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a b s t r a c t

The nucleation of bcc austenite in a single crystal of a mechanically stabilized 2H-martensite of Cu–Al–Ni
shape-memory alloy is studied. The nucleation process is induced by localized heating and observed by
optical microscopy. It is observed that nucleation occurs after a time delay and that the nucleation points
are always located at one of the corners of the sample (a rectangular bar in the austenite), regardless of
eywords:
hase transitions
hape memory
icrostructure

oung measures

where the localized heating is applied.
Using a simplified nonlinear elasticity model, we propose an explanation for the location of the

nucleation points, by showing that the martensite is a local minimizer of the energy with respect to
localized variations in the interior, on faces and edges of the sample, but not at corners, where a localized
microstructure can lower the energy.
uasiconvexity

. Introduction

The shape-recovery process, i.e. the thermally driven tran-
ition from the low temperature phase (martensite) into the
igh-temperature phase (austenite), is a fundamental part of the
hape-memory effect. For many shape-memory alloys, the crit-
cal temperature for initiation of the shape-recovery process is
trongly dependent on the microstructure of martensite entering
he transition. When the heating is applied on a thermally induced

artensitic microstructure obtained by the stress-free cooling of
he austenitic phase, the transition starts at a certain temperature,
sually denoted as AS (austenite start). However, if the material in
he martensitic phase is, prior to the heating, deformed (i.e. if the

icrostructure is reoriented by application of external mechan-
cal loads), this critical temperature can be shifted significantly
pwards. This effect is called the mechanical stabilization of mar-
ensite and has been documented for both single crystals and
olycrystalline shape-memory alloys (SMAs) [1,2].

The difference between the shape-recovery process from the
echanically stabilized martensite and from the thermally induced
artensitic microstructure was clearly illustrated by acoustic emis-

ion (AE) measurements by Landa et al. [3]. The AE method is based

n detecting and counting the number of acoustic signals emit-
ed by the material during the course of the transition (see Refs.
4,5] for an example of the use of AE for characterization of the
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martensitic transitions in SMAs). Fig. 1 (taken from Ref. [3] with
courtesy of M. Landa) gives an illustrative example of the com-
parison of AE records obtained for the same single crystal of the
Cu–Al–Ni alloy undergoing the transition in these two different
regimes. For the thermally induced microstructure, more than 90%
of AE events occur in a temperature range between the austenite
start temperature AS and the austenite finish temperature AF, which
is in agreement with DSC measurements for the same material.1

The transition in this temperature interval is preceded by a small
number of events (less than 10%) appearing below AS. These events
can be ascribed to the formation of nuclei of austenite in the ther-
mally induced martensitic microstructure. Above AS, these nuclei
grow successively through the material and provide the transi-
tion. For the stabilized martensite, more than 90% of the events are
recorded within a very narrow temperature interval. As observed
by Seiner et al. [6], the transition from the mechanically stabilized
martensite is provided by the formation and propagation of special
interfacial microstructures, which interpolate between austenite
and mechanically stabilized martensite ensuring the kinematically
compatible connection between them. These microstructures are
able to exist and propagate in a wide range of temperatures and
thermal gradients [7]. Thus, the AE record for the stabilized mar-
tensite can be interpreted as follows: the small number of AE events

detected below the narrow interval corresponds to the nuclea-
tion of austenite. As soon as the nucleation barrier is overcome,
the interfacial microstructure propagates abruptly through the

1 These temperatures, however, differ from the transition temperatures of the
material used in Section 2 of this paper, since the heat treatment of the material
used by Landa et al. [3] was slightly different.

dx.doi.org/10.1016/j.jallcom.2011.11.070
http://www.sciencedirect.com/science/journal/09258388
http://www.elsevier.com/locate/jallcom
mailto:ball@maths.ox.ac.uk
mailto:koumatos@maths.ox.ac.uk
mailto:hseiner@it.cas.cz
dx.doi.org/10.1016/j.jallcom.2011.11.070


