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0. Introduction

The purpose of this article is to present existence theorems for various

equilibrium boundary-value problems of nonlinear clasticity in one, two and
three dimensions under realistic hypotheses on the material response. Although
some of the results may be extended to cover Cauchy clasticity. we shall restrict

our discussion to hyperelastic (Green elastic) materials, that is, to clastic mate- -

rials possessing @ stored-energy function. We ignore thermal effects. For such
materials a typical boundary-value problem takes the form of finding a vector
field ug: 2 — #" making the integral

[ @)= [ f (x ulx). Vul(x)dx 0.1)
1

stationary in a suitable class of functions'. Here @ is a non-cmpty, bounded, open
subset of #", n=1,2,3. The integrand / will usually have the form

flx,u Vu)= W(x, V) +dlx.n), . (0.2)

t For traction boundary-value prohlems there will also bea surface integral term.

é‘-}l.a
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where %" is the stored-energy, function and ¢ is a body force potential. In this
introduction we assume that (0.2) holds and that n=3.

We attack this problem by using the dircct method of the calculus of variations
to establish the existence of minimizers for [(u. Q) in the class considered. Such
a programme has been successfully carried out by ANTMAN [1-8] in an important
scries of papers on the existence of equilibrium solutions in various problems
arising from theories of nonlinear elastic rods and axisymmetric shells (with or
without Cosserat structure). In these papers ANTMAN emphasizes the crucial
importance of choosing hypotheses on the material response that both ensure
the success of the analysis and are reasonable physically. In his work, and in mine,

the problem of existence is inextricably linked with that of finding satisfactory

constitutive inequalities Tor nonlinear elasticity (¢f. TRUESDELL [1]).

As an illustration, consider the effect of imposing the constitutive requirement
that # " be convex with respect to Fu. This mathematically simple hypothesis.
when augmented with suitable smoothness and growth assumptions, ensures the
existence of minimizers for (0.1), (0.2). Existence thecorems under this assumption
have been given by several authors (e.g., Bsu [1,2]. Onen [1]). Unfortunately
these results arc only of mathematical interest since convexity of % * with respect
to Fu is unacceptable physically®. Firstly, as was shown by CoLEman & NoLL
[17 (see also TruespELL & Nout. [1. p. 163]) such convexity conflicts with the
requirement that ¥ be objective (¢f (1.12)). Secondly, consider, for example,
a mixed displacement. dead load traction boundary-value problem for such a
material. Any equilibrium solution for such a problem must necessarily be an
absolute minimizer for [(u, Q):'in particular, if a strict absolute minimizer exists
then it is the only equilibrium solution®. This fact. which is an elementary
consequence of the theory of convex functions (¢f. MOREAU [1], EKELAND &
Témam [1]). and for the truth of which #  need not be strictly convex, rules
out the nonuniqueness essential for the description of buckling® *. -Some less
restrictive condition on ¥ "is therefore required.

A suitable condition. termed guasiconrexity, was introduced by Morrey[1]
in a fundamental paper in 1952, ¥ " is said 1o be quasiconvex il

rj W (xg. Fy + V) dx2 [ #(xy. F)dx=m(D) % (x,. Fy) - (0.3)
y n

holds for each fixed x,e€. for each constant 3 x 3 matrix F,. for each bounded
open subset DcA#”, and for all {e (D). Here m denotes Lebesgue measure
and 2(D) is the set of all infinitely differentiable functions with compact support
contained in D. We regard quasiconvexity as a constitutive restriction on %™*, It
may be interpreted as follows: For any homogeneous body made from the material
found at any point of Q. and for any displacement boundary-value problem
with zero body force for such a body that admits as a possible displacement a

t For hyperclastic rods and shells ANTMAN makes certain convexity hypotheses on the stored-
energy functions, Because of the coordinates employed these hypotheses are not %uhjcm to the ob-

jections made below.,
" Hir [1] was the first to observe that strict convexity with respect to Fu implies uniqueness.
** The nonuniqueness established by ANTMAN arises from the presence of lower order terms.
* In the case when ¥ is not everywhere defined th condition must be slightly modified. See

seetion 3.
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homogencous strain, we require that this homogencous strain be an absolute
minimizer {or the total energy. Note that if in the above we admitted for considera-
tion inhomogeneous bodies, or if we considered mixed displacement traction
boundary-value problems, then the condition would be unacceptable, as we
should expect certain buckled states to have lower total energy than the homo-

"geneous strain. As stated, however, the condition has a certain plausibility.

Morrey showed that if f(+,n, ) is quasiconvex for every u, and if certain
continuity and growth hypotheses are satisfied, then for various boundary-value
problems there exist minimizers for I(u, ). Conversely, if u is a minimizer for
I(u, Q) among C'(2) functions satisfying given Dirichlet boundary conditions,
and if x,eQ, Fy =V u(x,), then (0.3) holds. This lact may be used (see Theorem 3.2)
to motivate quasiconvexity by showing that it is a necessary condition for the
existence of sufficiently regular minimizers for a class of displacement boundary-
value problems. The degree of regularity required is. however, fairly severe.
Furthermore, if %~ is quasiconvex and twice continuously differentiable, then
W satisfies the Legendre-Hadamard or ellipticity condition':

2 gy
L — A M p 1,20 forall A pesp?. (0.4)
du' , o 4 : :
(It is not known whether the converse holds.) Because we have chosen to impose
quasiconvexity as a constitutive restriction, we must therefore regard the Legendre-
Hadamard condition also as a constitutive restriction'.

The statement above that quasiconvexity is sufficient for existence must now
be qualified. In fact, MoORREY's remarkable existence theorem fails to apply
directly to nonlinear elasticity. For compressible materials his growth conditions
are too stringent; in particular, they prohibit any singular behaviour of %7 such
as the natural condition

Wi(x.F)—w as detF —0. (0.5)

Moreover, his work gives no indication of how to treat the unilateral constraint
detPu>0"*. Incompressible materials require the constraint detVu=1, which

also poses problems.

t Throughout this article we employ the summation convention for repeated sullices,

" This contrasts with the views expressed by Trussprrn & Now [1, p. 275], who suggested that
the Legendre-Hadamard condition should be regarded not as a constitutive restriction, but as a
stability condition. They conjectured that violation of the Legendre-Hadamard condition at a point
would lead to wave motion tending to move an elastic body from an unstable to a stable equilibrium
configuration and that this process may help explain buckling. While the violation of the Legendre-
Hadamard condition at a point may well result in certain kinds of instabilitics (¢f. Ericksen [3]), it
is by no means necessary for buckling. Indeed, in Section 9 we show that buckling can occur when
the Legendre-Hadamard condition holds everywhere. Moreover, other kinds of instabilities, such as
necking, may well be compatihle with the Legendre-Hadumard condition (¢f. ANTMAN [6]). Another
suggestion of TrRuespeLL & Notr [1. p. 129] concerning internal buckling of a rod would, if true.
directly contradict quasiconvexity, but the behaviour described by them as implausible seems typical
of huckling.

ANTMAN'S material hypotheses for rods and shells are those appropriate under the .msumpuon
that (0.4) holds in the three-dimensional theory.
* The analogous problem for rods has been studied by Anrman [2-5, 7, 8],
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To overcome these difficulticy we investigate in Section 6 sequential weak
continuity properties of functions, defined on Or]lcz-SoboIev spaces, having

the form
0: u—sd(Vu(+)), (0.6)

" where ¢ is a continuous real-valued function defined on the set of all 3x3
matrices. This map is sequentially continuous from W' ®(Q) with the weak
topology to L'(©2) with the weak topology if and only if 0 has the form

0(u)= A+ B}(Fu), + Ci(adj Pu). + D det Pu, 0.7)

where A, B}, C7, D are constants and adjPu is the transpose of the matrix of

cofactors of Fu. When the domain of 0 is a larger Orlicz-Sobolev space, the
problem is more delicate. In this case we give various theorems guaranteeing
sequential continuity or closure of 0 relative to various weak topologies.

We combine these results with standard techniques of the calculus of
variations to establish the existence of minimizers for I(u, Q) in various classes
of functions when %" has the form

# (x. F)=g(x, F.adjF. detF) - 09

with g(x,+, +, +) convex for each x. We call such functions # polyconvex. Note
that F, adjF and detF govern the deformations of line, surface and volume
clements respectively. If % is polyconvex, then ¥~ is quasiconvex; in fact
polyconvexity is equivalent to a sufflicient condition for quasiconvexity
given by MoRrrey. However our existence theorems are valid under weaker
growth conditions than MorRrey's. Moreover, we can handle the pointwise
constraints on detPu mentioned above by using our sequential weak continuity
results. Since there are few known examples of quasiconvex functions that are
not polyconvex, the restriction to polyconvex functions is not serious. It appears
that neither the quasiconvexity nor the polyconvexity condmon has been con-
sidered previously in the context of elasticity.

A wide variety of realistic models of nonlinear elastic materials satisfy the
hypotheses of our existence theorems. In particular, these include the Mooney-

Rivlin material and certain stored-energy functions similar to, and for incom--

pressible materials identical to, those of OGDEN [2, 3]. That these stored-energy
functions are polyconvex follows from sufficient conditions for the polyconvexity
of isotropic functions given in Section 5, where some related results are also
discussed.

Our existence theorems apply to displacement, mixed displacement traction,
pure traction, mixed displacement pressure, and pure pressure boundary-value
problems. Similar methods work for more general classes of mixed boundary
conditions. For the most part we consider only polynomial growth hypotheses,
which result in a theory based on Sobolev spaces. For stored-energy functions
of slower growth an Orlicz-Sobolev space setting is required; for brevity we
treat only the displucement boundary-value problem for such functions. An
example is given of a stored-energy function requiring this more elaborate theory.
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Many of the results may be extended to give new existence theorems for non-
lincar elliptic systems in higher dimensions: some results in this direction are
given in BaLr [2].

In Section9 I apply existence theorems to establish nonuniqueness for the
mixed displacement, zero traction boundary-value problem for a Mooney-
Rivlin rod under compression. My main result is that nonuniqueness occurs
for sufficiently long compressed rods of arbitrary uniform cross-section. Despite
the intuitively obvious nature of this result, such nonuniqueness has not pre-
viously been established for any mixed boundary-value problem of nonlinear
elasticity.

In Sections3 and 4 the conditions of quasiconvexity, polyconvexity and
ellipticity are examined in detail. In particular, necessary and suflicient conditions
are given for polyconvexity based upon thc work of BUSEMANN, EwALD &
SHEPHARD. It would be interesting to have a statical interpretation of poly-
convexity. None of these three constitutive restrictions has at present a micro-
scopic or thermodynamic motivation, in contrast, for example, to the situation
pertaining to the Navier-Stokes equations, for which the Clausius-Duhem
inequality gives conditions closely related to those sufficient for existence.

The reader interested in the constitutive theory of elasticity, but not in the
details of existence theorems, can omit Sections 2, 6 and 7 without much loss.
With the exception of the existence theorems themselves. the parts of this article
which bear most directly on the relevance of the quasiconvexity and poly-
convexity conditions to realistic models of elastic materials are Thcorcms3 1
3.2,3.4,4.5, 5.1, 5.2 and the discussion in Section 8.

Existence theorems for linear elasticity (¢f. Ficuera [1]) have a different
character from those presented here on account of the geometrical approximation
made. In particular we have no need of an analogue of KOrN's inequality. The
existence theorems of StorpeLLt [1] and van Buren [1] for nonlinear elasticity
(¢f. TRUESDELL & NotL [1], WANG & TruEespELL [1]) are based on those of the
linear theory. In these theorems the inverse function thcorem is used to establish
the existence and uniqueness of small solutions to boundary-value problems
with small body forces and boundary data. The material response is assumed
to be such that existence, uniqueness and regularity theorems hold for the
equilibrium equations linearized about the zero data solution. In the case of the
pure traction boundary-value problem the degeneracy of the lincarized problem
forces the authors to assume that the surface and body forces possess no axis
of equilibrium. This hypothesis is unnecessary under the assumptions of our
existence theorem for the pure traction problem. Note, however, that STOPPELLI
and vaN BUREN make assumptions about the material response only for strains
close to those of the zero data solution.

This article by no means exhausts the problem of the existence of equilibrium
solutions even for hypereleasticity. The most notable shortcoming of this work
is that in the two important cases of incompressible materials and compressible
materials satisfying (0.5) I have so far been unable to show that the minimizers
whose existence has been established arc smooth enough even to satisly a weak
form of the equilibrium equations. I hope to discuss this question in later work.
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1. Boundary-Value Pfoblems of Nonlinear Hyperelasticity

This section begins with a brief presentation of the basic equations ol nonlinear
elasticity. We then go on to consider the various boundary-value problems for
which we later prove existence theorems. The calculations here are purely formal,
in the sense that we assume that the various quantities appearing have sufficient
smoothness to justify any operations required (such as integration by parts).
The theory of nonlinear elasticity is discussed at length in the books by GREEN
& Zerna [1], TruespeLL & NoLL [1] and WANG & TRUESDELL [1], and the
reader is referred to these texts when clarification is necessary.

We consider a material body 2 whose particles are labelled by their positions
x=(x,)=(x,, X,.x,) with respect to a rectangular Cartesian co-ordinate system
in a reference configuration £ which is a bounded open subset of #°. 2 need not
be homeomorphic to an open ball. In a given motion the position of the parucie x
at time t is denoted u(x, r]T Thc deformation gradient F is defned by

By, “, =, (1.1)
l‘x

We suppose that u: Q — #? is orientation-preserving and locally invertible, so that

J=detF>0. (1.2)

Consideration of the stronger requirement that u be globally one-to-one is
beyond the scope of this article.

The symmetric, positive-definite right and left stretch tensors U,V and the
right and left Cauchy-Green tensors C, B are deflined by

C=U*=F"F, B=V=FFT". - (1.3)
The following relations hold:
F=RU=VR, V= RURT g (1.4)

where R is the orthogondl rotation tensor. The eigenvalues v,,v,, vy of U and V
are positive and are termed the principal stretches of the deformation. The principal
inrariants of B and C are given by ;
Ig=lc=rvi+ri+ri,

ezl =0t el +rdet it g, (1.5)

Hy=11omed el ed. ‘ _
We suppose that at each particle x the material of the body is elastic, so that a
constitutive equation of the form

Ta(x, )= To(F(x, 1), x) (1.6)

holds. where T, denotes the first Piola-Kirchhoff" stress tensor. Ty is related to
the Cauchy stress tensor T by
Ti=I TP, (1.7)
' We choose the notation common in partial differential equations rather than that of continuum
mechinics where our x, u are customarily denoted X. x respectively.
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The surface traction t; measured per unit area in the reference configuration,
and the actual stress vector t measured per unit area of the deformed configura-

tion, are given by
tg=TyN; t=Tn (1.8)

respectively, where N and n denote the unit outward normals to the boundaries
Q and Au(Q, t) respectively.

The pointwise form of the balance laws of linear and angular momentum are
given by

Div Ty + pg b= pp i, (1.9)
T=TT, (1.10)
where
iv Ty, LR

pgr(x) is the density in the reference configuration, and b is the body force per

unit mass.
Throughout this article we assume that the material is hyperelastic; i.e., there

exists a real-valued stored-energy function % (x, F) such that

aw”

To =3 (L.11)
W' is objective if and only if .
W (x, QF)= ¥ (x, F) (1.12)

for all proper orthogonal matrices Q. If ¥ is objective then
' W(x, F)=#"(x. U), (1.13)
and it follows from (1.11) that (1.10) is satisfied identically. ¥~ is isotropic if
and only if %" is objective and
#ix, QFQ")=¥"(x, F) (1.14)

for all orthogonal matrices Q. In this case
W' (x, F)=B(x. v, 0. t3), (1.15)

where @ is symmetric in the r;. )
Deformations of incompressible materials are restricted by the pointwise

constraint
e J=detF=1. (1.16)

For incompressible materials the above theory has to be modified by replacing T
by the extra stress
T,=T+pl, (1.17)

where p is an indeterminate hydrostatic pressure. The stored-energy function
%" for an incompressible material need be defined only for F satisfying (1.16).
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; .
We shall be concerned only with equilibrium configurations of 4. If #° is
objective we see from (1.9) that u is an equilibrium configuration if and only if

AW+ qi+ prbi=0, (1.18)
where : _
' 82 #'(x, F) 2 #'(x, F) :
?ﬂ dér—"'—.-'—“—“-.— = L
A.J (x, F] aF;. (?F&' ] q; axt c‘-f';' ( 19)
A. The mixed displacement-traction boundary-value problem P

for a compressible material

In this problem we seek u satisfying (1.18) in € and satisfying the boundary
conditions A

u(x)=ii(x) for xedQ,, (1.20)
te(X)=Tg(x) for xecQ,, ' (1.21)
where 0Q=00,08Q,. /2, N, =, and @: 8Q, - A, 1g: Q, > A° are given
functions. The boundary condition (1.21) is a condition of dead loading, ie.,
the loads acting on u(@Q,) have fixed direction and fixed magnitude per unit
area of #Q,. If #Q,=¢ then we have a pure displacement boundary-value problem,

while if 82, =¢ we have a traction houndary-value problem.
Suppose that the body force b is consertative, so that

= —grad ¥, (1.22)

where W = ¥(u) is a real-valued potential, and where

o O
(grad =P);*=‘Fu,—,

Define f,(x.u, F) byl

Sl u Fy=#"(x, F) 4+ pglx) Y (u). (1.23)
Consider the functional )
I, [ fi(x u(x), F(x) dx— | u(x) felx)dS. (1.24)
12 "2

Let #Q 4. Then a standard formal calculation shows that Jo(uo) is
stationary with respect to u satisfying (1.20) if and only if the Euler-Lagrange
equations (1.18) and the natural boundary conditions (1.21) hold, i.e, if and
only if u, is a solution to the mixed boundary-value problem.

If Q,=¢ then in gencral solutions to the boundary value problem will not
exist, since a necessary condition for a function u, to render J, stationary subject

to (1.21) is that
a=0 . (1.25)

where
def 1 =
ke T ! 1S). 1.2
el (‘!_(:Rb(no]t x+‘1!] 1 dS) (1.26)
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Condition (1.25) says that the total force on the body due to external loads is
zero (¢f. TRUESDELL & NoLL [1, p. 127]). To describe the effect of this condition
we consider two situations corresponding to different types of existence theorems
proved in Section 7.

1. b(u) is not a constant vector. In this case, under suitable hypotheses on b
the set of functions u, satislying (1.25) will be nonempty, so that under certain
conditions! it is likely that a function u, such as to render J, stationary subject
to (1.21) exists. If so, then u, is a solution to the traction boundary-value problem.

