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The linear wave equation

In the scalar case u = u(z,t) € R, z € 2, Q2 C R"”
open, t € R, this is the equation

Ut = czAu,

" 52y
where Au = Z ——, and ¢ > 0 is the constant
i=1 Y

wave speed.

(If u(z,t) is a vector solution of uy = ¢?Au then each
component u; of u satisfies the scalar equation.)

By rescaling ¢t (letting 7 = ¢t) we may assume that
c=1. Hence from now on we consider the equation

5

u = Au.



We seek solutions satisfying initial conditions

U(l’,O) — uO(x)a ’U,t(il?, O> — U,]_(ZE>,

and suitable boundary conditions (e.g. u|lgo = 0 if @
is bounded) or decay conditions as |x| — oc.

Sample applications:

n = 3 electromagnetic,acoustic and seismic waves
n = 2 transverse waves on a membrane

n = 1 vibrating string

There are many more complicated linear and non-
linear models of wave phenomena (e.g. surface
waves on water) for which the linear wave equa6—
tion is a prototype.



In general, the way to solve linear PDE iIs to give a
formula for solutions.

Recall how this is done for the 1D wave equation

Ut = Ugx, T € 2 =R,

with initial conditions u(x,0) = ug(x), ut(x,0) = uq1(x).

Assuming w IS a C? function of z and ¢, change
variables to ¢ = x4+ t,n = =z — t (the lines x +
t =const. giving the characteristics of the wave
equation). Then the equation becomes Ugy = O
with general solution u = f(&) + g(n) for arbitrary
functions f,g. ’




Applying the initial data we have

up(@) = f(x) + g(z), ui(z) = f'(z) — ¢'(2),

from which we obtain d’Alembert’s solution

x+t

u(x,t) = % (ug(x +t) +ug(x —1t)) + % u1(s)ds.

x—t

Note that u(x,t) is uniquely determined by the values of
the initial data in the interval [x — t,x + t], showing that
there is a finite speed of propagation of disturbances.

This solution is meaningful even when ug,uq are
not smooth, suggesting that a weaker definition
of solution may be possible and relevant for rough
Initial data. 8



In order to define such weak solutions, recall that for

E C R® open IOC(E) denotes the set of measurable

functions v : E — R such that v € L1(A) for all
compact A C F.

A function u € LlOC(E) has a weak derivative

e LL(B) if
Oy ou
dr = — dx for all o € CRC(E).
/Euaai‘z g Eamigp g v O( )

If the weak derivative g;” exists then it is unique.

Denote by WI (E) the set of u € LlOC(E) with weak

derivatives gu S |oc(E) fori=1,. 9



We consider for T' > 0 the wave equation
Utt — A’U,, (xat) S Rn X [OaT]v (1)
with initial data

u(z,0) = ug(x), ug(x,0) =ui(x), (2)

where ug € VV| (Rn) u1 € IOC(Rn)

10



Definition. A function u = u(z,t) € LL (R"x (0,7)) is a
weak solution of (1), (2) if u,us € C([0,T]; L1(B(0, R)))
for any R > 0, with u(-,0) = ug(-),ut(-,0) = u1(-), and
for all ¢ € Cg°(R™) we have that

() (1) = |

o u(z,t)p(z) de € C2([0,T])
with
d2
ﬁ(u’@ = (u, Ay) for t € [0,T].

Let us check that w(z,t) given by d'Alembert’s formula
IS indeed a weak solution.
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We can write d’'Alembert’s formula as

where

f(r) = (uom + [[ua(s)as),

g(r) = (uO(T) /O "1 (s) ds) |

Then f,g € WI L(R) with weak derivatives f’ = 2(uoz + u1),
g = 3(uoe — ul) € Lt .(R) respectively, and

ui(z,t) = E(f/(‘”” +t) — ¢ (z—1)).

12



By the continuity of translates in L1 we have
that w,u; ; [0,7] — L1(=R,R) are continuous
for any R with the correct initial values.

Finally, let ¢ € Cg°(R). Then

(o)) = [ u@ @) do
= [ U@ =+ g@)p(z +1)) da.

IS smooth in ¢ with second time derivative
d2

T2 u,p) = /R (f(®)pza(x — 1) + g(T)pzz(x + 1)) dz,

= (u, pzz)

as required. 13



But is this the unique weak solution?

To prove this we have to show that if v is a weak
solution with initial data ug = u; = 0 then v = 0.