S38 J.M. Ball et al. / Journal of Alloys and Co

-20 200 40 60 80 100

100%

%10

1%

0.1%

0.01%

A
(D
S
C
)

S

A
(D
S
C
)

F

stabilized
martensite

thermally induced
microstructure

Temperature °C][

cu
m
ul
at
iv
e
su
m
of
A
E
ev
en
ts

(lo
ga
rit
hm
ic
sc
al
e) b

a

Fig. 1. Illustrative comparison of AE records for the transitions of Cu–Al–Ni single
crystal from the thermally induced and mechanically stabilized states. (a) grad-
ual increase of the number of events between AS and AF for the thermally induced
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icrostructure; (b) abrupt transition of the stabilized martensite within a narrow
emperature interval. The 100% corresponds to ∼107 events.

pecimen and no further increase of the temperature is necessary.
his shows how essential the nucleation process is for the effect of
echanical stabilization and the shape-recovery process in general.
This mechanical stabilization effect resulted in a rather surpris-

ng nucleation mechanism of austenite in a Cu–Al–Ni single crystal.
n a simplified setting, we provide a mathematical explanation for
his mechanism, based on ideas of the modern calculus of varia-
ions.

. Experimental observations

The observations that follow were made on a single crystal of Cu–Al–Ni, pre-
ared by the Bridgman method at the Institute of Physics, ASCR. The specimen was
prismatic bar of dimensions 12 mm×3 mm×3 mm in the austenite with edges

pproximately along the principal directions of the austenitic phase (see Ref. [6] for
detailed description). The martensite-to-austenite transition temperatures deter-
ined by DSC were AS = − 6 ◦C and AF = 22 ◦C. The critical temperature TC for the

ransition from the stabilized martensite induced by homogeneous heating for this
pecimen was ∼60 ◦C. This was estimated from optical observations of the transi-
ion in this specimen with one of its faces laid on and thermally contacted with a
radually heated Peltier cell, using a heat conducting gel.

The specimen was subjected to the following experimental procedure:

) by unidirectional compression along its longest edge, the specimen was trans-
formed into a single variant of mechanically stabilized 2H martensite. Due to
the mechanical stabilization effect the reverse transition did not occur during
unloading.

) the specimen was then freely laid on a slightly pre-stressed, free-standing
polyethylene (PE) foil (thickness 10 �m, temperature resistance up to 140 ◦C).
This ensured that there were minimal mechanical constraints to the specimen
during the observations.
) the specimen was locally heated by touching its surface with an ohmically heated
tip of the Solomon SL-30 (Digital) soldering iron with temperature electroni-
cally controlled to be 200 ◦C (control accuracy ∼ ±5 ◦C), i.e. significantly above
the AS and TC temperatures. The nucleation of austenite was optically observed

ig. 2. Snapshots of the recorded video taken during the optical observations of the nucle
f the specimen given in the coordinate system of the austenitic lattice (indicated by the s
ideo in which the nucleus was clearly visible); (c) the fully formed transition front prop
utlined by the arrows indicating the austenite-to-twinned martensite interface (the ha
tabilized martensite.
mpounds 577S (2013) S37–S42

and recorded by a conventional CCD camera (7× optical zoom, 25 frames/s, PAL
resolution with mpeg compression).

The localized heating was applied in three different ways: (i) with the tip touch-
ing one of the corners surrounding the upper face; (ii) with the tip touching one
of the edges, approximately in the middle between two corners; (iii) with the tip
touching approximately at the centre of the upper face. These experiments were
repeated for various orientations of the specimens, i.e. with various faces chosen to
be the upper (observed) ones.

