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Orientability and energy minimization

in liquid crystal models

John M. Ball, Arghir Zarnescu

Abstract

Uniaxial nematic liquid crystals are modelled in the Oseen-Frank theory
through a unit vector field n. This theory has the apparent drawback that it
does not respect the head-to-tail symmetry in which n should be equivalent
to -n. This symmetry is preserved in the constrained Landau - de Gennes
theory that works with the tensor Q = s

(
n⊗ n− 1

3Id
)
.

We study the differences and the overlaps between the two theories.
These depend on the regularity class used as well as on the topology of the
underlying domain. We show that for simply-connected domains and in the
natural energy class W 1,2 the two theories coincide, but otherwise there can
be differences between the two theories, which we identify.

In the case of planar domains with holes and various boundary condi-
tions, for the simplest form of the energy functional, we completely charac-
terise the instances in which the predictions of the constrained Landau - de
Gennes theory differ from those of the Oseen-Frank theory.

1. Introduction

The challenge of describing nematic liquid crystals by a model that is
both comprehensive and simple enough to manipulate efficiently has led to
the existence of several major competing theories. One of the most simple
and successful is the Oseen-Frank theory that describes nematics using rel-
atively simple tools, namely vector fields, but has the deficiency of ignoring
a physical symmetry of the material. A more complex theory was proposed
by de Gennes and uses matrix-valued functions (Q-tensors). In the simplest
constrained case of uniaxial Q-tensors with a constant scalar order parame-
ter these Q-tensors can be interpreted as line fields. We study in this paper
the differences between these two theories in this constrained case and es-
tablish when the more complicated, but physically more realistic, theory of
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de Gennes can be replaced by the simpler Oseen-Frank theory, and when
this cannot be done. Of particular interest to our study are liquid crystal
‘defects’ and we examine the instances when one would detect fake ‘defects’
in the material resulting from using the more simplistic Oseen-Frank model
instead of the constrained Landau - de Gennes model (we refer to such a
situation as having a non-orientable line field).

In nematic liquid crystals the rod-like molecules tend to align, locally,
along a preferred direction. This is modeled by assigning at each material
point x in the region Ω occupied by the liquid crystal a probability measure
µ(x, ·) : L(S2) → [0, 1] for describing the orientation of the molecules, where
L(S2) denotes the family of Lebesgue measurable sets on the unit sphere.
Thus µ(x,A) gives the probability that the molecules with centre of mass in
a very small neighbourhood of the point x ∈ Ω are pointing in a direction
contained in A ⊂ S2.

Nematic liquid crystals are locally invariant with respect to reflection
in the plane perpendicular to the preferred direction. This is commonly re-
ferred to as the ‘head-to-tail’ symmetry, see [16]. This means that µ(x,A) =
µ(x,−A), for all x ∈ Ω,A ⊂ L(S2). Note that because of this symmetry the
first moment of the probability measure vanishes:

〈p〉 def
=

∫

S2

p dµ(p) =
1

2

[∫

S2

p dµ(p) +

∫

S2

−p dµ(−p)
]

= 0.

The first nontrivial information on µ comes from the tensor of second
moments:

Mij
def
=

∫

S2

pipj dµ(p), i, j = 1, 2, 3.

We have M = MT and trM =
∫

S2 dµ(p) = 1. Let e be a unit vector. Then

e ·Me =

∫

S2

(e · p)2 dµ(p) = 〈cos2(θ)〉

where θ is the angle between p and e.
If the orientation of the molecules is equally distributed in all directions

we say that the distribution is isotropic and then µ = µ0 where dµ0(p) =
1
4πdA. The corresponding second moment tensor is

M0
def
=

1

4π

∫

S2

p⊗ p dA =
1

3
Id

(since
∫

S2 p1p2 dµ(p) = 0,
∫

S2 p
2
1 dµ(p) =

∫

S2 p
2
2 dµ(p) =

∫

S2 p
2
3 dµ(p) and

trM0 = 1).
The de Gennes order-parameter tensor Q is defined as

Q
def
= M −M0 =

∫

S2

(

p⊗ p− 1

3
Id

)

dµ(p) (1)

and measures the deviation of the second moment tensor from its isotropic
value.
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Since Q is symmetric and trQ = 0, Q has, by the spectral theorem, the
representation:

Q = λ1ê1 ⊗ ê1 + λ2ê2 ⊗ ê2 − (λ1 + λ2)ê3 ⊗ ê3

where ê1, ê2, ê3 is an orthonormal basis of eigenvectors of Q with the cor-
responding eigenvalues λ1, λ2 and λ3 = −(λ1 + λ2).

When two of the eigenvalues are equal (and non-zero) the order param-
eter Q is called uniaxial, otherwise being biaxial. The case Q = 0 is the
isotropic state. Equilibrium configurations of liquid crystals are obtained,
for instance, as energy minimizers, subject to suitable boundary conditions.
The simplest commonly used energy functional is

FLG[Q] =

∫

Ω




L

2

3∑

i,j,k=1

Qij,kQij,k − a

2
trQ2 − b

3
trQ3 +

c

4

(
trQ2

)2



 dx

(2)
where a, b, c are temperature and material dependent constants and L > 0
is the elastic constant. In the physically significant limit L → 0 (and for
appropriate boundary conditions) we have that the energy minimizers are
suitably approximated by minimizers of the corresponding ‘Oseen-Frank
energy functional’

FOF [Q] =

∫

Ω

3∑

i,j,k=1

Qij,kQij,k dx

in the restricted class of Q ∈W 1,2, with Q uniaxial a.e., so that

Q = s

(

n⊗ n− 1

3
Id

)

(3)

with s ∈ R (an explicit constant depending on a, b and c) and n(x) ∈ S
2

a.e. x ∈ Ω.
This convergence, as L → 0, was studied initially in [29] and further

refined in [25]. In the following we will restrict ourselves to studying tensors
Q that admit a representation as in (3) and we will further refer to this
as the constrained Landau - de Gennes theory. A related model was briefly
studied in [22] (see in particular pp. 590− 592).

Taking into account the definition (1) of the tensor Q we have that

Qn · n =
2

3
s = 〈(p · n)2 − 1

3
〉 = 〈cos2 θ − 1

3
〉

where θ is the angle between p and n. Hence s = 3
2 〈cos2 θ − 1

3 〉 and so we
must necessarily have − 1

2 ≤ s ≤ 1 with s = 1 when we have perfect ordering
parallel to n, s = − 1

2 when all molecules are perpendicular to n and s = 0
iff Q = 0 (which occurs if µ is isotropic). Thus s is a measure of order
and is called the scalar order parameter associated to the tensor Q. In the
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physical literature it is often assumed that s is constant almost everywhere.
For experimental determinations of s see for instance [12].

We continue working under this assumption, that s is a non-zero con-
stant, independent of x ∈ Ω. Thus, taking into account the representation
(3) of the Q-tensor we have that, for constant s, there exists a bijective cor-
respondence between Q that have the representation (3) and pairs {n,−n}
with n ∈ S2. Hence we can think of Q as the line joining n and −n. We can
thus identify the space of Q as in (3) with the real projective space RP 2;
see the beginning of Section 3 for more details.

Traditionally in the mathematical modeling of liquid crystals the Q-
tensor (3) has been replaced by an oriented line, a line with a direction, i.e.
n ∈ S2. This is done in the Oseen-Frank theory, [15].

In this paper we analyze the consequences of this assumption, from the
point of view of energy minimization. We show that taking into account
the possible unorientedness of the locally preferred direction produces a
theory that includes the traditional approach (an oriented vector field has
an unoriented counterpart but not necessarily the other way around) and
exhibits features not seen by the traditional approaches.

We analyze first the relation between line and vector fields by determin-
ing when a line field can be ‘oriented’ into a vector field, without changing
its regularity class. We show that this depends both on the regularity of the
line field and the topology of the domain. We also show that, under suit-
able assumptions, the orientability of a line field on a 2D bounded domain
can be determined just by knowing the orientability of the line field on the
boundary of the domain.

When the class of line fields is strictly larger then the class of vector
fields it is possible that a global energy minimizer is a line field that is
‘non-orientable’ i.e. cannot be reduced to a vector field. These are precisely
the instances in which the traditional, Oseen-Frank, theory would fail to
recognize a global minimizer, and would indicate as a global minimizer one
that is physically just a local minimizer, a minimizer in the class of orientable
line fields. We analyze this situation in the case of planar line fields for a
simple energy functional, and provide necessary and sufficient conditions
for the global energy minimizer to be non-orientable, in terms of an integer
programming problem.

The paper is organized as follows: in Section 2 we define rigorously the
notions used, in particular orientability in the Sobolev space setting, and
study the relation between the regularity of a line field and that of the
corresponding vector field (when it exists). In Section 3 we determine the
conditions under which a line field can be oriented into a vector field and
show that on 2D domains orientability can be checked at the boundary. In
Section 4 we provide analytic orientability criteria on 2D domains; that is
we show how to reduce the topological problem of checking the orientability
of the line fields to an analytic computation. In Section 5 we study the
orientability of the global energy minimizers for planar line fields.
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The majority of the results of this paper were announced in [3], [4].
Readers not familiar with Sobolev spaces and related analysis may find [4]
a helpful introduction.

2. Preliminaries and notation

For the rest of the paper we fix s ∈ [− 1
2 , 1] to be a given non-zero

constant and Q will denote a 3 × 3 traceless and symmetric matrix that
admits the representation:

Q = s

(

n⊗ n− 1

3
Id

)

(4)

where n ∈ R3, |n| = 1 and s is the given non-zero constant.
We denote by M3×3(R) the set of 3 × 3 matrices with real values. In

general for an arbitrary symmetric and traceless Q ∈ M3×3(R) there might
be no n ∈ S2 so that Q has a representation as in (4). The necessary and
sufficient conditions for a 3 × 3 matrix to have such a representation are:

Proposition 1. For fixed s ∈ R and a matrix Q ∈ M3×3(R) that is sym-
metric with trace zero the following conditions are equivalent:

(i) Q = s(n⊗ n− 1
3Id) for some n ∈ S2,

(ii) Q has two equal eigenvalues equal to − s
3 ,

(iii) det Q = − 2s3

27 , tr Q2 = 2s2

3 .

Remark 1. From (iii) it follows that a necessary and sufficient condition

for Q to have the represenation (i) for some s ∈ R is that
(
trQ2

)3
=

54 (det Q)2.

Proof. By the spectral theorem (ii) holds if and only if

Q = −s
3

(Id− n⊗ n) +
2s

3
n⊗ n

for some n ∈ S2, which is (i).
If the eigenvalues of Q are λ1, λ2, λ3, so that trQ = λ1 + λ2 + λ3 = 0,

the characteristic equation for Q is

det(λId −Q) = (λ− λ1)(λ− λ2)(λ − λ3) = λ3 − 1

2
tr(Q2)λ− detQ = 0

since λ1λ2 + λ2λ3 + λ3λ1 = 1
2 [(λ1 + λ2 + λ3)

2 − (λ2
1 + λ2

2 + λ2
3)]. So the

eigenvalues are − s
3 ,− s

3 ,
2s
3 if and only if (iii) holds. 2

For the fixed non-zero constant s ∈ [− 1
2 , 1] we denote
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(1, 0)(−1,0)

x

x2

1

Fig. 1. A non-orientable director field

Q =

{

Q ∈ M3×3(R);Q = s

(

n⊗ n− 1

3
Id

)

for some n ∈ S
2

}

. (5)

Also, let us denote

Q2 =

{

Q ∈ Q; Q = s

(

(n1, n2, 0) ⊗ (n1, n2, 0) − 1

3
Id

)}

(6)

corresponding to the ‘planar’ unit vectors n = (n1, n2, 0).
Note that the bijective identification of RP 2 with Q allows one to endow

Q with the structure of a two-dimensional manifold. Similarly Q2 can be
bijectively identified with RP 1, and thus can be given the structure of a
one-dimensional manifold; see the beginning of Section 3 for details.

We define the projection operator P : S2 → Q by:

P (n)
def
= s

(

n⊗ n− 1

3
Id

)

. (7)

Note that one has P (n) = P (−n). Thus the operator P provides us with a
way of ‘unorienting’ an S2-valued vector field.

In order to know when the study of unoriented director fields can be
reduced to that of oriented ones one needs to know when the opposite is
possible, that is to ‘orient’ a Q-valued vector field. This should be done
without creating ‘artificial defects’, that is discontinuities of the vector field
that were not present in the line field. Orienting a line field is sometimes
impossible as can be seen by the example in the Figure 1 where a line field
is defined outside of the circle centered at (0, 0) of radius 1

2 . Heuristically
one sees that by trying to orient the line field for x2 > 0 and then for x2 < 0
one would get a discontinuity. A rigorous proof of the non-orientability of
the line field in Figure 1 will be provided in Section 4, Lemma 11.

We define an open set in Rm to be of class Ck, k ≥ 0, respectively
Lipschitz, if for any point x ∈ ∂Ω there exist a δ > 0 and an orthonormal
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coordinate system Y = (y′, ym) = (y1, y2, . . . , ym) with origin at x together
with a function of class Ck (respectively Lipschitz) f : Rm−1 → R such that

Uδ := {y ∈ Ω : |y| < δ} = {y ∈ R
m : ym > f(y′), |y| < δ}. (8)

This definition allows one to consider the open sets of class Ck (respec-
tively Lipschitz) as manifolds with boundary and ensures that the topolog-
ical boundary of the set coincides with the boundary of the manifold with
boundary (see the discussion in the Appendix for more details).

In the rest of the paper an open and connected set is called a domain.
Let us define, in a standard manner (see also [19] and the references

there) the Sobolev spaces W 1,p(M,N) where M is a C0 manifold and N is
a smooth manifold isometrically embedded in Rl:

W 1,p(M,N) = {f : f ∈ W 1,p(M,Rl), f(x) ∈ N, a.e. x ∈M}.