We no longer have the regularity to use the
characteristics argument, so what to do?

We will smooth the solution so that we can use
characteristics.

14



Let pe € C5°(R"™), € > 0, be a mollifier, i.e.
Pe 2 O, SUPP pe CC B(O,@), fRn pg(CU) dr = 1.

Given a weak solution uw with zero initial data
let Ue — Pe * U, |.e.

ue(w,t) = [ pe(a—y)uly,t) dy.

We claim that ue is a C? solution of the wave
equation with zero initial data. In the case n =1
the d'Alembert formula implies that u. = 0. But
ue(-,t) = u(-,t) in LY(B(0,R)) as ¢ — 0, so that

15
u = 0.



Note first that, for each ¢, us IS smooth in . Hence
Dus(a,t) = | Bape(z—y)ulyt) dy

/Rn Aype(x —y)uly,t) dy

d2

= —/Rn pe(x — y)uly,t) dy
82

— ﬁug(a;,t),

so that u. satisfies the wave equation.

To check the regularity, first note that us(x,t) is contin-
uous in (z,t) since v € C([0,T]; L1(B(0,R))) for every
R. The same argument shows that both u., and any
x-derivative of us are continuous in (x,t). Finally, the
2
formula for Aue shows that %%5 is also continuous in
. ¢ 16

r,t, so that ug is C2.




Solving the wave equation in R", n > 1.

Again we want to solve
upr = NAu, ¢ € R". ¢t > 0,
with initial conditions

U(CE,O) — UO(LU), ’U,t(.’IJ,O) — U,]_<a?)

Assuming u € C2 we try to find an explicit solution
using Poisson’s method of spherical means.
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The spherical mean of a function u(x),x € R", is its

average over the sphere S(x,r) with centre x and
radius r > O:

1
Mu(e,r) = wprht—1 /S(w,r) uly) dSy
1

where w, = H*~1(s7 1),

T he second line above is meaningful for all » € R,
and not just for r > 0, so we use it to extend the
definition to all r. Note that then My(x,0) = u(x)
and My(xz,r) = My(x,—1).

18



Theorem 1 For v € C? the spherical mean satis-
fies the Darboux equation

(;; | ”; 1;) Mu(z,7) = DgpMy(z,7).
Proof.
;Mu(x,r) = in a1 gZ(erré)&dS
— win BO.1) Agu(z 4 ré) d§
— T;;nAx /B(x’ﬂU(y) dy,

where in the second line we used the divergence theorem.

19



Hence

o 7al—n

T
9 My (x, A / / S, d
oy ) on 7 Jo sy v d5u P

1—n " on—1
r A:U/O P My(z, p) dp,

and so

2( n—19 — My (=, fr)) — A;Brn_lMu(az,r),
or or

giving the result.

20



Now let v = w(z,t),z € Rt > 0 be a C?
solution of the wave equation and form the
spherical mean with respect to x

1
My(x,r,t) = — - u(:z: + 7§, t) dSe.
T hen
1
A M, = — Azu(x + 7€, t) dS¢
Wn, Sn—l
02 1
— 8t2wn/”—1 u(x 4+ 7€, t) dS&
2
— 0 —= My, 21

Ot2



Hence, by the Darboux equation, we find that M,
satisfies the Euler-Poisson-Darboux equation

H? 802 n—1208
— M, = ' My,
ot2 (87“2 | r 87“) “

which we need to solve with the initial data

0
Mu — MuO(CIj, T), aMu — Mul (.’I}, T)

at t = 0.

T he easiest case is when n = 3, when we obtain

O2 5, a2

Or2 or

22



Hence r M, satisfies the 1D wave equation with
respect to r,t with initial data

0
rMy = rMuyg(z,7), arMu = r My, (x,r)

for t = 0.
Applying D’Alembert’'s formula we deduce that
1
rMy(x,r,t) = 5 ((r + ) My (x,r + t)
r+t
+(r = OMug(a,r =) + | EMuy (2,6 g )
.
and we need to pass to the limit » — 0 to recover u(x,t).

23



Using the fact that Myy(z,r) and My, (z,r) are
even in r we have that

Mu(az,r,t) — zir((t+7“)Muo(CC,t+T) o (t_T)MuQ(xat_T>)

1 rt4+r
[ My () de,

2r Jt—r
so that passing to the limit » — 0 we obtain

u(x,t) = tMy,(z,t) + %(tMuo(a;, t)).

