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Liquid crystals

A multi-billion
dollar industry.

An intermediate
state of matter
between liquids
and solids.

Liquid crystals flow like liguids, but the constituent
molecules retain orientational order.



Liquid crystals (contd)

Liquid crystals are of many different types, the main
classes being nematics, cholesterics and smectics

Nematics consist of rod-like molecules.
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Electron micrograph
of nematic phase
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The mathematics of liquid crystals involves modelling,
variational methods, PDE, algebra, topology, probability,
scientific computation ...

There are many interesting dynamic problems of liquid
crystals, but we shall only consider static configurations
for which the fluid velocity is zero, and we only consider
nematics.

Most mathematical work has been on the Oseen-Frank
theory, in which the mean orientation of the rod-like
molecules is described by a vector field. However, more
popular among physicists is the Landau - de Gennes
theory, in which the order parameter describing the
orientation of molecules is a matrix, the so-called Q-
tensor.



1.

Plan

Introduction to Q-tensor theory. The
Landau - de Gennes and Oseen-Frank

energies.

Relations between the theories.
Orientability of the director field.

The Onsager/Maier-Saupe theory and
eigenvalue constraints.



Review of Q-tensor theory

Consider a nematic liquid crystal filling a con-
tainer Q c R3, where Q is connected with Lip-
schitz boundary 0f2.

The topology of the
container can play a role.




Molecular orientations

P

Line through origin parallel to p
is an element of RP2.

Can identify with the pair {p, —p}
of antipodal unit vectors or the

- p matrix p @ p, (p ® p)ij = pip;-



The distribution of orientations of molecules
in B(xp,0) can be represented by a probabil-
ity measure on RP2 that is by a probability
measure u on the unit sphere S2 satisfying
uw(E) = u(—E) for E C S2.

For a continuously distributed measure

du(p) = p(p)dp, where dp is the element of
surface area on S2 and p > 0, [¢2 p(p)dp = 1,
p(p) = p(—p).

The first moment [q2pdu(p) = 0.

The second moment

M = /Szp®pdu(p)

IS @ symmetric non-negative 3 x 3 matrix
satisfying trM = 1.



Let e € S2. Then

e-Me = Sz(e-p)zdu(p)
= (cos? ),

where 6 is the angle between p and e.

If the orientation of molecules is equally dis-
tributed in all directions, we say that the dis-
tribution is isotropic, and then u = ug, where

1
dupo(p) = 4—d5-

o



The corresponding second moment tensor is

1 1
M dS = —1
0~ 47’(’ p®p 3

(since [q2p1p2dS =0, [e2pTdS = [c2p5dS etc
and tr Mg = 1.)

The de Gennes (Q-tensor

Q=M — Mg

measures the deviation of M from its isotropic
value.



Note that

Q= (p®p — %1> dp(p)

satisfies @ = QT, trQ =0, Q > —31.

Remark. (Q = 0 does not imply u = up.
For example we can take

1 3
H = = Z (562‘ _I_ 5—67;)°
6=



Since @ is symmetric and tr@Q = 0,

Q = A1n1 ® n1 + Aono @ no + Aznz @ n3,

where {n;} is an orthonormal basis of eigen-
vectors of () with corresponding eigenvalues
A1, Ao, )\3 with A1 + Ao + )\3 = 0.

: 1 1 D
Since @ > —31, —53 < \; < 5.

Conversely, if —% < X; < 5 then M is the second
moment tensor for some u, e.g. for

S i S G+ )
:u_i:l ’L|32 (47 —ng; /-



If the eigenvalues \; of Q are distinct then @
IS said to be biaxial, and if two A; are equal
uniaxial.

