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Abstract. The existence of a global attractor in the natural energy space is proved
for the semilinear wave equation utt + βut − ∆u + f(u) = 0 on a bounded domain
Ω ⊂ Rn with Dirichlet boundary conditions. The nonlinear term f is supposed
to satisfy an exponential growth condition for n = 2, and for n ≥ 3 the growth

condition |f(u)| ≤ c0(|u|γ + 1), where 1 ≤ γ ≤ n
n−2

. No Lipschitz condition on f

is assumed, leading to presumed nonuniqueness of solutions with given initial data.
The asymptotic compactness of the corresponding generalized semiflow is proved
using an auxiliary functional. The system is shown to possess Kneser’s property,
which implies the connectedness of the attractor.

In the case n ≥ 3 and γ > n
n−2

the existence of a global attractor is proved under

the (unproved) assumption that every weak solution satisfies the energy equation.

Dedicated to M.I. Vishik on the occasion of his 80th birthday

1. Introduction. Let Ω ⊂ Rn, n ≥ 1, be bounded and open with boundary ∂Ω.
Consider the damped semilinear wave equation

utt + βut − ∆u + f(u) = 0 in Ω, (1.1)

with boundary condition

u|∂Ω = 0, (1.2)

and initial conditions

u(x, 0) = u0(x), ut(x, 0) = u1(x), (1.3)

where β > 0 is a constant and f : R → R is continuous. Suppose that f satisfies
the sign condition

lim inf
|u|→∞

f(u)
u

> −λ1, (1.4)

where λ1 is the first eigenvalue of −∆ with the boundary condition (1.2). If n ≥ 3
suppose in addition that f satisfies the growth condition

|f(u)| ≤ c0(|u| n
n−2 + 1), (1.5)

where c0 > 0 is a constant, while if n = 2 suppose that

|f(u)| ≤ exp θ(u), (1.6)
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for some continuous function θ satisfying

lim
|u|→∞

θ(u)
u2

= 0. (1.7)

No additional growth condition is needed if n = 1.

Let ϕ =
(

u
ut

)
and

V (ϕ) =
∫

Ω

(
1
2
u2

t +
1
2
|∇u|2 + F (u)

)
dx,

where F ′ = f . Then solutions of the above problem satisfy

d

dt
V (ϕ(t)) = −β

∫
Ω

u2
t dx. (1.8)

The main purpose of this paper is to give a proof of the following theorem.

Theorem 1.1. Under the above hypotheses, (1.1), (1.2) possesses a connected global
attractor A in the space X = H1

0 (Ω) × L2(Ω). For each complete orbit ξ in A the
α and ω limit sets of ξ are connected subsets of the set Z of rest points on which
V is constant. If Z is totally disconnected then the limits

z− = lim
t→−∞ ξ(t), z+ = lim

t→∞ ξ(t)

exist and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point in X as
t → ∞ for every solution ϕ.

There is a large literature on the asymptotic behaviour of solutions to (1.1),
(1.2). The earliest work on the convergence of solutions to rest points as t → ∞ for
nonlinearities f allowing multiple rest points seems to be that of Ball [6] and Webb
[66]. In [6] weak convergence methods were used in a similar spirit to this paper to
show, for example, that if n ≥ 3 and (1.5) holds then every solution has a nonempty
ω limit set consisting entirely of rest points. Without the hypothesis that the set of
rest points is totally disconnected, convergence of solutions to a unique rest point
still holds if n = 1 (Hale & Raugel [27]) or, for arbitrary n, if f is analytic and
satisfies suitable growth conditions (Jendoubi [34], Haraux & Jendoubi [30, 31]).
On the other hand counterexamples for nonanalytic f = f(x, u) have recently been
given by Jendoubi & Poláčik [35] (see also Poláčik [54]).

The existence of a global attractor for (1.1), (1.2) was proved by Hale [26] and
Haraux [29] for f satisfying for n ≥ 3 the growth condition

f(u) ≤ c0(|u|γ + 1), (1.9)

with 1 ≤ γ < n
n−2 . For the case n = 2, Hale & Raugel [28] proved the existence

of the attractor under an exponential growth condition of the type (1.6) (such a
condition previously appearing in the work of Gallouet [20]). The existence of the
attractor in the critical case γ = n

n−2 was first proved by Babin & Vishik [3], and
then more generally by Arrieta, Carvalho & Hale [1]. For other treatments see
Chepyzhov & Vishik [12], Ladyzhenskaya [44], Raugel [55] and Temam [60]. In all
these works f is assumed to be at least locally Lipschitz with a growth condition on
the Lipschitz constant. The price for dropping such an assumption, as in Theorem
1.1, is that uniqueness of solutions is no longer to be expected (see Remark 5.2
below). The only previous work on attractors for (1.1) under hypotheses that are
not known to imply uniqueness of solutions seems to be that of Babin & Vishik [2],
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who for n = 3 proved the existence of an attractor, but in the weak topology of X,
for f satisfying (1.5), f(u)u ≥ −C, and a weakened Lipschitz condition.

In order to handle nonuniqueness of solutions, we use the framework of general-
ized semiflows developed in Ball [7]. This is one of several related approaches (the
earliest being apparently that of Barbashin [9]), one being that used by Babin &
Vishik [2], that are discussed in [7]. See Caraballo, Maŕın-Rubio & Robinson [11]
for a comparison between parts of the theory in [7] and the related work of Melnik &
Valero [48, 49], which is more adapted to differential inclusions. The necessary def-
initions and results from [7] are given in Section 2, where the opportunity is taken
to clarify the relation between the theory and that of Hale [25] and Ladyzhenskaya
[44], which was not described adequately in [7].

To establish that the system (1.1), (1.2) generates a generalized semiflow G there
are two possible main approaches, either to write the system in the semilinear form

ϕ̇ = Aϕ + F(ϕ), (1.10)

for suitable operators A and F , and use the variation of constants formula in the
Banach space X (see Section 3), or to use the Galerkin method, as described in
the book of Lions [45]. Under the growth conditions (1.5)-(1.7) these approaches
are essentially equivalent (see, for example, Proposition 3.4). We choose to use the
method based on (1.10), making use of results in Ball [6] which allow one to handle
the case when F : X → X is sequentially weakly conntinuous but not compact. We
do this for two main reasons. Firstly, the proof of the energy equation (1.8) is more
straightforward (for the analogous calculation for a weak solution constructed using
the Galerkin method see Lions [45, pp22-25] and also Babin & Vishik [2, pp406-
407]). Secondly, the method leads to a natural proof of Kneser’s property, that
the set of points in X reached after a fixed time t ≥ 0 starting from given initial
data is connected (see Section 5). By a result in [7] Kneser’s property implies
the connectedness of the global attractor A. Although there are isolated proofs of
Kneser’s property in the literature for semilinear parabolic equations (see Kaminogo
[36], Kaminogo & Kikuchi [37], Kikuchi [42], Kikuchi & Nakagiri [43]), this seems
to be the first time this issue has been considered for a semilinear wave equation.