) 2 b(:f}_: by, by constant. In this case a is independent of . so that (1.25)
is a condition on the data of the problem. [t proves convenient to consider Jy(u)
as a functional defined on functions u satisfying the constraint
(udx=e, - (1.27)
Q . a5
}\'here e is an arbitrary constant vector. The constraint (1.27) removes the
indeterminacy resulting from a possible rigid-body translation of u(R). J, is
stationary at u =un, subject to (1.27) if and only if (1.21) holds and

DivTz+pg by=a. (1.28)

To prove this note first that if (1.21) and (1.28) hold, then
er d ; "
5J0(u0)(v)"=’-m—_ Jy(ug+ev)| =—[a-vdx+ [(tg—19)dS. (1.29)

% o]

c={ 7

. which is zero if |vdx=0. The converse statement is a direct application of the

I
multiplier rule for isoperimetric problems with a playing the rdle of the Lagrange
muitiplier corresponding to the constraint (1.27). A rigorous proofl may also
be constructed by using a result of ScHwarTZ [1, p. 59].

If a=0 then u, is an equilibrium solution. If @ +£0 then

2t
(e 1y () + - a (1.30)

is a solution to the dynamic traction boundary-value problem (1.9 (1.21).
Note that any equilibrium solution r must also satisly the zero moment

condition funpgbodx+ | unt,dS=0. (1.31)
n e

This condition, unlike (1.25), depends explicitly on the unknown [unction u,
and so cannot be imposed a priori.
B. The mixed displacement pressure boundary-value problem
for a compressible material
In this problem we seck u satisfying (1.18) in 2 and satisfying the boundary
i

Ll u(x)=u(x) for xedQ,, (1.32)
e TM()==p,n for xelQ,  (r=2.....M), (1.33)

il ¥ takes the form of a powerful potential well, for example.

1
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M .
where Q=) 8,, 02,0 dQ=¢ Ak+1) ii: 40, is a given function, and
r=1

We assume that for r22 00, is either

sed curve lying in 62,. Suppose also that
39, for each

p(r=2,..., M) are constant pressures.
a closed surface or is bounded by a clo
there exists a C'(Q) function p: ¥ — 2 taking the value p, on

r=2 .M
Consider the functional _
Jy ()= { fo(x, u(x), F(x) dx, : (1.34)
fv] o :
where - 3
fyeou, FYE S (x w, F)+pJ +4p, i ™ Fp B ut, (1.35)

and where J is defined in (1.16). By the divergence theorem

Jyu)y= | fidx+ j%pa,j,s""u'_pu{qu*f\’,ds‘ (1.36)
i o : ;

Suppose now that ¢Q, #¢. Then for v satisfying v=0 on 8Q, we obtain

'-‘-i—.JI(u-{-a;'v} =+I(Div‘TR+pr}-ua’x+ Itk-v}IS
5 =0 n : : on
+ [ tpeperu u (o*N,dS .
7l ' ' 1.37
— P oyt ko N.dS ¢ ( )
I'&C (pegptt pu V) N, ;
&n

~ [4EPp N gy u ut o) ds.
[E1]

The fourth integral in (1.37) is zero by Kelvin's theorem applied to each &€,

and the last integral is zero since Fp A _N:O on ¢Q,. Thus

—d—Jl(u+av} :—j{DivTR+pﬂb)-vdx+
0 _ i

{(t+pm)-vdS. (1.38)
du i :

duif)

aly if u, is a solution to the mixed displacement

Thus J,(u,) is stationary if and 0
a slightly simplified

pressure boundary-value problem. The calculation above is
version of that of SEweLL [1]; see also BEATTY [tl.
If 8Q2,=¢ then we proceed in a fashion similar to A.
“The functionals that we study in later sections include functionals of the
form J, and J,. For the purposes of the existence theorems it is not necessary
to assume that ¥ is objective. If. however, this assumption is not made, the
resulting minimizers, if smooth. will not necessarily satisfy (1.10).
For incompressible materials the admissible functions are restricted by the
additional constraint (1.16).
Finally in this scction we discuss briefl
two-dimensional hyperelasticity. These pro
of three-dimensional elastic bodies. In two-dimensional plane strain we con

deformations having the form

y the analogous problems of one and

blems arise from special deformations
sider

w=(u,(X,. X)) up(X,. X3), 2x;)  A>0 constant. (1.39)
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For such a deformation

F={u2, u?, 0 (1.40)
0 0
and the incompressibility condition is
Aty u? = yu? )=1. (1.41)
In one-dimensional uniaxial strain we let
u=(u,(x)), pxy,ix,), - ' (1.42)
wherc 4 and 1 are positive constants. The corresponding deformation gradient is
u', 00
F=[ 0 0). R (1.43)
0 0 1

We leave to the_ reader the routine task of formulating the relevant boundary-
value problems in these two cases.

2. Technical Preliminaries

'For ease of reference we list here various well known spaces used in this
article. As general references we cite FRIEDMAN [1], KRASNOSELSKII & RUTICKI‘I
[1]. ScuwarTz [1] and for functional analytic aspects DUNFORD & SCHWARTZ [ 1]

_ Throughout this work Q denotes a nonempty, bounded. open subset of 9?";
with Lebesgue measure dx, where, except in Section 3, m takes the value 1, 2 or 3
C~*(£) denotes the space of infinitely-differentiable real-valued functions .deﬁnetj
on Q2. 2(Q) consists of those elements of C*(Q) with compact support contained
in Q. We give 2(Q) the strict inductive limit topology of ScHwaRrTz. The dual
space o‘f 2(R) is denoted 2'(2), and’its elements are called distributions. Any
locally integrable function f defines a distribution T; through the equation
T}{¢}=‘!f¢i dx, pe2(Q). A sequence T,— T in Z'(Q) if and only if T,(¢)— T(¢)

for all pe2(Q). (Here and throughout this work we consider only convergence

of sequences, rather than nets.) If Te 2'(), then we may define f:‘: by
ix*

'-513—{¢)=—T(§"”).

ax* X
oT o .
Then T e maps %'(Q) into itself and is continuous.

‘ C(£2), C'(2) denote respectively the spaces of continuous and continuously
differentiable real-valued functions defined on @ with the usual supremum
norms. %, denotes the non-negative real numbers, # the extended real line
with the usual topology. If E is a subset of 9* then CoE denotes the convex
hull of E.

The spaces [7(Q), 1 €p< oo, of (equivalence classes of) integrable real-
valued functions are defined in the standard way. The Sobolev space
Whr(Q), 1 £p< =, consists of those functions u belonging to L7(£2) with weak
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. .
derivatives -éf,— (1 S« <m) belonging to [F(Q). W""(Q) is a Banach space under

the norm
m

Nl s, oggy = tell ooy + Z

E‘u

— ﬂ . 2.1)
X" Loy

The closureﬂof 2(8) in W'?(Q) is denoted W,"?(Q). W..!(R2) denotes the space
of functions u which together with their wcak derivatives —6a; (1Sa<m) are
locally integrable. When dealing with the spaces in this paragraph we assume
that p <o unless otherwise stated.

Weak and weak * convergence of sequences are denoted : by — and &,
respectively. In the case of the Banach space W' *(Q) we define the weak * topology
to be that induced by the natural imbedding of W! *(Q) in the product space
(LY(@)'*™ where each factor has the weak * topo!ogy Thus a sequence 1, %~ u in

W =(Q)if and only if u, *~u in [ ;; (’ am Q) (1€asm).

If A is a real-valued, continuous, even, convex function of te# satisfying

A()>0 for t>0, ——I[-l—»() as t =0, @-—-w as t— oo then we call 4 an N-

function. If 4 is an N-function, its conjugate function A is_defined by A(t)=
sup{n-—A[s} se#). A is also an N-function and satisfies 4 =4. Furthermore

Y. lity, T
oung's inequality ts<A()+ Als), (2.2)

holds for all s,te. If A, B are N-functions then we write 4A<B if and only if
there exist positive numbers t, and k such that

A EB(kt) ' (2.3)

for all tzt,. We write A~ B il and only if 4<B and B<A, and 4 <B if and only
if
Alr)

i~ BN e

for every #>0. If 4 is an N-function the Orlicz class () consists of all (equiv-
alence classes of) real-valued measurable functions v on Q such that

n[ A(u(x))dx < 0. ' (2.5)

The Orlicz space L () is the linear hull of #,(Q). L ,(Q) is a Banach space with
respect to the Luxemburg norm _

lull gy =inf{k>0; [ A(u/k)dx<1}.
0

If A<B then Ly(R2)< L 4(Q), while if A<B then Ly(2)SL,(Q). The space E,(Q)

is defined as the closure of the bounded functions in the L ,(©2) norm. We have that

E Qc.Z,(2)SL,(). The dual of E ,(£2) can be identified by means of the scalar

product [uvdx with Lz(Q). The norm on Lz(€) dual to | llia on E () is de-
2
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noted I Iz and is equivalent to || || ,,. Holder's inequality is valid in the form
Juvdx Zull 4 vz (2.6)
)
for all ue L ((Q), ve L1(9).
The Orlicz-Sobolev space WL () (W' E ,(R)) is defined as the set of functions

uel ,(Q) (E,(Q)) such that the weak derivatives —a—;eLA{Q) (E () (1Sa=m).

ax
W' L (%) is a Banach space under the norm
du
”Hﬂ WLL 4102) = H””M) + E (27)
a=1 (1:( A4

and similarly for W' E ,(Q). The closure of.@(Q) in W! L,,(Q]-is written Wy L ,(Q).
In the special case when A(t)~|t|” (p> 1) we have the equalities

L(Q=E(Q=1(Q), W'L(Q)=W'E(Q)=W'"rQ),

= : 1
and A(t)~|t|?, where ——+L,= |
p P

Throughout this article we shall be dealing with vector and matrix functions ¥.
When we write ¥ e X, where X is any one of the spaces introduced above, we mean
that each c&mponent of ¥ belongs to X, and we defline ||¥|, to be Z 1]l
where the sum is over all components of ¥, of ¥,

Finally we define some regularity condmons for Q.

(i) Q has the segment property if there exists a locally finite open covering
{6;} of ¢2 and corresponding vectors {y;} such that x+ty,eQ for all
xeQ A6, and for all te(0, 1).

(ii) @ satisfies the cone condition if there exists a fixed cone k, < #™ such that
each point xe{Q is the vertex of a cone k,y(x) that lies in Q and is congruent
to kq.

(iii) @ satisfies a strong Lipschitz condition if each xeQ has a neighbourhood
%, such that in some co-ordinate system, with origin at x, @ 4%, is re-
presented in #, by {,<F({"), {'=({,.....{,_,) with F a Lipschitz con-

tinuous function.

' 3. Quasiconvexity and the Legendre-Hadamard Condition
We consider integrals of the form
1(u, Q)= | f(x, u(x), Vu(x))dx,
n

. dul(x)
where (x, u(x))eQx R", (Vu(x))i= Frr

the real-valued function f'is defined and continuous on a given relatively open sub-
set S of 2x A" x M"*™ Here M"*™ denotes the space of real n x m matrices, with
the induced norm of #™" We assume that for each xeQ there exist ue 2",

FeM"™™ with (x,u, F)eS§.

=il (x) (1Zign, 1 £a<m), and where
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.

Definition 3.1 (¢f. MORREY {1].) Let U be an opcn subset of M""" Letg: U~ #
be continuous. Then g is said to bé quasiconvex"' at Fye U if and only if

[ 8(Fo+VE(y)dy 2 g(Fo)m(D) @)
D :

for every bounded open subset DS#™ and for every {€2(D) which satisfies
F,+V{(y)eU forall yeD. g is quasiconvex on U if it is quasiconvex at each FyeU.

Note that if g is quasiconvex at F,e U, and if{e Wi =(D)satisfies Fy + V{(y)eK
for almost all yeD and for some compact Subserlé of U, then (3.1) holds for ¢.
In fact by the definition of W} ®(D) there exists a, sequence of functions {,e2(D)

that converges to { in W' 7§{D) Since K is compact there exists an integer N and a
compact set K, with K< K, U such that F,+V{.(y)eK, for all yeD and all
rzN.IfrzN then (3.1) ho!ds for {,. By the compactness of K, the continuity of
g and the bounded convergence theorem we obtain (3.1) for {. =

Let A={weW.1(Q): (x,w(x), Pw(x))eS for almost all xeQ, and I(w,Q)
exists and is finite}.

Theorem 3.1, Let ue A be such that

, I, Q)= 1(w, Q)
for all we A with w—ueD(Q) and ||w—ul| ¢, sufficiently small. Let x,€Q and sup-
pose that u and Vu have representatives, again denoted by u and Vu, that are con-
tinuous at x, with (xo, u(x,), Vu(xo))eS. Let U={F: (xo,u(x,), F)e S}. Then
f{xo, u(x,),*) is quasiconvex at Vu(x,)e U.
Proof. Let u satisfy the hypotheses of the theorem, let D be a bounded open subset

of £ and let {e2(D) satisfy (x,,u(x,), Pu(x,)+V{(y))eS for all yeD. For
£>0 define u,: Q— R by

u (x)=u(x)+e (x«;x[,) if x:xoeD

=u(x) otherwise.

For r small enough the set x,+&D, on which u and u, differ, is contained in Q,
and thus u, —ue 2(Q). A]so for xex,+tD we have

) Vu{x)-f-?(( Fx")),

which by our continuity assumptions and our assumptions about { is bounded
uniformly above on the set x,+«D for ¢ sm'\![ enough. Thus u,eA4 and I(n, Q) <

Sl u(x). Vu(x)=f (x. u(x)+¢cl (x

-Xo
9 we obtain

I{u,, Q). Making the change of variables y =

[ flxo+ ey, u(xo+ey)+el(y) P'u(xu +ey)+VE(y)emdy
= [flxo+ey u(xy+ey), Vu(xo+ey)emdy.
D

* This is MORREY's original terminology. In his book [2] he calls such functions (for U=M""")
strongly quasiconvex, retaining the term quasiconvex for functions satisfying the weakened form of
the Legendre-Hadamard condition that we shall term rank | convexity. The reader is warned that
guasiconvexity has other meanings in the literature on convex analysis. ;

.
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Dividing by £™ and letting ¢ —0 we obtain (3.1) for F,=Fu(x,) by the bounded
convergence theorem. [J

Corollary 3.1.1. (Cf. Morrey [1, p.43] and MEYERS [I p.-128]) Let UsM™™ ™
be open, let g: U — & be continuous, let FoeU and let (3.1) hold for a given bounded
open subset D, = R™ and for every {e2(D,) which satisfies Fo+V{(y)eU for all

© yeDy. Then (3.1) holds for all such D,{, i.e., g is quasiconvex at F,.
 Proof. Apply the theorem to the integrand g(F) with Q= D, and u'(x)=(F)i x*. O

.Theorem 3.1 is essentially.the same as a result stated by SILVERMAN [1],
following earlier work of BUSEMANN & SHEPHARD [1,p. 31].

We next show that for integrands that are independent of x and u the existence
of a sufficiently regular minimizer to certain Dirichlet problems implies that the
quasiconvexity condition holds. . B

Theorem 3.2. Let U= M"™™ be open and let g: U— R be continuous. Suppose
that either (i) n=1, Q is arbitrary, or (ii)  is a hypercube, Q={xe A" 0<x*<1,
1 Sasm}, say. Let uy: Q — R" be defined by

up(x)=Fix"+2',
where Fe U and ze &" are constants. Let

J(u)= _[g Vu(x)) c!x

md let A, = {ue CHQ): Vu(x)eU for all xeQ, J(u) exists and is finite, and u=u,
on éQ}. Suppoee there exists ve A, such that

Jw)=J(u)  forall ueAd,.
Then g is quasiconvex at Fe U,

Proof. Let w=r—u,. Then we C'(Q) and w=0 on Q. In Case (i) there exists
x,€0 with Pw(x,)=0. Therefore Fv(x,)=F and the result follows from Theorem
3.1. In Case (ii) we have that Fw(x,)-»0 as r —ac for any sequence {x,) €Q with
x,—0 as r— oc. By Theorem 3.1, g is quasiconvex at F+ Pw(x,)e U. Taking the
limit r — 2o in the quasiconvexity condition gives the result. [J

Remarks. For n=1 or m=1 quasiconvexity is equivalent to convexity (see
MoRrgrey [1, 2]). The analogue of Theorem 3.2 for n>1, Q arbitrary, is false. As
an example, let m=n=2 Q={(x,, x;): x} +x3<1}. Define g:M?**? =% by
g(F)=p(r), where r=|F|=tr(FF")! and where p: #, —# is zcro for r21 and
positive for 0<r <1. We show that for any u9€C' (Q) there exists an absolute
minimizer for J(u)= [ g(Vu(x))dx among C'(£) functions u satisfying u=u, on

. n

4. Let Le CY(Q) satisfy £=0 on 4Q and let |F{(x)|Z+>0 for all xeQ: e.g., we
may take {(x)=(h,(x), h,(x)+h,(x)), where h, and h, are C' (©) functions satis-
fying hy=h, =0 on 2Q, Ph (x)=0 if and only if x=a, (i=1,2) with a, +a,. For
large enough k>0 and for aII xeQ we have

[P(ug+ kO x) Zke—[Vugleg>1.
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so that J(uy+k{)=0 and u,+k{ is an absolute minimizer. But g is not quasi-
convex, as may be seen by putting iy = F x in the above argument, where Fe M?*?
is constant with |F|<1.'With a little more work one can show that the absolute
minimizer u correspondmg to n, may be chosen so that det Pu(x)2c>0 for all

xeQ.

Definition 3.2. Let U be an open subset of M"*™. A function g: U— 2 is rank 1
conrvex on U if it is convex on all closed line segments in U with end points dif-
fering by a matrix of rank 1, i.e.,

g(F+(1 ~—))a®b)<5,lg(F]+(l -Ng(F+a®b)
forall FeU, 1€[0,1], ae ™, ber‘". "With F+;m®beU for all ue[0, I] Here
(a@b}‘mrafb (1<isn | Sa<m)

Theorem 3.3. Let U be an open subset of M"*™ and let g: U — R. The following
conditions (i)-(iv) are equivalent :
(i) gis rank I convexon U:

(ii) for each fixed FeM"*™, be R™ the function ag(F +a®b) is convex on all
closed line segments in rhe set {a: F+a®@beU}:

(iii) for each fixed FeM™ ™, aeR" the function b'—vg(F+a®b) is convex on all
closed line segments in the set {b: F+a®beU};

(iv) the inequality

B(H)S2g(H +c@+(1-A)g (H-

A

~ced) (32)
holds for all A€[0, 1) and for all He M"*™, ce R", de R" satisflying H + pe @ deU

: ,.,c_w-a'uﬂe[}-’l—l, 1].