When heating was applied at a corner, the nucleation was always induced
exactly at that corner and occurred nearly immediately after touching the speci-
men with the tip. When heating either an edge or the centre of the upper face, the
nucleation occurred at one of the corners as well, i.e. the localized heating did not
result in formation of the nucleus under the tip. Moreover, the nucleus was only
observable after 30–60 s, which was enough time for the corner to reach the TC tem-
perature. In different tests the nuclei were observed at different corners (including
those lying on the PE foil) and the exact choice was probably governed by imperfec-
tions of the stabilized martensite. After the nucleation, the transition front formed
and propagated through the specimen. The velocity of the transition front probably
depended on the actual overheating of the specimen. For some runs of the experi-
ment, it propagated at a few millimetres per second (comparable to the transition
front propagating in a thermal gradient [7]); for other runs, the whole specimen
transformed fully within less than 1 s. This also supports the conjecture that the
nucleation is affected by the local microstructure in the corners: if the nucleation
barrier in one of the corners is lowered e.g. by imperfections in the stabilized mar-
tensite, the nucleation occurs earlier (i.e. at a lower temperature) and the transition
front, which lowers the temperature of the material by the latent heat [7], propagates
more slowly.

In Fig. 2, snapshots from the observations are seen (video). The transition
fronts have morphologies of the interfacial microstructures described in [6] (X- and
�-interfaces), in which the mechanically stabilized martensite is separated from
austenite by a twinned region ensuring kinematical compatibility.

3. Nonlinear elasticity model: general and simplified

3.1. General model

The general nonlinear elasticity model [8,9], which neglects
interfacial energy, leads to the prediction of infinitely fine
microstructures which are identified with limits of infimizing
sequences yk, k = 1, 2, . . ., for a total free energy

E�(y) =
∫
�

ϕ(∇y(x), �)dx.

Here, � represents the reference configuration of undistorted
austenite at the critical temperature �c and y(x) denotes the
deformed position of the particle x ∈�. The free-energy function
ϕ(F, �) depends on the deformation gradient F ∈ M3×3 and the tem-
perature �where M3×3 denotes the space of 3×3 matrices. By frame
indifference, ϕ(RF, �) =ϕ(F, �) for all F, � and for all rotations R; that{ }

K� = {F : ϕ

(
G, �

)
≥ ϕ

(
F, �

)
for all matrices G}

ation process. (a) The initial state with the length and crystallographic orientation
ubscript A); (b) formation of the nucleus at a corner (the first frame of the recorded
agating through the specimen. The morphology of the interfacial microstructure is
bit plane) and the twinned-to-detwinned interface between the laminate and the



J.M. Ball et al. / Journal of Alloys and Co

F
�

d
w

K

w
t
e

s
w
m
g

I

o
l
c
[

x
s
w
m
n
a
(
k
i
∇

3

t
C
b
a

ϕ

We also assume that det Us ≤ 1 and that∫
�

det ∇y (x) dx ≤ vol
(
y
(
�

))
(3)
ig. 3. Sequence of gradients ∇zk generating the x-independent Young measure
x = �ıF + (1 − �) ıG .

enote the set of energy-minimizing deformation gradients. Then
e assume that

� =

⎧⎨
⎩
˛

(
�
)
SO (3) − austenite � > �c

SO (3) ∪ ⋃N
i=1SO (3)Ui

(
�c

)
� = �c⋃N

i=1SO (3)Ui
(
�
)

− martensite � < �c,

here the positive definite, symmetric matrices Ui
(
�
)

correspond
o the N distinct variants of martensite and ˛(�) is the thermal
xpansion coefficient of the austenite with ˛(�c) = 1.

However, information about the gradients of minimizing
equences yk for E� is lost in the limit k→ ∞ and a more convenient
ay to describe microstructure is via the use of gradient Young
easures, which are families of probability measures � = (�x)x∈�

enerated by sequences of gradients ∇zk. Then we seek to minimize

� (�) =
∫
�

〈�x, ϕ〉dx =
∫
�

∫
M3×3

ϕ (A) d�x (A)

ver the space of gradient Young measures. In this case, the under-
ying (macroscopic) deformation gradient ∇z (x) corresponds to the
entre of mass of �, ∇z (x) = �x = 〈�x, id〉 =

∫
M3×3 Ad�x (A) (see Ref.