In the case when M is a Lipschitz manifold with non-empty boundary, we
define (see also [20]):

W 1,p
ϕ (M,N) = {f : f ∈W 1,p(M,Rl), f(x) ∈ N, a.e. x ∈M, Tr f = ϕ}

where Tr denotes the trace operator ([1]).
We will also sometimes denote the Sobolev space W 1,p(M,N), respec-

tively the Lp space Lp(M,N), just by W 1,p(M), respectively Lp(M), when
it is clear from the context what the target space is.

We define now orientability for line fields in a Sobolev space:

Definition 1. Let Ω ⊂ Rd be a domain. We say that Q ∈W 1,p(Ω,Q), 1 ≤
p ≤ ∞ is orientable if there exists an n ∈ W 1,p(Ω, S2) such that P (n) = Q
Ld a.e. in Ω. Otherwise we call Q non-orientable.

Furthermore, if Ω is Lipschitz, then Q ∈ W 1− 1
p ,p(∂Ω,Q), 1 < p ≤ ∞ is

orientable if there exists an n ∈ W 1− 1
p ,p(Ω, S2) such that P (n) = Q Hd−1

a.e. in ∂Ω. Otherwise we call Q non-orientable.

We show first that if a line field is orientable there can be just two
orientations, that differ by change of sign.

Proposition 2. Let Ω ⊂ R3 be a domain. An orientable line field Q(x) ∈
W 1,p(Ω,Q), 1 ≤ p ≤ ∞, can have only two orientations. More precisely, if
n,m ∈ W 1,p(Ω, S2) with P (n) = P (m) = Q and n 6= m a.e. we have that
m = −n a.e. in Ω.

Proof. We have that m = τn ∈W 1,p(Ω, S2) with τ2(x) = 1 a.e. In order to
obtain the conclusion it suffices to show that τ(x) has constant sign almost
everywhere.

For a.e. x2, x3 we have that τ(x)n(x) has a representative that is abso-
lutely continuous in x1 and also n(x) has a representative that is absolutely
continuous in x1. Hence τ(x)n(x) · n(x) = τ(x) is absolutely continuous in
x1. A similar statement holds for x2 and x3.
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For any x̄ = (x̄1, x̄2, x̄3) ∈ Ω let ε̄ > 0 be some number so that Bε̄(x̄) ⊂
Ω. On the intersection of almost any line x1 = const with the ball Bε̄(x̄)
we have that τ(x) is absolutely continuous and, since τ2(x) = 1, we get
that τ is constant. We take an arbitrary ϕ ∈ C∞

0 (Bε̄(x̄)) and using Fubini’s
theorem we obtain:

∫

Bε̄(x̄)

τ(x)ϕ,1(x) dx =

∫

Bε̄(x̄)

(τϕ),1(x) dx = 0. (9)

We obtain thus that the weak derivative τ,1 is zero in Bε̄(x̄). Similarily
τ,2, τ,3 are zero in Bε̄(x̄). Thus ∇τ = 0 and τ is constant in Bε̄(x̄). The
connectedness of Ω implies that τ is constant in Ω. Hence τ ≡ 1 a.e. in Ω
or τ ≡ −1 a.e. in Ω. 2

Orientability in the open set Ω implies orientability at the boundary:

Proposition 3. Let Ω ⊂ R3 be a bounded domain with Lipschitz boundary.
Let Q ∈ W 1,p(Ω,Q), 1 < p ≤ ∞ be orientable, so that Q = s

(
n⊗ n− 1

3Id
)

a.e. in Ω for some n ∈W 1,p(Ω, S2). Then Trn ∈ W1− 1
p ,p(∂Ω, S2) and Q is

orientable on the boundary, i.e.

TrQ = s

(

Tr n ⊗ Tr n − 1

3
Id

)

(10)

with Tr Q ∈ W1− 1
p ,p(∂Ω,Q).

Proof. Choose some open ball B containing Ω̄. We can extend n to an
ñ ∈W 1,p(B,R3). Truncate each component ñi by 1, i.e. define

n̄i(x) =







1 if ñi(x) ≥ 1
ñi(x) if |ñi(x)| < 1
−1 if ñi(x) ≤ −1

. (11)

Then n̄ ∈ L∞(B,R3) ∩W 1,p(B,R3) and n̄ = n in Ω. Mollify n̄ to get
n̄(j) ∈ C1(Ω̄,R3) with n̄(j) → n in W 1,p(Ω,R3).

Let us define now an extension of P to the whole R3, namely the function

P̃ : R3 → M3×3(R) with P̃ (m)
def
= s

(
m⊗m− 1

3Id
)
. Then

P̃ (n̄(j)) = s

(

n̄(j) ⊗ n̄(j) − 1

3
Id

)

→ P̃ (n) in W 1,p (12)

since

|n̄(j)
i n̄

(j)
k − nink| ≤ |n̄(j)

i (n̄
(j)
k − nk)| + |nk(n̄

(j)
i − ni)| ≤ C|n̄(i) − n|

and, for example,

n̄
(j)
i n̄

(j)
k,α − nink,α = n̄

(j)
i (n̄

(j)
k,α − nk,α)

︸ ︷︷ ︸

→0 in Lp

+ (n̄
(j)
i − ni)nk,α

︸ ︷︷ ︸

→0 in Lp

.
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Recalling that n̄(j) are C1 functions on Ω̄ we have:

Tr P̃(n̄(j)) = P̃(Tr n̄(j)) (13)

As n̄(j) → n inW 1,p(Ω̄; R3) we have that Tr n̄(j) → Tr n and P̃ (Tr n̄(j)) →
P̃(Tr n) in Lp(∂Ω). Taking into account this convergence together with (12),
the continuity of the trace operator Tr and the fact that P̃ (n) = P (n) = Q
we can pass to the limit (in Lp(∂Ω)) in both sides of (13) and obtain relation
(10).

In order to finish the proof we just need to check that Tr n ∈ S
2, H2

a.e. x ∈ ∂Ω. We know that Tr n ∈ W1− 1
p ,p(∂Ω; R3). Hence recalling (see for

instance [14], p. 133) that we have

lim
r→0

1

|Br(x) ∩Ω|

∫

Br(x)∩Ω

|n(y) − Trn(x)| dy = 0, for H2 a.e. x ∈ ∂Ω (14)

and since
∫

Br(x)∩Ω

∣
∣
∣1 − |Tr n(x)|

∣
∣
∣ dy =

∫

Br(x)∩Ω

∣
∣
∣|n(y)| − |Trn(x)|

∣
∣
∣ dy

≤
∫

Br(x)∩Ω

|n(y) − Tr n(x)| dy,

we get that |Tr n| = 1 H2 a.e. x ∈ ∂Ω. 2

Remark 2. One can easily check, by straightforward modifications of the
proofs, that the results of Proposition 2 and Proposition 3 hold for domains
Ω ⊂ R2 with Q replaced by Q2.

Orientability is preserved by weak convergence:

Proposition 4. Let Ω ⊂ Rd be a bounded domain with boundary of class
C0. For 1 ≤ p ≤ ∞ let Q(k) ∈W 1,p(Ω,Q), k ∈ N be a sequence of orientable
maps with the corresponding n(k) ∈ W 1,p(Ω, S2) such that P (n(k)) = Q(k).
If Q(k) converges weakly to Q in W 1,p, where 1 ≤ p < ∞ (or weak* when
p = ∞), then Q is orientable and Q = P (n) for some n ∈W 1,p.

Proof. We start by proving an auxiliary result:

Lemma 1. Let Ω ⊂ Rd be an open and bounded set. If n ∈ W 1,p(Ω, S2), 1 ≤
p ≤ ∞ then Q = P (n) ∈ W 1,p(Ω,Q). Conversely, assume that Q ∈
W 1,p(Ω,Q), 1 ≤ p ≤ ∞ and let n be a measurable function on Ω with
values in S2 such that P (n) = Q. Moreover assume that n is continuous
along almost every line parallel to the coordinate axes and intersecting Ω.
Then n ∈ W 1,p(Ω,Q).

Moreover:
Qij,knj = sni,k. (15)
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Proof of the lemma. For g, h ∈W 1,1(Ω)∩L∞(Ω) we have gh ∈W 1,1(Ω)∩
L∞(Ω) and (gh),i = gh,i + g,ih (see [1]). Hence, if n ∈ W 1,p(Ω), we have
Q ∈ W 1,1(Ω) and Qij,k = s(ninj,k + ni,knj) from which we obtain ∇Q ∈
Lp(Ω) and then Q ∈W 1,p(Ω). Also

Qij,knj = s [ni(nj,knj) + ni,k] = s[
ni

2
(njnj
︸︷︷︸

=1

),k + ni,k] = sni,k.

Conversely, suppose that Q ∈W 1,p. Let x ∈ Ω with n continuous along
the line (x+ Rek) ∩Ω. Let x+ tek ∈ Ω. As Q ∈ W 1,1 we can suppose that
Q is differentiable at x in the direction ek. Then

Qij(x+tek)−Qij(x)
t = s

[
ni(x+tek)nj(x+tek)−ni(x)nj(x)

t

]

= s · ni(x + tek)
[

nj(x+tek)−nj(x)
t

]

+ s ·
[

ni(x+tek)−ni(x)
t

]

nj(x).

Multiply both sides by 1
2 [nj(x+ tek) + nj(x)]. Then, since

[nj(x+ tek) − nj(x)] [nj(x+ tek) + nj(x)]

= nj(x+ tek)nj(x+ tek) − nj(x)nj(x) = 1 − 1 = 0 (16)

we have that

Qij(x+ tek) −Qij(x)

t
· 1

2
[nj(x+ tek) + nj(x)]

= s ·
[

ni(x+tek)−ni(x)
t

]

nj(x)
1
2 [nj(x+ tek) + nj(x)] . (17)

Letting t→ 0 and using the assumed continuity of n we deduce that

s · lim
t→0

ni(x+ tek) − ni(x)

t
= Qij,k(x)nj(x).

Hence the partial derivatives of n exist almost everywhere in Ω and
satisfy

sni,k = Qij,knj

and since ∇Q ∈ Lp it follows that n ∈W 1,p(Ω, S2) as required. 2

We continue with the proof of the proposition. As the sequence Q(k) is
weakly convergent in W 1,p for 1 ≤ p <∞ ( weak* for p = ∞), using (15) we
have that n(k) is bounded in the W 1,p norm (equi-integrable if p = 1). Thus
there exists n ∈W 1,p(Ω, S2) such that on a subsequence (n(kl))kl∈N we have
n(kl) ⇀ n in W 1,p(Ω) and n(kl) → n a.e. which implies that P (n) = Q. 2

Remark 3. Lemma 1 shows that in order to have n ∈ W 1,p(Ω, S2) such
that P (n) = Q for Q ∈W 1,p(Ω,Q) it suffices to have only n ∈ W 1,1(Ω, S2)
since then n will have the same regularity as Q.
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The previous result allows us to show that non-orientability is a stable
property with respect to the metric induced by the distance d(Q, Q̃) =
‖Q− Q̃‖W 1,p(Ω,R9). More precisely we have:

Lemma 2. Let Q ∈ W 1,p(Ω,Q), 1 ≤ p ≤ ∞ be non-orientable. Then there
exists ε > 0, depending on Q, so that for all Q̃ ∈ W 1,p(Ω,Q) with ‖Q̃ −
Q‖W 1,p(M,R9) < ε the line field Q̃ is also non-orientable.

Taking into account the previous proposition and reasoning by contradiction
the proof is straightforward.

The line-field theory we have presented represents a generalization of the
Oseen-Frank theory, which uses vector fields for describing uniaxial nematic
liquid crystals. The Oseen-Frank theory has been successful in predicting
the equilibrium states as local or global minimizers of an energy functional:

EOF =

∫

Ω

W (n,∇n) dx, (18)

where

W (n,∇n) = K1(divn)2 +K2(n · curln)2 +K3|n ∧ curln|2
+(K2 +K4)(tr(∇n)2 − (divn)2) (19)

and the Ki are elastic constants.
As described in [4] we consider a special case of the Landau - de Gennes

theory, in which the elastic energy density is defined by

ψ(Q,∇Q) = L1I1 + L2I2 + L3I3 + L4I4,

where the Li are constants and the four elastic invariants I1, . . . , I4 are given
by

I1 = Qij,jQik,k, I2 = Qik,jQij,k, I3 = Qij,kQij,k, I4 = QlkQij,lQij,k,

where we have used the summation convention with i, j, k ∈ {1, 2, 3}.
It can be checked that the Oseen-Frank energy is expressible in terms of

the constant s Landau - de Gennes Q-tensors (see [32]). We have that

I1 = s2
(
|divn|2 + |n ∧ curln|2

)
, I2 = s2

(
|n ∧ curln|2 + tr (∇n)2

)
,

I3 = 2s2
(
tr (∇n)2 + |n · curln|2 + |n ∧ curln|2

)
,

I4 = 2s3
(

2

3
|n ∧ curln|2 − 1

3
tr(∇n)2 − 1

3
|n · curln|2

)

.

We let

K1 = L1s
2 + L2s

2 + 2L3s
2 − 2

3
L4s

3, K2 = 2L3s
2 − 2

3
L4s

3,

K3 = L1s
2 + L2s

2 + 2L3s
2 +

4

3
L4s

3, K4 = L2s
2,
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and observe that the Li can also be expressed in terms of the Ki. Then we
have that

W (n,∇n) = ψ(Q,∇Q),

and thus the Oseen-Frank elastic energy is the same as the Landau - de
Gennes elastic energy.

For more information concerning the form of the Landau-de Gennes
energy ψ and its relationship to the Oseen-Frank energy see [28], [37].

3. Orientability issues

The existence of an oriented, S2-valued, version of a Q-valued field is
essentially a topological question. It amounts to checking if there exists a
lifting of a map that takes values into Q to one that takes values into its
covering space S2, so that the lifting has the same regularity as the map.
If a continuous map in with values in Q has a lifting to a continuous map
with values in S2 we call the map orientable. Otherwise we call the map
non-orientable.