In the uniaxial case we can suppose

A1 = X2 = —§,A3 =%, and setting ng = n we
get

S 2s

Q——g(l—’n@n)—l-?n@n.
T hus
Q=snen—=1),
3

where —% <s<1



Note that

In-n = %
1
— <(p'n)2—§>
_ >, 1
= (cos“ 6 3),

where 6 is the angle between p and n. Hence

3 1
s = —(cos®H — =).
2 3



s=— & [,m)2dup) =0

(all molecules perpendicular to n).
s=0 <& Q=0
(which occurs when u is isotropic).
— 2 —
s=1 & [, (p-n)?du(p) =1

1
& p= 5(571 +d-n)
(perfect ordering parallel to n).



If @ = s(n®n — 1) is uniaxial then |Q[? =
252 _ 2483
27 detQ =35

Proposition.
Given Q = Q1, trQ = 0, Q is uniaxial if and
only if

Q|° = 54(det Q)>.



Proof. The characteristic equation of @ is

det(Q — A1) = det Q — Atrcof Q + 0A2 — \3.

But 2trcof QQ = 2()\2)\3+)\3)\1 —|—)\1)\2) = ()\1 +
A2+ A3)2 — (A2 4+ 235+ A3) = —|Q|?. Hence the
characteristic equation is

1
A3 — 5yc2|2/\ — det@Q =0,

and the condition that A3 —p\+4 ¢ = 0 has two
equal roots is that p > 0 and 4p3 = 27¢2.



Energetics

Consider a liquid crystal material filling a con-
tainer Q ¢ R3. We suppose that the material
IS incompressible, homogeneous (same mate-
rial at every point) and that the temperature
IS constant.



At each point z € {2 we have a corresponding
measure u, and order parameter tensor Q(x).
We suppose that the material is described by a
free-energy density ¥ (Q,VQ), so that the total
free energy is given by

Q) = | ¥(Q(),VQ()) da.

We write v = ¢¥(Q, D), where D is a third order
tensor.



The domain of ¢

For what @, D should ¥ (Q, D) be defined?
Let £E={Q e M3*3:Q =01, trQ =0}

D ={D = (Djj) : Dijx = Djjk, Dgri = O}.
We suppose that ¥ : domy — R, where

dom = {(Q, D) € £ x D, (@) > —3},

But in order to differentiate ¢ easily with re-
spect to its arguments, it is convenient to ex-
tend ¢ to all of M3%3x(3rd order tensors). To
do this first set v (Q,D) = « if (Q,D) € € x D
with some X;(Q) < —3.



Then note that

1 1
PA = 5(A ATy — 5(tr Al

is the orthogonal projection of M3%3 onto &.
So for any , D we can set

v(Q, D) =¢(PQ, PD),

where (PD);j;, = 5(D;jk + Djir) — 3Duibi;-

Thus we can assume that v satisfies for (Q, D) €

dom

o _ 0w 0w _
0Qi; 0Qj; 0Q |
oy o oy 0

OD;;;, 0Dy ODyi



Frame-indifference

Fix x € 2, Consider two observers, one using
the Cartesian coordinates ¢ = (x1,xo,x3) and
the second using translated and rotated coor-
dinates z = 4+ R(x — ), where R € SO(3).
We require that both observers see the same
free-energy density, that is

where Q*(x) is the value of Q measured by the
second observer.



@ = [ (a®q— Dduz(RTg)
[ (Rp® Rp— -1)duz(p)

1 T
R/SQ(p QP — gl)dua-;(p)R -



Hence Q*(z) = RQ(Z)R!, and so

o0*.
~(z)

8zk

0 _
a—%(Rille(w)ij)

o, Ox
—(Rz’lleij)—p

Oxp
anm
Oxp '

8zk

R Rjm Ry

Thus, for every R € SO(3),

v(Q", D*) = ¢(Q, D),
where Q* = RQR", D} = RiyRjmRipDimp.

(2

Such 1 are called hemitropic.



Material symmetry

The requirement that

Y(Q™(2), V.Q"(2)) = ¥(Q(Z), V2Q(T))

when z =z + R(x— ), where R = —1+2e®e,
le] = 1, is a reflection is a condition of ma-
terial symmetry satisfied by nematics, but not
cholesterics, whose molecules have a chiral na-
ture.