9]).
As an example of the use of Young measures, consider the

-independent measure �x = �ıF + (1 − �) ıG , for some � ∈ (0,1),
upported on two rank-one connected matrices F and G = F + a ⊗ n
here a, n are vectors and ı· denotes a Dirac mass. This Young
easure is generated by gradients ∇zk consisting of simple lami-

ates formed from alternating layers with normal n of width �k−1

nd (1 − �) k−1 in which ∇zk takes the respective values F and G
see Fig. 3). At each x, �x gives the limiting probabilities �, 1 −� as
→ ∞ of finding the matrices F and G, respectively, in an infinites-
mal neighbourhood of x. In this case, the macroscopic gradient is
z (x) = �x = �F + (1 − �)G.

.2. Simplified model

For our simplified model, we assume that � > �c and drop
he explicit dependence on the temperature. Let � denote the
u–Al–Ni bar in the austenite at � = �c and ϕ : M3×3

+ −→ R ∪ {+∞}2

e the free-energy function for the material. Since � > �c, we may
ssume that ϕ is bounded below by some −ı< 0 and that

(F) =
{

−ı F ∈ SO (3)

0 F ∈
⋃6
i=1SO (3)Ui,

(1)
2 M3×3
+ denotes the space of 3 by 3 matrices with positive determinant.
mpounds 577S (2013) S37–S42 S39

where the matrices Ui correspond to the six martensitic variants
for the cubic-to-orthorhombic transition of Cu–Al–Ni given by

U1 =

⎛
⎜⎝
ˇ 0 0

0
˛+ �

2
˛− �

2
0

˛− �
2

˛+ �
2

⎞
⎟⎠ U2 =

⎛
⎜⎝
ˇ 0 0

0
˛+ �

2
� − ˛

2
0

� − ˛
2

˛+ �
2

⎞
⎟⎠

U3 =

⎛
⎜⎝
˛+ �

2
0

˛− �
2

0 ˇ 0
˛− �

2
0

˛+ �
2

⎞
⎟⎠ U4 =

⎛
⎜⎝
˛+ �

2
0

� − ˛
2

0 ˇ 0
� − ˛

2
0

˛+ �
2

⎞
⎟⎠

U5 =

⎛
⎜⎝
˛+ �

2
˛− �

2
0

˛− �
2

˛+ �
2

0

0 0 ˇ

⎞
⎟⎠ U6 =

⎛
⎜⎝
˛+ �

2
� − ˛

2
0

� − ˛
2

˛+ �
2

0

0 0 ˇ

⎞
⎟⎠ .

In order to make the problem more tractable we work with an
energy functional that captures the essential behaviour of ϕ but
becomes infinite off the energy wells

K := SO (3) ∪
⋃6

i=1
SO (3)Ui.

In particular, we employ�-convergence to rigorously derive this
functional (see Ref. [10] for details). For k = 1, 2, . . ., let ϕk = k +ϕ
where : M3×3 −→ R is a map such that ≥ 0 and (A) = 0 if and
only if A ∈ K. For a Young measure � = (�x)x∈� and eack k = 1, 2, . . .,
define the energies Ik (�) =

∫
�

〈�x, ϕk〉dx.
The idea behind �-convergence is to precisely introduce a suit-

able notion of ‘variational convergence’ for which whenever Ik

�-converges to I then min I = lim k→∞ inf Ik and if �k is a converg-
ing sequence such that limkI

k
(
�k

)
= limk inf Ik, then its limit is a

minimum point for I; here, infima and minima are taken over the
space of Young measures. In our case, one expects that as k→ ∞
the increasing term k will force the limiting energy to blow up
everywhere outside K. Indeed, one can show that Ik �-converges to

I (�) =
∫
�

〈�x,W〉dx =
∫
�

∫
M3×3

W (A) d�x (A)dx, (2)

where W (A) = ϕ (A) for all A ∈ K and W (A) = +∞ otherwise. Note
that this energy forces minimizers to be supported entirely within
the set K.