Let us recall (see [23],[26]) that a continuous map Q : Ω → Q is said to
have a lifting ϕQ : Ω → S2 if P ◦ ϕQ = Q where P : S2 → Q is a covering
map, defined in our case as

P (n) = s(n⊗ n− 1

3
Id). (20)

In order to show that P is a covering map, in a topological sense, we
need to endow Q with an appropriate topological structure. To this end let

us first recall that RP 2 def
= S2/ ∼ is the quotient of S2 with respect to the

equivalence relation n ∼ m ⇔ n = ±m (see [11], [35]). We define the map
b : Q → RP 2 by

b(s(n⊗ n− 1

3
Id)) = {n,−n} ∈ RP 2, for all n ∈ S

2.

One can then define in a standard manner a topological structure on Q so
that b is a continuous map. Moreover one can endow Q with a Riemannian
structure so that b is an isometry. Therefore in the remainder of the paper
we are able to use for Q-valued functions theorems that were proved for
functions with values into a Riemannian manifold.

The map P : S2 → Q is then easily seen to be continuous. Also P is
surjective and one can easily check that every point M ∈ Q has an evenly
covered neighbourhood (that is there exists an open U ⊂ Q, with M ∈ U
and each component of P−1(U) is mapped homeomorphically onto U by
P ). Thus P is a covering map (see also [26] for more details about covering
maps in general).

In the case of planar line fields, that is Q2-valued fields, one has a similar
lifting problem by identifying, analogously, Q2 with RP 1, and denoting
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(without loss of generality, regarding RP 1 as embedded in RP 2 and S1 in
S2) also with P , the covering map from S1 to RP 1.

There exists a well-developed theory, in algebraic topology, that shows
when it is possible to have a lifting. Both to avoid the reader having to enter
into the technical details of this theory and related topological ideas, and for
its intrinsic interest, we give in the next subsection a self-contained treat-
ment of the orientability of continuous line fields that uses only elementary
point-set topology (but of course with ingredients than have counterparts in
the algebraic topology approach). We use this to show that for a large class
of two-dimensional domains G one can check orientability of a continuous
line field Q (on Ḡ) just by determining the orientability of Q|∂G.

However, we face the significant additional difficulty that these topo-
logical results are restricted to continuous functions, while functions in the
Sobolev space W 1,p(Ω,Q) (with Ω ⊂ Rd, d = 2, 3) are not necessarily con-
tinuous for p ≤ d. Also we are interested only in liftings that preserve the
Sobolev regularity class. We begin to address these questions in Section 3.2.

3.1. Continuous line fields on arbitrary domains

We first show how to lift continuous line fields along continuous paths:

Lemma 3. If −∞ < t1 < t2 < ∞ and Q : [t1, t2] → Q is continuous then
there exist exactly two continuous maps (liftings) n+, n− : [t1, t2] → S2, so
that

Q(t) = s(n±(t) ⊗ n±(t) − 1

3
Id), (21)

and n+ = −n−. (Equivalently, given either of the two possible initial ori-
entations n̄ ∈ S2, so that Q(t1) = s(n̄ ⊗ n̄ − 1

3Id), there exists a unique
continuous lifting n : [t1, t2] → S2 with n(t1) = n̄.)

Suppose in addition that Q̄ = s(m̄⊗ m̄− 1
3Id), m̄ ∈ S2, and that |Q(t)−

Q̄| ≤ ε|s| for all t ∈ [t1, t2] where 0 < ε <
√

2. Then one of the liftings, n+

say, satisfies
|n+(t) − m̄| ≤ ε, for all t ∈ [t1, t2] (22)

and the other n− = −n+ satisfies

|n−(t) + m̄| ≤ ε, for all t ∈ [t1, t2] (23)

Proof. Let 0 < ε <
√

2. Given n, m̄ ∈ S2 with |n⊗n− m̄⊗ m̄| ≤ ε we have
that |n⊗ n− m̄⊗ m̄|2 = 2(1 − (n · m̄)2) ≤ ε2 and so

n · m̄ ≥
√

1 − ε2

2
> 0 or n · m̄ ≤ −

√

1 − ε2

2
< 0. (24)

Thus n⊗n = n+⊗n+ = n−⊗n−, where n+ ·m̄ > 0 and n− = −n+ satisfies
n− · m̄ < 0.
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Now let Q(τ) = s(n(τ) ⊗ n(τ) − 1
3Id) be continuous on [t1, t2]. Then

there exists δ > 0 such that |n(τ) ⊗ n(τ) − n(σ) ⊗ n(σ)| <
√

2 for all
σ, τ ∈ [t1, t2] with |σ − τ | ≤ δ, and we may suppose that t2 − t1 = Mδ for

some integer M . First take m̄
def
= n(t1) and for each τ ∈ [t1, t1 + δ] choose

n+(τ) as above so that n+(τ) ⊗ n+(τ) = n(τ) ⊗ n(τ) and n+(τ) · m̄ > 0.
We claim that n+ : [t1, t1 + δ] → S2 is continuous. Indeed let σj → σ
in [t1, t1 + δ] and suppose for contradiction that n+(σj) 6→ n+(σ). Then
since n+(σj) ⊗ n+(σj) → n+(σ) ⊗ n+(σ) there is a subsequence σjk

such
that n+(σjk

) → −n+(σ). But then −n+(σ) ·m ≥ 0 a contradiction which
proves the claim. Repeating this procedure with n̄ = n+(t1 + δ) we obtain a
continuous lifting n+ : [t1, t1 + 2δ] → S2, and thus inductively a continuous
lifting n+ : [t1, t2] → S2. Setting n− = −n+ gives a second continuous
lifting.

If n∗ : [t1, t2] → S2 is a continuous lifting then we may suppose that
n∗(t1) = n+(t1) say. We claim that then n∗(τ) = n+(τ) for all τ ∈ [t1, t2]. If
not, by continuity there would be a first T > t1 with n∗(T ) = n−(T ). But
then n∗(T ) = limτ→T−

n∗(τ) = limτ→T−
n+(τ) = n+(T ), a contradiction.

Thus there are exactly two continuous liftings.
Finally suppose that |Q(t)−Q̄| ≤ ε|s| for all t ∈ [t1, t2] with 0 < ε <

√
2.

Then by (24) and the continuity of the lifting one of the liftings, n+ say,

satisfies n+(t) · m̄ ≥
√

1 − ε2

2 and so |n+(t) − m̄|2 = 2(1 − n+(t) · m̄) ≤

2(1 −
√

1 − ε2

2 ) ≤ ε2 and the result follows. 2

Proposition 5. Let Ω ⊂ R
d be a simply-connected domain, and let Q :

Ω → Q be continuous. Then there exists a continuous lifting nQ : Ω → S2.

Proof. This is standard, and follows, for example, from [23] p. 61, Prop. 1.33.
To give a direct argument, fix x0 ∈ Ω and let n0 ∈ S2 be one of the two possi-
ble orientations ofQ(x0). Given any x ∈ Ω, let γ : [0, 1] → Ω be a continuous
path with γ(0) = x0, γ(1) = x. By Lemma 3 there is a unique continuous
lifting n : [0, 1] → S2 of Q(γ(·)) with n(0) = n0. Define nQ(x) = n(1).
Then the method of proof of Theorem 1 below, which for simply-connected
domains does not depend on the dimension d, shows that nQ is well defined
and continuous. (Note that local path connectedness holds because Ω is
open, and that none of the complications concerning the ωi are needed, so
that h∗(λ, ·) = h(λ, ·).) 2.

In the rest of this subsection we restrict ourselves to a class of topolog-
ically non-trivial domains in 2D and show that one can check orientability
at the boundary.

Let Ω ⊂ R2 be a bounded domain with ∂Ω a Jordan curve. For 1 ≤
i ≤ N let ωi ⊂ R

2 be a bounded domain with ∂ωi a Jordan curve and
ωi ⊂ Ω, ωi ∩ ωj = ∅ if i 6= j. Note that Ω and ωi are simply connected (for
example by the proof of Lemma 5 (iii)). Let

G = Ω\ ∪N
i=1 ωi. (25)
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We call such a domain G a domain with holes.

Theorem 1. Let Q : G → Q2 be continuous with Q|∂ωi orientable as a
continuous function for 1 ≤ i ≤ N . Then Q is orientable as a continuous
function.

The proof of Theorem 1 requires some preparation. Let f : [0, 1] →
Ω be a continuous path with f(0) and f(1) belonging to G. We define a
new continuous path f∗ : [0, 1] → G with f∗(0) = f(0), f∗(1) = f(1) by
replacing the parts of f where it lies in some ωi by corresponding paths
on ∂ωi. If f(t) ∈ G we set f∗(t) = f(t). Otherwise consider an interval
[t1, t2] ⊂ [0, 1] such that f(t) ∈ ωi for t1 < t < t2, f(t1) ∈ ∂ωi, f(t2) ∈ ∂ωi,
for some i ∈ {1, . . . , N}.

Let γi : S1 → R2 parametrize ∂ωi, so that γi = γi(θ) can be identified
with a 2π-periodic function γi : R → R2, γi(θ+2π) = γi(θ), where θ denotes
the polar angle of S1. Then γi(θ1) = f(t1), γi(θ2) = f(t2), where θi ∈ [0, 2π).
For t ∈ (t1, t2) we define

f∗(t) = γi(θ(t)) (26)

where

θ(t) = θ1 + (θ̃2 − θ1)

(
t− t1
t2 − t1

)

(27)

and

θ̃2 =

{
θ2 if |θ2 − θ1| ≤ π
θ2 − sgn(θ2 − θ1)2π if |θ2 − θ1| > π

. (28)

Thus f∗ is continuous from [t1, t2] → ∂ωi and traces the image under γi

of the minor (shorter) arc joining θ1 and θ2 (with an unimportant specific
choice of the arc if θ1, θ2 represent opposite points of S

1).

Lemma 4. f∗ : [0, 1] → G is continuous.

Proof. Let σj → σ in [0, 1]. We show that f∗(σj) → f∗(σ). If f(σ) ∈ G∪∂Ω
then this is obvious, since then f(σj) ∈ G for sufficiently large j, and so

lim
j→∞

f∗(σj) = lim
j→∞

f(σj) = f(σ) = f∗(σ). (29)

If f(σ) ∈ ωi then, since f(0) = f(1) ∈ Ḡ, there exists an interval
[t1, t2] ⊂ [0, 1] as above with t1 < σ < t2, so that limj→∞ f∗(σj) = f∗(σ)
follows from (26)-(28). Thus, arguing by contradiction, we may assume that
f(σ) ∈ ∂ωi for some i. If f(σj) ∈ ∂ωi for all j then again we have (29).
Thus it suffices to consider the case when f(σj) ∈ ωi for all j and either
(i)σj > σ for all j, or (ii)σj < σ for all j.

We assume (i) with (ii) being treated similarly. If f(t) ∈ ωi for all
t > σ with t − σ sufficiently small, then we can take t1 = σ and again
limj→∞ f∗(σj) = f∗(σ) follows from (26)-(28).

Otherwise there exist t2j > σj > t1j > σ with f(t) ∈ ωi for all t ∈
(t1j , t2j), f(t1j) ∈ ∂ωi, f(t2j) ∈ ∂ωi and t2j → σ. We have that f(t1j) =
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γi(θ1j), f(t2j) = γi(θ2j) with θ1j , θ2j ∈ [0, 2π) and θ1j
S
1

→ θ, θ2j
S
1

→ θ, where
γi(θ) = f(σ), since otherwise, for example, we would have a subsequence

θ1jk
with θ1jk

S
1

→ θ̄ 6= θmod (2π) and γi(θ) = γi(θ̄), contradicting that ∂ωi

is a Jordan curve. Thus from (26), (27) we have

f∗(σj) = γi

(

θ1j + (θ̃2j − θ1j)

(
σj − t1j

t2j − t1j

))

and so limj→∞ f∗(σj) = γi(θ) = f(σ) = f∗(σ) as required. 2

Lemma 5.

(i) Ω is path-connected and simply connected.
(ii) G is path-connected.
(iii) Ḡ is locally path-connected: given any x ∈ G and ε̄ > 0, there exists

δ > 0 such that for any z ∈ G with |x − z| < δ there is a continuous path
γ̃ : [0, 1] → G with γ̃(0) = x, γ̃(1) = z and |γ̃(t) − x| < ε̄ for all t ∈ [0, 1].

Proof. By the Schoenflies theorem [7] there is a homeomorphism u : R2 →
R2 with u(D) = Ω, u(∂D) = ∂Ω and u(D

c
) = Ω

c
where D = B(0, 1) is

the unit disk. Since D is path connected and simply connected this proves
(i). Given x, z ∈ G there thus exists a continuous path f : [0, 1] → Ω
with f(0) = x, f(1) = z. By Lemma 4, f∗ : [0, 1] → G is continuous
with f∗(0) = x, f∗(1) = z, which proves (ii). To prove (iii), note that
this is obvious if x ∈ G so we may suppose that x ∈ ∂Ω. The argument
in the case x ∈ ∂ωi for some i is similar. Note that u−1(x) ∈ ∂D. Let
σ > 0 be sufficiently small so that B(u−1(x), σ)∩∪N

i=1u
−1(∂ωi) is empty and

|y−u−1(x)| < σ implies |u(y)−x| < ε̄. Then let δ > 0 be such that |z−x| < δ
implies |u−1(z)−u−1(x)| < σ. Then γ̃(t) = u(tu−1(z)+(1−t)u−1(x)) defines
a suitable path. 2

Before starting the proof of Theorem 1 we need one more technical
lemma:

Lemma 6. Let G be a domain with holes as above and let Q ∈ C(Ḡ,Q).
There exists ν > 0 such that if x̄ ∈ Ḡ, −∞ < t1 < t2 < ∞, f (j), f ∈
C([t1, t2]; Ḡ), f (j)([t1, t2]) ⊂ B(x̄, ν), f (j)(t2) → f(t2), and if n(j), n :
[t1, t2] → S2 are continuous liftings of Q(f (j)(·)), Q(f(·)) respectively with
|n(j)(t1) − n(t1)| < 1, then n(j)(t2) → n(t2).