Since any R € O(3) can be written as RR,
where R € SO(3) and R is a reflection, for a
nematic

Y(Q*, D) = ¢¥(Q, D)
where Q* = RQR", D};; = RyRjmRypDim,, and

1

R € O(3). Such % are called isotropic.



Bulk and elastic energies

We can decompose ¢ as

Yp(Q) + ve(Q, D)
bulk 4+ elastic

hus, putting D = 0O,

V(RQRY) = v(Q) for all R € SO(3),

which holds if and only if ¢ is a function of the
principal invariants of (), that is, since tr ) = 0O,

vp(Q) = ¥5(|Q|%, det Q).



Following de Gennes, Schophol & Sluckin PRL
59(1987), Mottram & Newton, Introduction
to QQ-tensor theory, we consider the example

$5(Q,0) = a(0)tr Q2 — 2gbtr QP+ StrQt,

where 6 is the temperature, b > 0,¢c > 0,a =
a(@ —0%),a > 0.



T hen

QPB:CLZ)\Z' —§Z>\i ‘|‘5Z>\Z

¥p attains a minimum subject to ¥3_; A; = 0.
A calculation shows that the critical points
have two A; equal. Thus A{ = Ay = A\, A3 =
—2)X say, where A=0 or A = A4, and

—b + \/b2 — 12ac
bc .




Hence we find that there is a phase trans-
formation from an isotropic fluid to a uniax-
lal nematic phase at the critical temperature
On = 07 2271’&26. If & > O\ then the unique
minimizer of ¥ is Q = 0.

If 0 < 0Ny then the minimizers are

1
Q=smn(n®n — 51) for n & 52,

2_
b \/b2c 12ac >~ 0.




—xamples of isotropic functions quadratic
in V@

11 = Q45 Qi ky 12 = Qi Qijk
I3 = Q;; kQijky 12 = QuiQi;1Q4; k
Note that
I — I = (QiQir k), — (QijQik. i) k

IS a null Lagrangian.

An example of a hemitropic, but not isotropic,
function is

Is = €;;,QuQ 1 k-



For the elastic energy we take

4
VE(Q,VQ) = ) | Ll
=1

where the L; are material constants.



The constrained theory

If the L; are small , it is reasonable to consider
the constrained theory in which @ is required
to be uniaxial with a constant scalar order pa-
rameter s > 0, so that

st(n@)n—%l).

(For recent rigorous work justifying this see
Majumdar & Zarnescu, Nguyen & Zarnescu.)
In this theory the bulk energy is constant and
so we only have to consider the elastic energy

1@ = | ¥u(Q,VQ)da.



Oseen-Frank energy

Formally calculating ¢¥g in terms of n,Vn we
obtain the Oseen-Frank energy functional

I(n) = /Q[Kl(dim)? Ko(n - curln)?
+ (K7 + Ka)(tr(Vn)? — (divn)?)] dz,

where

K1 =2L15% 4+ Lps? + L3s? — 5Ly,
K2 — 2L132 — %L4S3,

K3 = 2Lys? + Lps? 4+ L3s? 4 5L4s3,
Ka = Las?.

K3|n x curln|?



Function Spaces
(part of the mathematical model)

Unconstrained theory.

We are interested in equilibrium configurations
of finite energy

1@ = [ [¥B(Q) +v5(Q Q)] da.

We use the Sobolev space W1P(Q; M3%3). Since
usually we assume

4
ve(Q,VQ) = ) L,
i=1

I = Q45,iQik k> 12 = Qik jQij ks
I3 = Qi kQij ks 14 = QuiQij1Qij k>
we typically take p = 2.



Constrained theory.

For 1 < p < oo the Sobolev space WIP(Q, RP?)
is the set of Q = s(n®n — %1) with weak
derivative VQ satisfying [o |[VQ(x)|Pdx < oo.

Thus for the Landau - de Gennes energy den-
sity, the space of ) with finite elastic energy is
wl2(Q RP?).