If ge C(U), then (i)=(iv) are equivalent to
(v) for each FeU there exists A(F)e M™*" such that

 g(F+a®b)zg(F)+AXF)a'b, (3.3)
whenever F+la®beU for all 1e[0,1]. - . '
S dg(F)
If ge C'(U), then A}(F)= e
If ge C¥(U), then (i)-(v) are e;uivufem to
(vi) {Legg)m!re-H:.-dumw'n' condition)

_,ﬁTg:_F)f a'a'b by, 20 forall aeR", beR™, FeU.
Proof. The equivalence of (i), (i) and (iii) is clear (¢f. SiLvERMAN [1, Thm. 4]).
The equivalence of (i) and (iv) is proved by making the change of variables e=
(A=Na,d=b, H=F +(1 =) a®b. Let ge C(U). That (v) implies (ii) follows by a
well known condition for convexity. To show that (ii) implies (v) one can use the
arguments of Morrey [1, p.47] to establish (3.3) for a®b belonging to some
neighbourhood of zero in M"*™ and then deduce (v) from the convexity of the
function arg(F+a®hb). The remaining assertions of the theorem are obvious.

a
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Condition (iv) was derived by Graves [1] and has recently been studied by
ErICKSEN [2]. Motivated by (iv) we say that g is rank [ convex at HeU if the
inequality (3.2) holds 'whenever the right-hand side is defined. In this case it is
easy to see that the Legendre-Hadamard condition holds at H. The prototype
for the following theorem was discovered by HADAMARD [1, 2], the first rigorous
proof being that of Graves [1]. For other proofs and relevant literature see
Dunem [1], McSHANE [1], CATTANEO [1], VAN HOVE [1, 2], TRUESDELL & NOLL
[1, p. 253] and MORREY [2, p. 10]. The proof here is based on MoRREY [1, p. 45]
and on Theorem 3.1.

Theorem 3.4. Let u, x, satisfy the hypotheses of Theorem 3.1. Let

Uy ={F:(x,. ulx,). FleS).
Then f(xq, u(xy), *) is rank I convex at Vu(x,)e U,.
Proof. Define g: U, = & by g(F)=f(x,, u(x,), F). Let H=Vu(x,). Let 1€[0, 1),
let ¢, d be such that H+¢®d and H—-]—i——.— c¢®d belong to U, and assume
without.loss_of generality that d+0, A140. Let p>0, u, =d/|d|, h=1/|d| and
k =—1——E-ﬁ- h. Choose vectors puy (1 <f <m) such that (g,, ..., p,) is an orthonormal
set in #™. Let D denote the rectangular parallelepiped

—kSySh lylSp  (1<BSm),

where y,=x-p,. Let ‘FT, B Fy B (1<f<m) be the faces y, = —k, y,%h,

" ¥p=—p, ¥p=0, respectively. Let nj (1< <m) be the pyramid with base F;*

and with vertex at the origin. Let { be defined on D to be continuous on D, zero
on dD, and linear on each n; and n; with {(0)= ~c. Then

—k~'e®p, on nf
h='¢e®@p, on n'
—p"c@p,,. on m;
p~'e®p, onnl.
Provided p is large enough Theorem 3.1 and the remark following Definition 3.1
imply that

P;:

[8(H +Vi(x)dx2g(Hym(D)=g(H)2"~' p™~"(h+k).
D
Hence

| 21 2k
[ l g(H+h~ ‘:.®;t)+ P gH—k 'c®u,)

2m Lh+k h+

+ 5 (@H=p" c@p)+gH+p" t'®1¢;.)]] > g(H).
=2

Letting p — oo we obtain (3.2). [

The proof above shows that, roughly speaking, quasiconvexity implies the
Legendre-Hadamard condition. Whether or not the converse holds is an im-
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portant open question (cf. the comments of MORREY [2, p. 122]). The conditions
are known to be equivalent only in certain special cases, for example in the qua-
dratic case f(F)=uif F} Ff with &2 constant and m, n arbitrary (MoRrrey [1, 2],
VAN Hove [1]), and for certain parametric integrands when n=m+1 (MoRREY
(1, 2]). In particular nothing interesting is known about the case m=n> 1, which
occurs in nonlinear elasticity.

To discuss this problem, consider a continuous integrand f(Pu), defined on
all of M™ ™ and independent of x and u. Suppose that f is rank | convex on
M"*™ It is well known that if D is a bounded open set in #™ then any function
{e2(D) can be approximated in W, ®(D) by piecewise affine functions (EKELAND
& Timam [1, p. 286]). Thus a natural method of attack is to follow the lead of
the proof of Theorem 3.4 and to seek domains D with a partition into a finite
number of disjoint open sets D, and a set of measure zero, such that the quasi-
convexity condition

[ S(Fo+VE(x) dx 2 f(F o) m(D) " (3.4)
D .

holds for any FoeM™ ™ and for any (e Wy (D) that is affine on each D, (cf.
SILVERMAN [1, Thm. 2]).

For ease of illustration we consider the case m=2, n arbitrary; similar com-
ments apply for m2 3, First let D be the interior of a triangle in %#? with vertices
4y, a;, ay, and let e be an interior point of D. Let Dy, D,, D, be the interiors of
the triangles a, ea,, a, ea,, a, ea, respectively. Let n, be the unit outward normal
to @D on the side a, ay, let |, =|a, —a,|, and let n,, ny, 1y, I, be defined analo-
gously. Let {e W} (D) be affine on each D, with {(e)=e¢. Then

R etbecumy o5 D,
2m(D,) : 5
and (3.4) becomes

3
k.
—h >
Tas (Fo+ T c®n) 2/(F,) ..
where A, =m(D,)/m(D). But this inequality follows from rank 1 convexity of f
because

o Ay b my _

k=1 2m(D,)
A similar argument shows that (3.4) holds for piecewise affine functions if D is
the interior of a convex polygon and the D,’s are triangles formed by joining a
single interior point of D to adjacent vertices of the polygon.

A different situation arises if we introduce more interior nodes into the parti-
tion of D. For example let D be an equilateral triangle 4, A, A, of side 1 parti-
tioned into 16 congruent equilateral subtriangles of side 1 (see Fig. 1). Let n,n,,
n; be the unit outward normals shown, and let e, e,, e, be the position vectors
of the three interior nodes B, B, and B;.Let ¢, ¢;, ¢, be given and let {e W} (D)

be affine on each subtriangle with C(e,)=-8— ¢;. The values of F{ in each sub-

V3
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t}iang[e are shown in Fig. 1. The corresponding quasiconvexity i_nequaility is
easy to write down, but does not seem to follow from rank‘] convexity of f. T]'lls
suggests that the Legendre-Hadamard condition_docs not imply quasiconvexity.
Unfortunately the search for a counter-example is hampered Py the f:_lct that, as
we have mentioned, any such f cannot be quadratic in Fu. It is concel_vabie that
if m=n then the Legendre-Hadamard condition implies quasiconvexity for ob-
jective functions. o
Finally we mention in passing an implication of the configuration in Flgl}re 1
for finite element methods. Let D be as in Figure | and suppose lh‘at one w:sl?es
to solve a boundary-value problem for u subject to the pointwise constraint
det Pu(x)=1 for all xeD (the two-dimensional analogue o{ fhc incompressibility
constraint (1.16)) and. for example, the boundary conditions u(x)=x for :r'lII
xedD. Then the only function {e W, ™ (D) that is affine on each subtriangle with
det P(x+{(x)=1 for all xeD is {=0. Indeed. any such map x+ x +{(x) deforms
each subtriangle into another triangle with equal area. It follows that, for example,
B, can be displaced only along the line through B, pafallcl to 4, A,, and also
along the line through B, parallel to A; 4,. Hence B, is fixed by the map, and
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similarly for B,, B;. A similar argument applies when the number of congruent
subtriangles in the partition of D is'increased. Thus either nonlinear interpolation
functions or nonconforming elements must be used. A related difficulty for in-
compressible fluids is discussed by Témam [1].

4. Sufficient Conditions for Quasiconvexity

The quasiconvexity condition is not a pointwise condition on the function f]
and is therefore difficult to'verify in particular cases. In this section we shall be
concerned with more accessible conditions that are sufficient for quasiconvexity.
These conditions apply to functions f for which the Legendre-Hadamard con-
dition is not known to be equivalent to quasiconvexity.

Throughout the rest of the article we assume, unless the contrary is stated, that
m=n=1,20r3.

We first study those functlons #(F) that belong to the null- space of the Euler-
Lagrange operator; ie., those functions for which the corresponding Euler-
Lagrange equations are identically satisfied. For smooth ¢ the following result
is a special case of Ericksen [1], EDeLeN [1, 2] and Runp [1, 2].

Theorem 4.1. Let ¢: M"*" — R be continuous and such that both ¢ and —¢ are
rank I convex on M"*", so that

HF+(1-2)a®b)=1d(F)+(1-1) ¢(F+a®b) . 4.1)
Jor all FeM™*", a, be #", 1€[0, 1]. Then ¢ has the form

$(F)=a-+bF o o=,

¢(F)=a, +f* Fi+ydet F if n=2, )

G(F)=A+B!F +Ciadj F).+D det F  if n=3,
where a, b, ay, Bi, y, A, B, C§, D are arbitrary constants, and where adj F denotes
the adjugate matrix of F (i.e., the transpose of the matrix of cofuctors).

Proof. We just treat the case n=3; the cases n=1,2 are easier. Suppose first that
¢ is C2 Then by Theorem 3.3 (vi), (4.1) is equivalent to

AiJ(F)a'a’b,by=0 forall a,be#’ and for all FEM"""

o« 2 G(F
where AX/(F)% < F‘ﬁf F}

A= — A% and A"" =0 if o= por i'—‘j Since All =A22=A433=0 it fo[!ows that
d){F} is aWne in each of !, F} and F}, so that -

@(F)=¢,(F) F! F} F{ +,(F) F} F; +¢,(F) F} F! +¢,(F) F!' F}
+0,(F) F! 4+ 0,(F) F} +0,(F) F} + x(F),
where F denotes the matrix of oﬂ'—diagohal elements of F, and where the functions
¢,. 0. x are C2 Since 4]} =0, etc., we obtain the equations

b _ 00, _ 24, _ 20,

OFY T eFl T @R TR

It follows that Aif = AS/(F) s aIternating; ie, AY =
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(’r(‘ so that ¢u ¢y, ¢y, ¢y are constants, 0, =0 (!}.Fz} 0,=0,(F. F3) and
=0,(F!, F}). Applying the conditions A13= — A3, ete, we can reduce ¢ to

_ - 52

the form @(F)=y(F)+ Ci(adj F),+ D det F, where —-i~£—

eFi3F]

The result follows. _ b

For a general continuous ¢ we use a mollifier argument. Let pe 2(M**?)

satisfy p=20, p(F)=0 if |F|z1, j' p(F)dF=1. For ¢>0 let p,(F)=¢"%p(F/e).
MI*3

=0 for all i,j, & p.

Then qﬁtd-érp‘ * ¢ clearly satisfies (4.1), is C*, and thus
¢ (F)=A(e)+ Bi(c) F! + Ci(r)(adj F), + D(¢) det F.

But since ¢ is continuous, ¢, — ¢ uniformly on bounded subsets of M3*3 as

£—0. For fixed i,a let F/=t, F{=0 if j#i or f+a. Then the functions

ST g, (ty=A(e)+ Bi(e) t

converge uniformly on compact subsets of # to a function g(t), which is easily

" shown to have the form g(t)=4+ B} t. Thus A(s) = A and B}(x) — B} as e —0.

By choosing F so that (adj F), =t, (adj F); =0 if j%i or f +a, we obtain similarly
that C%(¢) — C%, D(c)— D as £ — 0. The result for continuous ¢ follows. [

Corollary 4.1.1. Let ¢: M"*" — R be continuous. Then both ¢ and —¢ are quan-
convex on M™ " if und only if ¢ has the form (4.2).

Proof. If ¢ and —¢ are quasiconvex then by Theorems 3.3 and 3.4 both ¢ and
—¢ are rank 1 convex on M"*", and so by the theorem ¢ has the form (4.2).
Conversely any ¢ of the form (4.2) is such that, in the notation of the preceding
proof, A;f is alternating. Then for any Foe M""", for any bounded open set D< R,
and for any CE 2(D) we have

p i f‘?f‘(Fo‘f”’i P)dy= = [AY (Fo+170) &y, 8l dy=0,

and the result follows. [

We next recall some results of Busemann, Ewarb & Surrnarn [1] concerning
convex functions defined on non-convex sets. Let s2 1 and let M < " be such that
the dimension of the convex hull Co M of M is s (i.e., the linear subspace spanned
by M is 9%). We do not assume that M is convex. Let F: M —#. For variable r2 |
we denoted by A={4,....,4,] a variable set of non-negative real numbers 4

with 3 4,=1.
i=1

Definition 4.1. & has a convex lower bound if and only il there exists a real-valued
convex function C(z) defined on Co M such that #(z)= C(z) in M. (Without loss
of generality C may be assumed to be affine.)

F is said to be convex on M if it is the restriction to M of a real-valued convex
function (in the usual sense) defined on Co M; equivalently, # may be extended
to a convex function on Co M.
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Theorem 4.2 (BUSEMANN; EWALD & SHEPHARD[1]). P
“ (i) & is convex on M if and only if it has a convex lower bound and the inequality

Flz,y)= Z‘li F(z)
i=1

holds for all z,....,z, and z,= 3 Xz; lying in M. A suitable canvex.exrénsion
to Co M is given by =1

gs(2)=inf Y 4, Fz), zeM, |Sr<owo.
EE T iyl

(ii) Let CoM be open. Then either of the following conditions is necessary and

sufficient for F to be convex on M: :
(a) F hus a convex lower bound and the inequality

41

F(z )2 ) L F(z2)
f=1

s+1

holds for all z,. ... z,,, and z,= Y z; lying in M.
' i=1 4

(b) for each point zo€M there exist numbers a|(zo) (i=1, ..., ) such that

F(2)2 Flzo)+ Y afzo)(z' —2b),
i=1

forall zeM.

We now define finite-dimensional Euclidean spaces E and E; by

E=E xR,
where
E, is empty if n=1,
E,=M**? if n=2,

E =M¥3xM**3 il n=3.

Thus E may be identified with 2™, where s(1)=1, s(2)=5 and s(3)=19.
Define the map T: M"*"— E by e
T(F)=F if n=1,
T(F)=(F,det F) if n=2,
" T(F)=(F.adj F.det F) if n=3.

Let USM™ " By ths thdorem-on the invariance.of domain-the set T(U)Ys E-is
epen_ if and ontydf U is open. Hayeysd T(U) is not in gencral convex even if U
is convex (except in the case n=1). The following result shows, in particular, that
in certain important cases when U is open, so is Co T(U).

Theorem 4.3. Let K S be nonempty and convex, and let U={FeM"*":det FeK}.
Then Co T(U)=E, x K.
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Proof. We give the proof for n=3, that for n=2 being similar. For ke# define
V,<E, by
. V,={F.,adj F): FeM**?, det F=k}.

It suffices to show that Co ¥, =E, for all k. Suppose not. Then there is a closed

half-space
' n={(F, A)eE,: G+ AL H; Sp},

(G, H)+0, with V,Sn (ROCKAFELLAR [1, p.99]). If R, R,eM*** are proper
orthogonal then
EiG*+ AL Hi=tr[(R, FR)) (R} GR]) +(R} AR‘,”)[R?HRQ].

Since adj(R,FR,)=R}(adj F)R]. det (R, FR;)=det F, we may without loss of
generality suppose that H is diagonal. Suppose that H+0 and assume without
loss of generality that H| 0. Let s

F=diag (kN~"sgn H}. N¥sgn Hi NY).

. Then adj F =diag (N sgn H!,kN~*sgn H!,kN~%)and det F =k. Hence (F.adj F)e

¥,, but for N>0 large enough (F, adj F)¢n. If H=0 then we may assume that
G'#0, let F=(kNsgnGj,N ¥sgn G!.N~%) and proceed similarly. Hence

¥, &n and this contradiction proves the result. O
. For g: U~ # we may define a function G: T(U)— 2 by G(T(F))=g(F), ie.,

g=G _ if n=1,
g(F)=G(F,detF) if n=2, _ (43)
g(F)=G(F,adj F,detF) if n=3.
Definition 4.2. A function g: U =2 is polyvconvex if and only if G:T(U)=R
defined by (4.3) is convex on T(U).
If n=1 and U is convex, then polyconvexity of g is the same as convexity in the
usual sense. If n=2 or n=3, polyconvexity is characterized by the following

Theorem 4.4. Let U be such that Co T{U ) is open. Then g is polyconvex if and
only if one of the following three equivalent conditions holds:
(iy Ifn=2:

there exists a convex function C(F, d) on Co T(U) with
g(F)=C(F.detF)  forall FeU,
and the inequality

6 6
g (}: '11' F(i}) g Z ';_‘_ g{FlH)

L]
holds for all 4,20 with 3 A;=1,and for all Fe U satisfying
i=

i % F'”). | @

i=

6
T 4 det F=det (
i=]
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Ifn=3: '
there exists a convex function C(F, A, 8) on Co T(U) with
g(F)2C(F,adj F,det F) forall FeU,

and the inequality
20 20
g(X 4F®)s Y 2,8(F")
T M| + f=l
20 . :
holds for all 2,20 with y" A,=1,and for all FPe U satisfying
: i=1 . .

10 20
Y, A;adj F"=adj (Z A F”‘)
fm] la] .

and 4 , . (4.5)
20 20 i
S A,det FO=det (3 2, F'”).
im| =
(ii) If n=2:
Jor each FeU there exist numbers a?(F), a(F) such that
g(F)2 g(F)+ a(F){F!~ Ely + a(F)(det F —det F) (4.6)

for all FeU.