Proof. Choose ν sufficiently small such that |Q(x)−Q(y)| ≤ |s| if x, y ∈ Ḡ
with |x − y| ≤ 2ν. In Lemma 3 set m̄ = n(t1). Then by (22), (23) we have
that

|n(t) + n(t1)| > 1 for all t ∈ [t1, t2]. (30)

Also
|n(j)(t1) + n(t1)| ≥ 2|n(t1)| − |n(j)(t1) − n(t1)| > 1 (31)

and so by Lemma 3

|n(j)(t) − n(t1)| ≤ 1 for all t ∈ [t1, t2]. (32)
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Suppose that n(j)(t2) 6→ n(t2). Then since Q(f (j)(t2)) → Q(f(t2)) there
exists a subsequence jk such that n(jk)(t2) → −n(t2). But then, from (32),
|n(t2) + n(t1)| ≤ 1, contradicting (30). 2

Proof of Theorem 1. Let x0 ∈ G and choose one of the two possi-
ble orientations (m0, 0) for Q(x0), where m0 ∈ S1. Let x ∈ G be arbi-
trary. By Lemma 5(ii) there exists a continuous path γ : [0, 1] → G with
γ(0) = x0, γ(1) = x. By Lemma 3 there exists a unique continuous lifting
n : [0, 1] → S1 such that Q(γ(t)) = s

(
(n(t), 0) ⊗ (n(t), 0) − 1

3Id
)
, t ∈ [0, 1]

and n(0) = m0. We define N(x)
def
= n(1). To show that N(x) is well

defined, suppose that γ′ : [0, 1] → G is another continuous path with
γ′(0) = x0, γ

′(1) = x, let n′ : [0, 1] → S1 be the corresponding con-
tinuous lifting, and suppose for contradiction that n′(1) 6= N(x), so that
n′(1) = −N(x). Define the continuous loop Γ : [0, 1] → G by

Γ (t) =

{
γ(2t) if 0 ≤ t ≤ 1

2
γ′(2(1 − t)) if 1

2 ≤ t ≤ 1

so that Γ (0) = Γ (1) = x0. Then Ñ(t) defined by

Ñ(t) =

{
n(2t) if 0 ≤ t ≤ 1

2
−n′(2(1 − t)) if 1

2 ≤ t ≤ 1

is a continuous lifting such that

Q(Γ (t)) = s

(

(Ñ(t), 0) ⊗ (Ñ(t), 0) − 1

3
Id

)

(33)

and Ñ(0) = m0, Ñ(1) = −m0. The bulk of the proof will be to show that
such a lifting cannot exist, so that N(x) is well defined. Assuming this, we
claim that N : G→ S1 is a continuous lifting of Q, that is

Q(x) = s

(

(N(x), 0) ⊗ (N(x), 0) − 1

3
Id

)

for all x ∈ G and N is continuous in x. We only need to prove the continuity.
Let zj ∈ G with zj → x. By Lemma 5 (iii) there exist continuous paths

γ̃j : [0, 1] → Ḡ with γ̃j(0) = x, γ̃j(1) = zj and γ̃j(·) → γx in C([0, 1]; Ḡ)
where γx : [0, 1] → Ḡ, γx(t) = x, ∀t ∈ [0, 1]. Then we may consider the path

γ̂j(t) =

{
γ(2t) if 0 ≤ t ≤ 1

2
γ̃j(2t− 1) if 1

2 ≤ t ≤ 1

so that N(x) = ñj(0), N(zj) = ñj(1), where ñj : [0, 1] → S1 is such that
(ñj , 0) is the unique continuous lifting of Q(γ̃j(·)) with ñj(0) = N(x). By
Lemma 6 we deduce that N(zj) → N(x) as required.

It remains to prove that there is no continuous loop Γ : [0, 1] → G with
Γ (0) = Γ (1) = x0 and a corresponding continuous lifting Ñ : [0, 1] → S1 so
that (33) holds and Ñ(0) = m0, Ñ(1) = −m0.
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Since Ω is simply connected, there exists a continuous homotopy h :
[0, 1]2 → Ω, h = h(λ, t) with h(0, t) = Γ (t), h(1, t) = x0 for all t ∈ [0, 1] and
h(λ, 0) = h(λ, 1) = x0 for all λ ∈ [0, 1]. For each λ we consider the path
h∗(λ, ·) : [0, 1] → G, which is continuous by Lemma 4. By Lemma 3, for
each λ ∈ [0, 1] there is a unique continuous lifting nλ : [0, 1] → S1 such that

Q(h∗(λ, t)) = s

(

(nλ(t), 0) ⊗ (nλ(t), 0) − 1

3
Id

)

(34)

and nλ(0) = m0. We know that n0(1) = Ñ(1) = −m0. We will prove that
nλ(1) is a continuous function of λ ∈ [0, 1] so that nλ(1) = −m0 for all
λ ∈ [0, 1]. In particular n1(1) = −m0 contradicting h(1, t) = x0 for all t and
n1(0) = m0 (since n1(t) ∈ {m0,−m0} is continuous). This contradiction
proves the theorem.

To prove the continuity of nλ(1) in λ we make use of the assumption
that Q|∂ωi is orientable for each i. Let λk → λ in [0, 1]. Define

T = sup{t ∈ [0, 1] : h(λ, t) ∈ G ∪ ∂Ω, nλk(t) → nλ(t)}.

Since h(λ, t) ∈ G for all λ ∈ [0, 1] and all sufficiently small t it follows from
Lemma 6 that T > 0. Suppose for contradiction that T < 1. If h(λ, T ) ∈
G∪∂Ω then by the continuity of h there exists a σ > 0 such that h(λk, t) ∈
B(h(λ, T ), δ) for all sufficiently large k and for all t with |t− T | < σ, where
δ > 0 is small enough so that B(h(λ, T ), δ)∩Ω ⊂ G and δ < ν, where ν is as
given in Lemma 6. Hence if |t− T | < σ, h(λ, t) = limk→∞ h(λk, t) ∈ G, and
so h∗(λ, t) = h(λ, t). Also by the definition of T , there exists τ ∈ (T − σ, T )
with nλk(τ) → nλ(τ), and so by Lemma 6 nλk(t) → nλ(t) for t ∈ (T, T +σ),
contradicting the definition of T .

Thus we may suppose that h(λ, T ) ∈ ∂ωi for some i. Let [T, T̄ ] be
the maximal closed interval, containing T , such that h(λ, t) ∈ ωi for all
t ∈ [T, T̄ ].

Lemma 7. nλk(T ) → nλ(T ), nλk(T̄ ) → nλ(T̄ )

Proof. Step 1. We show that given δ > 0 there exist σ > 0 and k0 such
that

|h∗(λk, t) − h(λ, T )| < δ (35)

whenever |t− T | < σ and k ≥ k0.
If this were not true there would be a sequence tj → T and a subsequence

kj → ∞ such that

|h∗(λkj , tj) − h(λ, T )| ≥ δ for all j.

Since limj→∞ h(λkj , tj) = h(λ, T ) we may suppose that h(λkj , tj) ∈ ωi

for all j, and thus we have t1j < tj < t2j with h(λkj , t) ∈ ωi for t ∈
(t1j , t2j), h(λkj , t1j), h(λkj , t2j) ∈ ∂ωi. By the definition of T there exists
a sequence Tl → T− such that h(λ, Tl) ∈ G (and nλk(Tl) → nλ(Tl)). In
particular h(λkj , Tl) ∈ G for j sufficiently large, and so t1j ≥ Tl for large
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enough j. Hence t1j → T and so h∗(λkj , t1j) = h(λkj , t1j) → h(λ, T ). Thus
h∗(λkj , t1j) = γi(θ1j), h

∗(λkj , t2j) = γi(θ2j), where θ1j → θ and h(λ, T ) =
γi(θ). From (26)-(28)

h∗(λkj , tj) = γi

(

θ1j + (θ̃2j − θ1j))

(
tj − t1j

t2j − t1j

))

.

Considering separately the cases when t2j − t1j → 0 and when t2j − t1j ≥
µ > 0 we get limj→∞ h∗(λkj , tj) = h(λ, T ).

This contradiction proves the claim, which by a similar argument also
holds if T is replaced by T̄ .

Step 2. We prove that nλk(T ) → nλ(T ). In Step 1, we choose δ ∈ (0, ν),
where ν is given in Lemma 6, and note that h∗(λk, T ) → h∗(λ, T ) = h(λ, T ).
Since nλk(Tl) → nλ(Tl) the result follows from Lemma 6 applied on the
interval [Tl, T ].

Step 3. We prove that nλk(T̄ ) → nλ(T̄ ).
If T = T̄ there is nothing to prove and so we assume T̄ > T . First we

note that

lim
k→∞

sup
t∈[T,T̄ ]

dist(h∗(λk, t), ∂ωi) = 0, (36)

since otherwise there would exist a subsequence kj → ∞ and tj → t in
[T, T̄ ] with h∗(λkj , tj) = h(λkj , tj) → h(λ, t) 6∈ ωi, a contradiction.

Since Q|∂ωi is orientable, there is a unique continuous lifting N̂ : ∂ωi →
S1 such that N̂(h(λ, T )) = nλ(T ). Given ε > 0 sufficiently small, we choose
δ ∈ (0, ε), k0 such that (from (36)) if k ≥ k0

dist(h∗(λk, t), ∂ωi) < δ, for all t ∈ [T, T̄ ], (37)

x, y ∈ Ḡ with |x− y| < 4δ implies |Q(x) −Q(y)| < ε|s|, (38)

|N̂(z) − N̂(z̄)| < ε, if z, z̄ ∈ ∂ωi with |z − z̄| < 3δ, (39)

and

|nλk(T ) − nλ(T )| < ε, |h∗(λk, T ) − h(λ, T )| ≤ δ. (40)

For k ≥ k0 define

Sk = {t ∈ [T, T̄ ] : there exists z = z(t) ∈ ∂ωi

with |z − h∗(λk, t)| ≤ δ, |nλk(t) − N̂(z)| ≤ 2ε}.

It is easily seen that Sk is closed. Also T ∈ Sk because we can take z =
h(λ, T ) and use (40). We show that if t ∈ Sk with t < T̄ then t+ t̃ ∈ Sk for
t̃ > 0 sufficiently small, so that Sk = [T, T̄ ].

Given t̃ < T − t, by (37) there exists z(t+ t̃) ∈ ∂ωi with

|z(t+ t̃) − h∗(λk, t+ t̃)| < δ.
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If t̃ is chosen small enough so that |h∗(λk, t + t̃) − h∗(λk, t)| < δ we have
that

|h∗(λk, t+ t̃) − z(t)| ≤ 2δ, (41)

|z(t+ t̃) − z(t)| < 3δ. (42)

Thus by (38)
|Q(h∗(λk, t+ t̃)) −Q(z(t))| < ε|s|.

Also |nλk(t) − N̂(z(t))| ≤ 2ε and so by Lemma 3 we have |nλk(t + t̃) −
N̂(z(t))| ≤ ε and hence, by (39),(42) |nλk(t+ t̃) − N̂(z(t+ t̃))| ≤ 2ε. Hence
t+ t̃ ∈ Sk as required.

Since T̄ ∈ Sk and since h∗(λk, T̄ ) → h(λ, T̄ ) letting ε → 0 we deduce
that nλk(T̄ ) → N̂(h(λ, T̄ )). But h∗(λ, t) ∈ ∂ωi and is continuous in t for
t ∈ [T, T̄ ]. Hence nλ(t) = N̂(h∗(λ, t)) for all t ∈ [T, T̄ ] and in particular
N̂(h(λ, T̄ )) = nλ(T̄ ). Thus nλk(T̄ ) → nλ(T̄ ) as required. 2

To complete the proof of the theorem we note that by the definition of
T̄ there exists a sequence T̄r → T̄+ with h(λ, T̄r) ∈ G. By (35) for T̄ , given
δ ∈ (0, ν), ν as in Lemma 6, we have |h∗(λk, t)−h(λ, T̄ )| < δ for k ≥ k0 and
|t − T̄ | < σ. Let r be large enough so that |T̄r − T̄ | < σ. Then for k large
enough h∗(λk, T̄r) = h(λk, T̄r) ∈ G, and so h∗(λk, T̄r) → h∗(λ, T̄r). Since
also nλk(T̄ ) → nλ(T̄ ) we deduce from Lemma 6 that nλk(T̄r) → nλ(T̄r)
for r sufficiently large, contradicting the definition of T . Thus T = 1, and
using the same argument as just after the definition of T we deduce that
nλk(1) → nλ(1). 2

Remark 4. Theorem 1 could alternatively have been proved using algebraic
topology notions. The orientability of a continuous line field on Ḡ needs to
be checked only on a set of generators of the fundamental group π1(Ḡ) of Ḡ.
It seems to be well known (though tricky to find in the literature) that for
a domain with holes as defined before, the boundary loops ∂ωi, i = 1, . . . , n
constitute a family of generators of π1(Ḡ) (this could be checked for instance
by reducing the domain to a standard domain with circular regions, through
a conformal mapping; see for instance [13]). These observations suffice to
give the result of Theorem 1.

3.2. Arbitrary line fields on simply-connected domains

In this case we have that there is a lifting in W 1,p for p ≥ 2 but not for
p < 2:

Theorem 2. Let Ω be a bounded simply-connected domain of class C0 in
Rd, d = 2, 3. Let Q ∈W 1,p(Ω,Q), 1 ≤ p ≤ ∞. If p ≥ 2 there exists a lifting
n ∈W 1,p(Ω, S2) so that P ◦ n = Q.

Moreover we have the estimate

c1‖∇Q‖Lp ≤ ‖∇n‖Lp ≤ c2‖∇Q‖Lp (43)

with c1, c2 constants that depend only on p.
For p < 2 there exist line fields for which there is no lifting.
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Proof. The case p ≥ 2.
Let us recall the following result of M. Pakhzad and T. Rivière:

Proposition ([33], p.225) Let M,N be compact smooth manifolds, with M
simply connected. For u ∈ W 1,2(M,N) there exists a sequence

{
u(k)

}

k∈N

with u(k) ∈ C∞(M,N) so that u(k) converges weakly to u.