Schlieren texture of a nematic film with surface point defects (boojums).
Oleg Lavrentovich (Kent State)




Possible defects in constrained theory

st(n@)n—%l)

T
Hedgehog n(zr) = H

Vn(z) = (1 —n®n)
QneWlP 1<p<3
2|2 Finite energy



Disclinations

nQeWlrPel1l<p<?
Infinite energy for quadratic models



Index one half singularities

Zhang/Kumar 2007
Carbon nano-tubes
as liquid crystals




Existence of minimizers in the
constrained theory

Immediate in W12(Q, RP?), for a variety of
boundary conditions, under suitable inequali-
ties on the L;, since v is then convex in V@
and coercive and the uniaxiality contraint is
weakly closed.



The equilibrium equations (JB/Majumdar)

Let (Q be a minimizer of

Q) = | ¥p(Q,VQ)da

subject to Q € K = {s(n®n — %1) ' n € S2}.
Considering a variation

Qa:s([n—l—sa/\n]@[n—l—ea/\n] —ll),

In 4+ ea A nl|? 3

with a smooth and of compact support, we get
the weak form of the equilibrium equations

ZQ = QZ,

0 0 :
where Z;; = %Z — 3?%81})@?1@ (v symmetrized).




Can we orient the director? (JB/Zarnescu)

We say that Q = Q(x) is orientable if we can
write

Q@) = s(n(x) @ n(@) - 1),

where n € WHP(Q, S?).

This means that for each £ we can make a
choice of the unit vector n(z) = +7(x) € 52 so
that n(-) has some reasonable regularity, suf-
ficient to have a well-defined gradient Vn (in
topological jargon such a choice is called a
lifting) .



Relating the Q and n descriptions

Proposition

Let Q = s(n®n — %1), s a nonzero constant,
in| =1 a.e., belong to WbhP(Q: RP2) for some
p, 1 <p<oo. If nis continuous along almost
every line parallel to the coordinate axes, then

n € WHP(Q,S?) (in particular n is orientable),
and

" ke = Qij kM-



Theorem 1
An orientable ) has exactly two orientations.

Proof

Suppose that n and ™ both generate ) and
belong to Whl(Q,S2), where 72(z) = 1 a.e..
For a.e. xo,x3, both n(x) and 7(x)n(x) are
absolutely continuous in 1. Hence

T(z)n(z) -n(z) = 7(x)

IS continuous in 1. Hence the weak partial
derivative 71 exists and is zero. Similarly 72,73
exist and are zero. Thus Vr = 0 a.e. in €.
Hence =1 a.e. or = —1 a.e..



A smooth nonorientable director field
In @ non simply connected region.




The index one half singularities are non-orientable

=




T heorem 2

If Q2 is simply-connected and Q € Wl»p,
p > 2, then @ is orientable.

(See also a recent topologically more general lifting result
of Bethuel and Chiron for maps u:Q—N.)

Thus In a simply-connected region the uniaxial de
Gennes and Oseen-Frank theories are equivalent.

/ Another consequence is that it Is

Impossible to modify this Q-tensor
field in a core around the singular

line so that it has finite Landau-de
\ Gennes energy.




Ingredients of Proof of Theorem 2

Lifting possible if Q Is smooth and Q simply-
connected

Pakzad-Riviere theorem (2003) implies that if 0Q
Is smooth, then there Is a sequence of smooth
QU converging weakly to Q in W12

We can approximate a simply-connected

domain with boundary of class C by ones that
are simply-connected with smooth boundary

The Proposition implies that orientabllity is
preserved under weak convergence



2D examples and results

for non simply-connected regions
Let Q C R?, w; C R2,4=1,...,n be bounded,
open and simply connected, with C! boundary,
such that w; C 2, w;Nw; = 0 for i 7 j, and set
G = Q\ U:?:l (:JZ'.




Q= {Q=s(n@n—_1):n=(n1,12,0)}

Given Q € W12(G; Qp) define the auxiliary
complex-valued map

1
3

2 2
A(Q) = ngl 733@12-

Then A(Q) = Z(n)?,
where Z(n) = nq + ino.