4. Why nucleation can only occur at a corner.

Let Us be the stabilized variant of martensite so that ıUs is the
Young measure corresponding to a pure phase of that variant. In
our minimization problem, we consider variations of ıUs which are
localized in the interior, on faces, edges and at corners. More pre-
cisely, letting Bi, Bf, Be, Bc be as in Fig. 4, we say that a measure
� = (�x)x∈� is admissible for the interior (resp. for a face, an edge, a
corner) if �x = ıUs outside Bi (resp. Bf, Be, Bc) and �x = ∇y (x) almost
everywhere in � for some y with y (x) = Usx on the boundary ∂Bi
of Bi (resp. ∂Bf ∩�, ∂Be ∩�, ∂Bc ∩�).3 For faces, edges and corners
∂Bf ∩∂�, ∂Be ∩∂� and ∂Bc ∩∂� act as free boundaries.
3 Technically, � is required to be a W1,∞ gradient Young measure meaning that it
is generated by a sequence of gradients ∇zk such that for some M, |∇zk (x) | ≤M<∞
for all k and a.e. x; then the corresponding ‘weak limit’ z of zk also satisfies |∇z (x) | ≤
M.
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ig. 4. Subsets of� used for testing whether nucleation of austenite can occur in the
f�with a small ball centred at a point in the interior, on a face, an edge or a corne

or any map y underlying an admissible measure �, i.e. ∇y (x) = �x.
ondition (3) was introduced by Ciarlet and Nečas [11] as a way
o describe non-interpenetration of matter. We denote the sets of
dmissible measures � = (�x)x∈� for the interior, faces, edges and
orners by Ai, Af , Ae and Ac , respectively.

For s = 1, . . ., 6 and S2 = {e ∈ R3 : |e| = 1}, the unit sphere, let

Ms = {e ∈ S2 : |Use| = max
i

{|Uie|,1}} and

M−1
s = {e ∈ S2 : |cofUse| = max

i
{|cofUie|,1}},

here, for F ∈ M3×3, cof F stands for the matrix of all 2×2 subde-
erminants of F and |F | =

√
Tr FTF denotes the Euclidean norm in

3×3.

heorem 1. [10] Let � be a parallelepiped (not necessarily rectan-
ular) with edges in the direction of vectors in Ms ∪ U−1

s M−1
s . Assume

hat there exists a Young measure � ∈ Ai ∪ Af ∪ Ae ∪ Ac such that

(�)< I
(
ıUs

)
. Then, � ∈ Ac .

roof. (sketch) Let � be as in the statement and let � = (�x)x∈�
e an element of Ai ∪ Af ∪ Ae ∪ Ac such that I (�)< I

(
ıUs

)
. We first

how that � /∈ Ai. Note that since I
(
ıUs

)
= 0 we may assume that

upp�x ⊂ K as otherwise I (�) = +∞ and the result is trivial. By aver-
ging the measure � (see Ref. [10]) we may also assume that � is
n x-independent Young measure and � = Us without altering the
nergy I (�). The minors relation for the determinant (see e.g. Ref.
9], [12]) says that det � = 〈�,det〉 and hence,

etUs =
∫
SO(3)

detA d� (A) +
∫
⋃
i
SO(3)Ui

detA d� (A)

∫
SO(3)

1d� (A) +
∫
⋃
i
SO(3)Ui

detUs d� (A) (4)

ince det Ul = det Us for all l. Also, � is a probability measure, i.e.