Hence we arrive at Kirchhoff’s solution of the 3D wave
equation

1 o1
ue, t) = 4—7Tt/5(x,t) u1(y) dSy A ot (47715 /S(m,t) uo(y) ng) '

24




This reduction to the solution of a 1D wave equation
works in any odd dimension, but the details are more
complicated (see Evans, John). However it doesn’t
work in even dimensions, in particular for n = 2.

However, to get explicit formulae for even dimensions
n = 2k we can add an extra coordinate and apply
the formula for the odd dimension 2k + 1. This is
Hadamard’'s method of descent, which we now apply
to the case n = 2.

Thus we apply Kirchhoff’'s formula to initial data

UO(CUl?iUQ)v U1(5131, CEQ)

which do not depend on zs3. 2>



Note that for any function f(x1,x5)

f(y)
B(x,t) \/t2 _ |,y _ CE‘|2
where B(xz,t) = {y € R? : |z —y| <t} and f(y) = f(y1,y2).

dy,

dsS, = 2
/S(a:,t)f(y) S, = 2t

Hence the solution for n = 2 is given by Poisson’s
solution to the 2D wave equation

w(, t) u1(y)

27T fB(CU t) \/t

26



From Kirchhoff’'s and Poisson’s formula various
iImportant conclusions can be drawn.

Both formulae shown that u(x,t) depends only on
the values of the initial data in the ball B(x,t) C R".
This is the principle of causality and is true in any
dimension. Intuitively, since the wave speed is 1,
disturbances due to the initial data outside this ball
take longer than time t to reach =x.

But there is an important difference between
the formulae.

27



This difference is that Kirchhoff's formula shows that
for n = 3 the solution u(x,t) depends only on the
data and its derivatives on the sphere S(z,t), while
Poisson’s formula shows that for n = 2 the solution
u(x,t) depends on the initial data in the whole ball
B(x,t).

Thus when n = 3 disturbances propagate at exactly
the wave speed. In particular, if the initial data is sup-
ported in a small ball B(0,p) then the solution u(x,t)
at the point x is zero except for times in the interval

[|z| — p, x| + pl.
This is Huyghen’s Principle which is fundamental to
human experience, since it means that sharp light and

sound signals can be received, enabling us e.g. to hear
music as it is played and watch movies.



On the other hand, Huyghen's principle is not
valid in 2D. The effect of a disturbance initially
concentrated in B(0,p) and reaching a point x
will never die out completely.

It also follows from Kirchhoff's formula that there can
be a pointwise loss of derivatives in the solution with
respect to the initial data.

To see this more explicitly we can consider spherical
waves. T hese are special solutions of the wave equa-
tion of the form

u(e,t) = ~(F(r+1) + g(r — 1)

29



Following the chapter by F. John in Bers, John &
Schechter, choose f(r) = g(r) = %rgp(r) with ¢ even.
Then we have the solution

(Lp@t+r)+ot—r) z#0
u(z,t) = § +5:(p(t +1) = ot = 1))

\ 90(75) +t90/(t) T = 07
with initial data ug(x) = ¢(r), ui(x) = O,

from which the loss of a derivative (due to
focussing) follows.

Indeed if ¢ vanishes in a neighbourhood of the
origin then ¢ € Ck iff ug € C*, but then u is not
in general C* in t at z = 0.

30



The Sobolev spaces H(2), H ().

Let 2 C R"™ be open.

Definition. The Sobolev space H1() is the set

of u € L?(2) with weak derivatives % € L?(Q)

fore=1,...,n.

Recall that
Oy ou
—dx = — —opdx for all o € CRP ().
/Quaxi g Qaa?igp ’ 1 O( )

H1(Q) is a Hilbert space under the inner product

(u,v) = /Q (u-v—+Vu-Vov)de. =



Definition. HO (£2) is the closure of C§°(£2)
in H1(Q).

If €2 is bounded with Lipschitz boundary, then the
trace tru of uw on 0L2 is well defined (as a function
in L2(99)) and H&(Q) = {u € HY(Q) i tru = 0}.

If €2 is bounded then the Poincaré inequality
implies that

> _ >
[ull gy = [, IVu(@)|?de
defines an equivalent norm on HA ().

32

Also HY(R™) = H}(R™).