Let us assume first that Ω is a domain with smooth boundary. Using
the above theorem with M = Ω̄ and N = Q we can find a sequence of
smooth functions Q(k) converging weakly to Q. Each Q(k) is orientable, by
Proposition 5 as the domain Ω is simply connected. Using Proposition 4 we
obtain that the limit function Q is also orientable.

We obtain thus that for Q ∈ W 1,p(Ω,Q) ⊂ W 1,2(Ω,Q), p ≥ 2 there
exists n ∈ W 1,2(Ω, S2) with P (n) = Q. But then n is continuous along
almost any line parallel with the axis of coordinates, hence by (15) we get
n ∈W 1,p(Ω, S2).

In order to extend the theorem to less smooth domains we need the
following

Lemma 8. ([2]) Let Ω ⊂ Rn be a bounded simply-connected domain of class
C0. There exists ε0 > 0 so that for any ε > 0 with ε < ε0 there exists a
domain Ωε ⊂ Ω with smooth boundary and such that dH(Ωε, Ω) < ε where
dH denotes the Hausdorff distance. Moreover Ωε can be chosen so that it is
simply-connected and Ωε′ ⊂ Ωε if ε < ε′.

Using the lemma one finds a sequence of simply-connected smooth do-
mains Ωεk

⊂ Ω, k ∈ N, with Ωεk
⊂ Ωεk+1

and ∪k∈NΩεk
= Ω. Then for Ωε1

one has, by the previous arguments, that there exists nε1 ∈ W 1,p(Ωε1 , S
2)

so that P (nε1) = Q on Ωε1 . On Ωε2 one has two possibilities of orienting Q,
and one chooses nε2 ∈W 1,p(Ωε2 , S

2) so that nε2(x) = nε1(x), a.e. x ∈ Ωε1 .
One continues similarly defining inductively nεk

, k ∈ N.
We can define now n ∈ W 1,2(Ω, S2) by n(x) = nεk

(x), for all x ∈ Ωεk
.

The formula (43) is straightforward by taking into account the relation
between n and Q as well as (15).

The case 1 ≤ p < 2.
An example is provided in Figure 2. The line field

Q(x) = s

(

n(x) ⊗ n(x) − 1

3
Id

)

onΩ = (−1, 1)3 ⊂ R3 corresponds to what is called in the physical literature
‘an index one-half singularity’, where

n(x1, x2, x3) =

{

( x2√
x2
1+x2

2

,− x1√
x2
1+x2

2

, 0) if (x1, x3) ∈ (−1, 1)2, x2 ∈ [0, 1)

(0, 1, 0) if (x1, x3) ∈ (−1, 1)2, x2 ∈ (−1, 0)
.

That the line field in Fig. 2 is not orientable follows from the argument
in Lemma 11. It is an easy exercise to adapt the previous example to provide
an example of a non-orientable line field, inW 1,p(Ω) for an arbitrary domain
Ω as in the hypothesis. 2
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Fig. 2. A non-orientable director field on a simply-connected domain, for p < 2

Remark 5. As explained in [4] an interesting consequence of the theorem is
that the line field in Fig.2 cannot be modified in a cylindrical core x2

1 +x2
2 ≤

ε2 so that it has finite Landau-de Gennes energy, whereas line disclinations
of infinite energy can be so modified by ‘escape into the third dimension’
(see [5]).

4. Analytic orientability criteria in 2D

In this section we restrict ourselves to planar line fields, i.e. the domain
Ω is a subset of R2 and the line field takes values only in Q2, not in the
whole of Q.

It is important to know, from a PDE perspective, if it is possible to
detect the orientability (or non-orientability) of a line field just by knowing
its boundary values.

Let us first recall Remark 2 (after Proposition 3) which shows that ori-
entability in a domain implies orientability at the boundary. Thus, in partic-
ular, if a line field in W 1,2(Ω) is orientable then its trace on the boundary,
a line field in H1/2(∂Ω), must be orientable as well. We will see, in the
next section, in Proposition 7, that the converse is true as well, namely that
orientability at the boundary implies orientability in the interior. We recall
that it was already shown in Section 3.1, Theorem 1, that for continuous
line fields on domains with holes G (as defined in Section 3.1) orientability
can be checked at the boundary.

In order to obtain an analogue of the previous theorem for less regular
functions, in W 1,2(G), we need first to understand the relation between the
orientability in the class of continuous line fields and that in W 1,2(G). We
study first this question at the boundary and consider a line field on ∂G that
is in C(∂G)∩H1/2(∂G). We claim that if the line field is non-orientable, as
a continuous line field, then it is also non-orientable in H1/2(∂G).

More precisely, forG ⊂ R2, a domain with holes as defined in Section 3.1,
let Q ∈ C(∂G,Q2) ∩ H1/2(∂G,Q2) be a line field non-orientable in the
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class of continuous fields. We assume for contradiction that Q is orientable
as a function in H1/2(∂G) i.e. that Qij = s(ninj − δij

3 ), i, j = 1, 2, 3 with

ni ∈ H1/2(∂G,R), i = 1, 2, 3 and (n1(x), n2(x), n3(x)) ∈ S
1 a.e. x ∈ ∂G. If

we can show that ni, i = 1, 2, 3 has a continuous representative, we obtain
a contradiction which proves our claim. As G has a smooth boundary we
can, without loss of generality, assume that there exists locally a smooth
transformation that takes functions in H1/2(Bδ(P ) ∩ ∂G) (with P ∈ ∂G)
into functions in H1/2(I) where I is an open interval and thus we need to
show that if Qii = snini ∈ C(I) and ni ∈ H1/2(I; R) for i = 1, 2, 3 then
there exists a continuous n̄i, i = 1, 2, 3 such that n̄i(x) = ni(x) a.e. x ∈ I.

Lemma 9. Let I ⊂ R be an open set. Take f : I → R be such that f ∈
H1/2(I; R) and f2 ∈ C(I; R). Then there exists f∗ ∈ C(I,R) so that f∗ = f
a.e. on I.

Proof. We claim first that if f(a) 6= 0 there exists a δ̄ = δ̄(a) > 0 so that
on (a− δ̄, a+ δ̄) the function f has constant sign almost everywhere.

Assuming the claim the proof is straightforward. Indeed, let Z(f) denote
the zero set of f in I. We define s : I \ Z(f) → {1,−1} such that s(y) = 1
if there exists a δ0(y) > 0 so that f is positive almost everywhere on the
interval (y − δ, y + δ) for any δ < δ0, and s(y) = −1 otherwise. One can
easily check that s is constant on the connected component of y for any
y ∈ I \ Z(f).

Recalling that f2 ∈ C(I; R) and so is defined everywhere we let

f∗(y)
def
=

{

s(y)
√

f2 if y ∈ I \ Z(f)
0 if y ∈ Z(f)

and one can easily check that f∗ is continuous. Indeed, if y ∈ I \Z(f) there
exists an open interval around y, say (y− δ, y+ δ) on which s(y) is constant

hence on (y − δ, y + δ) we have that f∗ is either plus or minus
√

f2, and
√

f2 is a continuous function. If y ∈ Z(f) let us take (yn)n∈N an arbitrary
sequence of points so that yn → y. The continuity of f2 implies that for
any ε > 0 there exists a n(ε) such that |f2(yn)| < ε if n > n(ε) so that
|f(yn)| = | ± f∗(yn)| = |f∗(yn)| ≤ √

ε, which proves the continuity of f∗ at
y.

We continue by proving the claim and start by assuming without loss
of generality that f(a) = l > 0. As f2 ∈ C(I,R) there exists a δ0 > 0 such
that

|f2(x) − l2| < l2

4
, for all x ∈ (a− δ0, a+ δ0). (44)

Note that H1/2(I,R) ⊂ VMO(I,R) (see for instance [9],[10],[36]). Recall
that if f ∈ VMO(I) then for any ε > 0 there exists a δ̃ > 0 such that:

1

|B(x, δ)|

∫

B(x,δ)

∣
∣
∣
∣
f(s) − 1

|B(x, δ)|

∫

B(x,δ)

f(t)dt

∣
∣
∣
∣
ds < ε
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for all δ < min{δ̃, 1
2 (x, ∂I)}.

We show that there exists a δ1 < δ̃ so that for any I(x)δ = (x−δ, x+δ) ⊂
(a− δ0, a+ δ0) with δ < δ1 we have

∣
∣
∣
∣

1

|I(x)δ|

∫

I(x)δ

f(y)dy

∣
∣
∣
∣
>
l

8
. (45)

Indeed, if (45) were false there would exist two sequences (δk)k∈N, (xk)k∈N,
with δk → 0 so that I(xk)δk

= (xk − δk, xk + δk) ⊂ (a− δ0, a+ δ0) and

− l

8
≤ 1

|I(xk)δk
|

∫

I(xk)δk

f(s)ds ≤ l

8
. (46)

From the VMO characterization of f we have

1

|I(xk)δk
|

∫

I(xk)δk

∣
∣
∣f(s) − 1

|I(xk)δk
|

∫

I(xk)δk

f(t)dt
∣
∣
∣ds <

l

4

for δk small enough. However, the last inequality cannot hold simultaneously
with (44) and (46). This contradiction proves (45).

Let us denote

g(x, δ)
def
=

1

|I(x)δ |

∫

I(x)δ

f(y)dy.

As f2 (and thus f) is bounded on [a− δ0, a+ δ0] one can easily check that
g(x, δ) is continuous as a function of two variables on the set {(x, δ); (x, δ) ∈
(a−δ0+δ1, a+δ0−δ1)×[0, δ1]} and has no zeros on this set (because of (45)).
Thus g has constant sign on {(x, δ); (x, δ) ∈ (a−δ0+δ1, a+δ0−δ1)× [0, δ1]}
and then by using the Lebesgue differentiation theorem we obtain that f
also has constant sign almost everywhere on (a− δ0, a+ δ0). 2

In order to study the orientability of planar line fields for Q a Q2-valued
function we define the auxiliary complex-valued map A(Q):

A(Q)
def
=

2

s
Q11 −

1

3
+ i

2

s
Q12, A(Q) ∈ S

1 ⊂ C. (47)

The motivation for this definition is that if Q has the form in (6) and

Z(n)
def
= n1 + in2 then A(Q) = Z2(n). The auxiliary map allows one to

associate to a planar line field an auxiliary unit-length vector field. We
shall determine the orientability of the line field in terms of topological
properties of this auxiliary vector field. We provide first a necessary and
sufficient condition for orientability along the boundary of bounded smooth
sets. This does not suffice for a line field to be orientable on the whole
domain but provides a necessary condition for it.

Before stating the orientability criterion, we need to fix some notations
about the degree. Let us recall [24], pp. 120 − 130, that one can define an
integer degree for a smooth function f : M → N at a regular value y = f(x)
where M and N are boundaryless, compact and oriented manifolds of the
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same dimension. We work only with a connected target manifold (N = S1),
so the degree is independent of the regular value chosen [24], Lemma 1.4, p.
124. In the case when M has several connected components M1, . . . ,Mk we
denote deg(f,M) =

∑k
i=1 deg(f,Mi) where each Mi is given the orientation

induced by the inclusion Mi →֒ M . In the case when M is connected and
its orientation is the standard one induced from the ambient space we omit
the M and simply write deg f .

However, sometimes the degree can be defined for functions that are not
necessarily smooth. Let us recall Theorem A.3 in [31] that gives a formula
for the degree of a complex-valued function f ∈ H1/2(S1, S1), namely:

deg f =
1

2πi

∫

S1

f−1∂f

∂θ
dθ. (48)

(note that the integral is defined in the sense of distributions since f−1 =

f̄ ∈ H
1
2 (S1, S1) and ∂f

∂θ ∈ H−1/2(S1, S1)).

Proposition 6. Let Ω be a smooth, bounded domain in R2 and let
Q ∈ W 1,2(Ω,Q2). We denote by (∂Ω)i, i = 1, . . . , k the connected compo-
nents of the boundary.

For any i ∈ {1, 2, . . . , k} the function TrQ|(∂Ω)i
∈ H1/2((∂Ω)i,Q2),

is orientable (in the space H1/2) if and only if deg(A(TrQ), (∂Ω)i) ∈ 2Z.
Moreover if there exists a unit-length vector field n such that Z(n) = n1 +
in2 ∈ H1/2((∂Ω)i, S

1) and P (n) = TrQ a.e. on (∂Ω)i then deg(n, (∂Ω)i) =
1
2 deg(A(TrQ), (∂Ω)i).

Proof. We can regard Ω̄ as a manifold with boundary and then the topo-
logical boundary of the set coincides with the boundary as a manifold. The
boundary is then again a manifold. More precisely ∂Ω is a one-dimensional
closed manifold without boundary. Taking into account the classification
theorem for one-dimensional manifolds (see [30]) we have that each con-
nected component of ∂Ω is diffeomorphic to S1. We continue thus by assum-
ing, without loss of generality, that for i ∈ {1, 2, . . . , k} we have (∂Ω)i = S

1.
It is easily seen that TrQ ∈ H1/2(S1,Q2) is orientable if and only if for

the function A(Tr Q) ∈ H1/2(S1, S1) there exists a unit-length vector field n
such that Z(n) ∈ H1/2(S1, S1) and A(TrQ) = Z2(n).

We claim now that a necessary and sufficient condition for the existence
of a unit-length vector field n so that Z(n) ∈ H1/2(S1, S1) and A(TrQ|S1) =
Z2(n) is deg(A(TrQ), S1) ∈ 2Z.

We prove first the necessity. It is known ([31], p.21) that for any function
v ∈ H1/2(S1, S1) there exists a number k = deg v ∈ Z and a unique (up to
an integral multiple of 2π) V ∈ H1/2(S1,R) so that v(z) = zk · eiV (z) a.e.
z ∈ S1. If we assume that A(TrQ|S1) = Z2(n) for some unit-length vector
field n with Z(n) ∈ H1/2(S1, S1) using the quoted result we have that there
exist α = deg A(TrQ|S1) ∈ Z, β = deg n ∈ Z and g, h ∈ H1/2(S1,R) so
that A(TrQ|S1)(z) = zα · eig(z) and Z

(
n(z)

)
= zβ · eih(z). The equality



26 John M. Ball, Arghir Zarnescu

A(TrQ)|S1) = Z2(n) implies that, a.e. on S1, one has:

zα−2β = ei(2h−g). (49)

We claim that the last equality implies α = 2β. Indeed, we have 2h−g ∈
H1/2(S1,R) and thus (see for instance [8], Thm. 2) ei(2h−g) ∈ H1/2(S1, S1).