K
d� (A) = 1, so that
etUs =
∫
SO(3)

detUs d� (A) +
∫
⋃
i
SO(3)Ui

detUs d� (A)
or, on a face, an edge and at a corner; these are given respectively by the intersection

and subtracting from (4),∫
SO(3)

(1 − detUs) d� (A) = 0.

Hence,� (SO (3)) =
∫
SO(3)

d� (A) = 0 or det Us = 1. The former case

leads to a contradiction as then

I (�) =
∫
�

∫
⋃
i
SO(3)Ui

W (A)d� (A)dx = 0 = I
(
ıUs

)
.

So, let det Us =˛ˇ� = 1. By the AM-GM inequality

|Us|2
3

= ˛2 + ˇ2 + �2

3
≥

(
˛2ˇ2�2

)1/3 = 1

and thus |Us|2 > 3 = |1|2. Note that the inequality is strict as other-
wise ˛=ˇ =� = 1 and Ui = 1 for all i = 1, . . ., 6. The map F �→ |F|2 is
convex and so |�|2 ≤ 〈�, | · |2〉. Then

|Us|2 ≤
∫
SO(3)

|A|2 d� (A) +
∫
⋃
i
SO(3)Ui

|A|2 d� (A)

=
∫
SO(3)

3 d� (A) +
∫
⋃
i
SO(3)Ui

|Us|2 d� (A) (5)

since the norm does not change on martensitic variants. As � is a
probability measure,

|Us|2 =
∫
SO(3)

|Us|2 d� (A) +
∫
⋃
i
SO(3)Ui

|Us|2 d� (A)

and subtracting from (5),∫
SO(3)

(
|Us|2 − 3

)
d� (A) ≤ 0.

However, |Us|2 > 3 and hence, � (SO (3)) = 0 completing the case of
the interior. Note that the proof does not utilize (3) or the condition
that det Us ≤ 1; these are only relevant for faces and edges. Also, the
result for the interior does not dependent on the orientation of�.
As for faces or edges, we wish to deduce that � cannot be an
element of Af or Ae. The proofs, though similar, are more involved
and we refer the reader to Ref. [10] for details. The proofs essen-
tially rely on showing that whenever a line segment joins points on
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Fig. 5. Depiction of a measure � ∈ Ac such that I (�)< I
(
ıUs

)
. In the light shaded

region �x = ıR for some R ∈ SO (3) so that austenite has nucleated at a corner; in
the dark shaded region �x = �ıUs + (1 − �) ıQUl for some Q ∈ SO (3) and l ∈ {1, . . .,
6} such that the matrices R and �Us + (1 − �)QUl are rank-one connected, i.e. �x

corresponds to a simple laminate between Us and QUl there forming a compatible
interface with R. Note that the normals to the interfaces between austenite and the
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References
imple laminate (habit plane) and between the simple laminate and the pure phase
f Us (twinned-to-detwinned interface) are different.

he prescribed part of the boundary ∂Bf ∩� or ∂Be ∩� of Bf or Be,
espectively, and lies in the direction of a vector in Ms ∪ U−1

s M−1
s ,

hen it must necessarily deform like Usx under any map y underly-
ng an admissible measure � ∈ Af or Ae.

If the normal to a face is perpendicular to, or an edge is in the
irection of, a vector in Ms ∪ U−1

s M−1
s , the sets Bf or Be can then

e covered by such line segments so that y (x) = Usx in�. But this
eans that �x = Us and in a manner very similar to the proof for the

nterior, we can show that this implies I (�) = 0, i.e. for all � ∈ Af or

e, I (�) ≥ I
(
ıUs

)
and no admissible measure for a face or edge can

ower the energy.�

On the other hand, a specific construction shows that for any
iven corner there always exists a measure � ∈ Ac such that I (�)<(
ıUs

)
. In this construction (see Fig. 5) the measure� takes the value

R in a small region at a corner, for some R ∈ SO (3). The rotation
can itself form a compatible interface with a simple laminate as

n Fig. 3 with F = Us and G = QUl for some variant chosen to form
he interface with R. This laminate can trivially also form a com-
atible interface with a pure phase of the variant Us and serves
s the interfacial microstructure interpolating between R (austen-
te) and Us making the entire microstructure compatible. Note that
ince the measure � is supported on SO (3) it must indeed lower the
nergy. Then, Theorem 1 combined with the existence of an admis-
ible measure in Ac that lowers the energy imply that nucleation
ust, and does, occur at a corner.