If n=3: B :
for each F E_U there exist numbers «?(F), b2(F), ¢(F) such that

g(F)2g(F)+ai(F)(F - E)+ b*(F)((adj F. — (adj F)i)+c(F)(det F—det F) * (4.7)
Jorall FeU. '

(i) If n=2:
Sfor each FeU there exist numbers A3(F), a(F) such that
g(F +m)2g(F)+ A} (F)nl +a(F)det n (4.8)
Jorall F+reU. ' '

I n=3:
Jor each Fe U there exist numbers A%(F), BX(F), ¢(F) such that

g(F +m)2g(F)+ A} (F) n; + B} (F)(adj n), + ¢(F) det n (4.9)

Jorall F+reU. ' ;
Proof. That polyco_z]vcxily of g is equivalent to (i) or (ii) follows immediately
from Theorem 4.2 (ii) and Theorem 4.3, That (ii) and (iii) are equivalent follows

by setting F=F +r and rewriting the right-hand sides of (4.7) and (4.9). (¢(F) has
the same value in both conditions.) [J

or course, if G is C', then the coefficients on the right-hand sides of (4.6) and
(141,_?}‘ are given by the derivatives of G with respect to its arguments. Condition
(iii) is the form given by MORREY [2, p. 123], who proved the following theorem:
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‘Theorem 4.5. Let U be such rh;:: Co T(U) is open. If g is polyconvex, then g is

quasiconvex on U.

Proof. We give the proof for n=3. Since G is the restriction of a convex function
to the set T(U), it is continuous and hence so is g. Let D be a bounded open subset
of %%, let Fye U and let {e 2 (D) satisfy Fy+ F{(y)eU for all yeD. By Corollary
4.1.1 we have . ;

g‘zf, dy= [ [(adj(Fy+ V{)),—(adj Fo)i] dy = [ [det(F, + P{)—det F]dy=0,
D o

and the quasiconvexity of g follows from (4.7). [
The converse to Theorem4.5 is false if n=3. In fact when U=M3*? and
g(F)=a! Fi Fj. (4.10

* with a}f constant, it is easily seen that g is polyconvex if and only if there are
_ constants B with '

g(F)—Bi(adj F)iz0  forall F. (4.11)

As was pointed out by MORREY [I,p.26]. an example of TERPSTRA [1] shows
that il n=13 there exist constants a?}’ such that (4.11) is violated for any Bj, even

though )
af 23 p >0 forall nonzero A, pedt’, (4.12)

so that g is quasiconvex. TERPSTRA also showed that for n=2 any quasiconvex g
of the form (4.10) satisfies (4.11) for suitable B}, and hence is polyconvex. [ know of
no counterexample to the converse of Theorem4.5 if n=2. Conditions of the
type (4.11) were studied by CLesscH [1] and Hapamarp [, 3].

The conditions of quasiconvexity and polyconvexity may be contrasted as
follows. Considering for illustration the case in which n=3, let 4, and F'” be given
satisfying (4.5). There is then no reason to suppose that a domain D, and a partition
of D into 20 open subsets D; of volume A" and a set of measure zero. can be found
such that there is a continuous piecewise alline function on D whose gradient takes
the value F" on D; (cf. the discussion at the end of Section 3). Only for such D, D,
can the corresponding polyconvexity inequality be deduced from the quasi-
convexity condition. I remark that Theorem 4.4 (i) offers a way of proving that a
given [unction is not polyconvex.

By sacrificing the pointwise nature of the condition imposed on g. we may"
obtain a sufficient condition for quasiconvexity generalizing polyconvexity.
For brevity we discuss this new condition just when n=13.

We consider continuous functions G: Co T(U) — :# with U< M**? arbitrary.
Roughly speaking we require that the integral of G, rather than G itsclf, be convex.
To be precise, let y= 1, p= 1, v 1 and let we W7 (Q) satisly Pu(x)e U for almost
all xeQ. Supposé lurther that adj Vue *(Q)°. det Pue L'(Q). Thus il Z(u) denotes
(Pu, adj Pu, det Pu), then Z(u)e 2 = 2(Q)° x L(Q)° x [2(R). Let

R,={Z(u+{): Le D)
and let %, denote the closed affine subspace of 4 spanned by R, . Let

X, ={o€%,: 6(x)eCo T(U) almost everywhere in Q}.
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Define J(o)= _[ G[a{x]) dx.

Suppose that J, exists and is finite or +co for all ce¥,. Let G be such that J, is
a convex function on the convex set . ;

Definition 4.3. If g: U - % then g is said to satisfy condition (P, v at u if and
only il there'exists G=G,: Co T(U) —» & with the above properties and such that

g(F)=G(F,adj F,det F) ' (4.13)

for all FeU.

Theorem 4.6. Let U he such that Co T(U) is open. Let y, p, v be afbi:rm V.

(i) Let g: U =2 be polyconvex and bounded hm’ou and let u be as above. Then
g satisfies B, , at u.

(i) Let u [x)-F,‘,,x‘+::" with FyeU and ze#* both constant. Let g satisfy

P ., at u. Then g is quasiconvex ut Fye U,

Pl ¥

Proof. (i) Since g is polyconvex there exists a convex function G: Co T(U)— #
satisfying (4.13). Since Co T(U) is open G is continuous, and hence G(a(*)) is
measurable for each a¢€.f,. By Theorem 4.2 (i) we may suppose that G is bounded
below on Co T(U). Thus J, exists and is finite or +oo0 for all eeX,, and J, is
clearly convex.

(i) Suppose first that G is C! on Co T(U). Let {e2(Q) satlsfy Fy+P¢(x)eU
for all xeQ. Let 6 =E(u), §=Z(u+{). Then g, .%,. A standard argument shows

that if | 9(;}=[G(a+f(5-“6}) dx,

then @ C'([0, 1]) with the obvious derivative. By the convemty of J, we have
that ©(0)<O(1)—-©'(0). Hence

G
I g(Fy)dx s jg(F + V) dx— f [ap r(u))C' * Sad FY F (£(w)) (adj 70);
‘1
b () det Vc] dx,

and so g is quasiconvex at Fye U.
The result follows for general continuous G by a mollifier argument. [

Condition £, , does nol in general imply polyconvexity. Indeed let g(F)

be given by (4.10) with i/ satisfying (4.12) but not (4.11) for any B, so that g is
not polyconvex. Let y=2 wnh pand varbitrary and let U= M3*3 Derne GE~2R
by G(F, A, d)=g(F) for all (F, A, §)eE. Let u be as above. For any {e W) 2(Q) we
have (vaN Hove [1], MorRrEeY [2])

jaf’iﬂci-ap.nd-féo‘ .

It follows that J, is convex on X, and hence g satisfies E . .catu

There are some grounds, connccted with the results of Seczlon 6, for believing
that condition B, , , at alline u and the quasiconvexity condition are equivalent,
but [ have been unable to prove or disprove this.
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To complete this section I remark that many of the results may be extended

without undue difficulty to arbitrary m and n; the polyconvexity condition is then

a requirement of convexity with respect to the basis elements of the null space of
the Euler-Lagrange operator. (See BALL[2].)

5. Isotropic Convex and Polyconvex Functions

The purpose of this section is to give a method for producing a wide variety

of nontrivial isotropic polyconvex functions. These functions will prove valuable

in Section 8 when we apply our existence theorems to certain models which have
been proposed for rubbers. We begin by discussing isotropic convex functions of
nx n matrices for arbitrary n21. We recall that the singular values of an nxn
matrix F are by definition the eigenvalues of the positive semidefinite symmetric
matrix }/FFT. When F is the deformation gradlenl these eigenvalues are the
principal stretches of the deformation. When examining the results below the
reader should bear in mind equation (1.15).

Notation. Vectors in #" are denoted by x=(x, , ..., x,) and the inner product

" of two vectors x, ye ®" is written (x, y). #", denotes the positive orthant

{x: x;20for | Sign}

of #". 2, denotes the permutation group on n symbols (an element P of 2 acts
on an n vector by permuting its entries).
We shall prove the following theorem:

Theorem 5.1. Let n21. Let @ (v, ...,¢,) be a symmetric real-valued function
defined on R",. For Fe M"*" define

W(F)=b(v,, ..., 1,) (5.1)

where v, , ..., v, are the singular values of F. Then

(i) W is convex on K=[VeM"*". V is positive-semidefinite and symmetric}
if'and only if @ is convex.

(i) W is convex on M™ " if and only if & is convex and nondecreuasing in each
variable v;.

Remarks: Part (i), which is probably known to matrix theorists, was stated
by HirL [3] for n=3. HiLL's proof relies on a property of the trace of the product
of two symmetric matrices, a recent proof of which has been given by THEOBALD
[1]. HiLL assumed that W is differentiable everywhere, an assumption which rules
out several simple and useful functions and which can be surprisingly tedious to
verify. Proofs using differentiability obscure the geometric nature of the result.

The harder implication in (ii) is due to THompsoN & FREEDE [3]. Our method
of proof is broadly similar in approach, but rather different in detail. The result
extends work of von NEUMANN [1] on gauge-functions and matrix norms (see
especially his Remark 5). For further information and references on singular value
inequalities see Amir-Moez [1], AMmiIr-Motz & Horn [1], THompson [1],
THompsonN & Freepe [1-3].
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Lemma 5.1. (von NEUMANN [1]; see also MirskY [1,2]). Let A, Be M"*" have
singular values &, 20, 2 22, 20and f24,2---2 Ba20. Then !

tr(AB)S@p. N E)
Lemma 5.2. (voN NEUMANN [1]). Under the hypotheses of Lemma 5.1

' max tr (AQBR) =(a, B) (5.3) _

where the maximum is taken over all pairs Q, R of orthogonal matrices.

Proof. There exist orthogonal matrices Q,, Q,. R,, R, such that A =0, diag(«) R
B=Q, diag(p)R,. Choose @Q=R] Q7, R=R} Q]. Then

lr{AQBR}—(a ﬂ}

But for any orthogonal Q, R the matrices AQ and BR hzwe singular values @ and g
respectively. Hence tr (AQBR)<(a, ) by Lemma 5.1. O

Lemma53. Let ryZry2---2r, >d Then (r,v) is a convex function of F, where
020,20 20, >0 are the singular va!ues of F.

Proof. In Lcmma 52 put A=F, B=diagr. Then
(r, t)=max tr (FQBR). ' (5.4)

and each tr (FQBR) is a convex function of F. [J

Remark. By letting r=(1,...,1,0,...,0) in Lemma 5.3 it follows that for
k

k place
1sk=n, ) v isa convex function of F.

im ]
Lemma 5.4. Let ¢,2c, 2+ 2¢,20. Define the sets

L={ye®" :(r.Py)S(r.c) " forall r,2r,z--2r,20 andall Ped},

i %u,zb ¥ & }

1 i=1 . 1
L, =Co {0, P(¢,.C5,...,€¢,0,...,0): PeP,, 1S1<n},
M,=Co [Pc: PeZ}.
Then L=L, and M=M,. '
Proof. L is a convex set containing 0 and the points P(c,,c,, .. ..0).
Thus L, L. To show that Le L, we prove that any closed haIf~5pace in "
containing L, also contains the c!osed convex set L. Let such a hall-space be
n=|ye#" {y x)Su}, where xe®R", ue® are fixed. Let the coordinates of x in
some order be
zZx2- 2\:,‘20}\:,‘”_- 2 X

where the symbols to the right of 0 are omitted if k=n. Let yeL and let
FiZhz27y, 20
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be the coordinates of y in some order. Then
(P X)SP, 5+ 47, 5,
=X Yr Fore b Xy
=u

L]

so that yen. Hence L, =L.
M is a convex set containing the points Pe¢. Thus M, =M. Let & contain M,,
let yeM and let , 2,2 -- 27,20 be the coordinates of y in some order, Then

yx= Z Vi%;
i=1

t;:?‘: Jeter (zn: c'i—:g: Pi)i'; e

i=]
n=1 ! n
=Y X —X)+%, ¥ ¢
i=1 i=1

Choosing r,=x,—x,(1 Si<n), ,;0 in the definition of L we obtain

-1

(», 0L Y c(X—X)+X, Z e= i ¢ X Su.
' =] i=1

i=1

Thus_yerr and M, =M. O

Proof of Theorem 5.1.

(i) That the convexity of W implies the convexity of @ is immediate. Thus let ¢
be convex and symmetric. Let U, VeK have singular values (eigenvalues) =

u2u, 2 2u,20, v 2v,2--20,20.

def

Let 1e[0,1] and let A = AU +(1—2) V have singular values a,2a, =+ 2a,20.

Let c=Au+(1—2)v. Note that for some orthogonal Q, R we have.
ii‘i ai:l.;i-: (J.Qﬁ u+(1=4) Rfiv_:)—é; (o (5.5)

By (5.5) and Lemma 5.3 we have ae M. Hence by Lemma 5.4 ae M, . Therefore |
W(A)=d(a)=P (Z AR ) | (5.6)

i=1

where Pe2, 1,20, Y 4,=1. Thus
i=1

W(A)< ): A, ®(Pc)= Z 2, 0(c)=D(c) S Ad(u)+(1 — 1) D(v),
. i=1 i=1

where we have used the symmetry of ¢. Hence. .
WA)SIWU)+(1=)W(V) (5.7)

as required.
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(i) Let W be convex on M"*%. Then clearly @ is convex. Also for fixed non-
NERALIVE U, .oy Uy gy Upyys vens Uy _
8(0) déf W(diag (UI.‘. e U g Oy U g eins U"}}_

is convex in v. But g(v)=®(v,,...,v5_,, It vy, ...,v,) and any even convex
function of te# is nondecreasing for t20. Hence ¢ is nondecreasing in each

variable.
Let ¢ be convex, symmetric and nondecrcasmg in each variable. Let 1[0, 1]

and let F,GeM""", A=1F +(1 — 1) G have singular values
uyZu, 2 2u,20, v, 2v,2--20,20, a,Zazzn‘Za =0

respectively. Let e=Au+(1—4)v. By Lemma 5.3 aeL. Thus aelL,, and since @
is nondecreasing in each variable we have

W{A)—¢(a}$¢'{c)$l W[F)+(] —A) W(G} =]

The geometrical basis !'or Theorem 5.1 is easily seen by considering the special
cases n=2 and n=23 (see Fig. 2).

2 A(vg,wy) va

(ca,cacy) Pzl Q (e3.00.¢p)

Fig. 2. (iyn=2 ' Fig. 2. (iiyn=3

Taking the case n=2 (Fig. 2 (i) first, we see that the proof of Theorem 5.1 (i) shows
that a lies on the line segment PQ (note also that the points splitting AC, BD in the
ratio A: 1 —A lie on PQ) and clearly & is less than ®(c) on this segment by convexity.
In the case (ii) a lies in the shaded area L. If n=3 (Fig. 2 (ii)) the set M is the hexa-
gonal area enclosed by the points PQRSTU and lying on the plane

v +v,+0y3=c,+c,+ 0y,

while L is the convex hull of M and its projections onto the coordmatc p]anes. 5o’
that it is part of the cube of side ¢, shown.

We now give some sufficient condition for polyconvexity. Let n=2 or 3. To
keep things simple we consider stored-energy: functions W(F) defined on sets of
the form U= {FeM"*": det FeK}, where K=&, is convex.

Existence Theorems in Non-Linear Elasticity 367

Theorem 5.2, If n=2 let
: W(F)=y (v, vy, 0, 0,), © (5.8)

where v,, v, are the smgufar values of FeU, and where y: R% x K - R is convex
and satisfies
(@) Y(xy,x;5,0)=y(x,,x,,0) forall x,,x,eR, , deK,
(b) ¥(x,x,,0)is nondecreasing in x,, x,.
Ifn=3let
W(F)=y(v,,0;,05,0, 05,050, 0, 03, 0, 1, U3), (5.9)

where v, v,, vy are the singular values of Fe U, and where RS x K = 2 is convex
and satisfies »

@) Y(Px,Py,8)=y(x,y.9) for all P, Pe?, and all x, yed ek,
(b) Y(x;, Xy, X3, ,,¥2,5,9) is nondecreasing in each x, ¥
Then W is polyconvex on U,
Proof. We give the proof for n=3. Define G: E, x K » & by
G(F. A, 8)=y(v,.v,, 14,4, az,as,él. (5.10)
where v, a; are the singular values of F, 4. G is well- def’ned by (a). Clearly
W(F)=G (F,adj F,det F) ; (5.11)

for all Fe U. It remains to show that G is convex. Let F, H, A, Be M**3 5, ueK,
A€[0,1]. Let F,H,A,B,AF+(1—-2)H,AA+(1 —2) B have singular values v, 2
V203 h2h2hy,a,2a,2a,,b,2b,2by, u, 2u,2uy,d,2d, 2d,, respective-
ly. Let w= Au+(1—z1}h c—la+(l—)]b Usmg Lemma 5.3, Lemma 5.4, (a) and
(b) we see that
G(}J_"+(I—A]H.2A+(l—i}8.ﬂ.5+(!—i}p]=l.|’z(u,d’.,16+{l—i}y)
: SY(w d AS+(1-A)p)
SY(w,e, Aé+(1=24)p)
SAY(va, 8)+ (1= y(h. b, p)
=AG(F, A, 0)+(1-1) G(H,B, p).

O
A special case of a function ¥ satisfying the hypotheses of Theorem 5.2 for n=3 is
V(v.a,8)=1,(v)+y,(a)+y,(9), (5.12)

where the ; are convex, and where ¥,,, are symmetric and nondecreasing in
each variable. We use this example in Section 8.

6. Sequential Weak Continuity of Mappings on Orlicz-Soboley Spaces

Definition 6.1. Let X and Y be real Banach spaces. Amap f: X — Y is sequentially
weakly continuous if and only if x,—x in X implies f(x,)—f(x) in Y.

(In general a nonlinear sequentially weakly continuous map f: X — Y is not
continuous with respect to the weak topologies on X and Y (see BALL [1]).)
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 Sequentially weak = continuols maps are defined analogously. In this section
we study the case when X is an Orlicz-Sobolev space and Y= L'(Q). The reader
unfamiliar with the theory of Orlicz and Orlicz-Sobolev spaces can replace them
everywhere by the corresponding Léebesgue and Sobolev spaces, the results for
which are indicated in parentheses in some of the theorems which follow. There
will be no great loss of generality in doing so, at least as far as most of the examples
in Section 8 are concerned. Some of the results proved here in the framework of
Orlicz-Sobolev spaces are proved for ordinary Sobolev spaces in BaLL [2].

We first obtain necessary conditions.

Theorem 6.1. (MORREY [1]). Let m and n be arbitrary. Let : B™ x R"x M"*™ = R
be continuous. Then

I(u,Q)= | %(x,.u.[.r). Pu(x)) dx
2

is sequentially weak * lower semicontinuous on W' ™ () (i.e., u,~2>u in W' =(Q)
implies 1(u, Q)< lim I(u,, Q) if and only if Y(xq, uy,*) is quasiconvex on M"*™

Jor each x (e R™, u, e R".