Fourier transforms and series

If we L1(R™) (u complex) its Fourier transform is de-
fined by

]_ )
~ . —ix-€
u(€é) = (2m)1/2 /nu(:c)e s dx
and its inverse Fourier transform by
1 .
- _ £
@) = s f WO g

Plancherel’s Theorem. If v € L1(R™) N L2(R")
then 4,4 € L2(R™) and

[l L2y = 1l L2y = llull L2geny:

Since C(R™) is dense in L?(R™), given u € L2(R™) there
is a sequence pU) € CP(R™) with ) — 4 in L2(R?). *



Hence by Plancherel’s theorem 95(3') IS a Cauchy sequence
in L2(R™) and so converges in L2(R"™) to some limit,
which does not depend on the approximating sequence,
and which we define to be w. The inverse Fourier trans-
form @ of u € L2(R"™) is defined similarly.

If 2 C R"™is a bounded open set, then (see e.g. Evans)
there exists an orthonormal basis {w;}7=; of (real)
L2(€2) consisting of the eigenfunctions w; € HJ(2)
of —A, that is of solutions to

—ij = )\jwj in €2
wilo = 0,

with corresponding real eigenvalues 0 < A\1 < X < ...,
l.e. where A; — 0o as j — oo. "



Thus if (u,v) = [ou(z)v(x)dxr denotes the inner
product of u,v € L?(2) we have that (wj,wg) = &,
and any f € L2(2) has a unique Fourier expansion

oo
j=1
which is convergent in L2().
Also we have Parseval’'s T heorem
2 — 2
HfHLQ(Q) — Zl(fa wj) .
J:

If f € H3(S2) then the series is convergent in
H3(2) and

112y = [ IVFRde = 3 A(f.wp)?. y

=1



Solution of wave equation by Fourier methods

(i) The wave equation in R™ via Fourier Transforms.
Consider the wave equation

ur = Au, for z e R™" ¢t > 0, (3)
with initial data

u=ug, ut =uq fort =0. (4)
Formally we have, taking Fourier transforms in x,

U + |€]°4 = 0 for t > 0,

with initial data

36

u = ug, ur = uq for t = 0.



So
a(g,t) = ANl 4 B(&)e el

with
A(€) + B&) = in(€), A(€) — B(€) = —éaus).
Hence
A©) = (ﬂo(f) - émm) B= (ﬂo(ﬁ) + ém(&))
and so
sin([&]r)

u(g,t) = up(§) cos(|£[¢) 4 ua(€)

€]

37



Taking the inverse Fourier transform we thus obtain

(ao@ cos([€lt) + m@smgf '”) G dg. (%)

We slightly strengthen the previous definition of a weak solution:

Definition. A function v = u(z,t) € L, (R" x (0,7)) is a
weak solution of (3), (4) on [0,T] ifu € C([0,T]; HA(R™)),
ut € C([0,T]; L2(R™)) with u(:,0) = ug(-), us(+,0) = u1 ("),
and for all ¢ € C§°(R™) we have that

(w.9)(1) = [ u(@, (@) do € C3([0,T))

with
d2

@(uv 90) — (’LL, A90> for t € [OaT]

38




Theorem 2 If ug € HA(R™),u; € L?(R™) then (*) is
the unique weak solution of the wave equation with
initial data ug, w1, and the energy equation

/R’” (|Vu(ac,t)|2 + th(xat)) dx = /Rn(|vfu,o(x)|2—|—u%(x)) dr
holds for all ¢t > O.

Proof. We first note that

i, 1) = [ (=o€l sin(I¢lt) + @1(6) cos(lg])) ¢ de.

(27r)”/2
Therefore u(-,0) = ug, ut(+,0) = uq.

It also follows that u : [0,7] — H&(R™) and
ut : [0,T7] — L2(R™) are continuous. 39



(For example, taking for simplicity u; = 0, we then have that

(27-(-:;71/2 /Rn —1ip(&)|€|(sin(|€]s)—sin(|€]t))e™ S de,

so that by Plancherel’s theorem

e 8)=ur (s O 2ny = [ [0(€) 1€ sin(l€ls) —sin(l¢[e) ?d,

and the continuity follows since ug € H&(R”) and hence
a0 (€)[°[€]* € LY (R™).)

’U,t(a?, S)_ut(aja t) —

Now suppose that ug,u; € Cg°. Then it is easy
to check that w(z,t) given by (*) is a smooth
solution.