. Remarks and conclusions

For a general energy functional of the form

�

W (∇y (x)) dx,

nown necessary conditions for a map y to be a local minimizer are
hat W is quasiconvex at ∇y (x0) for all x0 in the interior – quasicon-
exity in the interior (Meyers [13]) – and at the boundary (faces)
f � – quasiconvexity at the boundary (Ball and Marsden [14]).
ecently, Grabovsky and Mengesha [15] showed that, along with
he satisfaction of the Euler–Lagrange equations and the positivity
f the second variation, strengthened versions of the quasiconvex-

ty conditions are in fact sufficient for y to be a local minimizer;
owever, they showed this under smoothness assumptions on W
nd also on the domain�which do not allow for edges or corners.
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In our work, the condition that

I (�) ≥ I
(
ıUs

)
forall� ∈ Ai (resp.Af , Ae andAc)

is the appropriate expression of quasiconvexity at Us in the inte-
rior (resp. on faces, edges and corners). Then a way of interpreting
Theorem 1 is that W is quasiconvex at Us in the interior, at the
boundary (faces) and edges but not at corners, so that Us is a local
minimizer in the interior, on faces and edges with respect to the
localized variations defined before. We note that, to the best of
the authors’ knowledge, quasiconvexity conditions at edges and
corners have not been considered before (see Ref. [10]).

The sets Ms and M−1
s depend on the specific change of sym-

metry of the crystal lattice and, hence, on the lattice parameters of
the material. For a range of parameters (see Ref. [10] for details),
including those of the specimen studied here, the above sets have
explicit representations making our result applicable to a variety
of parallelepipeds; for s = 1, 2 these are given by

Ms = {e ∈ S2 : (−1)s−1e2e3 ≥ 0, |e1| ≤ min{|e2|, |e3|}},

M−1
s = {e ∈ S2 : (−1)s−1e2e3 ≤ 0, |e1| ≥ max{|e2|, |e3|}}

whereas for s = 3, 4 and s = 5, 6 we simply interchange e1 with e2
and e3 respectively. In particular, our result applies to the Cu–Al–Ni
specimen of this paper for any s = 1, . . ., 6. However, for these lattice
parameters,Ms ∪ U−1

s M−1
s does not exhaust the unit sphere. Hence

our result leaves open the possibility that for different specimens
nucleation could occur at a face or an edge.

It is worth noting that the same nucleation mechanism was
observed for a Cu–Al–Ni specimen stabilized as a compound twin.
This microstructure is also not able to form directly compatible
interfaces with austenite and our methods may be applicable to
this case as well.

Lastly, similar situations in which the incompatibility of gradi-
ents results in hysterisis have been documented before in different
contexts, e.g. Ref. [16]. There, though in a different way, the math-
ematical analysis argues that despite the existence of a state with
lower energy than a certain martensitic variant, it is necessarily
geometrically incompatible with it, giving rise to an energy bar-
rier, which keeps the specific martensitic state stable. In general,
in the context of microstructure formation, the incompatibility of
gradients gives rise to very rich and interesting phenomena, such
as the first genuinely non-classical austenite-martensite interfaces
observed by Seiner and Landa [17], where austenite was able to
form stress-free interfaces with a double laminate of martensite.
In Ref. [18], the reader can find further details as well as a relevant
mathematical analysis.
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Appendix A. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.jallcom.2011.11.070.
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