"~ Corollary 6.1.1. Let n=1, 2 or 3 and let ¢: M"*"— R be continuous. Then the
map ur—J(u, Q)= [ ¢(Vu(x))dx is a sequentially weak * continuous map from
0

W'=(Q) to R if and only if ¢ has the form (4.2).

Proof. If the given map is sequentially weak * continuous then by the theorem
both ¢ and — ¢ are quasiconvex, so that by Corollary 4.1.1 ¢ has the form (4.2).
Conversely, let ¢ have the form (4.2) and let u,~*~u in W' ®(Q). The sequence
¢ (Pu,(+)) is bounded in L (Q), so that there exists a subsequence u, of u, such that
¢(Vu,())*~0 in L”(Q). Let a: #* — R be continuous and define ¢,(x, F)=
+ ¢ (F) x(x) so that ¢, is quasiconvex. By the theorem

;’;[ ¢ (Fu,(x) a(x)dx— ‘_! ¢ (Pu(x)) a(x) Idx.

The arbitrariness of « implies that 0= ¢ (Fu(+)), and hence ¢ (Fu,(*))2=~¢ (Fu(*))
in L2(82). The results follows. [ '

Corollary 6.1.2. Let n=1, 2 or 3 and let A be an N-function (cf. Section2). Let
¢: M"""— R be continuous and such that u+— ¢(Vu(+)) is a sequentially continuous
map of W' L ,(Q) with the weak * topology into L'(Q) with the weak topology. Then
& has the form (4.2).

Proof. The hypotheses imply that u — J(u, Q) is a sequentially weak * continuous
map from W'=(Q)-%. 0O

Remark: MORREY's proof of Theorem 6.1 may be easily adapted to show that
if 2 is a bounded open subset of #™ (m arbitrary) and if ¢: ® — &, then the map
() = ¢(0(-)) is sequentially weakly continuous from [P(Q)— L'(©) if and only if
¢ is affine. For details see BaLL [2]. i . :
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* We turn now to sufficient conditions. Our results are based on the following
elementary identities for C? functions u:

n=2: detPu=(@u'u?,) , —W'u?)), _ , (6.1)
Ty (adj F’u}7=(u’“2u‘+l,“|],”;—(H‘”N“'..,z}_“l . [62)
detPu=[u'(adjVu)]] j=[u' (@ ;1> 3—1? 4 T ) B 63)

+.[ul (“2_ 3 us_ 1 "uz.l “3,3)].2 + [“l (”2.1 "3.1 _“2.2 “3.1}].3
(In (6.2) there is no implied summation, and the indices are to be taken modulo 3.) -
Lemmaé6.l.
(i) n=2: If ueW'*(Q) then det Pue L' (Q) and formula.(6.1) holds in 2'(Q).
(ii) n=3: (a) If ue W"%(Q) then adjVuel'(Q) and formgfa' (6.2) holds in 2'(Q).
(b) Let A, B be N-functions with A>t?, A>B. If ue W'E,(Q) and

adj VueEgy(Q) (e.g, ue W"?(Q), p22, and adj Vuel?(Q)) then
det Fuel!(Q) and formula (6.3) holds in 2’(82).

Proof. (i) That det Pue L! () is obvious. Formula (6.1) holds in 2'(Q) if and only if
f(detVu)pdx=[(u'u? ¢ ,~u'u? ,¢ )dx forall pe2(Q). (6.4)
2 2

- But (6.4) holds trivially if ue C*(Q2), and C*(Q) is dense in W' %(Q) in its norm

topology. Since both sides of (6.4) are continuous functions of ue W' *(<Q), (6.4)
holds for ue W' ¥(Q).

(ii) The proof of (a) is identical to that of (i). Let w be defined by wi=(adjFu).
To prove (b) we first note that u' € E,(Q2), w/e E4(Q) so that detVue L' (Q). We

next show that divw=0 in a weak sense; i.e.,
L]

fw¢ dx=0 forall $e2(Q). (6.5)
0 :

If ue C=(Q), then divw=0 and (6.5) holds. Since C®(R) is dense in W!2(Q),

(6.5) holds for any ue W' E ().
To show that (6.3) holds in 2'(Q) it is thus sufficient to prove that

ﬁ[ul_}wfqbdx=—ﬁ[u‘ w¢ dx forall $e2(Q) (6.6)
whenever we Ep(2) and satisfies (6.5).

By the results of DONALDSON & TRUDINGER [1, Thm. 22] there exists a sequence
Uy € C*(Q) with uy, —u in W'E,(Q). Let pe2(R*), p20, ’_[‘p{x) dx=1, and

. define p,e 2(#*) by p,(x)=k p(kx). Extend w by zero outside £, 5o that we Eg(#%).

DoNALDSON & TRUDINGER [1, Lemma 2.1] show that the convolut_ians_ W
are in Ez(#%) and p,xw—w in Eg(#°) as k- co. Fix ¢€2(Q). Then if k is large

" enough, (6.5) implies that

div(p, s W)(x)= [ pij(x=y)w/(y)dy=0 (6.7)
L
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for all xesupp¢. Therefore il SC9P3 is an open ball contam:ng suppo, then
j”m foexw)pdx= Idw(“m(.‘?n x m‘ﬁ'”’-" I“m{ﬁ'k X “’))‘ﬁ dx

= “‘IJ; uly(pexw) b ;dx.

Since A<B we obtain (6.6) by letting k- 0. [

Remark. Note that 4>=¢? if and only if A>>A. This may be proved directly

from the definition of A.

The functions det Pu (n=2), adj Fu and det Fu (n=3) can be given a meaning .

as distributions under weaker conditions than those of Lemma 6.1. We thus
define the distributions Det Vu (n=2), Adj¥u and Det Fu (n=3) by

n=2: DetVu=(u'u?)) ,~u'v?) ,, i " (6.8)
= 3 (AdJV“]‘_(“Hz e = ) s (6.9)
Det Vu=[u' (Adj Pu)] ;. (6.10)

when these distributions are meaningful. Obvious]y if u satisfies the hypotheses
of Lemma 6.1 then these distributions may be identified with the L'(Q) functions
det Vu (n=2), adj Fu and det Fu (n=3) respectively. ¥

Let A be an N-function. Following DoNALDSON & TRUDINGER {1] we let

')

g“m:t”_”"' t=0, . N (6_-11)_

where A-! denotes the inverse function to 4 on [0, o0). If A4 satisfies

i e w ;
. [galdt<oo, [gu(t)dt=0o0, : (6.12)
0 7 ]
then we define the N-function A* by
. . I B . ,
(A"~ (e = [ ga(s)ds. (6.13)
1] i
Note that for A(r)=]t|", 1 <p<n, we have
LLy T '
gA(f)=fp . A'(I)-—-T (614}

Lemma 6.2. Let Q Satisfy the cone condition.
(i) n=2: Let A be an N-function satisfying either [gA(t)dr-ca.;J, or both (6.12)
= 1
and A<A*. If ue W' L () (e.g., if ue W-3(Q)), then u' u?, and u' u?,
~ belong to L' (Q), so that Det Vu exists as an element of 2'(%).
(ii) n=3: (a) Let A be as in (i) If ueW'L,(Q) (e.g. if ueW"1(Q)), then
Tyt and Wit 2uf+l ) belong to [M(Q) so that (AdjVu); exists
as an element of 2'(Q).

&
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{b] Let A, B be N-functions with either A satisfying jg,‘ ndt<oo,

or with A satisfying (6.12) and with B<A* If ueHr‘LA[.Q] and
AdjVuely(Q) (c.g., if ue WP(Q), Adj Vuel?(Q) with p>1, g>1 and
-:-?-+I—§%), then ul(AdjVu) el!(Q), so that DetVu exists as an ele-
ment of 2’ ().

o

Proof. (i) If _[g,(:)dréoo then the imbedding theorem of DdNAl.DSON & Tru-

 DINGER [, Tlhm. 3.2] implies that u'e L™ (Q), while if 4 satisfies (6.12) the same

‘theorem implies that u'eL ,.(Q). The result follows by Young’s inequality.

(i) This is proved similarly. O

Remark. 1f © is an arbitrary bounded open set then Lcmma62 holds with
L} (Q) replaced by L}, .(Q).

The main result of this section is the following:

Theorem 6.2. :
() n=2: Let A be an N-function satisfying either _[g{t () dt < oo, or both (6.12)

and A< A*. If u,~%>u in W'L,(Q) [e.g‘. if u,—uin W?(Q), p>%)
then DetVu,—DetVu in 2'(Q).
(i) n=3: (a) Let A beasin (i). If u,2~u in W' L ,(Q) (e.g., if u,—u in Wt ”(Q)
p>3) then (Adj Vu,); » (AdjVu) in 2 (Q]
o
(b) Let A, B be N-functions with either A satisfying | g,(t)dt<oo, or
& i
with A satisfying (6.12) and with B< A*. If u,~*~u in W'L (Q) and
‘Adj Vu,~2~Adj Vuin Lg(Q)(e.g..if u,—uin W'P(Q), AdjVu,—~AdjFu
in I(Q) with p>1,9g>1 and -l—+ 1 <4%), then DetVu,— DetVu in
2'(Q). 1

Proof. (i) Fix ¢€2(Q) and let € be’an open set with 2>Q >supp¢ and such
that the imbedding theorems of DoNALDSON & TRUDINGER hold for €' *. Then
_since |lu,ly1 1, is bounded and u, —u in L'(Q"), it follows (sec KRASNOSEL'SK1I
& RuTickn [1, p. 132]) that u, »u in L*(22) or L4(2'). Therefore the Holder

inequality and the boundedness of flu,llwy i imply that
j‘(u} ul y—ut i) pdx= [ (u —u')yul pdx+ [ u' (] y—u?y) pdx
vl w
tends to zero as r— co. Hence u!u? , - u'u?, in 2'(Q). Similarly u}u} | —»u'u?,
in @2'(Q). The result follows. The proof of (ii) is similar. [

Corollary 6.2.1.
* (i) n=2: Let A be as in Theorem 6.2(i) and let ue W' L ,(Q). Then

DetVu=(utul,) ,—@iu'y), in 2'(Q). (6.15)

* We may take for €' a finite subcover by ‘open balls of the closure of supp ¢.

1}
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(i) 'n=3: (a) Let A be as in Theorem 6.2(iia) and let ue W' L ;(Q). Then
{Ad_] F’u)ﬁ‘={u‘” ui+1'¢+2) s _(uf+lu!+2 'tH-l} i in @'[Q} (6!6)

(b) Let A, B be as in Theorem 6.2(iib) and let ue W' L ,(Q), Adj Vue LB{.Q)
Then

Det 7u=[u?(AdjPuy] ,=[u*(AdjPu)i],, in 9'(Q). 6.17)

Proof. (i) Let ¢e2(Q2) and let Q' be an open set with Q> Q' >supp¢ and satis-
fying the segment property. Then by the results of Gossez [1, Thm.1.3] there
exists a sequence u,e C* () with u,~£>u in W!'L,(Q). Clearly (Det Vu,)(¢)=
[(uZul, 2+{u3u‘ ) 1 J(@). Letting r—co we obtain from the theorem that
(Det V u)(d)= [(u? u’.l]_z—[u u';) 1 ](¢), and the result follows.

(ii). The proof of (a) is identical to that of (i). The proof of (b) is similar to

that of Lemma 6.1(iib), the principal change being the use of Lemma 1.6 of

Gossez [1] to show that if ueL,(Q), then ppw-—hw in Lg(2). We omit the

details. O .

Corol]ary 6.2.2.*

(i) n—2 The map ur—detFu: w. P{Q}-oL"”[Q} is sequemeah’y weak!y con-
tinuous if p>2.

(i) n=3: (a) The map uradjPu: W'?(Q)— [F'2(Q) is sequentially weakly con-
tinuous if p>2.
(b) The map urdet Pu: W'P(Q) - L"”‘(Q} is sequentially weak!y con-
tinuous if p>3.

Proof. We just prove (iib). Let p>3. It is clear from the Holder mequality that

if ue W'?(Q), then det Vue L73(9Q). Let u,—u in W'-?(Q). Then adj V u, is bounded
in the reflexive space L”“(Q}. and hence by the theorem (part (iia)) adj Pu,—adj P u
in I72(Q). But detVu, is bounded in the reflexive space [73(Q) and thus by
part (iib) of the theorem det Vu,—~detPu in I**(Q). O

Warning. The distributions det Pu(adj ¥u) and DetFu CAd_] Fu) need not be

the same even if the former is a continuous funcuon, as the fo]lowmg example -

shows.

Example 6.1, n=2 or 3. )
Let r=|x| and let R(r) be a smooth real-valued function on (0, 1].
Let @={|x|<1} and define u: Q —» &" by .

R(r)

) u()=——=x r>0, u(®) arbitrary. (6.18)
Then for r>0 we have
R :
p ol g IR R s (6.19)
-
and o
det Vu _R—Ti. (6.20)
s

* Note added in proof. This corollury follows from results of Y. G. RESHETNYAK [1, Thm. 4],
[2. Thm. 2]. Theorem 4 in BarL [2] is also essentially a consequence of RESHETNYAK's work. to which
I would have referred had | seen it in time. .
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Let r.E {0:1):B,= {lxi-\:r} and let e 2(Q2). Then
[ ou, g5 _[ ¢u'ndS— [ ¢  u'dx. (6.21)

n7~B, 2~ B,
But
[ du'n,dS= | ¢(rx) u‘{rx) n,r"=1ds.
B, an

Provided r"~'R(r)—0 as r -0 and u, Vue!(Q) we therelore obtain from (6.21)
that ; .

foul,dx=—[¢ ,u'dx,

[o] 2 .
where we have used the dominated convergence theorem. Thus under these
conditions Fu, as defined by (6.19), is the matrix of weak derivatives of u.

In particular, letting R(r)=1+r, we find that ue W' ?(Q) for any p<n. Now
letn=2. Let yeC™ ([0,1]) take the values 1 and 0 in nelghbourhoods of r=0and

r=1 respectively. Then ¢(x) l,(;(ixl} belongs to 2(Q), and’

j{det?u)qbdx:2nj(l +AU(r)dr
o o

) 1
rj;(u‘u’_‘l ¢ ,—ulu?, ¢ )dx= —:té[{l +r)2 ' (r) dr.

" Hence formula (6.1) does not hold in this case, so that det Fu+DetFu. Note

also that if p<2 there is no sequence of C*(£) functions u, such that u,—u in
wt ’(Q) and det Pu,—~det Vu in L'(Q), since such a sequence would sausfy

[detVu dx=4n,
. .

whereas -
[detVudx=3n.
n

When n=3, a similar calculation shows that ue W' (Q) for p<3, adj Fuel%(Q)
for g <2, but that (6.17) does not hold.

In the above example Det Fu has an atom at x=0. I do not know]( whether
detFu=DetVu if DetVu is a function.

-

7. Existence Theorems

We have already stated the result of MorrEy, Theorem 6.1, which shows
that for a continuous integrand quasiconvexity is necessary and sufficient for
sequential weak = lower semicontinuity in W' ™(Q). Morrey [1,2] has also
given sufficient conditions for sequenti 1l weak lower semicontinuity in W'*(Q),
s2 1. For purposes of comparison, and for future use, we glVC}f an extension of
his results due to Meyirs [1].

Theorem 7.1. Let [ Q x A" x M"*"— % be continuous, and let [(x. u. *) be quusi-

convex for all xeQ, ne#". Suppose there exist real constants K >0 (i=1,2).

521, 0<y<1 and a function be LNQ) such that
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{i) f(x,u, F)2b(x), i E

(i) |f(x.uto, F+H)~f(x,u, P|SK, (L +(la|+]o|+|F|+H]Y ="} o] +|H]),
(iii) 1f(x+y,u, F)=f(x,u, F)ISK, {1+|F} n(ly),

Jor all values of the various argume}trs, where n: R, —» R, is a continuous in-
creasing  function with n(0)=0. (Here and ehewhere IF | denores any fixed norm

on Fe M™*") Then
CHu, Q)= _[f(x.u(x), Pu(x))dx
a :

is sequentiully weakly lower semicontinuous on W'-*(Q).

Remarks.
I. Let x4eQ. Then conditions (ii) and (iii) imply in particular that

and ; _
_If(-'c. 0,0)—f(x4,0,0)| S K, n{lx—x,l). - (12)

Combining (7.1) and (7.2) we see that *
(0 1f (x,u F)IS Ko {1 +(ly|+|F))’},

for all (x,u, F), where K,>0 s a constant. Conditions (i), (ii) and (iii) are
MEYERs’ continuity and growth conditions for the function'f—b, whlle (i)
implies a further hypothesis of his theorem.

2. If s=n then the growth conditions with respect to u may be weakened by
use of the Sobolev imbedding theorems; the reader is referred to MEevers [1]
for details. An extension to an Or]tcz»SoboIev space setting could also prob-
ably be made.

In order to prove existence theorems by use of Theorem 7.1, it is necessary
to make, in addition to conditions (i)-(iii), a coercwlty assumption on f Typically
. we might assume that s>1 and ; i

(iv) j(x,u.F]nglF]’-!-b(x], where K,>0.

The conditions (i)-(iv) are extremely restrictive with regard to applications to _'

nonlinear elasticity. Firstly, (ii) precludes any singular behaviour of f (for ex-
ample (0.5)). Secondly (i) and (iv) together rule out m(egrands typified by the

example
fIFY=|F[*+|det FI" (7.3)

with nr>s: we shall see that many such integrands belong to a physically inter-
esting class included in our existence theorems,

Definition 7.1. Let D= #* be open. A map G,: Dx #* —»# is said to be of
Curathéodory type if .

(a) for almost all xeD. G, (x, *) is continuous on #', and

(b) forall ae#". G,(-.a) is measurable on D.

(e )=, 0,01 SK, (1 +(ul +[F "1 (ul+[F) (1)
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. We shall use the following lower semicontinuity theorem, which is a special case

of a result given by EKELAND & Témam [1, Thm. 2.1, p. 226]. For related results
see Cesari [1,2,3].