When Ω is the whole of Rn or a compact n-dimensional Riemannian manifold
without boundary the existence of a global attractor has been proved for classes of
f satisfying (1.9) with 1 ≤ γ < n+2

n−2 by Lopes [46], Feireisl [17, 18] and Kapitanski
[38] using estimates of Strichartz [59] type. These results would suggest that for
Dirichlet boundary conditions the critical exponent for the existence of an attractor
is γ = n+2

n−2 rather than γ = n
n−2 . However this has not been proved, and indeed

there is no indication that there is any critical exponent. In fact for any γ ≥ 1 we
can prove the global existence of a weak solution to (1.1), (1.2) under appropriate
supplementary conditions on f using the Galerkin method. Unfortunately, it is not
known whether the energy equation holds for γ > n

n−2 . However under the (un-
proved) assumption that all weak solutions satisfy the energy equation the existence
of a global attractor in the appropriate energy space can be proved for any γ ≥ 1
under some mild supplementary conditions (see Theorem 4.4). The situation is
similar to that for the three-dimensional Navier-Stokes equations of incompressible
flow, for which it is proved in Ball [7] that there is a global attractor in the usual
Hilbert space H of divergence-free L2 velocity fields under the (similarly unproved)
assumption that every weak solution satisfying a certain energy inequality is con-
tinuous in time with values in H. We recall that for the Navier-Stokes equations
Sell [58] proved the existence of a global attractor without any unproved hypotheses
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on solutions, but in a space of trajectories and not in H (for later work in the same
spirit see Chepyzhov & Vishik [12]).

The key idea of the paper is to use an auxiliary functional to prove asymptotic
compactness of G. For the system (1.1), (1.2) this functional is given by

I(ϕ) = V (ϕ) +
β

2

∫
Ω

uut dx,

which formally satisfies the equation

d

dt
I(ϕ) = −βI(ϕ) + H(u),

where

H(u) = β

∫
Ω

(F (u) − 1
2
uf(u)) dx.

Whereas (as pointed out, for example, in Raugel [55]) this method does not always
work, it has now been used in a variety of applications (see Cabral, Rosa & Temam
[10], Dai & Guo [13], Ghidaglia [21], Goubet [22], Goubet & Moise [23], Goubet
& Rosa [24], Karachalios & Stavrakakis [41], Karachalios & Zographopoulos [39],
Lu & B. Wang [47], Moise & Rosa [50], Moise, Rosa & X. Wang [52, 51], Rosa
[56, 57], Temam [60], B. Wang [62, 63], X. Wang [65], B. Wang & Lange [64]). The
method was originally outlined in a lecture given at Oberwolfach in 1992, but it
has unfortunately taken me 10 years to write it up. The proof of Kneser’s property
in Section 5 is new, but otherwise the treatment in the paper follows that of the
Oberwolfach lecture, with of course the addition of various details.

Dimensionality and related properties of the attractor are not considered in this
paper, and for this the reader is referred to Temam [60], Eden, Milani & Nicolaenko
[16], Eden, Foias, Nicolaenko & Temam [14], Karachalios & Stavrakakis [40], Eden
& Kalantarov [15], Huang, Yi & Yin [33] and Zhou [68, 69].

2. Global attractors for generalized semiflows. We begin by summarizing
some definitions and results from [7] that we shall use.

Let X be a metric space (not necessarily complete) with metric d. If C ⊂ X and
b ∈ X we set ρ(b, C) := infc∈C d(b, c), and if B ⊂ X,C ⊂ X we set dist (B,C) :=
supb∈B ρ(b, C).

Definition 2.1. A generalized semiflow G on X is a family of maps ϕ : [0,∞) → X
(called solutions) satisfying the hypotheses:

(H1) (Existence) For each z ∈ X there exists at least one ϕ ∈ G with ϕ(0) = z.
(H2) (Translates of solutions are solutions) If ϕ ∈ G and τ ≥ 0, then ϕτ ∈ G,

where ϕτ (t) := ϕ(t + τ), t ∈ [0,∞).
(H3) (Concatenation) If ϕ,ψ ∈ G, t ≥ 0, with ψ(0) = ϕ(t) then θ ∈ G, where

θ(τ) :=
{

ϕ(τ) for 0 ≤ τ ≤ t,
ψ(τ − t) for t < τ.

(H4) (Upper-semicontinuity with respect to initial data) If ϕj ∈ G with ϕj(0) → z
then there exist a subsequence ϕµ of ϕj and ϕ ∈ G with ϕ(0) = z such that
ϕµ(t) → ϕ(t) for each t ≥ 0.

Let G be a generalized semiflow and let E ⊂ X. Define for t ≥ 0

T (t)E = {ϕ(t) : ϕ ∈ G with ϕ(0) ∈ E}, (2.1)
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so that T (t) : 2X → 2X , where 2X is the space of all subsets of X. We make use of
the following continuity hypotheses for a generalized semiflow G.

(C1) Each ϕ ∈ G is continuous from (0,∞) to X.
(C2) If ϕj ∈ G with ϕj(0) → z then there exist a subsequence ϕµ of ϕj and

ϕ ∈ G with ϕ(0) = z such that ϕµ(t) → ϕ(t) uniformly for t in compact subsets of
(0,∞).

(C3) Each ϕ ∈ G is continuous from [0,∞) to X.
(C4) If ϕj ∈ G with ϕj(0) → z then there exist a subsequence ϕµ of ϕj and

ϕ ∈ G with ϕ(0) = z such that ϕµ(t) → ϕ(t) uniformly for t in compact subsets of
[0,∞).

If X is a Banach space with dual space X∗, we will also need the analogous
property to (C4) in the weak topology, namely:

(C4w) If ϕj ∈ G with ϕj(0) ⇀ z then there exist a subsequence ϕµ of ϕj and
ϕ ∈ G with ϕ(0) = z such that 〈ϕµ, θ〉 → 〈ϕ, θ〉 uniformly for t in compact subsets
of [0,∞), for any θ ∈ X∗.

The positive orbit of ϕ ∈ G is the set γ+(ϕ) = {ϕ(t) : t ≥ 0}. If E ⊂ X then the
positive orbit of E is the set γ+(E) =

⋃
t≥0 T (t)E

The ω−limit set of ϕ ∈ G is the set

ω(ϕ) = {z ∈ X : ϕ(tj) → z for some sequence tj → ∞}.
A complete orbit is a map ξ : R → X such that for any s ∈ R, ξs ∈ G. If ξ is a

complete orbit then the α-limit set of ξ is the set

α(ξ) = {z ∈ X : ξ(tj) → z for some sequence tj → −∞}.
If E ⊂ X the ω−limit set of E is the set
ω(E) = {z ∈ X : there exist ϕj ∈ G with ϕj(0) ∈ E, ϕj(0) bounded,

and a sequence tj → ∞ with ϕj(tj) → z}.
The subset A ⊂ X attracts a set E if dist(T (t)E,A) → 0 as t → ∞.
We say that A is positively invariant if T (t)A ⊂ A for all t ≥ 0, and that A is

invariant if T (t)A = A for all t ≥ 0.
The subset A is a global attractor if A is compact, invariant, and attracts all

bounded sets.
The generalized semiflow G is eventually bounded if given any bounded B ⊂ X

there exists τ ≥ 0 with γτ (B) bounded.
G is point dissipative if there is a bounded set B0 such that for any ϕ ∈ G

ϕ(t) ∈ B0 for all sufficiently large t.
G is asymptotically compact if for any sequence ϕj ∈ G with ϕj(0) bounded, and

for any sequence tj → ∞, the sequence ϕj(tj) has a convergent subsequence.

Proposition 2.1. Let G be asymptotically compact. Then G is eventually bounded.