A: Q> — Sl is bijective.




Let C = {C(s) : 0 <s< 1} beasmooth Jordan
curve in R? ~ C.

If Z:C — S! is smooth then the degree of Z
IS the integer

1 L
deg (Z,() = — —ds.
9 ) 2m1 JC 4 >

Writing Z(s) = €9(8) we have that

deg (Z,C) = 1o i0sds = o(1) - 9(0)‘

2m JO 27




1
If Z € H2(C; S1) then the degree may be de-
fined by the same formula

1 YA

interpreted in the sense of distributions (L.
Boutet de Monvel).



Theorem

Let Q € WL2(G: Q->). The following are equiv-
alent:

(i) Q is orientable.

(i) Tr@Q € H%(C;Q2> is orientable for every
component C' of 0G.

(iii) deg (A(TrQ),C) € 27Z for each component
C of 0G.

We sketch the proof, which is technical.



(i) & (ii) for continuous Q

0S2

The orientation at the beginning and end of
the loop are the same since we can pass the
loop through the holes using orientability on
the boundary.



(ii) < (iii). If TrQ@ is orientable on C then

deg (A(TrQ),0) = deg (Z4(n),C)
<22>s e

27m C 72

1 /
— 2% ds
27TZ C Z

= 2deg (Z(n),C)
Conversely, if A(TrQ(s)) = €¥9(s) and

0(1) —6(0)
27

deg(A(TrQ),C) = c 27

i0(s)
then Z(s) = e 2

orientable.

1
c H2(C,S81) and so TrQ is



We have seen that the (constrained) Landau-
de Gennes and Oseen-Frank theories are equiv-
alent in a simply-connected domain. Is this
true in 2D for domains with holes?

If we specify ¢ on each boundary component
then by the Theorem either all @) satisfying
the boundary data are orientable (so that the
theories are equivalent), or no such @ are ori-
entable, so that the Oseen Frank theory can-
not apply and the Landau- de Gennes theory
must be used.




More interesting is to apply boundary condi-
tions which allow both the Landau - de Gennes
and Oseen-Frank theories to be used and com-
pete energetically.

G = Q\ U w;

So we consider the problem
of minimizing a P Ty
_ 2 |
Q= [ IVQPde | &

subject to Q| = g orientable
with the boundaries ow; free.



Since A is bijective and

(Q) =3 [ IVAQ)Pds

our minimization problem is equivalent to min
Imizing

A 2
I(m) = " /G Vm|?dz

. 1,2 , .
in WA(g)(G,Sl) =
{m e WbH2(G; SY) : m|sgo = A(g)}.



In order that @ is orientable on 902 we need
that

deg(m, 02) € 2Z.

We always have that

n
deg(m,92) = » deg(m, dw;).

1=1
Hence if there is only one hole (n = 1) then
deg(m, dwq) is even and so every ( is orientable.

So to have both orientable and non-orientable
Q we need at least two holes.



Tangent boundary conditions
on outer boundary. No (free)

boundary conditions on inner
circles.

Q) = |_IVQPde

I(n) = 252 /Q Vn|2da



. o

€



For M large enough
the minimum energy
configuration Is
unoriented, even
though there is a
minimizer among
oriented maps.

If the boundary
conditions
correspond to the
Q-field shown, then
there is no
orientable Q that
satisfies them.




The general case of two holes (n = 2).

Let h(g) be the solution of the problem

Ah(g) = 0inG

Oh(g) _ A(g) 04(g) . 50

ov or
h(g) = 0 on dwq U Jwo,

where (% IS the tangential derivative on the
boundary (cf Bethuel, Brezis, Helein).

Let J(g) = (J(g)1, J(g)2), where
J(g)i _ f o 3h(9)

(2




T heorem
All global minimizers are nonorientable iff

dist(J(g)1,7) < dist(J(g)*',27)

and all are orientable iff

dist(J(g)*,27) < dist(J(g)t,2Z + 1)

In the stadium example we can show that the
first condition holds whatever the distance be-
tween the holes, so that the minimizer is always
non-orientable.