Theorem 7.2. Let G,: Qx(R"x R°) R be of C'amrheodory type (Definition 7.1

with v=n+¢) and sausfy
G,(x,u,a)Zd(|a]) _ (7.4)

Jor some N-function ®. Suppose that G,(x,u, *) is convex on " for all xeQ, ue A",

Let a,—a in [1(Q) and let {u,} be a sequence of measurable ﬂmmons with u,— u

a.'mosr everywhere in Q. Then
[ G, (x, u(x), a(x)dx S lim _[G x,u,(x), a,(x))dx. (7.5)
2

F=a f2
We now describe the main ingredients of our ex1stencé’theory, starting first
with those relevant for compressible materials.
For each xeQ let W(x) be a nonempty convex open subset of E=%*", such

that for each aeE the set W"(a}déf (xeQ: aeW(x)} is measurable. We impose

~ as a local constraint on our variational problem that, in a sense to be made precise

later, T(Vu(x))e W(x) almost everywhere in Q, where we are using the notation
of Section 4. In applications to nonlinear elasticity W(x) will often have the form

W(x)={aeE: c,(x,a)< kK, (x), K;(x)< —c,(x,a)}, (7.6)

where €.¢;: B x E— R are of Carathéodory type and convex with respect to

_acE, and where k,, k,: Q —+Z are measurab]c Examples of relevant choices of

¢, K (i=1,2) are

1. ¢; is arbitrary, x, = + o0, kK, = — o0 (no constraint). 5

2. (n=3)—c,(x,F, A,38)=4, hz_G(corresponding to the continuity condition
det Fu(x)>0 and an additional unilateral constraint, absenl if K, =+ o0, on the
measure of strain ¢, (x, Pu, adj Vu, detVu)*).

We now make continuity, growth and polyconvexity hypotheses on the
integrand. Because of the nature of the growth conditions, and because we wish
to consider situations in which the distributions adjPu and Adj¥u, det Pu and
Det Fu may be different, we make these hypotheses on the associated function
G(x,u,a)(cf. (4.3)).

Let = {(x,u,a)eQ x A" x E: ac W(x)}. Let G:.% — & be such that **

(H,)*** G is continuous with respect to u,a on &,

(H,) for all ue #", acE, G(+, u, a) is measurable on W ~'{a),

(H,) for almost all xeQ, G(x.u.a)— 4+ as a — ¢ W(x), the convergence
being uniform with respect to u in any bounded subset of 4",

(H,) (Polyconvexity) for each xeQ, ue %", G(x, u, *) is convex on W(x),

(Hs) (Coercivity)

* Such constraints are by no means unrealistic. A unilateral constraint at large strains might be
relevant, for example, for a mixture of elastic materials with one or more constituents possessing
limited extensibility (¢f. Niperer [1]). See also the comments in Section 10.

** For simplicity we suppose that G is defined for all ue#".

*** Weaker conditions are possible (¢f. EKELAND & Témam [1]).
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:

n=1: there exists an N-function A, and a function be L‘I(Q} such that
Glx.u, F)2b(x)+ A(F)  for all (x,u, F)e ¥; @.7)
n=2:’there exist N-functions A, B, with A satlsfymg either ]'gd(r) drcoo or
both (6.12) and A< A*, and a funchon bel} (), such that

G(x,u, F,8)2b(x)+ A(|F|)+ B(d) for all {x,u,F,é)E.S‘,' ' (7.8)

n=13: there exist N-functions A, B, C satisfying either |g,(f)dt<oco or the con-
o = i
ditions (6.12), A< A* and B< A*, and a function be L!(Q), such that

G(x,u, F,H, )
2b(x)+A(F))+B(H|)+ C(®) for all (x,u,F,H,8e¥.

If we define G,: Q x (" x E)—» & by

G,(x,u,a)=G(x,u,a)—b(x) il (x,u,a)e¥
=+4w : otherwise,

19)

then clearly G, is of Carathéodory type and satisfies ('r' 4) for some N- funcnon .

We define the admissibility set .of by
n=1: .o ={ueW'L,(Q): Vu(x)e W(x) almost everywhere in Q},
n=2: o/ ={ueW'L,(Q): Det FueLy(Q),(Vu(x), Deil?u(x})e W{x]a]mostevery—
. where in Q},
n=3: o ={ueW'L,(Q): AdjPueLy(@). DetVueLc (@) (Pu(x) (AdjPu)(x),
Det Pu(x))e W(x) almost everywhere in Q}
The equivalence classes in ./ under the equivalence relation
u~v ifand only if u—veW]L,(Q)

are termed the Dirichlet classes in of.
If ue.o then it follows from results of EKELAND & TéMAM [ Prop 1.1.p. 218]
that J(u) exists and is finite or + o0, where

J(u)= jG x, u(x), Pu(x))dx if n=1,
'fi'jc(x u(x), Vu(x), Det Vu(x))dx if n=2,
=~ _fG' x, u(x), Pu(x), AdjPu(x), Det Fu(x))dx if n=3.

2

We are now in a position to present our [irst existence theorem. which in-
: cludes as a special case the displacement boundary-value problem of nonlinear
hyperelasticity. For n=1, of course, the result is well known.

Theorem 7.3. Let G satisfy (H,)-(Hs) above. Let € be a Dirichlet class in o, and
suppose that there exists u, €% with J(u,)<co. Then there exists uge¢ that mini-
mizes J(u) in €. :
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Proof. We just give the proof for n=3, the other cases being easier. It is suflicient

to establish the existence of a minimizer in % for

Jw)= [ G, (x. u(x), Pu(x). Adj Pu(x), Det Vu(x))dx. (7.10)
9 B

- J(u) is bounded below on %. Let u, be a minimizing sequence from €. By (7.9)
" the quantities :

[A(Pu,(x))dx, [B(IAdjPu,(x))dx, [C(DetVu,(x)dx
2 . a : 2

are bounded independently of r. The Poincaré inequality for Wy L ,(2) (GossEz
[1, p.202]) implies (¢f. KrasnoseL'skn & RuTtickn [1, p.131], EKELAND.&

. TEMAM [1 p. 223]) that for a subsequence {u;} we have .

u;A~u, in W'L,(Q), Vu —Vuy m L (Q}.
u;—u, almost everywhere,
AdjPu~4~H in Lg(Q), AdjVPu,—H in L'(Q),

- and

DetVPu;4~5 in Lc(Q), DetPu—~35 in L'(Q).
By Theorem 6.2(ii) H =AdjVu, and §=Det Vu,. By Theorem 7.2,
J{uo)s lim J[uj]

J=m

Since G,(x,u,a)=+oc0 if a¢W(x) it follows that (Fu,(x), AdjFugy(x),
Det Vuy(x))e W(x) almost everywhere. Thus uy,e% and the result follows. O

We now give a modified version of Theorem 7.3 for the case in which n=3
and G is independent of 4. The proof is similar and is omitted.

Theorem 7.4. Let n=3. In the definitions of W(x) and & replace E by E, =
M3*3x M3*3, Let G: & — R satisfy (H,)-(H,) and the following hypothesis:

(Hg) There exist N-functions A, B with A satisfying either [ ga(t)dt < oo or both
(6.12) and A€ A*, and a function be L'(Q) such that

G(x,u, F, )=b(x)+ A(|F|)+ B(|H|) for all (x,u,F,H)e¥.

Define .
: o ={ue W'L,(Q): AdjVueLy(Q), (Vu(x), AdjVu(x))e W(x)
almost everywhere in Q).

Let
Ju)= [ G(x. u(x). Vu(x), AdjVu(x)) dx. (7.11)
a :

Let € be a Dirichlet ¢lass in .o, and suppose that there exists u, €% with j{ul){ 0.
Then there exists uge® that minimizes J(u) in %'

Remark. Similar modifications to Theorem 7.3 can be made when n=2, and
when n=3 and G is independent of both H and d: the details are left to the reader.
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Next we give an existence theorem for the displacement boundary-value
problem in three dimensions for an incompressible hyperelastic body.

Theorem 7.5. Theorem 7.4 remains palid if of is redefined by of ={ue W'L ,(Q):

AdjPuelLy(Q), (Pu(x), AdjPu(x))e W(x) a!mosr everywhere in Q, DetPu(x)=1

almost everywhere in Q} promded that if [ g.(t)dt = oo, we make the extra assump-
tion B< A*. :

Proof. Let {u,} be a minimizing sequence from €. Then {Det Pu,} is bounded in
L"(€) independently of r. As in the proof of Theorem 7.3 we may extract a sub-
sequence {u;} =% with, among other propertles -

Det Vuj—‘—-é in L‘”[Q]

Clearly 6(x)=T1 almost everywhcre By Theorem 6. 2(:1), o= Det Vu, and the resu[l

follows. O

Remark. A variety of ‘weakly closed constraints can be treated in this way.
Analogous results hold for n=2.

For the remainder of this section we restrict our attention to the cases n=2,3 °

and we impose growth hypotheses that are partly of polynomial type. This will
enable us to work in Sobolev spaces, rather than in Orlicz-Sobolev spaces. It
would be possible to extend most of our results to an Orlicz-Sobolev space setting.
Such an extension would involve the use of trace theory for Orlicz-Sobolev
spaces (see DONALDSON & TRUDINGER [1], FOouGtRes [1], LAcroix [1]). .

For ease of reference we now restate hypotheses (Hy) and (H,) in modified
form. Later we shall put extra restrictions on the constants appeanng in these
hypotheses.

(H;) n=2: there exists an N-function B, real constants K, >0 K,20,y>1,s521,
and a function be L' (Q2) such that

G(x,u, F,0)2b(x)+ K, |F'+K, |u|’+B(5)
for all (x u, F,d)es.

n=3: there exists an N-function C, real constants K, >0, K,20, y>1,

u>1.521, and a function be L!(Q) such that
Glx, u, F.H,é];b(x]-kK1(|F|”+]H|")+K2[ui’+C(é)
for all (x,u, F, H,8)e¥.

(Hy) n=3: there exist constants K, >0, K, =20, y>1, u>1,s521, and a function
be L!(Q) such that
Glx,u, F,H) 2 b(x)+ K ([F|"+[H|")+ K, |u]*
for all (x,u, F, He%.

(7.12)

(7.13)

(7.14)

Mixed displacement Imcnml bmma‘,;rk fur' problems

Theorem 7.6 (¢, Section 1 A). Let Q‘u satisfy a strong Lipschitz condition. Let
2Q=00Q2,00Q,, let 02,102, =¢, and let 6Q, and 8Q, be measurable as subsets of
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0 with 0Q, having positive measure. Let @: Q= A" be measurable and let

. IREL(t'J’Qz) with a->l Let G: & > & satisfy hyporheses (Hy)~(H,) and (H,). If

n= 2Iery>j,a———:_fy<2 o>1ify=20=1iy>2 K, =0, and

o ={ue W"(Q): Det Pue Ly(2), (Pu(x), Det Vu{x))eW almost
everywhere in Q, u =1t almost everywhere in 0Q}*}.

_ 11 2y ,
{fnn:l let y>%.§+;<§.ox——-— fy<3o>1ify=3,0=1iy>3, K2=0, and

o ={ue W"(Q): Adj Vueﬂ'{.Q) Det Vue L(Q), (P u(x), Adj Pu(x), Det Vu(x))
eW{x) almost everywhere in Q, u=i a!mo«r ewrywhere in 8 }

Let e .

o{u)=-f{u)- IH(X)-rg(x}dS. (7.15)

202,

uhere the mregraf is defined in the sense of trace.
Suppose that there exists u e/ with J o(1y)<oo. Then there exists uye.of
that minimizes Jy(u) in of.

Proof. We give the proof just for n=3.

By the trace theorems (cf. MORREY [2], Necas [1]) ueﬂ’(éfz) and there
exists k>0 such that

Il Z k1l oran for all ue W), (7.16)

Since Q, has positive measure, a result of MORREY [2, p. 82] implies that there
exists k, >0 such that

JluPdx <k, [ [|Puldx+( [ldldS)] forall ue W'7(Q). (7.17)
[r n a0

By (H,). (7.16) and (7.17) we have for arbitrary ue.
Jow)Z [ h(x)dx+ K, [|Pul"dx+ K, [IAdjPul*dx+ [ C(DetVu)dx
n n n 1

= Ju(x)-ty(x)dS

15

-

2 | hix)dx+ (%l—::) [IVulrdx + K, | IAdjFul"dx
: n n = 0
K K,
+ (5-&&:—;)] |u]’a‘x—-—2- mjl GAS) + e [ Jo o

dr
_‘1:' Ifﬂff}_c-(m; ’d’ ”rR";«m;) |+ I C(Det Vu)dx

i

for £>0 and d >0. Choosing « and d small enough with d <k(:3)""" we obtain
0(u)>c -l«(n el v+ Ky _“Adj Pul*dx+ j C(DetFu)dx, (7.18)

where ¢ and ¢, >0 are constants.

* In the sense of trace.
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Let {u,} be a m:mrmzmg seqyence for J(, It !‘o]]ows from {7 18) that a sub-
sequence {u;} satisfies ; .

w—u, in WHNQ),  u;~*-u, in £(29),
u;—u, almost everywhere in £ and 29,

AdjVu;—AdjPu, in I*(Q), DetVu;—*~DetFu, in L(Q).
For J given by (7.10) it follows that - 2

J(up) S lim J(u)), . (7.19)
while . - i :
j uo(x) ta(x)dS=lim [u;(x)-f4(x)dS. (7.20)
: J=o & :

Noting that u, = almost everywhere in 8Q, we see, as in the proofot'Theorern 23,
that u,e.«. The result follows. [] |

Remark. In Theorem 76 and in the results below, the hypothescs on i are
concealed in the assumption that .o/ is nonempty. ~

Theorem 7.7. If n=2 let y22, 6> 1 if y=2, =1 if y>2, K,=0. {fn=3:'er}22,

l+:SI a-%y24}<3 a>1ify=3,0=1iy>3, K,=0.

)
remains valid with AdjVPu, Det Pu replaced everywhere by adjVu, det Pu respécrir_;e! V.
Proof. This is immediate {r_om Lemma6.1. [J '

Remark. In Theorem 7.7, and in thosé results below that concern the distri-
butions detFu, adjFu it is only necessary for G to be defined on the set
{(x.u,a): xeQ, ueR", acCo(T(M***)n W)} (see Section 4 and the remark
after Example 6.1). .

Next we give the analogue of Theorems 7.6 and 7 7 for incompressible materials.

The proof is similar to that of Theorem 7.5 and is omitted. An analogue of Theorem
7.4 may also be simply proved.

Theorem 7.8. Let n=3. Let Q, 8Q,, 8Q,, il, tg be as in Theorem 7.6. In the definitions
of W(x)and & replace Eby E, . Let G: & — R satisfy hypotheses (H;)~(H,) and (Hy).

Either let y, 1, 0, K, be as in Theorem 7.6 and let

o ={ne W' (Q): AdjPue I4(Q), (Pu(x), AdjFu(x))e W(x) almost everywhere
in Q, u=it almost everywhere in 8Q,. DetVu(x)=1 almost everywhere
in 2} '

or let . a, Ky be as in Theorem 7.7 and let

o ={ne W' Q): adj Pue I*(Q), (Pu(x), adj Pu(x))e W(x) almost everywhere
in Q, u=ii almost everywhere in 3Q, . det Fu(x)=1 almost everywhere in Q}.

Let the other hypotheses of Theorem 7.6 remain unchanged. Then Theorem 7.6
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Let ‘ R _
Jo(w)=J(u)= [u(x)-te(x)ds, - ' (7.21)
n,;

where J is given by (7.11). :
Suppose there exists u esf with Jo(u,)<oo. Then there exists u,esf that
minimizes Jo(u) in .n’

Pure traction boundary-value problems

“Theorem 7.9 (¢f. Section 1, Al). Let Q satisfy a strong Lipschitz condition. Let

1,6 2(8Q), 621. Let G: & —R satisfy hypotheses (H) (H,) and (H,) with
K,>0. Let k=min (y, s).

n=2: Let y>4, a’=% if 1Sk<2, o>1 if k=2, 621'if k>2. If s=1 let
Ntrll Lo oy <ko K1, where ko(R)>0 is a certain constant. Let '
of ={ue W' (Q): Det Fue Ly(Q), (Vu(x), Det Fu(x))e W(x)
almost everywhere in Q}.

Y Y T -
n=3: Let }'>§,1;+-;<§.a=% ifk<3,0>1ifk=3,0=1ifk>3.

If s=1let |[tgll wn <ko K,, where ko(Q)>0 is a certain constant. Let
of ={ue W' (Q): Adj Vue [(2), Det Vue L (Q).
(Pu(x), Adj Pu(x), Det Pu(x))e W(x) almost everywhere in Q}.
Let o : .
Jo(u)=J(u)— I u(x)-tp(x)ds. ' ' (7.22)
a0

Suppose that there exists u, el such that Jo(u,)<co. Then there exists ujeof
that minimizes Jy(u) in o, If, in addition,

n=2:y=22

n=73: ?22-l+L§I ¥ {7.23)
Yy M

then the result. holds with Adj Pu, Det Vu replaced everywhere by adj Fu, det Fu
respectively.

Proof. Let n=3. By usmg the hypothesis K, >0 instead of (7.17) we obtain the
a priori bound

Jolw)Ze+e, IVullo+ K, [IAd] Pul* dx+ [ C(Det Fu)dx +c, [|uf dx,
n n it

. 1
~ where ¢, >0. If s=1 then k; is such that [ull,.. .02 e flull i on for all
- .

ue W' '(Q). By using the Poincaré inequality (MORREY [2, p.82]) we can com-
plete the proof in the same way as for Theorems 6.6, 6.7. [0
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Theorem 7.10 (cf. Section 1, A2). Eet Q satisfy a strong L.Epschitz condition. Let
1,el7(0Q). Let G: & - R san'sfy hypotheses (H,)—(H,) and (H,) with K,=0.
If n=2, let y>%, a=— if y<2,6>1if y=2, 0=1 af y>2, e bea constant
vector and
of ={ue W""{Q):De! VueLy(Q), _ :
(Vu(x), Det Pu(x))e W(x) almost everywhere in £, fu(x)dx=e}.
a2

; 1 1 4 2y : -
If n=3, let y>3, ?+;—<§. ar=T7 if y<3, o>1 if y=3,e=1ify>3, ebea

constant vector, and

of ={ue W"(Q): Adj Vue [*(Q), Det F’ueLC(Q),
(Pu(x). Adj Pu(x), Det Pu(x))e W(x) almost everywhere in Q, _[u(x) dx= e}

Let ppelZ(Q), let bye R and let J, be given by

Jolu)=J(u)—= | pg(x) by - u(x)dx— [ u-1,dS. (7.24)
n n

Suppose there exists u, e \urh Jo(u,) < 00. Then there exists uy €5 that minimizes
Jolu) in /.

If, in addition, we assume (7.23), then the result holds with Adj Vu, Det Fu
replaced everywhere by adj Vu, det Vu, respectively.