Theorem 2.2. A generalized semiflow G has a global attractor if and only if G is
point dissipative and asymptotically compact. The global attractor A is unique and
given by

A =
⋃

{ω(B) : B a bounded subset of X} = ω(X). (2.2)

Furthermore A is the maximal compact invariant subset of X.

Theorem 2.2 generalizes corresponding results for semiflows due to Hale [25] and
Ladyzhenskaya [44]. They prove the existence of a global attractor for semiflows
that are asymptotically smooth (in the sense of Hale), equivalently of class AK
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in the sense of Ladyzhenskaya), and for which the positive orbits of bounded sets
are bounded. Correspondingly we say that the generalized flow G is asymptotically
smooth if whenever B is nonempty, bounded and positively invariant, there exists
a compact set K which attracts B, and that G is of class AK if whenever B is
bounded with γτ (B) bounded for some τ ≥ 0 and ϕk ∈ G, ϕk(0) ∈ B, tk → ∞,
then ϕk(tk) is relatively compact. The equivalences in the following proposition
clarify the relationship between the hypotheses of Hale and Ladyzhenskaya and
those of Theorem 2.2 (a relationship that was not fairly described in [7]).

Proposition 2.3. (i) G is asymptotically smooth if and only if G is of class AK.
(ii) G is asymptotically compact if and only if G is asymptotically smooth and

eventually bounded.

Proof. The proofs are straightforward. As an illustration suppose that G is of
class AK. We show that G is asymptotically smooth. For B ⊂ X nonempty,
bounded and positively invariant define K = {z ∈ X : ϕk(tk) → z for some ϕk ∈
G with ϕk(0) ∈ B and tk → ∞}. Let zr ∈ K, r = 1, 2, ... . Then given r there
exists tr ≥ r and ϕr ∈ G with ϕr(0) ∈ B and d(ϕr(tr), zr) < 1

r . Since G is of
class AK, there exists a subsequence r′ of r with ϕr′(tr′) → y for some y, and by
definition y ∈ K. Hence zr′ → y . Thus K is compact and it is easily seen that K
attracts B.

Proposition 2.4. Let G be asymptotically compact and satisfy (C1). If ϕ ∈ G
then ω(ϕ) is connected. If ψ is a complete orbit then α(ψ) is connected.

We say that G has Kneser’s property if T (τ){z} is connected for all z ∈ X, τ ≥ 0.

Theorem 2.5. Let G be asymptotically compact and satisfy (C1). If G has Kneser’s
property and if E ⊂ X is connected then ω(E) is connected.

Remark 2.1. In the statement of Theorem 2.5 in [7] the hypothesis that G be
asymptotically compact was used in the proof but accidentally omitted from the
statement. Without this hypothesis ω(E) need not be connected. For example, if
G is the semiflow generated on R2 by the ordinary differential equations

ẋ = x(1 − x2), ẏ = x2 − 1,

which has integral curves given by x = ae−y, a ∈ R, then ω([−1, 1] × {0}) =
{−1} × (−∞, 0] ∪ {1} × (−∞, 0].

Corollary 2.6. Let X be connected, and let G satisfy (C1) and have Kneser’s
property. If A is a global attractor then A is connected.

A complete orbit ξ ∈ G is stationary if ξ(t) = z for all t ∈ R for some z ∈ X.
Each such z is called a rest point. We denote the set of rest points of G by Z(G).

We say that V : X → R is a Lyapunov function for G provided
(i) V is continuous,
(ii) V (ϕ(t)) ≤ V (ϕ(s)) whenever ϕ ∈ G and t ≥ s ≥ 0.
(iii) if V (ξ(t)) = constant for some complete orbit ξ and all t ∈ R then ξ is

stationary.

Theorem 2.7. Let G be asymptotically compact, let (C1) hold, and suppose there
exists a Lyapunov function V for G. Suppose further that Z(G) is bounded. Then
G is point dissipative, so that there exists a global attractor A. For each complete
orbit ξ lying in A the limit sets α(ξ), ω(ξ) are connected subsets of Z(G) on which
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V is constant. If Z(G) is totally disconnected (in particular, if Z(G) is countable)
the limits

z− = lim
t→−∞ ξ(t), z+ = lim

t→∞ ξ(t)

exist and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point as t → ∞
for every ϕ ∈ G.

3. The generalized semiflow generated by the semilinear wave equation.

3.1. Weak solutions. We set v = ut and write (1.1)-(1.2) in the form

ϕ̇ = Aϕ + F(ϕ), (3.1)

where

ϕ =
(

u
v

)
, A =

(
0 1

∆ −β

)
, F(ϕ) =

(
0

−f(u)

)
. (3.2)

We denote by eAt the strongly continuous group of bounded linear operators gen-
erated by A on X = H1

0 × L2, where H1
0 = H1

0 (Ω), Lp = Lp(Ω). If u, ū ∈ H1
0 ,

v, v̄ ∈ L2, we write

(∇u,∇ū) =
∫

Ω

∇u · ∇ū dx, (v, v̄) =
∫

Ω

vv̄ dx,

with corresponding norms ‖∇u‖ = (∇u,∇u)
1
2 , ‖v‖ = (v, v)

1
2 . We regard X as a

Hilbert space with inner product

〈
(

u
v

)
,

(
ū
v̄

)
〉 = (∇u,∇ū) + (v, v̄),

and identify X with its dual. Note that the domain D(A) of A is given by

D(A) = {
(

u
v

)
: u, v ∈ H1

0 ,∆u ∈ L2}.

Lemma 3.1. The adjoint A∗ of A is given by

A∗ = −
(

0 1
∆ β

)
,

with

D(A∗) = {
(

χ
ψ

)
: χ, ψ ∈ H1

0 , ∆χ ∈ L2}.

Proof. From the definition of the adjoint,
(

χ
ψ

)
∈ D(A∗) and A∗

(
χ
ψ

)
=

(
p
q

)

if and only if

〈
(

p
q

)
,

(
u
v

)
〉 = 〈

(
χ
ψ

)
,

(
v

∆u − βv

)
〉 for all

(
u
v

)
∈ D(A),

which holds if and only if

(∇p,∇u) = (ψ,∆u) for all u ∈ H1
0 with ∆u ∈ L2, (3.3)

(∇χ,∇v) = (q + βψ, v) for all v ∈ H1
0 . (3.4)

Now approximating p by C∞
0 functions we have that

(∇p,∇u) = −(p,∆u) for all u ∈ H1
0 with ∆u ∈ L2,
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and so (3.3) is equivalent to
(p + ψ, ∆u) = 0.

Solving ∆u = p + ψ for u ∈ H1
0 we deduce that (3.3) holds if and only if p = −ψ ∈

H1
0 .
But (3.4) holds if and only if ∆χ ∈ L2 and q = −∆χ − βψ.

Lemma 3.2. f satisfies (1.6),(1.7) if and only if, given any M > 0 there exists
CM > 0 such that

|f(u)| ≤ CM exp
(

u2

M

)
for all u. (3.5)

Proof. If f satisfies (1.6) then by (1.7) for any given M > 0 there exists kM > 0
such that θ(u) ≤ u2/M for |u| > kM . Thus

θ(u) ≤ aM +
u2

M
,

where aM = max|u|≤kM
θ(u), and so

|f(u)| ≤ exp
(

aM +
u2

M

)
= CM exp

(
u2

M

)
.