Existence for full Q-tensor theory
We have to minimize

1@ = [ [¥B(Q +vp(Q VQ)] da

subject to suitable boundary conditions.

Suppose we take vp : £ — R to be contin-
uous and bounded below, £ = {Q € M3%3 :

Q = Q1 ,trQ = 0}, (e.g. of the quartic form
considered previously) and

A
ve(Q,VQ) = ) LI,
i=1

which is the simplest form that reduces to Oseen-
Frank in the constrained case.



Theorem (Davis & Gartland 1998)

Let ¢ R3 be a bounded domain with smooth
boundary 0€2. Let L, = 0 and

3 1
L3z >0,—-L3z < Lo <2Lg3, —ng — 1—OL2 < L7q.

Let Q : 02 — € be smooth. Then

3
Q) = [ [WB(@Q+ Y Li(VQ)] da
1=1
attains a minimum on

A={Q c Wh2(Q;8) : Qlon = @}



Proof

By the direct method of the calculus of vari-
ations. Let QU) be a minimizing sequence in
A. the inequalities on the L; imply that

3
N L (VQ) > p|VQJ?
i=1

for all @ (in particular 2, I;(VQ) is convex in
V(@Q). By the Poincaré inequality we have that

QW) is bounded in W12
so that for a subsequence (not relabelled)
Q) « Q* in wl?

for some Q* € A.



We may also assume, by the compactness of
the embedding of W12 in L2, that QU) — Q
a.e. in 2. But

1(Q*) < liminf 1(QW)

Y d®

by Fatou’'s lemma and the convexity in VQ.
Hence Q* is a minimizer.

In the quartic case we can use elliptic regularity
(Davis & Gartland) to show that any minimizer
Q* is smooth.



Proposition. For any boundary conditions, if
Ls #= 0 then

4
I@Q = | [Ws(Q)+ 3 Lillda
1=1

IS unbounded below.



Proof. Choose any (@ satisfying the boundary
conditions, and multiply it by a smooth func-
tion ¢(x) which equals one in a neighbourhood
of 0€2 and is zero in some ball B C €2, which
we can take to be B(0,1). We will alter @ in

B so that

4
HQ) = [ Wwp(@) + Y Lil)da
1=1

is unbounded below subject to Q|sp = 0.



Choose

Qlz) =0(r) | —® 11, 6(1) =0,

where r = |z|. Then

2
2 __ 12 2

and

4 3
I = QriQij kQij 1 = 59(9/2 — 7292)'



Hence

J(Q) < 4n /01 {QpB(Q) +C (39’2 + —92) +

4 12 3 2
L4§9 <9 ——29 )] d’r,

T
where (' is a constant.

Provided 0 is bounded, all the terms are bounded
except

1 2 4
A / 2(—0 “L 9) 0"2 dr.
7'('0’)“ 3 —|—94 r



Choose

[ 0(2 + sin kr) 0<r<2

0(r) = i 290(2—|—sin§)(1 —7) %< r <1

The integrand is then bounded on (%,1) and

we need to look at

1
5 5 (2 4
A /02 2 (30 | 9L490(2 + sin kr)) 03k? cos? kr dr,

which tends to —oo if Lafg iIs sufficiently neg-
ative.



The Onsager model
(Joint work with Apala Majumdar)

In the Onsager model the probability measure
L 1S assumed to be continuous with density p =

p(p), and the bulk free-energy at temperature
6 > 0 has the form

Ig(p) = U(p) — 0n(p),

where the entropy is given by

1(p) = — | ,p(®) I p(p) dp



With the Maier-Saupe molecular interaction,
the internal energy is given by

Up) = [, [ 1= @ ?p®)e(a) dpdg

where « > 0 is a coupling constant.