Proof. If ue o/, then :
. 1
g[u(x}———{—‘;-’-)- e] dx=0.

Thus by a version of the Poincaré inequality {MORREY [2 p 83]) there are con-
stants ky, k; >0, such that

glu]’dx§k3+k“_![Vu|7dx . L

for allue.o,
Applying (7.25) and the simple estimate -

d’ | N
- [orbo-udsz =[S Wlhat o Ionbollva). 029

. we again obtain the bound given .for n=3 by (7.18). The rest of the proof follows
the usual pattern. [J

Remark. We re-emphasise (cf. Section 1, A2 and Theorem 7.13) that for non-
linear elasticity, when G is independent of u, it is necessary to impose the extra
condition (1.31) in order to show that u, is in some sense a solution of the equilib-
rium equations.
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Mixed displacement pressure boundary-value problems
 For these problems we restrict our attention to the case n=3. The case n=2
can be treated similarly. .
Theorem 7.11 (cf. Section 1B). Let n=3. Let Q satisfy a strong Lipschitz condition.
Let dQ=38Q,VZ, 6Q,nZ=¢, with §Q, having positive measure as a subset of
2Q*. Let t: 8Q, — R be measurable, and let pe W' =(Q). Let G: & — R satisfy
hypotheses (H,)—(H,) and (H,). Let K,=0. If p(x)=constant almost everywhere,
4

. G 9 :
let 'y>%, —'+i<—. If p(x)% constant almost everywhere, let y>3, —I—+L<l
yom 3 Y M

1
and lf +-ﬂ—-! let |Vpll oo Sksy, where kj--k,(K,. Kz V1, 2,0Q)) is a cer-
tain wnsram Let —_—

of ={ue W' "(Q): Adj Pue I*(Q), Det Pue L (Q),

(Pu(x), Adj Pu(x), Det Pu(x))e W(x) almost everywhere in @,

u =il almost everywhere in 22, }.
Let i
Jy(w)=J(u)+ P(u), (7.27)
where (cf. ll‘35]) _

P(u)s j [p Det Vu+1p (Adj Vu); u*] dx. ' (7.28)

Suppose that n‘wre exists u,e.of with J(u)<oc. Then there cxtsrs uy e/ that
minimizes J, (u) in <. :
If in addition

+—51, (7.29)

then the result holds with Adj Vu, Det Vu replaced everywhere by adj Pu, det Vu
respectively.

Proof. It suffices to establish the bound
&

Jw)Zc+e, Ilul'f}.'w.vm,+-{<2-l—éf]Adj Vul" d.\:+§é[ C(Det Pu)dx  (7.30)

for all ue.of, where ¢, ¢, >0 are constants.
We use the Sobolev inequality

Nl s, vy 2Ky 0]l v,  for all we W'-¥(Q), (7.31)

where k,>0and v=3y/3—-yily<3, I<v<wily=3, v=c0 il y>3.
U SRS M
* In applications we shall have Z= | ) 2, with the 22, as in Section 18,
. -2
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For ue s, we can use (7.17), (7.31) to obtain

Ji ()= Ib{x) dx + (-!;—l—ms) j'|P'u|" dx+Kl_[|Adj Vul*dx+ | C{Dét Vu) dx _ :
n . i ; N )

K,
* (E"Jcm_s)f| F’dx—-—“( I |i|dS)” + ek} [lul Ly

 3lpleqo fIDet Pal dx-ﬂy* ;_ R I L
g 1 eia].
where £>0,d>0.
_ If p is constant, then clearly (7.30) follows. I.t'p is not constant and ; + ; <1
then y >y’ so that we obtain (7.30) by ch005mg eand d smaII enough If p is not
constant and 7+711-=1 then y= ' and (7.30) follows similarly. [

The above proof is valid if & is taken to be zero, but the value of k; so obtained

is then smaller. There is no difficulty in giving the analogous results to Theorem

7.11 for the pure pressure boundary-value problem and for incompressible
materials.

Solutions to the equilibrium equations

We now turn to the question of whether the minimizers whose existence we
have established satisfy the corresponding Euler-Lagrange equations. There is
at present no available regularity theory for our problems under acceptablc
hypotheses, and we therefore confine our discussion to whether the minimizers
are weak solutions. Unfortunately there are technical problems associated with
the two most important cases, nameiy (i) when the material is compressible and
Wi(x) is given by o

W(x)={acE:§>0},*

and (i) when the material is incompressible.

We therefore consider the simpler situation when W(x)=E for all x, so that
there is no local constraint: g

We replace (H,) by the following stronger hypotheses on G:
(Hy) n=2: G is continuously differentiable in u, F, § for all xe, and there
exist real constants K, >0, K, 20, B, >0, C;>0, p,20, I<v§y, 120,521, and

a function be L} () such that

Glx,, F, a)gb{xnk, IFI"+K, |m[’+31 e, (7.32)
G| _ - -
Ta;’éﬂ: + C, [lul*+|F| +|6]"], (7.33)
aG|. i .
lg};’épz*‘czﬂﬂl +|F"+18]"], (7.34)
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oG ’
175|573+ Cs [lul*+|F|"- +|a|’] (1.35)

for all values of the arguments. If y <2, we assume further that t= 22? :
—-)'

n=3: G is continuously differentiable in u, F, H,8 for all xeQ, and there

© exist real constants K, >0, K,20, B,>0, C;>0, pi20, l<v=pusy, 120,521,

and a function beL!(Q) such lhat

G(x,u, F, H, é]gb{x}+KI(J!-'|’+I.‘!'1“]+K2 |ul*+ B, |6]", (7.36)
' aG .
o |SPH Cillul +IFP+IHP+81T, (7.37)
4G : ' " .
=F|SP2+ Collul' +|F "+ |HI +15") S (138)
aG X B b A
FH| 5P+ Callul” +:F1**‘_+rH|* +16]7], (7.39)
6G T 2 e
S5 2Pat Callul™ +IFI" +|HP=" +15]], (7.40)
3y

for all values of the arguments. If y <3 we assume further that L P
=

Let f be given by
n=2: f(x,u, F)=G(x, u, F, det F) }

n=3: f(x,u, F)=G(x.u, F,adj F, det F){" 41

Two typical results are the following:

Theorem 6.12. In the hypotheses of Theorems 7.7, 7.9 replace (H,) by (H,). Suppose
also that (cf (7.23))

ifn=2: y22,
ifn=3:y22, _1_.+.L§1_ (7.42)
' Y H
Then the minimizing functions u=u, satisfy the Euler-Lagrange equation
of ' -
I[E"’*a T ] sl G (7.43)

for all ve C=(R") with vy, =0.

Proof. We give the proof for the case in which n=3. Fix ve C*(%#°) with 1]y, =0.
Since 1 <v=u<y it follows that u, +eve.o for any e. Also we clearly have

=7 J (uo+ev)- 1, dS= [ v-13ds. (7.44)
£ o0,
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It thus suffices to show that

)= § f(x, u(x), Pu(x)) dx ' (7.45)
a .

is Giteaux dilferentiable at u,, and that I'(uy)(v) is givén by the left-hand side
of .(7'43J' By the dominated convergence theorem it is enough to establish the
estimate ' '

d
|E S(x, u(x)+ev(x), Fu(x)+ ¢ Vo(x))

for fixed IItE&f with I(u) < oo, where @€ L!(Q2) and is independent of ¢e(Q, 1).
Carrying out the indicated differentiation in (7.46), we find from (7.41) that

d
-(}-s—f[x, u+ev, Fu+ePv)

(7.47)

G| |6G| |eG aG aG
< [199] |96, |é¢ G oG .
__('[ oy ‘6!-' +‘6H’|Vui+|aé [Ful+ 5 |adj Pu!]

for ﬁ’fed ue.of with I(u)<co, and for all £e(0, 1). Here and below ¢ denotes a
generic constant. The estimate (7.46) now follows from (7.37)~(7.40) and Hélder's
inequality. For brevity we display the calculation only for the last term of (7.47).
We have that :

3

¢| 5] ladi Pul S cp Jadj Vu|+cc4[|ur?r+;vu|f’

L .
+ladj Pul*=" +|det Pu|*"] |adj Pul|

; .
Sclladj Pul+|ul " +|Pul” +|adj Pul*+|det Vul']
Sc[l+|ul*+|Pul’+|adj Pul* +|det Pul"]
£0,(x), '

for some ©,eL}(f2), where we have used (7.36) and the facts that if y23 then
uel"(Q), while if2<y <3 tl'_len uell(Q). O

Theorem 7.13 (cf. Section 1, A2). In the hypotheses of Theorea;: 7.10 replace (H.,}
by (Hy), let (7.42) hold, and let f=W (x, F) be independent of u so that

Jo(u)= g W(x, Vu(x) dx— [ pa(x) by - u(x)dx— [u-TpdS. (748
. n . an
Suppose in addition that :
[ 1 dS+ [ pg by dx=0. (7.49)
on 2
Then the mr'n.-'m:':fngI,’imc'i‘f’mr u=u, Saﬂ'h"ﬁe‘_.\'lfflv Euler-Lagrange equations

an” =
f{ [pR b[)'u_h? Ut!] dx+ I v-tg dS=0 {750)
@ & i
Sor all ve C™(#"). g

<0(x), ~ (7.46)
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Proof. Proceeding as in Theorem 7.12 we obtain (7.50) for all ve C*(2") satisfying

fvdx=0. (7.51)
n

Let we C‘”{:a?") be arbitrary and set

1 :
v(x)=w(x)— m]_ﬁ( w(x)dx. . (7.52)
Then

o, _
nj[pnbo-w—aui w.,] dx+w_£w-tnds

o2

= r-!"’(-"}d;"[,!"" b"d“u{;?" ds]=0. O

Remarks. A similar result can be proved for the minimizer in Theorem 7.11.
We may also waive the assumption (7.42) at the expense of obtaining the Euler-
Lagrange equations only in terms of the distributions Adj Fu, Det Fu and with
derivatives of G replacing the derivatives of f. In Case (i) above an analogous
local result to Theorems 7.12, 7.13 may be proved under the « priori assumption
that det Fu=d >0 locally. The details of these proofs are left to the reader.

e - Existence under other hypotheses

We next give a sample theorem under the hypothesis B, , , for the displace-
ment boundary-value problem for a homogeneous material. This result almost
certainly has generalizations to integrands with x, u dependence.

Theorem 7.14. Let n=3. Let U= M?3"3 be such that Co T(U) is open. Let
u, e Wh(Q), adj Vu, e (), det Pu,e L’(Q), where y22, u>1, ;—+%‘§l. v>1,
In the notation of Definition 4.3 let g: U — & satisfy F, , , at u,. Let the corre-
sponding function G satisfy

G(F,H,8)Zzb+ K, (IF"+|H|"+|8]") forall (F,H,§)eCoT(U), (7.53)
where b and K, >0 are constants, and '

G(F.H,8)—cw as ' (F,H,8) -+d(CoT(L}) (7.54)

Let
o ={ue W"(Q): u—u e W) Q) adj Fue (Q),

. det Pue '(Q), Z(u)e Co T(U) ulmost everywhere in Q}.
Define for ue .of .
I(u)= [g(Vu)dx. (7.55)
a2
Then if I(u,) <, there exists ug€.o/ that minimizes I(u) in .o/,

Proof. Let {u,} be a minimizing sequence. By (7.53), {Z(u,)} is bounded in the
refllexive Banach space @ =1/(Q)° x [*(Q2)° x L'(Q). By the Poincaré inequality
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and our now standard arguments there exists a subseducnce {u;} such that
wj—uy, in WD),  Eu)—Z(u) in X, <SAB,
with uye.sf. Define G,: E — & by , :
G,(F,H,8)=G(F,H,8) if (F,H,d)eCoT(U)

= co otherwise.
Let -

Then J: %/ X, — &. Since g satisfies F, , , at u, it follows that J is convex.
Applying Fatou's lemma to the integrand ; '

G\(F,H,0)—b—K,(IF|"+|H["+[5[")

we see that J is (strongly) lower semicontinuous. Hence (cf. EKELAND & TEMAM
[1, p. 33]) J is sequentially weakly lower semicontinuous. Thus '

J(Eu)SlimI(Ew),
J=m

and the proof is complete. [

The most general integrands for which our methods establish the existence
of minimizers are given by the sum of polyconvex functions satisfying a suitable
subset of hypotheses (H,)-(H,), quasiconvex functions satisfying the hypotheses
of Theorem 6.1, and, where appropriate, functions satisfying condition E_, , as
in the above theorem. By suitably combining the growth conditions of each of
the terms in this sum various existence theorems may be given. At present both
the scarcity of examples of quasiconvex functions that are not polyconvex and
the abundance of physically useful polyconvex functions make these theorems of
little interest. We therefore leave the routine formulation of the results to the

reader.

8. Applications to Specific Models of Elastic Materials

Many forms of the stored-energy function have been proposed for nonlinear
elastic materials, particularly for various rubbers. An excellent review of the
literature can be found in the papers of OGDEN [2, 3]. We now examine the extent
to which these models satisfy the hypotheses of our existence theorems. By con-
centrating on a certain class of models below we do not mean to imply that other
models are inferior for empirical reasons. Neither should the omission of a model
from the discussion be construed as suggesting that it fails to satisfy our existence
hypotheses. Our purpose is simply to indicate the flexibility of the hypotheses to
serve for a variety of stored-energy functions and also to discuss the position
occupied with respect to these hypotheses by certain well known models.

We assume that n=3 unless otherwise stated, and consider for simplicity
only isotropic materials, for which the stored-energy function has the form
(see (1.15)) : 3 :

#(x, F)=d(x, v, v3,703). "(8.1)

Jo)=[Glow)dx. (1.56)
: [r] :

- Consider first incompressible materials, and let
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For compressible materials, in the case when the local constraint set W(x) has
the form

' W(x)=E, x K(x), (8.2)
with K(x)# nonempty, open and convex, it follows from Theorem 4.3 that
Co U(x)=W(x), where U(x)={FeM?>*>: det FeK(x)}. Necessary and sufficient

conditions for #(x, ) to be polyconvex on U(x) are given by Theorem 44 F_or
simplicity we shall assume in the compressible case that K(x)={6>0} (continuity

. condition), while in the incompressible case W(x)=E, (no local constraint).

We consider a modification of a class of stored-energy functions introduced

- by OGDEN [2,3]. Fora21 let

Y =vi+vi+v3-3, x(@)=(,v))"+ (vy0,) + (v, v,)* 3. (&_3)

M ‘N .
W (x, F)=B(x)+ ¥ a(x) ¥(a)+ Y c;(x) x(B)), ) (8.4)
: i=1 =1 '

where @, 2 2ay 21, f 2 Zhy21 and where B, a;, ¢; are functions in L(<Q)

satisfyin .
s a(x)=k>0, c¢(x)2k>0, for almost all xeQ (8.5)

for some constant k.

By Theorem 5.2 #'(x, F) is polyconvex on Ul(x). Since v? 4+ v} +vf is a contin-
uous function of F* it follows that

v} + 3 + vy zd(x) [F (8.6)
for some constant d(x)>0. Similarly
(03 03 + (0 0, (v, v 2 e(@ [adj FIY,  e(0)>0. 8.7

1t follows from (8.4)~(8.7) that %~ considered as a function of x, F, adj F satisfies
hypotheses (H,)-(H,), and (Hg) with ‘

y=a,, n=p, K,=0 (8.8)
Thus if. O
' * 3 4 <t (8.9)
z oy > 21 o, -+ ;81 <3 .

we obtain from Theorems 7.8 and the analogues of Theorems 7.9-7.11 for in-
compressible materials the existence of minimizer; for the varjo_us_bounda‘ry-
value problems in terms of the distributions ¥u, Adj Pu. These minimizers sans!'y
the incompressibility condition Det Vu=1 almost everywhere. Note that in
order to obtain existence for variable pressures p in the mixed displacement

pressure problem we require (Theorem 7.11) either

1 1 =
—t+-—<1 (8.10)
oy B,

* Because, for example, it is a finite-valued convex function.
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a_""ﬁ':[! 17l oy <K3(@y, i s By 2,8Q)). . (8.11)
If , I L . | _
o 22, —+—=1, (8.12
: o B )

then we have the stronger forms of the existence theorems with the incompressibil- .

ity condition det Pu=1 holding almost everywhere.

As a special case we consider the inhomogeneous Mooney-Rivlin material,

for which B=0, M=N=1,a, =f, =2, so that : _

; - W(x,F)=a,(x)(Ig—3)+c;(x)([]y=3). - (8.13)
Clearly (8.12) is satisfied so that the Mooney-Rivlin material is included in the
existence theory. Note that in the mixed displacement pressure problem the
critical case (8.11) applies. - T

The incompressible Neo-Hookean material

% L W F)=ay(x) (1,-3) : 814

is not covered by the theorems. To illustrate this 'point let us consider a single
term stored-energy function I
W(x, F)=a,(x)y(x) (8.15)
with a, satisfying (8.5). To prove existence by our methods under the incom-
pressibility constraint Det Fu=1 (det Fu=1) it is necessary that if u, —u in
W'-2(Q), then Det Fu, — Det Fu in @'(Q2) (det Vu, — det Pu in 2'(Q)). We must
thus have (¢f. the methods of Section 6) «>2 (2= 3). Note, however, that we do
get existence theorems for the Neo-Hookean material in two dimensions.
OgGpeN fitted a stored-energy function with three terms (M =2, N=1) of the
form (8.4) to data of TRELOAR for homogeneous vulcanized rubber?t. The values
of the various constants obtained were - :
#, =50, «;=13, p,=2,
a,=24x10"3, a,=48, ¢;=005kgem=2, ~(8.16)
B=0. ' )
Clearly (8.12) is satisfied. Furthermore, since «, >3 the minimizers u, of the
various boundary-value problems belong to C(£); indeed by the results of
MORREY [2] (see also FRIEDMAN [1] and Necas [1]) we have in this case u,e
C™ (), the space of Holder continuous functions on @ with exponent . Note
that the imbedding theorems do not imply that u,e C(Q) for the Mooney-Rivlin
material. ' e !
For compressible materials OGDEN [3] considered the effect of adding a
term I'(det F) to (8.4)*. Suppose that
r(=C() forall t>0. where C isan N-function, g ll';’
I isconvex on (0.0), T(t)—oc as t—0+. (E)

' For related experimental work see TRELOAR [1].

* OGDEN retained the values of the constants B. «,. a,. a;. ¢,. ¢, but for incompressible materials

replaced the term ¢, x(2) by ¢, [, ?+v, "*4 v, ?=3]. These terms are identical if ¢, v, vy=1, and

since 1y vy vy is in practice very close to | the alteration is insignificant for experimental correlations.
*
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atisfies (H,)~(H,) and (Hy) with y=2t;.