40



Also, again by Plancherel,

L (Vu@ ) + fua, )Py de = [ (Vu(e.0)]? + [ar(s, )] )dg

= [ (€P1ace, OP + [a(, 1) dg
(1€121a0(9)1? + a1 (&)|?) de

= [ (V@) + [u1(2)]?) da.

so that the energy equation holds.

Given ug € H§(R™), uy € L2(R™), let u§’ uf €
C5°(R™) with u(()]) — uQ i.n H&(R”), ugj) — uq in
L2(R™), and denote by u{J)(z,t) the solution given
by (*) with initial data u$?, u{.

41



From the formula «U) is a Cauchy sequence in
C([0,T]; L2(R™)), while by the energy equation Vu{/)
and ugj) are Cauchy sequences in C([0,T]; L?(R™)™)
and C([0,T]; L2(R™)) respectively. Hence the limit « is
given by (*) and satisfies the energy equation.

Thus if ¢ € Cg°(R™) we can pass to the limit in
the equation

@, 0)(®) @, 0)(5) = [P, Ap)(yar
to deduce that (u,¢) € C2([0,T]) and

d2
ﬁ(ua 90) — (’U,, Ag&),

so that « IS a weak solution.

42



To complete the proof, by the previous mollification
argument we just need to show that the unique C?
solution with zero initial data is zero. This follows
from Kirchhoff's formula (for n = 3). O

Remark: It seems that to prove uniqueness you
need something implying a finite speed of prop-
agation. Treves (Theorem 13.1) gives a more
general existence and uniqueness result for ug, uq
merely distributions, which for the unigueness
makes use of an analysis of the fundamental so-
lution of the wave equation.

43



Another representation of the solution is as a su-
perposition of plane waves via Radon transforms
(see Lax, Helgason). We just give the formula for
n odd.

The Radon transform of a function f is defined by

Flws)=[ _  J@auty,

1y-w=s}
Then the solution is

u(x,t) = /Sn_l hw,z-w—1)dSy,

where

h(w,s) = 07 tig(w, s) — 07 21 (w, 5).

44



(ii) The wave equation in a bounded domain via
Fourier series.

Let €2 C R"™ be a bounded open set. We solve the
wave equation

{ upr = Au for x € 2, t > 0, (5)

ulg = 0

and initial conditions

u=wug, ut = uq for t =0. (6)

where ug € H3(2),u1 € L?(R).

45



Definition. w is a weak solution of (5), (6) on [0,T]
if w € C([0,T]; H}(RQ)), w € C([0,T]; L?(£2)), with
u(-,0) = ug,ut(-,0) = ug and for any ¢ € C5°(£2) we
have that (u, ) € C2([0,T]) with

d2
—2( ) = (u, Ap).

Remark. In the last equation we can equivalently write
(u, Ap) = —(Vu,Vy) := — [oVu-Vedz. Also, since
this equation can equivalently be written as

(u )@ — () () = — [ (Vu, Vo) ()

we get the same equation for any ¢ € Hé(Q), since
CS°(R2) is by definition dense in HA(Q). 46



Theorem 3 The unique weak solution of (5),(6)
IS given by

OO

sin( t)
u(x,t) = uUQ; Cos(ft) + u1; \/7

J= 1 \/7

where ug; = (ug,w;),u1; = (u1,w;), and the en-
ergy equation

| (Vu(a. 0 P+u?(@,0) de = |_(|Vuo(@)+uf(2)) da
holds for all t € [0,T].

Proof. Let v be a weak solution. Then

o @

u(-,t) = Z u;(t)w;, te[0,T]
=1

where u;(t) = (u(-,1),w;).

47



Taking ¢ = w; we see that u; € C2([0,7]) and
u] — —AjUj,

with initial conditions u;(0) = ug;,%;(0) = uy;.

Solving this ODE gives the solution as in the theorem,
proving uniqueness.

Since ug € HA(Q),u1 € L?(£2) we have that

0 o0
2 9 5 5
/Q |VUO| dr = Z )\]’LLO] < o, HulHQ — Z ulj < 0.
j=1 j=1

48



Let
N

un(z,t) = ) u;(t)w;(x).

=1

Then uy is a weak solution (in fact smooth in 2 x [0,7T]) and

M
/Q<|v<uM—uN><x,t>|2+|<uM—uN>t<x,t)F) do = .:ZNO\ju%ﬁu%j),

so that wup,upn; are Cauchy sequences in C([0,T]; H3(S2)),
C([0,T]; L?(2)) respectively.