Using formula (48) we find that the expression on the right hand side
of (49) has degree 0, while the one on the left hand side has degree α −
2β ∈ Z, hence our claim. In order to prove the sufficiency let us assume
that degA(TrQ) = 2k, k ∈ Z. Then, by the previously quoted repre-
sentation formula in ([31], p.21) there exists a W ∈ H1/2(S1,R) so that
A(TrQ)(z) = z2keiW (z) and thus there exists a vector field n such that
Z(n)(z) = zkeiW (z)/2 ∈ H1/2(S1, S1).

The same representation formula immediately gives the last part of the
Proposition. 2

We can now provide a necessary and sufficient condition for orientability
on the whole domain, in the case of a planar domain with holes.

Proposition 7. Let G be a planar domain with holes as defined in (25),
Section 3.1. Assume moreover that ∂G is smooth. Let Q ∈ W 1,2(G,Q2).
Then Q is orientable if and only if

deg(A(Tr Q|∂Ω), ∂Ω) ∈ 2Z, deg(A(Tr Q|∂ωi), ∂ωi) ∈ 2Z, i = 1, . . . , n.

Proof. The necessity of the condition is a consequence of Proposition 6
together with Proposition 3. We show the sufficiency. As G ⊂ R2 we have,
from [34], that there exists a sequence of functions Qk ∈ C1(Ḡ; Q2) so that
Qk → Q in W 1,2(G,Q2). We show that for k large enough Qk is orientable.
First let us observe that we have

Lemma 10. Let G be an open set in R2. The function Q ∈W 1,2(G; Q2) ∩
C(Ḡ; Q2) is orientable as a function in W 1,2 if and only if it is orientable
as a continuous function.

Proof of the lemma. We assume first that Q is orientable in W 1,2 and
show that it is orientable in C. Let n ∈ W 1,2(G; S1) be such that P (n) = Q.
Note that this implies n2

i ∈ W 1,2(G; R) ∩ C(Ḡ; R), i = 1, 2, 3.
We prove first that ni ∈ W 1,2(G; R), i = 1, 2, 3 and n2

i ∈ C(Ḡ; R) imply
ni = n∗

i a.e. for some n∗
i ∈ C(Ḡ; R), i = 1, 2, 3. To prove this we claim first

that:

(C) If x0 ∈ Ḡ is such that n2
i (x0) 6= 0 then there is a neighbourhood of x0

on which ni has constant sign almost everywhere

Assuming (C) it is straightforward to construct n∗
i , in a manner nearly

identical to the proof of a similar claim in the proof of Lemma 9. We continue

by proving the claim (C). Let l2
def
= n2

i (x0), l > 0. There exists ε > 0
such that if |x − x0| < ε then ni(x) ∈ (− 5

4 l,− 3
4 l) ∪ (3

4 l,
5
4 l). From ni ∈
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W 1,2(G,R) we have that ni is continuous along almost all lines parallel with
the coordinate axes, in a suitably chosen reference frame. This suffices for
concluding that ni has constant sign almost everywhere in {x ∈ G; |x−x0| <
ε}.

Assume on the other hand that Q is orientable as a continuous function,
i.e. there exists a n ∈ C(Ḡ, S1) so that P (n) = Q. Using Lemma 1 we have
that n ∈W 1,2. 2

Continuing the proof of the theorem let us recall [9] that for a unit-
length vector field n ∈ H1/2(S1, S1) there exists a δ > 0 (depending on n)
such that for any other unit-length vector field m ∈ H1/2(S1, S1) with ‖n−
m‖BMO < δ we have that m has the same degree as n. Taking into account
the relation between the BMO(S1, S1) semin-norm and the H1/2(S1, S1)
norm we have that there exists δ0 > 0 so that if ‖n − m‖H1/2(S1,R) < δ0
then n and m have the same degree. Thus for k large enough we have that
deg(A(TrQk|∂Ω), ∂Ω) ∈ 2Z, deg(A(TrQk|∂ωi), ∂ωi) ∈ 2Z, i = 1, . . . , n.

Proposition 6 shows that TrQk|∂Ω,TrQk|∂ωi , i = 1, . . . , n are orientable
in H1/2. Using Lemma 9 we have that TrQk|∂Ω ,TrQk|∂ωi , i = 1, . . . , n
are also orientable in the class of continuous functions. Using Theorem 1
we have that Qk is orientable in the class of continuous functions. Using
Lemma 10 we obtain that for large enough k the function Qk is orientable
in W 1,2. Since strong convergence preserves orientability (see Proposition 4)
we conclude that Q is orientable. 2

Remark 6. It is known (see for instance [1]) that for functions with values
in Rd we have that W 1,2(Ω)\C(Ω) 6= ∅ (for Ω ⊂ R2). However one may ask
if for functions with values in S1 the situation is different. This is not the
case, as shown by the vector field: n(x) = (n1(x), n2(x), n3(x)) with n1(x) =
1
2 sin

(
ln ln( k

|x|)
)
, n2(x) =

√

1 − n1(x)2, n3(x) = 0, on D = {x ∈ R
2, |x| ≤

1} (we take k > 1). Then one can easily check that n ∈ W 1,2(D; S1) \
C(D; S1).

The previous proposition shows that we can determine the orientability
to computing certain numbers. However, in specific cases, it may be simpler
to just use Lemma 10 and check the orientability at the continuous level of
regularity, where topological tools can be more efficient.

As an example, consider an analytic description of the line field in Figure
1. Let

Q̃ = s(ñ⊗ ñ− 1

3
Id) ∈ W 1,2(Ω̃,Q2) (50)

where

Ω̃
def
= {(x, y) ∈ [−1, 1]× [−1, 0],

√

x2 + y2 ≥ 1

2
}

∪{(x, y); y ≥ 0,
1

2
≤

√

x2 + y2 ≤ 1} (51)
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and

ñ(x, y) =

{
(0, 1, 0) if (x, y) ∈ ([−1, 1]× [−1, 0]) ∩ Ω̃
(− y√

x2+y2
, x√

x2+y2
, 0) if y ≥ 0, 1

2 ≤
√

x2 + y2 ≤ 1 (52)

Lemma 11. The line field Q̃ as in (50), (52) on the domain Ω̃ as in (51)
is not orientable in W 1,2(Ω̃; Q2) or in C(Ω̃; Q2).

Proof. Lemma 10 shows that it suffices to prove the non-orientability in
the class of continuous line fields. Let us consider the following subsets of

Ω̃: Ω1
def
= {(x, y) ∈ Ω̃, y ≤ 0}, Ω2

def
= {(x, y) ∈ Ω̃, x ≤ 0}, Ω3

def
= {(x, y) ∈

Ω̃, x ≥ 0}. We assume for contradiction that the continuous line field is
orientable and try to find an orientation. In Ω1 there are only two possible
orientations (see also Proposition 2), that is all the unit vectors are (0, 1, 0)
or all are (0,−1, 0). Let us assume that we pick the orientation (0, 1, 0).
There are two possible orientations in Ω2 but since Ω1 ∩ Ω2 6= ∅ and we
have already chosen an orientation in Ω1 we can only pick the orientation
( y√

x2+y2
,− x√

x2+y2
) in Ω2. Also there are two possible orientations in Ω3

but since Ω1 ∩ Ω3 6= ∅ and we have already chosen an orientation in Ω1

we can only pick the orientation (− y√
x2+y2

, x√
x2+y2

) in Ω3. Thus on the

line {(0, y); y ∈ [ 12 , 1]} we have both the orientation (−1, 0, 0) and (1, 0, 0).
Similarily, if we start with the other possible orientation in Ω1 we also reach
a contradiction. 2

5. The minimizing Q-harmonic maps versus minimizing
harmonic maps in the plane

We saw in the previous sections that in order to have a geometry in
which both orientable and non-orientable energy minimizers exist we need
to allow for a domain that is not simply connected. Propositions 6 and
7 show that if the boundary data on all components of the boundary is
orientable then any line field with that boundary data will be orientable.
Moreover, if the boundary data on at least one component of the boundary is
non-orientable then any line field with that boundary data will necessarily
be non-orientable. Thus full knowledge of the boundary data completely
determines the orientability of the line fields with that boundary data. In
order to allow for a geometry with both orientable and non-orientable energy
minimizers we need to fix orientable boundary data on only one part of the
boundary.

The simplest situation one could conceive is to consider a domain with
one hole. However in such a domain putting orientable boundary data on
one component of the boundary would imply that any line field with that
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boundary data is orientable (indeed, let G = Ω \ ω1 and g : ∂Ω → Q2 be
orientable, so that degree of A(g) is even; for any h : ∂ω1 → Q2 we need to
have deg(A(g))+deg(A(h)) = 0, see for instance [24], p. 126, and hence h is
orientable). Thus we need to take at least two holes. If one puts orientable
boundary data on two of the components of the boundary, leaving the third
component free, a degree argument as before shows that the boundary data
on the third component of the boundary must be orientable as well, hence
we can only have orientable line fields.

Thus we are led to considering the case of a domain with two holes
and orientable boundary data on only one connected component of the
boundary. Such a situation is presented in Fig. 3. More precisely let us
consider the domains (for δ > 1):

M1
def
= {x = (x1, x2) ∈ R2 : x2

1 + (x2 − δ)2 < 1}
M2

def
= {x = (x1, x2) ∈ R

2 : x2
1 + (x2 + δ)2 < 1}

M3
def
= {x = (x1, x2) ∈ R2 : |x1| < 1; |x2| ≤ δ}

M4
def
= {x = (x1, x2) ∈ R2 : x2

1 + (x2 − δ)2 ≤ 1
2}

M5
def
= {x = (x1, x2) ∈ R2 : x2

1 + (x2 + δ)2 ≤ 1
2}

(53)

and we define the stadium domain:

Mδ = M1 ∪M2 ∪M3 \ (M4 ∪M5). (54)

On the outer boundary we impose as boundary conditions lines tangent
to the boundary, which can be oriented clockwise (as shown in Fig. 3b) or
anticlockwise. Thus we have a simple geometry with boundary conditions
that allow both orientable and non-orientable line fields. We compare the
minimizers of

Iδ(Q) =

∫

Mδ

|∇Q(x)|2 dx

(in W 1,2(Mδ,Q2), subject to the indicated line field boundary conditions
on the outer boundary) with the minimizers of

Jδ(n) = 2s2
∫

Mδ

|∇n(x)|2 dx

(in W 1,2(Mδ; S
1), subject to tangent vector-field boundary conditions on

the outer boundary). Note that Jδ(n) = Iδ(Q) when Q is orientable.
We have:

Lemma 12. Let n̄δ ∈W 1,2(Mδ, S
1) be any global energy minimizer of Jδ(n)

in W 1,2(Mδ; S
1) (subject to tangent vector-field boundary conditions on the

outer boundary, as in Fig. 3b). Let Q̄δ ∈ W 1,2(Mδ; Q2) be any global energy
minimizer of Iδ(Q) in W 1,2(Mδ; Q2) (subject to tangent line-field boundary
conditions on the outer boundary, as in Fig. 3a).
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Fig. 3. A situation in which the energy minimizer is non-orientable

There exists a δ0 > 1 so that for any δ > δ0 we have

Iδ(Q̄δ) < Jδ(n̄δ).

Proof. Let us observe first that the sets in which we do the minimization,
in either the oriented or non-oriented context, are non-empty. Indeed, let us
take

Q̃(x) =







s
(
(0, 1, 0) ⊗ (0, 1, 0)− 1

3Id
)
, x ∈M3

s
(
nδ(x) ⊗ nδ(x) − 1

3Id
)
, x ∈M1 \M4, x2 ≥ δ

s
(
mδ(x) ⊗mδ(x) − 1

3Id
)
, x ∈M2 \M5, x2 ≤ −δ

where

nδ(x)
def
=

(
x2 − δ

|(x1, x2 − δ)| ,−
x1

|(x1, x2 − δ)| , 0
)

mδ(x)
def
=

(
x2 + δ

|(x1, x2 + δ)| ,−
x1

|(x1, x2 + δ)| , 0
)

.

Then Q̃ ∈ W 1,2 and satisfies the boundary conditions. Let us observe
that Q̃ is exactly the line field shown in Fig. 3a. It is also straightforward
to see that in the case of vector-field boundary conditions (see Fig. 3b)
there exist vector fields nδ ∈ W 1,2(Mδ; S

1) on the whole Mδ that match the
boundary conditions.
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For any such vector field the orientation along a line AB as in Fig. 3b
changes from up to down or down to up, and we can find a lower bound
for the energy along such a line. Indeed, for almost all x2 ∈ [−δ, δ] we
have nδ(·, x2) ∈ W 1,2([−1, 1]; S1) and nδ(−1, x2) = (0, 1, 0), nδ(1, x2) =

(0,−1, 0), and it is easy to check that
∫

[−1,1]×{x2}
|∂x1nδ(z, x2)|2 dz ≥ π2

2 .

Then
∫

Mδ

|∇nδ(x)|2 dx ≥
∫

Mδ

|∂x1nδ(x)|2 dx

≥
∫

M3\(M4∪M5)

|∂x1nδ(x)|2 dx ≥ (δ − 1

2
)π2. (55)

Thus we have that
∫

Mδ
|∇n̄δ(x)|2 dx ≥ (δ − 1

2 )π2 and, noting the way

Q̃ is defined we have that
∫

Mδ
|∇Q̃(x)|2 dx is independent of δ. Hence there

exists δ0 > 0 so that for any δ > δ0 we have

2s2
∫

Mδ

|∇n̄δ(x)|2 dx ≥ s2(2δ−1)π2 >

∫

Mδ

|∇Q̃(x)|2 dx ≥
∫

Mδ

|∇Q̄δ(x)|2 dx

which proves the claim. 2

The previous theorem shows that for δ large enough the Oseen-Frank
theory fails to capture the global energy minimizer and detects just a local
energy minimizer, the energy minimizer in the class of oriented line fields. In
the following we completely characterize the instances in which the Oseen-
Frank theory fails in this way.