. = " . s
Then the modified stored-energy function s bt

i=p,, K,=0, and thus satisfies the hypotheses of our existen
the conditions (8.9)-(8.12). TR
t is clear that a wide variety ol stored-¢ _
{witL ,::s-depenclence if necessary) can be treated by our theory in an way z_lr}alogou;
to that for the models discussed above. We end this section by exhibiting suc

a stored-energy function, which satisfies the hy;r)lotheses ?f Tl;lﬁorgn:h',;.g é};;tlmr;g:
! =¢), ¢ uires the -

se of Theorem 7.6, etc. (for 8Q,=¢), and thus req .

-;220e apparatus. Our example is of a stored-energy function wnlh slow g:gwtr. Fg;
functions of very fast growth the Orlicz-Sobolev space setting would als0

. oy
necessary for any proof that the Euler-Lagrange equations are satisfied.! We
need two lemmas:

Lemma 8.1. Let C, D be N-functions. Then

C') o
D-'(s)

gy functions having the form (5.11)

(8.18)

as s — 0

if and only if DLC. . con
j ! if’ sif? being easier. Set s=
f. We just prove the ‘only if* part, the if* part . ;
:::rogmﬂ. ?l'i]-len lfy (8.18) At/D~! (C(A1)) =0 as t — o0. Hence t<D~"(C(4t)) for ¢
large enough. By the convexity of D we have for ¢t large enough

i C“(C(Ar))ﬂo ast—co. O

L1 PR N . M 2
cian T D ek 4 D-Y(C(4n)
Lemma 8.2. Let g k be non-negative continuous functions on &, such rh.ar
k(s)—ﬁ(} as s — co and such that
ng{r) dt=00.
‘ 0
Let .
- [ k(r) g(n)dt
0(.\']=2—T—————
fg(nyde
]
Then 0(s) =0 us 5 — 0.
Proof. This follows immediately from L'Hépita{l§ rule. O
Now let A be an N-function with principal part
| (8.19)

A()=t}logt.
Let

ot In order to give a compre
ANTMAN [#] uses more general Or
scribed here probably extend to these spac
the existence theorems presented here.
o

) 20
W (F)y=uAlv, +o,+0y) A 03030 4o, 0,)+ Cogvy05) (8.20)
hensive description of anisotropy and inhomogeneity in rod theories
I‘iL‘?-Snbolc\r spaces than are used in this work. The mghqd_s de-
I es, with a conseyuent braadening in the applicability of
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= 1

* where I is as in (8.17) and a, c are positive constants. Since A%t** for any £>0

Theorem 7.6 does not apply. To show that (H,) is satisfied, so that Theorem 7.3 °

may be applied, we must prove that A< A*. Let B(t)=t}. Then B<A so that
A=< B~1t3~B* It is therefore sufficient to prove that B*<4*. We have that

ANk _
g,l(f)=it'—;-{t—}=—z({-)-. _ -~ (8.21)

where ]
ar |

k(f)= W)}—*—'O as t— oo,

y ® @
Also g,(r):t—lg, and [ g,(t)dt= | gg(t)dt=c0. Therefore
0 0 :

A*-1(5) (_!k(f] gg(0)dt
B*- 1 (‘] = [ * {822}
‘ J‘gs(f}‘“
0

By Lemmas 8.1 and 8.2 we deduce B*< 4* as required.

9. An Example of Nonuniqueness; Buckling of a Rod

In this section we establish nonuniqueness for the mixed displacement zero
traction boundary-value problem corresponding to buckling ofa rod of a homo-
geneous, incompressible, Mooney-Rivlin material having a uniform cross-section.
We do this by exhibiting an admissible displacement field with total energy lower

than that of the trivial solution, and then applying Theorem 7.8 to ensure the -

existence of a nontrivial minimizer for the total energy. Under suitable conditions

a similar but more complex analysis can be carried out for incompressible rods

consisting of material not of Mooney-Rivlin type. The extension to compressible

materials, however, is not so easy because an explicit trivial solution is not available.
In the stress-free reference configuration the rod occupies the region

Q=Dx(0,), I>0, : ©.1)

where the cross-section D is a nonempty bounded open set in #? satisfying a
strong Lipschitz condition. We suppose that the density in the reference con-
figuration is a constant pg >0, and that the plane x, =0 contains the line of centroids
of the rod in the reference configuration, so that :

[xds=0, dS=dxdv. | 92)

Let dQ, =D x {0,1}, 3Q2,=2D x (0, ]). Let A= [dS be the area of D. For i>0
: D

we consider the equilibrium mixed boundary-value problem with boundary
conditions .
s u= on 709,

i
te=0 on 8Q,,

9.3)
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"* where ii: 2 — 2 is given by

i(x)=(A"¥x,, i ¥x,, dx;). (9.4)
The stored-enérgy function has the form (cf-8.11))
W (F)=a(lz—3)+c(llz-3), : (9.5)
where a>0, c>0 are constants. In the notation of Theorem 7.8 we set
y=p=2, K,=0, WKE)=E =M xM**3, (9.6)
'..sf={ue W' 2(Q): adjVue [}(Q), u=ii almost everywhere in 39, ,
det Fu=1 almost everywhere in 2},

Jw)= (W (Vu(x)dx. c - 9.7)
a _
From (9.4) we obtain
_ Vi=diag(A~t A % 4), detVa=1, : (9.8)
and ' .
J@)=[ai"24+A2=3)+b(2A+4i"2=3)] Al< 0. (9.9)

It is easily shown that @ satisfies the equilibrium equations and boundary con-
ditions for a suitable hydrostatic pressure. By Theorem 7.8 (with u, =) there
exists uoes/ that minimizes J(u) in <.

It thus remains to construct a function ue o/ with*

J(u)<J (@). ' - (9.10)
We perform this construction in a manner reminiscent of derivations of rod

theories in engineering. Let y,, 8, be real valued functions with yoe C*([0,1]),
fo€ C*([0,1]) and :

Yo(0)=yo(D=0, -0,(0)=08o(N="0,(=0,()=0. - (9.1
Let £>0, y=£y,, 0=20,, and define
-y (x)=(x, g(x;, X3), y(xz)+ A1 x; 05 0(x,), Axy— A~ x;5in0(x;)),  (9.12)

where g is a function to be chosen. u, represents a deformation in which points
(0,0, x,) are mapped to (0, y(x;), Ax,), and in which cross-sections normal to the
x,-axis in the reference configuration stay plane and are so inclined that their -
normals remain parallel to the x,x, plane and make an angle 0(x,) with the
x,-axis (Fig. 3). -

From (9.12) we obtain

g xlg,-Z X183
Pu,=|0 A-tcos0 y'—A tx,sin0.0"|. (9.13)
0 —A-isin0 A-1-tx,cosl-0"

* Note that we do not have to satisfy the zero traction condition on (€2, because our existence

" theorem incorporates this as a natural boundary condition.
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xy L]

¥ (x3)
Pl%3 s
I | =%
(i) Relerence configuration ) _ (ii) Deformed configuration
: Fig. 3
Therefore o . L
detVu,=g[licos0+1- 1y sm{}—»{"xzﬂ'] 55 9.14)

Since A>0 the expression in brackets in (9.14) is posmve forall xeQ ifeis sma]l
enough. Thus we may choose

gz[l" cosf+A-ty sinﬂ—l"x.zﬁ"]", .' -{9.-l5)
whence ) : T '
detPu,=1 for all xeQ. ' - (9.16)

It follows from (9.11)~(9.16) that u,e.o/ for & small enough. Let
B=Vu,Vu, 1)

A routine but tedious calculanon shows that

By =Ai"'42ed"¥x,0,+e2[A103 -24" 20°y0+{3x§+xf}l“9:,2+1“xfx§93’] o

+o(eh), _
Bi=i"'4e [yl - 2171 03]+o(ed),

B3=12-2edtx,0,+2[A- 102+ 1" ' x202] +0(c?), - (0.18)

BY=B}=¢i tx,0,+0(e),

By=B}=ci~"x,x,05+0(e).

Bi=B3=¢[ly,—4-'0,]1+o0(e),

and hence that

Ty=24"" 422 4 2ex,0,(A" 1«—.1*)+s"[ﬂ. '02+((3~<2+x’)1-‘+1 Yx2)05?
+x7x3 14052 =22"2yy 00+ yo2] +0(e?),

H1y= A= 24+ 22+ 2ex,0p(A T =2~ )+ 2[4~ 202 + (e + x2) A~ 2 + 3x21- %) 02
+xIxIA 3052 =203 0¥y + A yit ] + 0(e?), |

where o(g) denotes a function of x such that o(g)/e — 0 uniformly in 0 as g—0.
From (9.2), (9.5), (9.7) we ‘obtain (with the standard meaning for o(e?))

I . i
J(u)=J(@)+ ¢ [ [do 03 +d, 0 +d, 052 =dy 00 vy +d, v dx; +0(e?), (9.20)
0

9.19) It follows that for & small enough J(u,)<J (i) as required.
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where
do—Ai Hal+o), ’
dy=al(3ky+k)A"*+k, AT+ c[(k, + k) A" 2 +3k, 4~ ’] _
dy=kyA"*(al+c), J (9.21)
dy=2A1"3(ak+c),

dy=Al"'(@i+0),

and : .
ky=[x2dS, ky=[x}dS, ky={[xix}dS. 922
D D n
The Euler-Lagrange equations corresponding to the quadratic part of (9.20) are
' 2d,vo—d 0,=1. e (9.23)
d 077 d e 0 —L;E ¥ =0, (9.24)

wﬁere y is a constant. Setting y=0 and combining (9.23), (9.24) we obtain
05" —ot, 05+, 0, =0, (9.25)
where ;

do—d3/4d, AR=1)

- 9.26
4, i (.26

d
Oﬁl"—"z-, o, =

. ' l
With the above as motivation we seek a solution, ant:symmctnc about -"3‘—?
to the equation

05" —at, 03 +8,0,=0 , 9.27)
subject to boundary conditions .
' 0,=0,=0 at x;=0,1, 929)
for some &,>a,. If 8 is such a solution and ‘
: n
y[,{x,;“’ d’ j 0o(s)ds 9.29)

then y, sansﬂes (9 ll) and we have from {9 20), (9.26)-(9.29) that

Ju)=J(@)+e*d (o:z—otz)j'ﬂ(,d\:,+o{.' ). (9.30)

To solve (9.27), (9.28) we first note that for all Ae[0, 1] we have
3ck,

_— =0. 9.31
e ky(a+c) e @21
Set ' : ’ ,
Ick
& 3 ! = 2 - . 9‘32
g,=a,+1, O<t<y (k3[<!+£‘)) (9.32)
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The indicial equation for (9.27) is

mt—a m43,=0 ' (9.33)

with roots m= +x, +iu, where

Qe d o, Vot (034)

2 = 2 :
and k3 u>0. (k, p are real by (9.31), (9.32).) Hence
' . l 3
0o(x3)=A, sinhk (xs—?)+A2 sin (x,—%) : (9.35)
will satisfy (9.27), (9.28) provided that

2 ul 2 Kl :
m tan ‘5-—* ﬁ (ﬂnb ?'. L, {936)

Also 0, given by (9.35) is antisymmetric about x, —,%‘. The graphs of the func-
. | 1 ’
tions :,=71—t:m 1 t‘,’=?tanhq are sketched in Fig.4. It is easy to prove the

indicated monotonicity properties.

o a, + Vi —4ay \* '
Let ko, &, be the values of (—‘-——21~—2) at 1=0, 1, respectively, so that

- 3k, 0k; 4 4 4k, +k\*
hn‘-‘(m‘l‘ i’g‘l‘g) , sz('_“i__“""i) . (9.37)
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It is not hard to show that x and p are continuous functions of 4 in [0, 1], and
that x is not constant in [0, 1]. Therefore there exists an interval in the range of
x: [0,1]— &, with length §>0. If ko# K, then we may take

§=|Kko— K| +r(x), _ (9.38)

where r(t)—0 as 1 —0.
_From Figure 4 it is thus clear that if

5 ;
-j—> 2n, ' (9.39)
7 .

then there exists 0 <A<1 such that (9.36) is satisfied. The corresponding 0, is

the function required. To satisfy (9.39) one need only choose ! large enough.
Thus sufficiently long rods of arbitrary cross-section will exhibit monuniqueness for

" some A€(0, 1). (An obvious refinement of this argument shows that if 0<ly<l1

then for | large enough there will be nonuniqueness for some 4 with 4,<i<1)
Usually x, %k, so that by choosing t>0 small enough we get nonuniqueness

‘for some Ae(0, 1) whenever

, 4 ..
; |xo-rc,[>-Tn—‘ ' (9.40)

This is a condition expressed entirely in terms of l and the cross-sectional parame-

" ters ky, k;,ky and A.

Example. Let D be the disc x] +x2<a®. Then

4 6

na na '
ky=k,= "o ky= TR A=na® (9.41)
so that
: l .
x.:.::-‘l;- 941/105, x1=;1/3TJ. (9.42)
Condition (9.40) therefore becomes
a
—<vy, v=009. (9.43)

l

The condition (9.40) is somewhat crude; indeed it is possible that no such con-
dition is necessary. Improved estimates, and lower bounds on the supremum of
0<Ai<1 for which nonuniqueness occurs, may be obtained by more detailed
calculations based on Figure 4. I have not included these results since they are
messy and since my method is severely limited in scope due to the type of trial
deformation considered in (9.12). Even in ‘situations where we envisage non-
uniqueness occurring by Euler buckling, the deformation of cross-sections implied
by (9.12) is unrealistic.

There are numerous formal stability calculations in the literature for rods in
tension or compression, and for other problems in three dimensional nonlinear
elasticity. For the most part these calculations are based on the theory of small
deformations superposed upon large: the status of this theory with respect to
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noniinear elasticity has yet to be established. The reader is referred for details
and references to FOSDICK & SHIELD [1], HoLpen [1], Knops & WiLkes [1],
SENSENIG [1], Wesorowskr [1], WiLkes [1]. Nonuniqueness for the pure traction
boundary-value problem of a rectangular block of Neo-Hookean material loaded
uniformly on each face has been established explicitly by RivLIN [1, 2, 3]. For

various one and two-dimensional tod and shell theories rigorous proofs of non-

uniqueness have been given by ANTMAN [2, 3, 6].

10. Concluding Remarks

The main implication of this work for constitutive inequalities is that the
quasiconvexity condition (and in particular the Legendre-Hadamard condition)
is consistent with realistic models of hyperelastic solids. In the one-dimensional

case, when convexity and quasiconvexity of % (x, -) are the same, Theorem 3.2
shows that the existence of C*(£2) minimizers for various homogeneous displace-
ment boundary-value problems implies that %~ is quasiconvex, while the same
result holds in three dimensions if € is a cube. If %" is not quasiconvex then
minimizers may exist that are not C'. Some examples in one dimension are

discussed by ErickseN [3]. It should be noted thai we have not proved that

C'(©) minimizers exist in general for displacement boundary-value problems
when 4% is suitably regular under any reasonable hypotheses on #°,

The existence theorems proved in this article take the form that existence is
established for a given material for all suitable boundary data. In general such
unqualified existence is not to be expected for real materials, since rupture will
occur under extreme conditions of deformation. We may also not be interested
in solutions having at some points deformation gradients that lie' outside the
range in which the material behaves elastically. One way of partially circum-
venting these difficulties is to choose the local constraint set W(x) so as to pro-
hibit such behaviour, and then to check a posteriori whether the minimizer u,
is such that Fuy(x)ed W(x) for any x. One would then like a priori conditions
on the size of the boundary data to prevent this happening. The derivation of

any such conditions would require delicate estimates. The reader is referred to

the papers by ER1cksEN [4] and KNOWLES & STERNBERG [ 1] for further discussion
of some of these points.

In general weak lower semicontinuity will not hold if the quasmonvcx[ty or
polyconvexity hypotheses are replaced by a hypothesis of convexity of the func-
tion ¥ restricted to positive definite symmetric tensors U. It is nevertheless
instructive to see how an attempt to establish lower semicontinuity in this case
breaks down. The difficulty is that if u,—u in the Sobolev space W' ?(£), then
theﬂzilimi( in '(Q) of the sequence U, =1/Vul Vu,, will not necessarily be
V¥u' Pu, and indeed may not arise from any displacement. This is because
VVu' Vu is not of the form (4.2) and hence not sequentially weakly continuous.
The difficulty is also connected with the nonlinearity of the Riemann-Christoffel
tensor based on C. Similar mathematical problems arise from attempts to estab-
lish existence under the CoLeMAN & NoLL condition [1], or HiLL's inequalities
[2.3]. These conditions do not imply the Legendre-Hadamard condition. The

- CoLeMAN & NoLL condition cannot apply to all hyperelastic materials because

A.R. AMIR-MoEz
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it is violated for ncﬁrly .incompressible materials such as rubber (see HiLL [2],

' OGDEN [1, 3], RivLiN [2], S1boroFF [1]).

" For bodies that are not homeomorphic to an open ball the various minimizers
whose existence we have established may represent deformations topologically
isolated from those desired on physical grounds*. One might require, for example, -

~ all admissible deformations to be accessible from a given deformation by a

homotopy of globally invertible configurations. In this article we have not studied

_such global constraints (although they may be of a weakly closed type), but have

concentrated on local constraints such as the local invertibility condition

. det Pu>0. Local invertibility is a relatively weak requirement; indeed a hollow

sphere may be everted without violation of the condition in any intermediate

deformation (SMALE [1]).*

Finally I remark on the implications of the results of Section 6 for theories

“of elasticity incorporating pointwise constraints on the deformation gradient F,

These results suggest strongly that the only nontrivial homogeneous constramts

: gwmg rise to a well posed theory have the form (see (4.2))

$(F)=A+BEF!+ C*(adj )i + D det F=0, (10.1)

\m;herc A, B, C3, D are constants. It is not hard to show that the only objective
constraints of this form (i.e., ¢ satisfying ¢(QF)= ¢ (F) for all orthogonal Q) are

- those with Bf = C;=0, so that detF is specified. In particular, as we have seen,

the incompressibility condition det F=1 gives rise to a well posed theory. Note,
however, that the constraint of inextensibility (TRUESDELL & NoLL [, p. 72])) is
not included. It seems possible, therefore, that solutions do not in general exist for
boundary-value problems of inextensible elasticity, and that a higher order

theory is required to make such constraints well behaved.
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