Denoting by

1
= ——1 d
Qlp) = | ,(p®p—31)p(p)dp
the corresponding ()-tensor, we have that
1 1
2
= —=1)- ——1 dpd
Q(p)] /52 LP®P—31) - (a®q—Z1)p(p)p(g)dpdg

[ |10 0 = 21p()o(a) dpda



Hence U(p) = —k|Q(p)|? and

19(p) = 0 [ , (P 1N p(p) dp — K|Q(p) >

Given Q we define

,0) = inf I
6p(Q0) = it Iy
= 0 inf pln pdp — K|Q|%.

{p:Q(p)=Q}/S?

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.
R. and Sluckin, T. J.(1986))




et
I(p) = [, p(p) Inp(p) dp

Given Q with Q = Q1. trQ = 0 and satisfying
A(Q) > —1/3 we seek to minimize J on the
set of admissible p

Ag={p€ L (S?) :p>0, Szpdp =1,Q(p) = Q}.

Remark: We do not impose the condition
o(p) = p(—p), since it turns out that the mini-

mizer in AQ satisfies this condition.



[Lemma. AQ IS nonempty.

(Remark: this is not true if we allow some
N = —1/3.)

Proof. A singular measure u satisfying the con-
straints is

13 1
=1

and a p € AQ can be obtained by approximating
this.



For € > O sufficiently small and 1 = 1,2,3 let

(0 iflpel<l—c

p-e|l=>1—c¢

T hen

1 € | g2 c
PP = T 8}(1_8>2[@ -1, (p)

WOrks.




Theorem. J attains a minimum at a unique
PQ € AQ.

Proof. By the direct method, using the facts
that plnp iIs strictly convex and grows super-
linearly in p, while AQ IS sequentially weakly
closed in L1(52).

Let f(Q) = J(pg) = inprAQ J(p), so that

vB(Q,0) = 0f(Q) — |Q|*.



T heorem
f is strictly convex in ) and

lim f(Q) = oo.
mln(Q)—>_—

Proof
The strict convexity of f follows from that

of pinp. Suppose that Apmin(QY) — —% but
£(QU)) remains bounded. Then

. . . 1 /. .
QWD) 412 = /S  pot (@) (pe))2dp — 0,

where e() is the eigenvector of QW) corre-
sponding to Amin(QW)).



But we can assume that POG) — P in L1(S?),

where [¢o o(p)dp =1 and that eld) e, le] = 1.

Passing to the limit we deduce that

2 —
[ PP+ e)?dp =0

But this means that p(p) = 0 except when
p-e =0, contradicting [c2 p(p)dp = 1.




The Euler-Lagrange equation for J

Theorem. Let Q = diag (A1, A2, A3). Then

exp(p1p? + pops + u3p3)
Z (1, 1o, 43)

pQ(p) =

Y

where

Z(p1, p2, p3) = /52

The u; solve the equations
olnZz

Ot
and are unique up to adding a constant to each

i

2 2 2
exp(p1p1 + nops + u3p3) dp.

1
:>‘2+§7 1= 172737



Proof. We need to show that pg satisfies the
—uler-Lagrange equation. There is a small
difficulty due to the constraint p > 0. For

T >0 let S = {p € S?:pglp) > 7}, and let
2z € L>®(S?) be zero outside S; and such that

1
X p——=1 dp = 0O, dp = O.
ST(p P2 )z(p) dp st(p) p
Then ps 1= pg + ez € Ag for all € > 0 suffi-
ciently small. Hence

d%J(ps)\s_o = /T[l + Inpglz(p) dp = 0.



So by Hahn-Banach

3
1
1+1Inpg= > Cijlpip; 3] - C
1,j=1

for constants C;;(7), C(7). Since Sr increases
as 7 decreases the constants are independent
of 7, and hence

3
po(p) = Aexp ( > Cz’jpipj) if po(p) > 0.
1,J=1



Suppose for contradiction that

E={pecS?:pg(p) =0}

is such that H#2(E) > 0. Note that since
[s2 podp = 1 we also have that H?(S?\E) > 0.
There exists z € L*®(S?) such that

1
(p®p—§1)2(p) dp = 0, z(p) dp = 4.