We consider a smooth planar domain G = Ω \ ∪n
i=1ωi with n ≥ 1 holes,

ωi, i = 1, . . . , n, as defined in (25), Section 3.1. We consider the problem of
minimizing the energy

IG(Q) =

∫

G

|∇Q(x)|2 dx, (56)

on this domain in the class of Q2-valued functions whose gradients are
square integrable and that satisfy Q|∂Ω = g with g smooth. We shall provide
necessary and sufficient conditions for the global minimizers to be non-
orientable. This is the most interesting situation as it is precisely that in
which the Oseen-Frank theory would fail to see the right energy minimizer
and would only provide a local energy minimizer, a minimizer in the class
of orientable line fields.

In order to encode the complexity of the domain and its relationship
with the prescribed boundary data g, we need n + 1 functions h1, . . . , hn

and h(g).The functions hi, i = 1, 2, . . . , n encode the characteristics of the
holes and their relations with the set Ω. Each function hi, i = 1, . . . , n is
the solution of the equation







∆hi = 0 on G
hi = 1 on ∂ωi

hi = 0 on ∂ωj, j 6= i
∂hi

∂ν = 0 on ∂Ω

(57)



32 John M. Ball, Arghir Zarnescu

�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������
�������

������
������
������
������
������
������
������
������
������
������
������
������

������
������
������
������
������
������
������
������
������
������
������
������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������
����������

1

Ω
ω4

ω3

ω1

ω2

Fig. 4. A domain with holes

We define the matrix D = (Dij), i, j = 1, . . . , n depending only on

the domain, by Dij
def
= 1

2π

∫

∂ωi

∂hj

∂ν (σ) dσ. Note that Dij = 1
2π

∫

G ∇hi(x) ·
∇hj(x) dx so that D is symmetric.

It will be important, in later calculations, to know explicitly the nullspace
of the matrix D:

Lemma 13. Let e
def
= (1, 1, . . . , 1

︸ ︷︷ ︸

n times

). Then the nullspace of D is N(D) = Re.

Proof. Let z ∈ R
n, h(x)

def
= (h1(x), . . . , hn(x)) and denote v(x)

def
= h(x) · z.

Then

Dz = 0 ⇔
∫

∂ωi

∂v

∂ν
dσ = 0, for all i ∈ {1, 2, . . . , n}.

The last relation implies that
∫

G
|∇v(x)|2 dx =

∫

∂G
v · ∂v

∂ν dσ = 0 and
hence v is a constant function. But v = zi on ∂ωi and so z1 = z2 = · · · = zn.

Conversely if z1 = · · · = zn = a then






∆v = 0 on G
v = a on each ∂ωi
∂v
∂n = 0 on ∂Ω

and so by uniqueness v ≡ a and Dz = 0. 2

In order to define the function h(g) we need to use the auxiliary vector-
field A(g) = 2

sg11 − 1
3 + i 2sg12 associated to the line field g, as defined in

(47). This is a complex-valued function but from now on, until the end of
the paper, we identify in a standard way the complex-valued function A(g)
with a vector-valued real function. The function h(g) describes the relation
between the domain and the boundary data and is defined as the solution
of the equation







∆h(g) = 0 on G
∂h(g)

∂ν = A(g) × ∂A(g)
∂τ on ∂Ω

h(g) = 0 on ∂G \ ∂Ω
(58)
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(note that in the above the vector-valued real function A(g)× ∂A(g)
∂τ is iden-

tified, in a standard way, with a scalar, real-valued function). The derivative
∂
∂τ is the tangential derivative on the boundary.

We define the vector J(g)
def
= (J(g)1, . . . , J(g)n) (depending on both the

domain and the boundary data), where J(g)i = 1
2π

∫

∂ωi

∂h(g)
∂ν dσ.

Let

D(g)
def
= {(d1, . . . , dn) ∈ Z

n,

n∑

i=1

di = − deg(A(g), ∂Ω)}

Deven(g)
def
= {(d1, . . . , dn) ∈ (2Z)

n
,

n∑

i=1

di = − deg(A(g), ∂Ω)}.

We can now state a necessary and sufficient criterion for determining
the orientability of the global minimizer of the Q-harmonic maps problem:

Theorem 3. Let g ∈W 1,2(∂Ω,Q2) be orientable, and assume that

W 1,2
g (G,Q2) = {Q : G→ Q2; IG(Q) <∞, Q|∂Ω = g}

is nonempty. Then the infimum of IG(Q) in W 1,2
g (G,Q2) is attained.

For d ∈ D(g) let c(d)
def
= (c1(d), . . . , cn(d)) be a solution of the equation

D · c = d− J(g). (59)

Then a necessary and sufficient condition for all global minimizers to be
non-orientable is

inf
d∈D(g)

c(d) ·Dc(d) < inf
d∈Deven(g)

c(d) ·Dc(d). (60)

Proof. For any Q ∈W 1,2
g (G,Q2) we have A(Q) ∈ S1 and moreover

‖∇Q‖L2(G) =

√
2

s
‖∇A(Q)‖L2(G).

Observing that A is a bijective operator we have that our minimization
problem reduces to

inf
m∈W 1,2

A(g)
(G,S1)

2

s2

∫

G

|∇m(x)|2 dx. (61)

It is well known that the minimum of the energy for the last problem is
attained by a function mmin ∈ W 1,2

A(g)(G, S
1) satisfying a harmonic map

equation (see [6]).
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In order to determine this function we first claim that for any m ∈
W 1,2

A(g)(G, S
1) we have

deg(A(g), ∂Ω) = −Σn
i=1 deg(m, ∂ωi). (62)

Indeed, by [34] there exists a sequence mk ∈ W 1,2
A(g)(G, S

1)∩C(G, S1) so that

mk → m in W 1,2. Taking into account that the function mk is continuous,
and the properties of the degree for continuous functions, [24], p. 126 we
have

deg(A(g), ∂Ω) = −
n∑

i=1

deg(mk, ∂ωi).

Using the continuity of the trace operator we let k → ∞ in the last relation
and we obtain the claimed relation (62).

Thus we can divide the function space W 1,2
A(g) into countably many dis-

joint subsets corresponding to maps with given degrees di on each ∂ωi, i =
1, . . . , n. A way of solving the minimization problem (61) is to obtain first
the minimizer on each such subset as before and thus obtain countably many
functions m1,m2, . . . ,ml, . . . , l ∈ N. The solution of (61) is then that mk

with ‖∇mk‖L2(G) = infi∈N ‖∇mi‖L2(G) (such an mk exists because there
exists a global minimizer for the problem (61)).

Thus we need to study first the minimization problem

inf
m∈W

1,2
A(g)

(G,S1)

deg(m,∂ωi)=di,i=1,...,n

2

s2

∫

G

|∇m(x)|2 dx (63)

for each set of di, i = 1, . . . , n so that d = (d1, . . . , dn) ∈ D(g).
The advantage in studying (63) rather than (61) is that the determina-

tion of the minimum for (63) can be reduced to a simpler, scalar, problem.
Indeed, it is shown in [6] that for a fixed d ∈ D(g) if we denote by m∗ a
minimizer of (63) then ‖∇m∗‖L2(G) = ‖∇Φ‖L2(G) where Φ is the unique
solution (up to an additive constant) of the scalar problem:







∆Φ = 0 on G
Φ = ci on ∂ωi, i = 1, 2, . . . , n
∫

∂ωi

∂Φ
∂ν dσ = 2πdi i = 1, 2, . . . , n

∂Φ
∂ν = A(g) × ∂A(g)

∂τ on ∂Ω

(64)

where di are prescribed (with d = (d1, . . . , dn) ∈ D(g)), but not the ci.
Taking Φ to be a solution of the above problem let us denote h = Φ −

∑n
i=1 cihi. We have that h is a solution of the problem (58). Since (58) has

a unique solution we get that h ≡ h(g), thus

Φ = h(g) +
n∑

i=1

cihi. (65)
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Taking into account the representation (65) of Φ as well as the equation it
satisfies, (64), we get

n∑

j=1

Dijcj + J i(g) = di, i = 1, . . . n. (66)

Lemma 13 shows that the last system has a one-dimensional affine space of
solutions, so that the function c(d) introduced in the statement is multival-
ued. We claim that, however, the value of c(d) ·Dc(d) is independent of the
particular representative of c(d) used. Indeed observe that multiplying (59)
by e we obtain Dc · e = d · e−J(g) · e and since D is symmetric and De = 0
we obtain d · e = J(g) · e, thus proving our claim.

In order to finish the proof it suffices to recall the orientability criterion
given by Proposition 7 and observe that from (65) we have

‖∇Φ‖2
L2(G) =

n∑

i,j=1

cicj

∫

G

∇hi · ∇hj dx+ 2

n∑

j=1

cj

∫

G

∇hj · ∇h(g) dx

+

∫

G

|∇h(g)|2 dx

=
n∑

i,j=1

cicj

∫

∂G

∂hi

∂ν
hj dσ + 2

n∑

j=1

cj

∫

∂G

∂hj

∂ν
h(g) dσ +

∫

G

|∇h(g)|2 dx

= c(d) ·Dc(d) +

∫

G

|∇h(g)|2 dx,

where we used the definitions of h(g),hi, i = 1, . . . , n andDij , i, j = 1, . . . , n.
2

Remark 7. One can see, carefully following the proof, that one also has
that if

inf
d∈D(g)\Deven(g)

c(d) ·Dc(d) > inf
d∈Deven(g)

c(d) ·Dc(d) (67)

then all global energy minimizers must necessarily be orientable.
Moreover, if

inf
d∈D(g)\Deven(g)

c(d) ·Dc(d) = inf
d∈Deven(g)

c(d) ·Dc(d) (68)

then there exist both an orientable and a non-orientable global energy min-
imizer.

Remark 8. One can easily see that for g smooth the set W 1,2
g is non-empty

by recalling [18], [24] that a degree zero smooth map g̃ : ∂G → S1 can be
extended to a smooth map on G. On the other hand one can alway choose
some suitable smooth vector field h : ∂G \ ∂Ω → S1 so that

g̃(x) =

{
g(x) if x ∈ ∂Ω
h(x) if x ∈ ∂G \ ∂Ω
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has degree zero.
In general, for g not smooth, the space W 1,2

g may be empty (see [21]).

We continue with a more detailed analysis of the case when the domainG
has only two holes, by using the tools developed in the previous Proposition.

Proposition 8. (i) Let G = Ω \ ∪2
i=1ωi be a domain with two holes, ω1

and ω2, as defined in (25), Section 3.1. We take a boundary data g ∈
W 1,2(∂Ω,Q2) that is an orientable line field and assume that the space
W 1,2

g (Ω,Q2) is non-empty. Then dist(J(g)1,Z) = dist(J(g)2,Z), dist(J(g)1, 2Z) =
dist(J(g)2, 2Z) and all the global energy minimizers are non-orientable if and
only if

dist(J(g)1,Z) < dist(J(g)1, 2Z). (69)

On the other hand, if

dist(J(g)1, 2Z) < dist(J(g)1, 2Z + 1) (70)

then all the global energy minimizers are orientable.
Moreover, if

dist(J(g)1, 2Z) = dist(J(g)1, 2Z + 1) (71)

then there exist both an orientable and a non-orientable energy minimizer.

(ii) Let Mδ be the domain defined in (54). Let n̄δ ∈ W 1,2(Mδ, S
1) be any

global energy minimizer of Jδ(n) in W 1,2(Mδ; S
1) (subject to tangent vector-

field boundary conditions on the outer boundary, as in Fig. 3b). Let Q̄δ ∈
W 1,2(Mδ; Q2) be any global energy minimizer of Iδ(Q) in W 1,2(Mδ; Q2)
(subject to tangent line-field boundary conditions on the outer boundary, as
in Fig. 3a).

For any δ > 1 we have

Iδ(Q̄δ) < Jδ(n̄δ).

(iii) Let

Gδ
def
= {x = (x1, x2) ∈ R

2 :
1

2
< x2

1 + x2
2 < 1, x2

1 + (x2 −
3

4
)2 > δ}

for δ < 1
4 . Let g : {(x1, x2) ∈ R

2 : x2
1+x2

2 = 1} → Q2 be a smooth orientable
line field.

There exists a δ0 so that for any δ < δ0 any global energy minimizer of
Iδ(Q) must necessarily be orientable.

(iv) Let

Mρ
6

def
= {x = (x1, x2) ∈ R

2 : x2
1 + (x2 − 2)2 ≤ ρ}
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for ρ < 1. With Mi, i = 1, . . . , 5 defined as in (53) (where we take δ = 2)
we consider the domain:

Nρ
def
= M1 ∪M2 ∪M3 \ (M5 ∪Mρ

6 )

We impose tangential line field boundary conditions on the outer bound-
ary of Nρ. Then there exists a ρ ∈ (0, 1

2 ) so that there exist both an ori-
entable and a non-orientable global energy minimizer of INρ(Q), subject to
the imposed boundary conditions.

Proof. (i) Let d1, d2 ∈ Z be some arbitrary pair such that

d1 + d2 = − deg(A(g), ∂Ω). (72)

Relation d·e = J(g)·e (with e = (1, 1)), shown in the proof of Theorem 3,
gives that:

d1 + d2 = J(g)1 + J(g)2. (73)

Corresponding to this domain G we have the symmetric matrix D =
(
a b
b c

)

and D(1, 1)t = 0. Thus b = −a, a = c and

D = a

(
1 −1
−1 1

)

.

So equation (59) becomes

Dc = a

(
c1 − c2
c2 − c1

)

=

(
d1

d2

)

−
(
J(g)1

J(g)2

)

. (74)

We claim now that a 6= 0. Assuming for contradiction that a = 0 equa-
tion (74) (which always has a solution by the arguments in the proof of
Proposition 3) implies d1 = J(g)1 and d2 = J(g)2. However if we replace d1

by d1 + 1 and d2 by d2 − 1 (so that their sum is still − deg(A(g), ∂Ω)) then
(74) no longer has a solution. Thus our claim is proved.