Conversely, suppose (3.5) holds for all M > 0. We may suppose that CM → ∞
as M → ∞. Let

θ(u) = inf
M=1,2,...

(
ln CM +

u2

M

)
.

Since ln CM + u2/M → ∞ as M → ∞ uniformly on compact sets, on any compact
set θ is a minimum of a finite number of continuous functions. Hence θ is continuous.
It is easily seen that (1.7) holds, while (1.6) follows since ln |f(u)| ≤ θ(u).

Lemma 3.3. F : X → X and is sequentially weakly continuous and continuous.
If n = 1, 2 then F is compact, that is wj ⇀ w in X implies F(wj) → F(w) in X.

Proof. We must show that f : H1
0 → L2 and is sequentially weakly continuous and

continuous, and compact for n = 1, 2.
First let n ≥ 3. Since H1

0 is continuously embedded in L
2n

n−2 , by (1.5) f maps
bounded sets in H1

0 to bounded sets in L2. Let uj ⇀ u in H1
0 . Then f(uj) is

bounded in L2 and so a subsequence (not relabelled) converges weakly in L2 to
some χ. But by the compactness of the embedding of H1

0 in L2 we may assume
that uj → u a.e.. Hence, since f is continuous, f(uj) → f(u) a.e., from which it
follows by standard arguments (for example, using Lusin’s or Mazur’s theorem) that
χ = f(u) and that the whole sequence f(uj) ⇀ f(u) in L2. Thus f is sequentially
weakly continuous.

If uj → u strongly in H1
0 then in addition by (1.5) we have that f(uj)2 is bounded

above by the sequence 2c2
0(1 + |uj | 2n

n−2 ), which is strongly convergent in L1. Hence
by a version of the dominated convergence theorem (cf. Ball & Marsden [8, Lemma
4.8]),

∫
Ω

f(uj)2dx → ∫
Ω

f(u)2dx and so f(uj) → f(u) in L2.
Now let n = 2. If uj ⇀ u in H1

0 then by Trudinger’s inequality [61]

sup
j

∫
Ω

exp(αuj
2) dx < ∞
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for α > 0 sufficiently small. Thus, by Lemma 3.2, f(uj) is bounded in Lp for any
1 ≤ p < ∞ and so by the same reasoning as for n ≥ 3, f(uj) → f(u) in L2. If
n = 1 then uj ⇀ u in H1

0 implies f(uj) → f(u) uniformly.

Definition 3.1. Let −∞ < t0 < t1 < ∞. A map ϕ ∈ C([t0, t1];X) is a weak
solution of (3.1) on [t0, t1] if F(ϕ) ∈ L1((t0, t1);X) and if for each θ ∈ D(A∗) the
function 〈ϕ(t), θ〉 is absolutely continuous on [t0, t1] and satisfies

d

dt
〈ϕ(t), θ〉 = 〈ϕ(t), A∗θ〉 + 〈F(ϕ(t)), θ〉

for a.e. t ∈ [t0, t1]. ϕ is a weak solution on [t0,∞) if it is a weak solution on [t0, t1]
for all t1 > t0.

The definition is equivalent to the standard concept of a weak solution to (1.1),
(1.2). In the following result ut denotes the distributional derivative with respect
to t of u considered as an element of L2(Q), where Q = Ω × (t0, t1).

Proposition 3.4. ϕ =
(

u
v

)
is a weak solution of (3.1) on [t0, t1] if and only

if u ∈ C([t0, t1];H1
0 ), v = ut ∈ C([t0, t1];L2), and for each ψ ∈ H1

0 , (ut, ψ) ∈
C1([t0, t1]) with

d

dt
(ut, ψ) + (∇u,∇ψ) + β(ut, ψ) + (f(u), ψ) = 0 for all t ∈ [t0, t1].

Proof. By Lemma 3.3 for any weak solution ϕ we have that 〈ϕ(t), θ〉 ∈ C1([t0, t1])
for any θ ∈ D(A∗). Thus by Lemma 3.1, ϕ is a weak solution on [t0, t1] if and
only if u ∈ C([t0, t1];H1

0 ), v ∈ C([t0, t1];L2) and for each χ ∈ H1
0 with ∆χ ∈ L2,

(∇u,∇χ) ∈ C1([t0, t1]) with

d

dt
(∇u,∇χ) = −(v,∆χ) in [t0, t1], (3.6)

and for all ψ ∈ H1
0 , (v, ψ) ∈ C1([t0, t1]) with

d

dt
(v, ψ) + (∇u,∇ψ) + β(v, ψ) + (f(u), ψ) = 0 in [t0, t1]. (3.7)

Now since
(∇u,∇χ) = −(u, ∆χ),

and given ρ ∈ L2 we may solve ∆χ = ρ for χ ∈ H1
0 , (3.6) is equivalent to

d

dt
(u, ρ) = (v, ρ) in [t0, t1]. (3.8)

for all ρ ∈ L2. Hence if η ∈ C∞
0 (Q) has the form η(x, t) = σ(t)ρ(x) with σ ∈

C∞
0 (t0, t1), ρ ∈ C∞

0 (Ω), then∫
Q

ηtu dx dt = −
∫

Q

ηv dx dt. (3.9)

Since the linear span of such functions η is dense in C∞
0 (Q) (see, for example, Fried-

lander [19, Theorem 4.3.1, p 44]) we have that (3.9) holds for all η ∈ C∞
0 (Q), and

so v = ut, which in turn implies (3.8) for u ∈ C([t0, t1];H1
0 ), v = ut ∈ C([t0, t1];L2).

The result now follows from (3.7).
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Remark 3.1. Equivalently, ϕ is a weak solution if and only if u ∈ C([t0, t1];H1
0 ), ut ∈

C([t0, t1];L2), utt ∈ C([t0, t1];H−1) and

utt + βut − ∆u + f(u) = 0 in D′(Q),

where H−1 = H−1(Ω) denotes the dual space of H1
0 .

Weak solutions are the same as mild solutions, that is solutions to the variation
of constants formula. This follows immediately from Ball [5] (see also Balakrishnan
[4]).

Proposition 3.5. A function ϕ : [t0, t1] → X is a weak solution of (3.1) on [t0, t1]
if and only if F(ϕ(·)) ∈ L1((t0, t1);X) and ϕ satisfies the variation of constants
formula

ϕ(t) = eA(t−t0)ϕ(t0) +
∫ t

t0

eA(t−s)F(ϕ(s)) ds (3.10)

for all t ∈ [t0, t1].

3.2. The generalized semiflow.

Theorem 3.6. Given any ϕ0 =
(

u0

u1

)
∈ X, there exists at least one weak solu-

tion ϕ =
(

u
ut

)
of (3.1) with ϕ(0) = ϕ0 on some interval [0, T ], T > 0, and any

such weak solution can be extended to a weak solution on [0,∞). The family of all
weak solutions ϕ : [0,∞) → X is a generalized semiflow on X satisfying the con-
tinuity conditions (C4w) and (C4). For each weak solution V (ϕ(·)) ∈ C1([0,∞)),
with

d

dt
V (ϕ(t)) = −β‖ut‖2, t ∈ [0,∞), (3.11)

and (u, ut) ∈ C1([0,∞)) with
d

dt
(u, ut) = ‖ut‖2 − β(u, ut) − ‖∇u‖2 − (f(u), u), t ∈ [0,∞). (3.12)

Proof. The theorem is essentially proved in Ball [6, Section 5], but we give the
main points for the convenience of the reader. For the local existence we use [6,
Theorem 5.9], which has as its main hypothesis the sequential weak continuity of
F , established in Lemma 3.3; this result guarantees that given ϕ0 ∈ X there is at
least one weak solution ϕ with ϕ(0) = ϕ0 defined on a maximal interval [0, tmax),
where 0 < tmax ≤ ∞, and that for any such weak solution with tmax < ∞∫ tmax

0

‖F(ϕ(t))‖X dt = ∞. (3.13)

To show that tmax = ∞ we first derive the energy equation (3.11). To this end
consider the functional

E(u) =
∫

Ω

F (u(x)) dx.