/{PQ>O} {pQ>O}



Indeed if this were not true then by Hahn-
Banach we would have
3 1
1=} D;j(pipj— 55@') on SA\E
i,j=1
for a constant matrix D = (D;;).
Changing coordinates we can assume that D =
>3 4 pie; ®e; and so 1 = Y3 p(p? — 3) on
S2\E for constants p;. If the u; are equal then
the right-hand side is zero, a contradiction,
while if the u; are not all zero it is easily shown
that the intersection of S2 with the set of such
p has 2D measure zero.



Define for € > 0 sufficiently small

Pe = pQ T+ € — ez.

Then p: € Ag, since [o2(p @ p — %1) dp = O.
Hence, since pg Is the unique minimizer,

/Es Ine + /{pQ>O}[(pQ +e—ez)In(pg + ¢ —€z)
—PQ In ,OQ] dp > 0.

This is impossible since the second integral is

of order e¢.
Hence we have proved that

3
po(p) = Aexp( Y. Cipip;),a.e. p€ S°.
1,j=1



Lemma. Let RIQR = Q for some R € O(3).
Then po(Rp) = po(p) for all p € S2.

Proof.
1
—~1)po(Rp) d
(P ®P—21)pg(Fp) dp

1
= RY'q® RTq— 21 d
[ (Ra® R"q = 1)pq(a) da
= R'QR=¢,

and pg Is unique.




Applying the lemma with Re; = —e;, Re; = e;
for j #% i, we deduce that for Q = diag (A1, A2, A3),

exp(p1p? + Hops + p3p3)
Z (1, 12, 43)

pQ(p) =

Y

where

Z (1, 2, 43) =/

o exp(p1p? + pops + uzp3) dp,

as claimed.



Finally

olnZ 1 5 3 5
= / / = ex D<) d
1

and the uniqueness of the u; up to adding a
constant to each follows from the unigueness

of PQ-




Hence the bulk free energy has the form

3 3
vp(Q,0) =0 ) pi(\; A 21))) 0InZ —k Y N2,
i=1 -

1=1




Consequences

1. Logarithmic divergence of ¥ as
min \;(Q) — %

2. All critical points of ¥ are uniaxial.

3. Phase transition predicted from isotropic to
uniaxial nematic phase just as in the quartic
model.



4. Minimizers p* of Iy(p) correspond to
minimizers over @ of ¥v(Q,0). These p*were
calculated and shown to be uniaxial by Fatkullin
and Slastikov (2005).



5. Using a maximum principle, or a projection
method, we can show that minimizers of
1@ = |_[¥5(Q)+ KIVQP] da,

subject to Q(x) = Qp(x) for x € 0L2, where
K > 0 and Qq(-) is sufficiently smooth with

Amin(Qo(z)) > —3, satisfy

1
Amin(@(x)) > 3 £,

for some ¢ > 0.

(Compare nonlinear elasticity, for which the
energy is I(y) = [o W(Vy(x)) dx, with
W(A) — oo for det A — 0+4.)




One might think that for a minimizer to have
the integrand infinite somewhere is some kind
of contradiction, but in fact this is a common
phenomenon in the calculus of variations, even
IN one dimension.

Example (B & Mizel)
Minimize
I(u) = /_11[(:104 - u6)2u£8 + eug] dx
subject to
u(—1) = -1, u(l) =1,

with 0 < e < eg &~ -001.



Result of finite-element minimization, minimiz-
ing I(up) for a piecewise affine approximation
up, tO u on a mesh of size h, when h is very
small. The method converges and produces

two curves u~.



A 08 06 A4 02 D/'Eff-d 06 08 1
i)

-1 -

However the real minimizer is y*, which has a
singularity

2
y*(x) ~ |z|3signz as = ~ O.



Voir http://www.maths.ox.ac.uk/~ball
sous teaching pour les diapositives



The end



