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Oseen-Frank theory

Free energy I(n) = /Q W(n, Vn) dx,

2W (n,Vn) = K1(divn)? + K»(n - curln)? 4+ K3|n A curln|?
+ (K2 + K4)(tr(Vn)? — (divn)?).

n(x) € S2 (unit sphere) is the director.

2D case: n(x) = (n1(x1,x2),n>(x1,22),0)
curln = (0,0,n21 —n12), n-curln =20
n A curln|? = |curln|? = (no1 — n1,2)2
tr (Vn)? — (divn)?2 =0



Exterior problem for Oseen-Frank theory

w; C RY disjoint, bounded, open, with
sufficiently smooth boundaries dw;.

nj

Q =R\ Uf\il Wi )/

What can we say about equilibrium configurations n
in 2 satisfying the boundary conditions n|8wi = n;,
1= 1,..., M, in particular about their behaviour at oco?
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It would be nice to be able to handle the case d = 3
for general elastic constants and allow the w; to move.
However we will assume that the w; are fixed, that d = 2,
and that we are in the one-constant case

Ki=Ko=K3=2, K;s=0.

Why is the one-constant d = 2 case so much simpler?

First, we can identify R? with the complex plane C,
writing z = x1 + x> for x = (x1,22), and identifying
n(x) with

fi(z) = ni(z1,20) + inp(x1, o) = P,



The Euler-Lagrange equation for the one-constant energy

I(n) = /Q 'Vn|2 dx,
n: 2 — S2, is the harmonic map equation
An + |Vn|’n = 0,
which is equivalent to
Af 4+ |Vn|?il = ie'® AP = 0,
that is to the linear Laplace equation

AP = 0.

In particular, equilibrium solutions of locally finite energy
are smooth (no defects).



Also, if n = n(z),m = m(z) are equilibrium solutions
so is n(z)m(z) as a product of complex numbers.

One interesting consequence is that any constant
rotation, or rotation plus reflection, of an equilib-
rium is also an equilibrium.
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In polar coordinates (r,6) Laplace's equation AP =0
becomes

Dss + CDQ@ = 0,

where s = Inr.

One solution is & = 0, giving the 2D hedgehog
0 _ <
2|
which has finite energy only for bounded domains
not containing the origin.

e

Note that this solution, while solving Laplace’s
equation locally, is not a globally defined smooth
solution due to the jump of 27 in 6 as we circle the
origin. How can this be remedied?



Definition of degree

If we smoothly parametrize dw; by t € [0, 27), then can write
n,;(t) = (cosd(t),sin d(t)) with & smooth and define

1
degn; = E(CD(QW)—‘D(O))
1 27
= d'(t) dt.
271 J0 ( )

)

/1

degn; =0 degn;, =1



Carbou’s trick. Pick a; e w;, 1=1,..., M.
(For convenience we choose a; = 0 to be the origin
of polar coordinates.)

Let d; = degn,;. Then we can write any equilibrium
solution n as

d d
H(2) — (Z—ai> 1...<Z—3M> M ie(2)
b,
|z — a;| |z —apy]

where ¢ is a smooth solution of Ay = 0 in 2.

Rough proof:

—dq —dy
Z — A — a
|z — a |z —apy|

IS an equilibrium solution of degree zero.




Let Bg = B(0, R), so that UM &; C Bg, for some Ry, and

X={n:Q—52: /mB 'Vn|2dx < oo for all R> Ro,nlg,, = n;}.
R

Let k=Y, d;, where d; = degn,.

X can be split into countably many homotopy classes
(topologically distinct families of n, so that director fields
in two different homotopy classes cannot be continuously
deformed one to the other). The different homotopy
classes correspond to adding different multiples of 27 to
the boundary values for ¢ on each Ow;.



Theorem. Let k = Y degn;. There is a
uniqgue minimizer no of

2
E(n) =/Q <|Vn|2 |i|2> dx,

in each homotopy class C, no : © — St is a
smooth harmonic map and

ne(x) — n¥(x)| < <0,

for some constant Cp > 0, where

n (x) = (cos(kf + Bc), sin(k6 + )
and B~ € R. In each homotopy class C there is
also a harmonic map ngo with E(ng) = +oo.
Furthermore E attains a minimum n* in X, but
n* is not in general unique.



Counterexample for uniqueness of n*.

A%

Remarks

1. The nonunigueness in this example might go
away if we formulated everything in terms of line-
fields n ® n. These can be handled by the trick of
squaring ii, i.e. looking at the director field <.

2. In the two-constant d = 2 case there can be radial
solutions that are periodic in Inr, so the asymptotic
behaviour is much more complicated. 12



