Dόring equations with
r = l

constant coefficients αr(ρ), ί>r(ρ) thus have a unique equilibrium cρ

ρ corresponding
to every density ρ with 0^ρ^ρs(ρ). Applying Theorem 5.6 we see that provided

00

(5.10) holds and Σ rcr(0) = ρ< 1 the solution has the properties
r = l

(i) if 0^ρ^ρs(ρ), c(ί)->c* strongly in X as ί->oo, and
(ii) if ρ>ρs(ρ), c(ί)^cj (β) as f-*oo.
Note that by (5.12), (5.13),

(cJ te))ι=(l-β)3Cs; (cS (β))Γ = (l-ρ)4Q,C;, ^2. (5.14)
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