We first claim that E : H1
0 → R is sequentially weakly continuous. Let uj ⇀ u in

H1
0 . If n ≥ 3 we have from (1.5) that

F (u) ≤ C(|u| 2n−2
n−2 + 1),

so that |F (uj)| is bounded above by a strongly convergent sequence in L1, while if
n ≤ 2 then F (uj) is bounded in Lp for any 1 ≤ p < ∞. Hence E(uj) → E(u).
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Next we claim that E ∈ C1(H1
0 ;R) with derivative E′(u)(ψ) = (f(u), ψ) for

u, ψ ∈ H1
0 . In fact E is Gateaux differentiable with the indicated derivative since

E(u + τψ) − E(u)
τ

=
1
τ

∫
Ω

∫ 1

0

d

ds
F (u + sτψ)ds dx

=
∫

Ω

∫ 1

0

f(u + sτψ)ψ ds dx,

and we can pass to the limit τ → 0 using the dominated convergence theorem and
the hypotheses (1.5),(1.6). To show that E is C1 it then suffices (cf. Zeidler [67,
Proposition 4.8 p137]) to prove that E′ : H1

0 → H−1 is continuous. Let uj → u in
H1

0 . Then if n ≥ 3,

‖E′(uj) − E′(u)‖H−1 ≤ sup
‖ψ‖

H1
0
≤1

‖f(uj) − f(u)‖
L

2n
n+2

‖ψ‖
L

2n
n−2

≤ C‖f(uj) − f(u)‖
L

2n
n+2

,

where here and below C denotes a generic constant, and since

|f(uj) − f(u)| 2n
n+2 ≤ C(1 + |uj |

2n2

n2−4 + |u| 2n2

n2−4 ), (3.14)

and the right-hand side of (3.14) is strongly convergent in L1, we have that E′(uj) →
E′(u) in H−1 as required. If n ≤ 2 then we obtain the same conclusion since
f(uj) → f(u) strongly in Lp for all 1 ≤ p < ∞. Since E is C1 so is

V (ϕ) =
1
2
‖v‖2 +

1
2
‖∇u‖2 + E(u),

with derivative

V ′(ϕ)
(

ψ
χ

)
= (v, χ) + (∇u,∇ψ) + (f(u), ψ). (3.15)

It follows from (3.15) that

〈V ′(ϕ), Aϕ + F(ϕ)〉 = −β‖v‖2, (3.16)

for all ϕ ∈ D(A). Now let T > 0, define g(t) = F(ϕ(t)), and let gj ∈ C1([0, T ];X)
with gj → g in C([0, T ];X). Let ϕ0j ∈ D(A) with ϕ0j → ϕ0 in X, and define
ϕj ∈ C([0, T ];X) by

ϕj(t) = eAtϕ0j +
∫ t

0

eA(t−s)gj(s) ds.

Then (cf. Pazy [53, Corollary 2.5 p107]) ϕj(t) ∈ D(A), ϕj ∈ C1([0, T ];X) and
ϕ̇j(t) = Aϕj(t) + gj(t) for all t ∈ [0, T ]. A simple estimation shows that ϕj → ϕ in
C([0, T ];X). Thus using (3.16)

V (ϕj(t)) − V (ϕ0j) =
∫ t

0

〈V ′(ϕj(s)), Aϕj(s) + gj(s)〉 ds (3.17)

= −β

∫ t

0

‖vj(s)‖2 ds +
∫ t

0

〈V ′(ϕj(s)), gj(s) −F(ϕj(s))〉 ds,

where ϕj =
(

uj

vj

)
. Since V is C1 we can pass to the limit in (3.17) to obtain

V (ϕ(t)) − V (ϕ(0)) = −β

∫ 1

0

‖v(s)‖2 ds,

from which (3.11) follows. The same method establishes (3.12).
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From the energy equation it follows that V (ϕ(t)) is uniformly bounded on
[0, tmax). Since from (1.4)

F (u) ≥ −λ

2
u2 + a

for some λ < λ1 and some a, we can write

2V (ϕ(t)) =
∫

Ω

[u2
t + (1 − λ

λ1
)|∇u|2 +

λ

λ1
(|∇u|2 − λ1u

2) + 2F (u) + λu2] dx

≥
∫

Ω

[u2
t + (1 − λ

λ1
)|∇u|2 + 2a] dx. (3.18)

Hence ‖ϕ(t)‖X is uniformly bounded on [0, tmax). But since F maps bounded sets
to bounded sets, this implies by (3.13) that tmax = ∞.

We have thus proved that condition (H1) in the definition of a generalized semi-
flow holds. The conditions (H2), (H3) follow immediately from the definition of a
solution, and so it remains to establish (C4w) and (C4) (which implies (H4)).

Let ϕj ∈ G with ϕj(0) ⇀ z, and let T > 0, θ ∈ X∗. We show that 〈ϕj , θ〉 is
equicontinuous on [0, T ]. Let 0 ≤ t ≤ t + τ ≤ T . Then

〈ϕj(t + τ) − ϕj(t), θ〉 = 〈(eA(t+τ) − eAt)ϕj(0), θ〉 +
∫ t+τ

t

〈eA(t+τ−s)F(ϕj(s)), θ〉 ds

+
∫ t

0

〈(eA(t+τ−s) − eA(t−s))F(ϕj(s)), θ〉 ds. (3.19)

Now by [6, Lemma 5.11] if wj ⇀ w in X and tj → t in [0, T ] then eAtj wj ⇀ eAtw
in X, from which it follows that given ε > 0,M > 0 there exists δ > 0 such that
|〈(eA(t+τ) − eAt)w, θ〉| ≤ ε whenever ‖w‖X ≤ M , t, t + τ ∈ [0, T ] with 0 ≤ τ ≤ δ.
Since ‖ϕj(s)‖X , ‖F(ϕj(s))‖X are uniformly bounded for s ∈ [0, T ] independently
of j, the equicontinuity then follows easily from (3.19). Thus by [6, Lemma 5.12]
there exist a subsequence ϕµ of ϕj and a weakly continuous map ϕ : [0, T ] → X
with ϕ(0) = z such that ϕµ(t) ⇀ ϕ(t) for each t ∈ [0, T ]. Given θ ∈ X∗ it is now
easy to pass to the limit in the equation

〈ϕµ(t), θ〉 = 〈eAtϕµ(0), θ〉 +
∫ t

0

〈eA(t−s)F(ϕµ(s)), θ〉 ds

using the sequential weak continuity of F to show that ϕ is a weak solution. Taking
T = 1, 2, ... and choosing an appropriate diagonal sequence we thus obtain (C4w).