So u € C([0,T]; H5(2)),u¢ € C([0,T]; L%(£2)), and
passing to the Ilimit N — oo In

(une: ) — (e 9) () = [, @) () dr

we deduce that u iIs a weak solution.

49



Finally, we can pass to the Iimit N — oo in the energy
equation

N
JpIVun @ OF +uni(a ) do = 3 Oy, + i)
]:

for uy to get the energy equation for w. [

Remark. Let X = H}(2) x L?(2). Note that the
energy equation implies that the solution {u,u:} €
C([0,T]; X) depends continuously on the initial data
{ug,u1} in X. The same is true when 2 = R"
(with a separate calculation to check continuity in
C([0,T]; L#(2))).

50



Semiflows and linear semigroups

Definition. A semiflow {T'(t)};>0 on a metric space (X,d)
is a family of continuous maps T'(t) : X — X satisfying

(i) T(0) = identity,

(i) T(s+t) =T(s)T(t) for all s>0,t> 0,

(iii) for each p € X the map t — T'(t)p is continuous from
[0,0) — X.

(Alternatively (nonlinear) semigroup or dynamical system.)
Interpretation: T'(t)p is the state at time ¢t of an
autonomous system with initial data p € X.

T'(t) continuous expresses continuity with respect
to the initial data. 51



Condition (ii) is a statement of uniqueness of
solutions for given initial data.

T(s)T(t)p = T(s+ t)p

-
| i

p

Note, however, that there is no assumption of
backwards uniqueness (or backwards existence).
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It is possible to consider weaker versions of (iii), for
example that for each p the map ¢t — T'(¢t)p is strongly
measurable from [0,00) — X, and surprisingly this im-
plies that t — T'(t)p is continuous from (0,00) — X
(see JB Proc. AMS 1976). Another similar example

of the semigroup property (ii) strengthening continuity
properties is:

Theorem 4 (Chernoff & Marsden, Bull. AMS
1970) If {T'(t) }+>0 is a semiflow on X, then the map
(t,p) — T'(t)p is continuous from (0,0) x X — X.
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Proof. Let p; - pin X. Let 0 <a <b < oo, and for
e>0m=1,2,..., set

Sm,e = {t € [a,b] 1 d(T'(t)p;, T'(t)p) < e for all j > m}.
By (iii) Sm is closed, and by the continuity of T'(t)

L) Sm,e=la,b].

m=1
By the Baire Category Theorem, some Sy contains
an open interval.

Since we may apply this argument to any [a,b] C (0, c0)
there exists a dense open subset S: of (0, co0) such that
if tg € Se there exists an open neighbourhood N:(tg) of
to and rs(tg) such that d(T'(t)p;, T (t)p) < € whenever

7 > ’I“g(to), t € Ng(tO). 54



Let

O
1=1

Clearly T'(t;)p; — T'(t)p whenever t; — t and t € K.
Again by the Baire Category Theorem, K is dense in
(0, 00).

Now let ¢t > O be arbitrary and ¢t; —t. Let ¢ € K,
O0<ti1 <t ThenT(t;1+t; —t)p; = T(t1)p and so

T(tj)p; = T({—t1)T(t1+t;—t)p; — T(t—t1)T(t1)p = T(¢)p,

as required.
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Now suppose that X is a real Banach space, and
that each T(¢) : X — X is a bounded linear oper-
ator. Then {T(t)};>0 is called a CO—semigroup.

We have shown that weak solutions to the linear
wave equation generate a Co—semigroup on the
Hilbert space X = HA(Q2) x L2(2) when either ©
IS bounded open, or 2 = R".

We associate with every Co—semigroup a corresponding linear
differential equation

w = Aw,

where A is an (in general unbounded) linear operator on X
56



Definition. The infinitesimal generator A of the
CO—semigroup {T'(t)};>q is the linear operator

T()w —
Aw = lim Lw
t—0+ t

with domain D(A) consisting of those w € X for
which the limit exists in X.

= (w e D(A)),

Theorem 5 If we D(A) then

(a) T(t)w € D(A) for all t > 0,

(b) AT(t)w = T(t)Aw for all t > 0,

(c) the map t — T(t)w belongs to C1([0,00); X) with deriva-
tive 2T(H)w=AT (t)w,

(d) z(t) = T(t)w is the unique function in C([0,T]; X) with
2(0) = w which for all t > 0 belongs to D(A), is differentiable
in t, and satisfies z(t) = Az(t). >7



Proof. Let w € D(A). Then

T(s)T()w —T()w T)T(s)w — T(t)w

lim = |im
s— 0+ S s— 04 S
T _
— T@) lim v -w
s—0-4 S
= T(t)Aw,

where in the first line we have used the semigroup
property (ii) and in the second that T'(t) is bounded.
This proves (a) and (b).