Moreover, recalling that Dij = 1
2π

∫

G ∇hi(x)∇hj(x) dx one can easily
see that D is non-negative definite, so a > 0. Hence

c ·Dc = (d1 − J(g)1)c1 + (d2 − J(g)2)c2
(73)
= (d1 − J(g)1)(c1 − c2)

(74)
=

1

a
(d1 − J(g)1)2.

Thus Proposition 3 implies that all minimizers are non-orientable if and
only if (69) holds. Relations (72) and (73) together with the assumption
that g is orientable, hence deg(A(g), ∂Ω) is even means that we always have
dist(J(g)1, 2Z) = dist(J(g)2, 2Z) and dist(J(g)1, 2Z+1) = dist(J(g)2, 2Z+1).

The claimed criteria are now a consequence of Remark 7.

(ii) We claim that the symmetry of the domain and that of the boundary

data imply that h(g)(x1, x2) = h(g)(x1,−x2). Indeed, let h̃(g)(x1, x2)
def
=

h(g)(x1,−x2).
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One can check that

A(g) × ∂A(g)

∂τ
(x1, x2) =

{
2 if (x1, x2) ∈ ∂(∪3

i=1Mi), |x2| ≥ δ
0 if (x1, x2) ∈ ∂(∪3

i=1Mi), |x2| < δ

and thus the boundary data is symmetric with respect to the x2 = 0 axis.
Then h(g) and h̃(g) are both functions that solve problem (58), that has a
unique solution. Thus h(g) = h̃(g) and our claim is proved.

Let us observe that the line-field example in the proof of Lemma 12 shows
that W 1,2

g 6= ∅. Taking this into account, together with g ∈ W 1,2(∂Ω), we
can use the first part of the Proposition (in our case the domain in only
C1 and not smooth but one can check that C1 regularity suffices for using
the Theorem 3 and thus the first part of the Proposition). The symmetry
of h(g) implies that J(g)1 = J(g)2 and relations (72), (73) together with
deg(A(g), ∂(M1 ∪M2 ∪M3)) = 2 imply J(g)1 = J(g)2 = −1. Hence the
criterion (69) holds for any δ > 1.

(iii) Let us first observe that since we took the boundary data to be smooth

the function space W 1,2
g (Gδ,Q2) is non-empty (see Remark 8). Let Ξδ

def
=

{x = (x1, x2) ∈ R2 : x2
1 + (x2 − 3

4 )2 < δ2} which we regard as the hole ω1

and denote by hδ(g) the solution of (58) for the domain Gδ. We claim that

∫

∂Ξ 1
8

∂hδ(g)

∂ν
dσ → 0 as δ → 0. (75)

On the other hand the divergence theorem shows that (for δ < 1
8 ):

0 =

∫

Ξ 1
8
\Ξδ

∆hδ(g) dx =

∫

∂Ξ 1
8

∂hδ(g)

∂ν
dσ −

∫

∂Ξδ

∂hδ(g)

∂ν
dσ

︸ ︷︷ ︸

=2π·J(g)1

.

The last relation, together with our previous claim and the criterion (70)
finish the proof.

It remains to prove our claim (75) and to this end let us consider the
solution H of the pure Neumann problem:







∆H = 0 on B1(0) \B1/2(0)
∂H
∂ν = A(g) × ∂A(g)

∂τ on ∂B1(0)
∂H
∂ν (1

2 , θ) = −2
(

A(g) × ∂A(g)
∂τ

)

(1, θ) for θ ∈ [0, 2π]
∫

B1(0)\B 1
2
(0)H(x) dx = 0

(76)

where on the third line of the system above we used polar coordinates
(r, θ) ∈ [ 12 , 1] × [0, 2π].

The solution is smooth on B1(0)\B1/2(0) and continuous on the closure,
[27], thus there exist c1, c2 > 0 so that c2 > H(x) > −c1 for all x ∈
B1(0) \B1/2(0). Let w(x)

def
= hδ(g)(x) − c1 − H(x). Then ∆w = 0 on the
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set Gδ. As ∂w
∂ν = 0 on ∂B1(0) Hopf’s lemma shows that w cannot attain

its maximum on ∂B1(0). Hence, by the maximum principle, it attains its
maximum on ∂Gδ \ ∂B1(0) where, by our construction, w ≤ 0. Thus w ≤ 0
on Gδ and hence hδ(g) ≤ c1 +H on Gδ ⊂ B1(0) \B1/2(0). Similarily, taking

the function v = H − c2 − hδ(g) and reasoning analogously we obtain that
H − c2 ≤ hδ(g) on Gδ ⊂ B1(0) \B1/2(0). Thus

H − c2 ≤ hδ(g) ≤ c1 +H, on Gδ ⊂ B1(0) \B1/2(0) (77)

and since the sequence of harmonic functions hδ(g) is uniformly bounded on
a sequence of domains shrinking into the annulus B1(0)\B1/2(0), we obtain
[17], p.23, by taking a diagonal sequence, that there exists a function f so

that hδj (g) converges uniformly on compact subsets of
(

B1(0) \B1/2(0)
)

\
{(0, 3

4 )} to f . Then f is harmonic [17], p.23 on
(

B1(0) \B1/2(0)
)

\ {(0, 3
4 )}

and bounded (by (77)) and hence it has a removable singularity at (0, 3
4 )

and is harmonic on B1(0) \B1/2(0). Then
∫

∂Ξ 1
8

∂f
∂ν dσ =

∫

Ξ 1
8

∆f(x) dx = 0

and since h(g)(δ) converges uniformly (and thus in C∞ since h(g)(δ) are
harmonic) on compact sets to f we obtain the claimed relation (75).

(iv) Let g correspond to tangential boundary conditions on the outer bound-
ary of Nρ. The example constructed in Lemma 12 can be easily modified to

show that W 1,2
g (Nρ) 6= ∅, for all ρ ∈ (0, 1). We denote by S

def
= ∪3

i=1Mi the
stadium without holes.

Let H̃1
0 (Nρ)

def
= {u ∈ H1(Nρ); Tru

∣
∣
∣
∂M5∪∂Mρ

6

= 0}. Let ϕ ∈ C∞(Nρ) ∩
H1

0 (Nρ) be a function vanishing in a neighbourhood of ∂M5 ∪ ∂Mρ
6 and

denote by ϕ̃ its extension by zero to a function on S. Denoting by h(g)ρ ∈
H̃1

0 (Nρ) the solution of problem (58) on Nρ, we have:

∫

Nρ

∇h(g)ρ · ∇ϕdx =

∫

∂Nρ

∂h(g)ρ

∂ν
ϕdσ =

∫

∂S

A(g) × ∂A(g)

∂τ
ϕ dσ (78)

and then
∣
∣
∣

∫

Nρ
∇h(g)ρ · ∇ϕdx

∣
∣
∣ =

∣
∣
∣

∫

∂S
∂h(g)ρ

∂ν ϕdσ
∣
∣
∣

≤ ‖∂h(g)ρ

∂ν ‖H−1/2(∂S)‖ϕ‖H1/2(∂S) ≤ C1‖∂h(g)ρ

∂ν ‖H−1/2(∂S)‖ϕ̃‖H1(S).

In the last inequality we can assume without loss of generality that C1 is
a constant independent of ρ, because ϕ = ϕ̃ on ∂S and the last inequality
expresses the continuity of the trace operator in H1(S).

We denote by h̃(g)ρ the extension by zero of h(g)ρ to a function on S
and then the last inequality implies

∣
∣
∣
∣

∫

S

∇h̃(g)ρ · ∇ϕ̃ dx
∣
∣
∣
∣
≤ C1‖

∂h(g)ρ

∂ν
‖H−1/2(∂S)‖ϕ̃‖H1(S). (79)
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Replacing ϕ̃ in the inequality by ϕ̃k with ϕ̃k → h̃(g)ρ in H1(S) as k → ∞
the last inequality implies:

‖∇h̃(g)ρ‖2
L2(S) ≤ C1‖A(g) × ∂A(g)

∂τ
‖H−1/2(∂S)‖h̃(g)ρ‖H1(S). (80)

We denote J(g)2ρ
def
= 1

2π

∫

∂M5

∂h(g)ρ

∂ν ds and claim that

ρ 7→ J(g)2ρ, (ρ ∈ (0,
1

2
]), is a continuous function. (81)

In order to prove the claim we argue by contradiction and assume that there
exists a ρ̄ ∈ (0, 1

2 ], ε0 > 0 and a sequence ρk with ρk → ρ̄ and

|J(g)2ρk
− J(g)2ρ̄| > ε0, for all k. (82)

First let us observe that for ρ ∈ ( ρ̄
2 ,

1
2 ) the functions h̃(g)ρ are zero on a

common set of non-zero measure M
ρ̄
2
6 . Then one has a Poincaré inequality:

‖h̃(g)ρ‖L2(S) ≤ C2‖∇h̃(g)ρ‖L2(S) (83)

for ρ ∈ ( ρ̄
2 ,

1
2 ), with C2 depending on S and ρ̄ (see the argument in [38], p.

177 that can be checked to hold even for p = n = 2).
Relations (80) and (83) imply that there exists a subsequence of ρk,

relabelled as the initial sequence, such that

h̃(g)ρk ⇀ L in H1(S) (84)

for some function L ∈ H1(S). We claim that L ≡ h̃(g)ρ̄. To this end it suf-
fices to show that for any smooth ϕ̂ ∈ H1(Nρ̄) vanishing in a neighbourhood
of M ρ̄

6 ∪M5 we have:

∫

S

∇L · ∇ϕ̂ dx =

∫

∂S

A(g) × ∂A(g)

∂τ
ϕ̂ dσ (85)

which, by the uniqueness of the weak solution for the problem (58), implies
the claim.

In order to prove the last equality let us take a sequence ϕk ∈ H1(S) ∩
C∞(S), s upported in Nρk

and vanishing near ∂Mρk

6 ∪∂M5, so that ϕk → ϕ̂

in H1(S). Then replacing Nρ by S, h(g)ρ by h̃(g)ρk , ϕ by ϕk in (78) and
passing to the limit k → ∞ by using (84), we obtain relation (85).

Using that ∇h(g)ρ ∈ H(W, div) with W ⊂ S \ (M5 ∪M2ρ̄
6 ) an open set

such that ∂M5 ⊂ ∂W , relation (84) and the continuity of the normal part of

the trace in the space H(W, div) (see [27]) we have that ∂h(g)ρk

∂ν ⇀ ∂h(g)ρ̄

∂ν in

H− 1
2 (∂M5). On the other hand we can write J(g)2ρk

= 1
2π

∫

∂M5

∂h(g)ρk

∂ν dσ =
1
2π

∫

∂M5
〈∂h(g)ρk

∂ν , 1〉 dσ, with 〈·, ·〉 denoting the duality between H− 1
2 (∂M5)

andH
1
2 (∂M5), and the previously proved weak convergence implies J(g)2ρk

→
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J(g)2ρ̄ thus contradicting (82). The contradiction we have reached proves our
earlier claim (81).

The argument in part (iii) can be easily adapted to show that J(g)2ρ → 0
as ρ → 0 and the argument in part (ii) shows that J(g)21

2

= −1. Thus (81)

shows there exists some ρ0 ∈ (0, 1
2 ) so that J(g)2ρ0

= − 1
2 . Then the criterion

(71) shows that on Nρ0 there exist both an orientable and a non-orientable
energy minimizer. 2

Remark 9. Part (ii) of Proposition 8 shows that in Lemma 12, one does
not in fact need the assumption that δ is large enough.

Remark 10. The proof of Part (iv) of Proposition 8 can be easily adapted
to show that for any domain with two holes, if one shrinks enough one of
the holes (while keeping the other hole and the orientable boundary data
unchanged) then the global energy minimizer will necessarily be orientable.
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Appendix A. The relation between sets of class Ck (Lipschitz)
and Ck (Lipschitz) manifolds with boundary

We recall (see [30], p.12, [24], pp. 29-30) that a subset X ⊂ R
m is an

m-dimensional Ck(Lipschitz) manifold with boundary, for k ≥ 0, if each
x ∈ X has a neighbourhood U in Rm such that U ∩X is Ck-diffeomorphic
(homeomorphic for k = 0, or bi-Lipschitz homeomorphic in the case of
Lipschitz manifolds) with a set V ∩Hm in Hm, where V is an open set in
Rm and

Hm = {(x1, . . . , xm) ∈ R
m |xm ≥ 0}.

The boundary of the manifold X is the set of all points in X which corre-

spond to points of ∂H
def
= Rm−1 × {0} ⊂ Rm under such a diffeomorphism.

It can be shown that the condition for a point in X to be on the boundary
is independent of the chart chosen (see [24]).

In order to show that a domain Ω of class Ck (Lipschitz) is a manifold
with boundary and the topological boundary coincides with the boundary



42 John M. Ball, Arghir Zarnescu

as a manifold it suffices to show that, for P ∈ ∂Ω and δ > 0 such that
Bδ(P ) ∩ ∂Ω can be represented as the graph of a function, there exists a
Ck-diffeomorphism F from Bδ(P )∩Ω to V ∩Hm which carries Bδ(P )∩∂Ω
into ∂Hm ∩ V .

To this end we let f : Rm−1 × {0} ⊂ Rm → R be such that

Bδ(P ) ∩Ω = {y = (y′, ym) ∈ R
m : ym > f(y′, 0), |y′| < δ}

where f is of class Ck. Then it can be easily checked that F : B δ
2
(P )∩Ω →

V ∩Hm defined by F (y′, ym) = (y′, ym−f(y′, 0)) is injective, onto the image
(we take V so that F is onto) and a Ck-diffeomorphism (respectively bi-
Lipschitz) with inverse F−1(y′, ym) = (y′, ym +f(y′, 0)). Moreover F carries
Bδ(P ) ∩ ∂Ω bijectively into V ∩ ∂Hm.
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