Now suppose that ϕj(0) → z strongly. Let ϕµ, ϕ be as in (C4w), so that in
particular ϕ(0) = z. Since V is continuous, V (ϕj(0)) → V (ϕ(0)). Now let tµ → t
in [0, T ]. Since E is sequentially weakly continuous, V is sequentially weakly lower

semicontinuous on X. Hence, writing ϕµ =
(

uµ

uµt

)
, ϕ =

(
u
ut

)
, we obtain

V (ϕ(t)) ≤ lim inf
µ→∞ V (ϕµ(tµ)),

∫ t

0

‖ut‖2ds ≤ lim inf
µ→∞

∫ t

0

‖uµt‖2ds, (3.20)

and hence

V (ϕ(t)) + β

∫ t

0

‖ut‖2ds ≤ lim inf
µ→∞

(
V (ϕµ(tµ)) + β

∫ tµ

0

‖uµt‖2ds

)
. (3.21)

Since by the energy equation both sides of (3.21) equal V (ϕ(0)), it follows from
(3.20) that V (ϕµ(tµ)) → V (ϕ(t)), and thus that ‖ϕµ(tµ))‖2

X → ‖ϕ(t)‖2
X , which

together with the weak convergence implies that ϕµ(tµ) → ϕ(t) strongly in X.
Thus (C4) holds.
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Remark 3.2. In fact Theorem 3.6 remains valid if (1.4) is replaced by the weaker
condition

lim inf
|u|→∞

f(u)
u

≥ −k (3.22)

for some k > 0. For it follows from (3.22) that

F (u) ≥ −k′

2
u2 + c (3.23)

for constants k′ > k and c, and hence if ‖ϕ(0)‖X ≤ M and T > 0 we have

1
2
‖ut‖2 +

1
2
‖∇u‖2 + c1 − k′

2
‖u‖2 ≤ V (ϕ(t))

≤ V (ϕ(0)) ≤ C(M) < ∞ (3.24)

for all t ∈ [0, T ], where c1, C(M) are constants. Thus

‖ut‖2 ≤ D(M)(1 + ‖u‖)2
on [0, T ], and so, using

u(·, t) − u(·, 0) =
∫ t

0

ut(·, s) ds,

we have that

(1 + ‖u‖)(t) ≤ 1 + λ
− 1

2
1 M

1
2 + D(M)

1
2

∫ t

0

(1 + ‖u‖)(s) ds.

Applying Gronwall’s inequality we deduce that for suitable constants ‖u‖(t) ≤
D1(M) < ∞ on [0, T ], and hence from (3.24) that ‖ϕ(t)‖X ≤ C1(M) < ∞ on [0, T ].
With this estimate in hand the proof goes through with only minor modifications.
However we need the stronger condition (1.4) to prove the existence of a global
attractor; see Remark 4.1 below.

4. Asymptotic compactness and the existence of a global attractor.

4.1. Proof of Theorem 1.1. We prove Theorem 1.1, with the exception of the
assertion that A is connected, which is deferred to Section 5. In order to apply

Theorem 2.7 we need to verify its various hypotheses. We first note that z =
(

u
v

)

is a rest point of G if and only if

〈z,A∗θ〉 + 〈F(z), θ〉 = 0

for all θ ∈ D(A∗), that is, by a lemma in Ball [5], z ∈ D(A) and Az + F(z) = 0.
This is equivalent to v = 0 and u ∈ H1

0 with ∆u ∈ L2 and

−∆u + f(u) = 0. (4.1)

Since V is continuous and by (3.11) nonincreasing along solutions, in order to
prove that V is a Lyapunov function we just have to show that property (iii) in the

definition holds. But if V (ξ(t)) is constant for ξ =
(

u
ut

)
then we have ut = 0 for

all t and hence, from Proposition 3.4, ξ is a rest point.
The proof of the following result contains the key idea of the paper.

Proposition 4.1. G is asymptotically compact.
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Proof. Consider the functional

I(ϕ) =
1
2
‖ut‖2 +

1
2
‖∇u‖2 +

β

2
(u, ut) + E(u).

By Theorem 3.6,

d

dt
I(ϕ) = −βI(ϕ) + H(u),

where

H(u) = β

∫
Ω

(F (u) − 1
2
uf(u)) dx.

Hence
d

dt
[eβtI(ϕ(t))] = eβtH(u),

and so, given any M > 0,

I(ϕ(M)) = e−βMI(ϕ(0)) +
∫ M

0

eβ(t−M)H(u) dt. (4.2)

Now let ϕj ∈ G with ϕj(0) bounded, and let tj → ∞. From the energy equation
V (ϕj(tj)) is bounded, and thus (see (3.18)) so is ϕj(tj). Thus we may assume that
ϕj(tj) ⇀ χ, and that also ϕj(tj − M) ⇀ χ−M , for some χ, χ−M ∈ X. By (C4w)

we can further assume that there exists ϕ̄ =
(

u
ut

)
∈ G with

ϕj(tj + t − M) ⇀ ϕ̄(t),

where ϕ̄(0) = χ−M , ϕ̄(M) = χ. We apply (4.2) to ϕj(tj + t − M) =
(

uj

ujt

)
(t).

Thus

I(ϕj(tj)) = e−βMI(ϕj(tj − M)) +
∫ M

0

eβ(t−M)H(uj) dt.

Since by the energy equation and our growth hypotheses, H(uj)(t) is uniformly
bounded on [0,M ] with H(uj)(t) → H(u)(t), we have by (4.2) applied to ϕ̄ that

lim
j→∞

∫ M

0

eβ(t−M)H(uj) dt =
∫ M

0

eβ(t−M)H(u) dt

= I(ϕ̄(M)) − e−βMI(ϕ(0)).

Hence

lim sup
j→∞

I(ϕj(tj)) ≤ Ce−βM + I(ϕ̄(M)) − e−βMI(ϕ̄(0)).

Since I is sequentially weakly lower semicontinuous, letting M → ∞ we deduce
that

lim sup
j→∞

I(ϕj(tj)) ≤ I(χ) ≤ lim inf
j→∞

I(ϕj(tj)),

and so I(ϕj(tj)) → I(χ). Therefore ‖ϕj(tj)‖X → ‖χ‖X and hence ϕj(tj) → χ
strongly. Thus G is asymptotically compact.

Lemma 4.2. The set Z of rest points is bounded in X.
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Proof. If z =
(

u
0

)
is a rest point, then by (4.1)

0 = ‖∇u‖2 + (u, f(u)) ≥ ‖∇u‖2 − λ‖u‖2 + c

≥
(

1 − λ

λ1

)
‖∇u‖2 + c,

where λ < λ1 and c are constants independent of u.

This completes the verification of the hypotheses of Theorem 2.7, and hence the
proof of Theorem 1.1 with the exception of the connectedness of the attractor.

Remark 4.1. If (1.4) is replaced by the weaker condition

lim inf
|u|→∞

f(u)
u

≥ −λ1

then in general there does not exist a global attractor. For example, let f(u) =
−λ1u + c, where c �= 0, and let ω1 ∈ H1

0 be the positive eigenfunction of −∆
corresponding to the eigenvalue λ1. Then, for any solution u of (1.1), g(t) =
(u, ω1)(t) satisfies

g̈ + βġ + d = 0, (4.3)

where d = c(1, ω1) �= 0, and all solutions of (4.3) are unbounded.