Now let ¢t > O,h > O and note that

T+ h)w—T@)w
h

T Aw = T () (T(m: W Aw> |
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Hence the derivative from the right of T'(¢t)w exists
and equals T'(t)Aw.

Also

Tt —h)w—T{E)w
—h

and so, using the joint continuity of T'(s)w in s > 0 and w,

we get that the derivative from the left of T'(¢t)w also exists
and equals T'(t)Aw. Using (b) and (iii) we get (c).

—T(t)Aw = T(t—h)

(T(h): —_ T(h)Aw> |

To prove (d) let v(s) =T(t —s)z(s). Then by (b),(c)

dv(s) . d
g T(t—s)z(s) — %T(t — s)z(s)

T(t—s)Az(s) — AT(t — s)z(s)
O. 59




Hence v(s) is constant for 0 < s < ¢, and (using
again the joint continuity) v(0) = wv»(¢), that is
z(t) = T(t)w as required.

Theorem 6

(a) D(A) is dense in X, and

(b) A is a closed operator (i.e. the graph
{(w, Aw) : w € D(A)} is closed in X x X).

Proof. If w € X then z(t) = %fé T(s)wds con-
verges to w as t — 04, so it suffices to show that
2(t) € D(A) for t > 0. (Here the integral is a
Bochner integral in the Banach space X.)
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But
t- T(r)=(t) = =(t) _ % (T(T) (/Ot T(s)w ds) — /tT(s)w ds)

T 0
1 rt
- /O (T(r 4+ 8)w — T(s)w) ds

% (/T—H T(s)wds — /t T(s)w ds)

T 0

= % (/tt_l_T T(s)wds — /OT T(s)w ds)

— T(t)w —w as 7 — 0+,

so that z(t) € D(A) with Az(t) = Tw—w,

To prove A closed, let w; € D(A) and
w; — w, Aw; — v as j — oo.
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T hen

t
T(t)w; —w; = /O T(s)Aw;ds,

and letting 7 — oo we obtain

Tw —w = /OtT(s)vds,

sO that
T (¢ —
im LWw—w _
t—0+ t

proving that w € D(A) and v = Aw.

)
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The Hille-Yosida Theorem gives necessary and
sufficient conditions for a densely defined, closed
linear operator A to generate a Co—semigroup. It
IS most useful and easiest to state for the case of
contraction semigroups.

Definition. A CP—semigroup {T'(t)},~q is @ contraction
semigroup if the operator norm ||T'(t)|| < 1 for all ¢t > O,
l.e.

| T (t)w]| < ||lw]| for all £ > 0.

(Thus the wave equation generates a contraction
semigroup on X = HE(Q) x L?(2) when Q C R" is

bounded open.) o



Definition. The resolvent set p(A) of a closed
linear operator A on X with domain D(A) is the
set of real X such that

M —-—A:D(A) —- X

is one-to-one and onto. If A € p(A) then the
resolvent operator R, : X — X is defined by

Ryw = (A1 — A) 1w

Lemma 7 If A € p(A) then R, is a bounded linear operator.

Proof. We show that the graph of R, is closed, so
that the result follows from the closed graph theorem.
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So let w; — w,Rij — r in X. Then

()\1 - A)R)\wj — wj

so that AR,\wj — Ar —w. Since A is closed this implies that
r € D(A) and Ar = Ar —w. Hence r = Ryw as required. [

Lemma 8 If \,u € p(A) then

Proof. We have that

(11— AYNL = A)(Ry — Ry) = (ul — A)(1— (M — A)R,)
= (W1 -A)A—-(@pl—-A4+OA\—pn))Ry)

(1 — A)(p — ARy

(n— M)1.

Multiplying by Ry R, gives the first identity, which implies
the second. 65



Lemma 9 If A is the generator of the CY contraction
semigroup {7T'(t)}+>0 then A € p(A) for all A > 0, and
for we X

>\t
Ryw = /O e MT(t)w dt, (7)

(so that R, is the Laplace transform of the semigroup).