4.2. Existence of an attractor under weaker growth conditions. We now
consider the question of whether a global attractor exists for dimensions n ≥ 3 for
nonlinearities not satisfying the growth condition (1.5). Suppose that f satisfies
(1.4) and that

|f(u)| ≤ c0(|u|γ + 1), (4.4)

where c0 > 0 and 1 ≤ γ < ∞. If γ > n+2
n−2 we assume additionally that

F (u) ≥ c1|u|γ+1 − c2, (4.5)

where c1 > 0, c2 are constants. Let Yγ = H1
0 ∩ Lγ+1. Then Y ∗

γ = H−1 + L
γ+1

γ .
Note that Yγ = H1

0 if γ ≤ n+2
n−2 . Set Xγ = Yγ × L2. We now no longer have that

f : H1
0 → L2, and so the methods of Section 3 do not apply. However, we can still

prove the existence of a weak solution to (1.1)-(1.3) using the Galerkin method (see
Lions [45, pp1-27]).

Theorem 4.3. Let f satisfy (1.4) and (4.4)-(4.5). Given
(

u0

u1

)
∈ Xγ there

exists a function u with ϕ =
(

u
ut

)
: [0,∞) → Xγ weakly continuous such that

utt : [0,∞) → Y ∗
γ is weakly continuous, ϕ(0) =

(
u0

u1

)
and

(utt, ψ) + β(ut, ψ) + (∇u,∇ψ) + (f(u), ψ) = 0, t ∈ [0,∞), (4.6)

for all ψ ∈ Yγ .

Remark 4.2. In the first term of (4.6) (·, ·) is the continuous extension of the L2

inner product to Y ∗
γ × Yγ .
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Proof. Following Lions [45], and using the hypotheses (1.4), (4.4), (4.5) in the
obvious way, we obtain u ∈ L∞((0,∞);Yγ) with ut ∈ L∞((0,∞);L2), utt ∈
L∞((0,∞);Y ∗

γ ) satisfying (4.6) in the sense of distributions on (0,∞) for every ψ ∈
Yγ . By modifying u on a set of t measure zero (see [45, Lemma 1.2]) we can suppose
that u : [0,∞) → L2 is continuous, and similarly that ut : [0,∞) → Y ∗

γ is continu-
ous, with u(0) = u0, ut(0) = u1. Since u ∈ L∞((0,∞);Yγ), ut ∈ L∞((0,∞);L2), it
follows easily that ϕ : [0,∞) → Xγ is weakly continuous, and the weak continuity
of utt then follows from (4.6).

It is not known whether the weak solution given by Theorem 4.3 satisfies the
energy equation (3.11). However, we now assume that it does, specifically that the
following (unproved) condition holds.

(E) Every weakly continuous solution ϕ : [0,∞) → Xγ in the sense of (4.6)
satisfies the energy equation

V (ϕ(t)) + β

∫ t

0

‖ut(s)‖2ds = V (ϕ(0)), t ∈ [0,∞).

We also make use of the following further conditions on f .

lim inf
|u|→∞

1
2uf(u) − F (u)

|u|γ+1
≥ 0, (4.7)

lim inf
|u|→∞

(
f(u)

u
− c3|u|γ−1

)
> −λ1, (4.8)

where c3 > 0 is a constant.
We note that the hypotheses (1.4), (4.4), (4.5), (4.7), (4.8) are all satisfied for f

of the form

f(u) = κ|u|γ−1u + h(u),

where κ > 0 and h is continuous with |h(u)| ≤ C(|u|ρ + 1) for constants C and
ρ ∈ [1, γ).

Theorem 4.4. Let f satisfy (1.4) and (4.4)-(4.5). Under the assumption (E) the
family of weakly continuous solutions ϕ : [0,∞) → Xγ to (1.1) in the sense of (4.6)
forms a generalized semiflow G on Xγ satisfying the continuity conditions (C4w)
and (C4).

Suppose further that if γ = n+2
n−2 then (4.7) holds, while if γ > n+2

n−2 then both (4.7)
and (4.8) hold. Then G possesses a global attractor A in Xγ . For each complete
orbit ξ in A the α and ω limit sets of ξ are connected subsets of the set Z ⊂ Xγ of
rest points on which V is constant. If Z is totally disconnected then the limits

z− = lim
t→−∞ ξ(t), z+ = lim

t→∞ ξ(t)

exist and z−, z+ are rest points; furthermore, ϕ(t) tends to a rest point in Xγ as
t → ∞ for every solution ϕ.

Proof. First suppose that ϕj =
(

uj

ujt

)
∈ G with ϕj(0) ⇀ z =

(
u0

u1

)
. By

the energy equation and (4.5) we have that ‖ϕj(t)‖Xγ
≤ M < ∞ for all j and

t ≥ 0. A similar argument to that in the proof of Theorem 4.3 shows that there is
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a subsequence ϕµ such that ϕµ
∗
⇀ ϕ in L∞((0,∞);Xγ) for some ϕ =

(
u
ut

)
∈ G

with ϕ(0) = z. Now let tµ → t. Since

uµ(tµ) − uµ(0) =
∫ tµ

0

uµt(s) ds

we have that

uµ(tµ) ⇀ u(0) +
∫ t

0

ut(s) ds = u(t)

in L2, and since uµ(tµ) is bounded in Yγ this implies that uµ(tµ) ⇀ u(t) in Yγ .
Similarly, using the equation

(uµt(tµ), v) − (uµt(0), v) =
∫ tµ

0

(uµtt(s), v) ds

for all v ∈ Yγ , we deduce that uµt(tµ) ⇀ ut(t) in L2. Hence (C4w) holds. Then we
obtain (C4) in the same way as in Theorem 3.6.

Next we note that the identity (3.12) holds. For this it suffices to show that

(u, ut)(t1) − (u, ut)(t0) =
∫ t1

t0

[‖ut‖2 + (utt, u)] dt (4.9)

for any 0 < t0 < t1 < ∞. Now since for any T > 0 we have u ∈ C([0, T ];Yγ),
ut ∈ C([0, T ]);L2), utt ∈ C([0, T ];Y ∗

γ ), we can mollify u with respect to t to obtain

a sequence u(k) ∈ C2([t0, t1];H1
0 ) with u(k) → u in C([t0, t1];Yγ), u

(k)
t → ut in

C([t0, t1]);L2) and u
(k)
tt → utt in C([t0, t1];Y ∗

γ ). Then (4.9) follows by passing to
the limit in the same identity for u(k).

With (3.12) in hand, the proof of Proposition 4.1 goes through with a slight
modification. In fact the argument only requires that −H and E be sequentially
weakly lower semicontinuous on Yγ . For E this follows from (3.23), Fatou’s lemma
and the compactness of the embedding of H1

0 in L2. If γ < n+2
n−2 then H is sequen-

tially weakly continuous on H1
0 . If γ ≥ n+2

n−2 then by (4.7) we have for any ε > 0
that

1
2
uf(u) − F (u) + ε|u|γ+1 ≥ M(ε)

for some constant M(ε). Hence if uj ⇀ u in Yγ , by Fatou’s lemma we have that

lim inf
j→∞

−H(uj) + Cε ≥ lim inf
j→∞

∫
Ω

(
1
2
ujf(uj) − F (uj) + ε|uj |γ+1) dx

≥ −H(u) + ε

∫
Ω

|u|γ+1 dx,

from which the required lower semicontinuity follows by letting ε → 0.
Finally the proof of Lemma 4.2 is easily modified using (4.8) to show that the set

of rest points is bounded in Xγ . Hence the existence and properties of the attractor
follow from Theorem 2.7.

5. Kneser’s property and connectedness of the attractor. We complete the
proof of Theorem 1.1 by showing that Kneser’s property holds.

Theorem 5.1. Suppose that the hypotheses of Theorem 3.6 hold. Then T (τ){z} is
connected for every z ∈ X and τ ≥ 0.
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Proof. We adapt the standard proof of Kneser’s theorem for ordinary differential
equations (cf. Hartman [32]). Let n ≥ 3. We claim that that there is a sequence
fk ∈ C1(R) with fk → f in C([0, T ]) for any T > 0, supu∈R |f ′

k(u)| < ∞ for each
k, and satisfying

|fk(u)| ≤ c(|u| n
n−2 + 1), (5.1)

Fk(u) ≥ −λ

2
u2 + d, (5.2)

for constants c > 0, λ < λ1, d independent of k, where Fk(u) =
∫ u

0
fk(r) dr.

To see this, define for k = 1, 2, ...

fk(u) =




f(k) if u > k,
f(u) if |u| ≤ k,
f(−k) if u < −k,

(5.3)

Then fk ≤ c0(|u| n
n−2 + 1), and F k(u) =

∫ u

0
fk(r) dr satisfies F k(u) ≥ −λ

2 u2 + d1

for some 0 < λ < λ1 and d1 independent of k. Let ρε, 0 < ε < 1, be a mollifier
and let fk,ε = ρε ∗ fk. Since fk,ε(u) = fk(u) for |u| ≥ k + 1, given k there exists a
sufficiently small εk > 0 such that supu∈R |fk,εk(u)− fk(u)| < 1

k . Then fk = fk,εk

has the required properties, since

Fk(u) = F k(u) +
∫ u

0

(fk(r) − fk(r)) dr

≥ −λ

2
u2 + d1 − k + 1

k
.

Note that fk : H1
0 → L2 satisfies the global Lipschitz condition

‖fk(p) − fk(q)‖ ≤ Ck‖p − q‖H1
0

for all p, q ∈ H1
0 .

Note also that if u ∈ C([0, T ];H1
0 ) then fk(u) → f(u) in C([0, T ];L2). To see this

let tk → t in [0, T ]. We have that u(·, tk) → u(·, t) in L
2n

n−2 , and in particular may
assume that u(x, tk) → u(x, t) for a.e. x ∈ Ω. Then

lim
k→∞

∫
Ω

|fk(u(x, tk)) − f(u(x, t))|2 dx = 0, (5.4)

since the integrand is by (5.1) bounded above by a strongly convergent sequence in
L1.

If n ≤ 2 then (5.2), (5.3), (5.4) still hold, where in the case n = 2 we use Lemma
3.2 and Trudinger’s inequality as in the proof of Lemma 3.3.

Let z =
(

uo

u1

)
∈ X let τ > 0 snd suppose that the compact set T (τ){z} is not

connected. Then T (τ){z} = A1 ∪A2 for disjoint compact subsets A1, A2 of X. Let

U1, U2 be disjoint open neighbourhoods of A1, A2 respectively and let ϕ =
(

u
ut

)
,

ϕ̃ =
(

ũ
ũt

)
be two solutions in G with ϕ(0) = ϕ̃(0) = z and ϕ(τ) ∈ U1, ϕ̃(τ) ∈ U2.

For λ ∈ [0, 1] consider the equation

wtt + βw − ∆w + fk(w) = gk(λ, t), (5.5)

where

gk(λ, t) = λ(fk(u) − f(u)) + (1 − λ)(fk(ũ) − f(ũ)),
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which we may write in the form

η(t) = eAtz +
∫ t

0

eA(t−s)(Fk(η(s)) + hk(s)) ds, (5.6)

where

η =
(

w
wt

)
, Fk(η) =

(
0

−fk(w)

)
, (5.7)

and

hk(t) =
(

0
gk(λ, t)

)
.

Since hk ∈ C([0, τ ] : X) and Fk : X → X is Lipschitz, (5.6) has a unique solution
defined on some interval [0, τ1], where τ1 > 0. Furthermore, the argument in the
proof of Theorem 3.6 shows that the energy equation

Vk(η(t)) − Vk(z) = −β

∫ t

0

‖wt(s)‖2 ds +
∫ t

0

(gk(λ, s), wt(s)) ds (5.8)

holds on the interval of existence, where

Vk(η) =
1
2
‖wt‖2 +

1
2
‖∇w‖2 +

∫
Ω

Fk(w) dx.

From (5.8) we deduce that

Vk(η(t)) − Vk(z) ≤ 1
2β

∫ t

0

‖gk(λ, s)‖2ds,

Also it is easily proved that

lim
k→∞

Vk(z) = V (z). (5.9)

Hence an argument similar to that in the proof of Theorem 3.6 shows that the
solution exists on [0, τ ] and ‖η(t)‖X ≤ M for all t ∈ [0, τ ], where M is a constant
independent of k and λ. Furthermore the solution η(t) depends continuously on λ
for each t ∈ [0, τ ]. Since by uniqueness η = ϕ for λ = 1 an η = ϕ̃ for λ = 0, it
follows that for each k there exists a λk ∈ [0, 1] such that the corresponding solution
ηk of (5.6) satisfies ηk(τ) �∈ U1 ∪ U2.

We now let k → ∞. Since the solutions ηk are uniformly bounded in C([0, τ ];X),
we can argue as in the proof of Theorem 3.6, using the fact that gk(λk, ·) → 0 in
C([0, τ ];L2), to deduce that there exists a subsequence ηµ such that ηµ(t) ⇀ η∞(t)
for each t ∈ [0, τ ] for some η∞ ∈ G with η∞(0) = z. Since

lim
k→∞

(
Vk(ηk(τ)) − Vk(z) + β

∫ τ

0

‖wkt‖2ds

)

= V (η∞(τ)) − V (z) + β

∫ τ

0

‖w∞t‖2ds,

and since (5.9) holds, it follows in the now familiar way that in fact ηµ(τ) →
η∞(τ) strongly in X, so that η∞(τ) �∈ U1 ∪ U2 and hence η∞(τ) �∈ T (τ){z}, a
contradiction.

Remark 5.1. It is not obvious how to extend this result to f satisfying weaker
growth hypotheses under the a priori assumption (E), in particular because it is
not clear how to define the last integral in (5.8).
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Remark 5.2. Presumably nonunique solutions to (1.1), (1.2) abound under our
growth hypotheses, even for smooth f behaving sufficiently irregularly at infinity.
However it does not seem obvious how to give an example for the boundary con-
ditions (1.2). For Neumann boundary conditions examples of nonuniqueness can
easily be constructed using x-independent solutions satisfying the ordinary differ-
ential equation ü + βu̇ + f(u) = 0 for suitable non-Lipschitz f and initial data
u(0) = u̇(0) = 0. For example, if we let f(u) = −6u

1
3 − 3βu

2
3 for 0 ≤ u ≤ 1 then

we have the solutions u(t) = 0 and ũ(t) = t3 for t > 0 sufficiently small.
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