Proof. Denote by

Lyw= [ eMr
AW = ; e (t)w dt

the integral in (7). The integral exists be-
cause ||[T(t)w] < [w].
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We have that for h > 0

T(h)L)\’w — L>\w 1 0 -\t -
- = - (/Oh e (Tt + h)w —T({)w) dt)
_ L x@-h)
= = e T(t)wdt +

1 roo
- /O (e AE=h) _ o= MY (1) di
1 rh
—eAhE/O e MT () w dt
0
/ e MT (t)w dt

| eM 1
| h 0

— —w + ALyw as h — 0 +.

Hence Lyw € D(A) and ALyw = —w + AL w, SO
that (A\1—A)Lyw = w. In particular A\1— A is onto.
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Now let w € D(A) and set f(¢¥) = e T (t)u. Then
(f(t),Af(t)) € G(A), for all t, where G is the graph
of A, which is a closed linear subspace of X x X.
Hence [5°(f(t),Af(t))dt € G(A), which implies that
A [5° f(t) dt = [§° Af(L) dt.

Thus

Xt
ALyu A/O e T (t)udt

©.@)
— /o e MAT(#)u dt

_ [ X _
=/ e "T(t)Audt = Ly Au,

so that Ly(A1l — A)u = u (since we previously showed
that ALyu = —u+ ALyu). Hence A1 — A is also one-to-
one, so that A\ € p(A) and Ryw = Lyw for all w € X as
required. [ 68



Theorem 10 (Hille-Yosida) Let A be a closed,
densely defined, linear operator on X. Then A

IS the generator of a CO contraction semigroup if
and only if

1
(0,00) C p(A) and ||Ry|l < 3 for all A > 0.

(Thus the issue of solving the dynamic problem

w = Aw is reduced to studying the static problem
Aw — Aw = f.)

Proof. Lemma 9 shows that the conditions are
necessary, because it implies that

o0 1\ 1
[Rywl < [ e wl dt = Sfwl. .



To prove sufficiency, we construct a contrac-
tion semigroup generated by A using the Yosida
approximation to A defined for A > O by

A)\ = —A1

A°R, = MR,

We first claim that if u € D(A) then Ayu — Au as

A — 00.

To see this note that since

AR u —u = AR u = R)Au,

1
IARxu = ull < Ryl - | Aul] < Sl Aull - O



Since for w € X

ARy w—wl| < AR u—u||+[[ARA|- [|w—u||+|lw—ul,
and [[AR,]|| <1 with D(A) dense it follows that

ARyw — w as A — oo for all w € X.

Hence, setting w = Au we have that

Ayu = AMRyu = ARy Au — Au,
as claimed.
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We now use the fact that A, is a bounded linear
operator to define

T\ () = €A>\t — oA Z ( . ) Rg\
j=0 I
Since ||Ry|| < 1,
O \2j¢) . O \Jt]
— A\t — A\t
I\ < e DRl <e™y S =1

Hence {T)\(t)};>0 is a CY contraction semigroup,
with infinitesimal generator A,.
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Next we show that as A — oo we have T (t)w — T'(t)w for
all w € X, where {T'(t)};>0 is a contraction semigroup.

To this end let A > O, > 0O and note that by
Lemma 8, AyA, = AyA), so that

Therefore, for u e D(A),

T\()u — Tu(t)u = /O td%(TN(t—s)T)\(s)u) ds

/O Tt — $)Th(5)(Ayu — Agu) ds.
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T herefore

| T\ (8w~ Ty (t)ul| < tl|Ayu—Ayul| = 0 as A, p — oo,
so that

T(t)u = lim T\(t)u

A—>00
exists for each t > 0.
Since ||T\(?)]| < 1, if w € X we have
ITA(O)w — Tp(Dwll < ITaEu — Tp(®ull + 2|lw — ull,

so that, since D(A) is dense, the limit

T(Hw := lim Ty (t)w

A—>00

exists for all w € X, uniformly on compact subsets of
[0,00), and {T'(t)};+>0 is @ contraction semigroup. 7



Denote by B the generator of {T'(t)};>0. It re-
mains to show that B = A.

If ue D(A) we have that
t
T\(DHu —u = /O Ty (s)Ayuds,
and since

ITx(s) Ayu—T(s) Aul| < [|Ayu—Aul|+[|(Tx(s)=T(s)) Aul| = O

we deduce that

TH)u —u = /Ot T(s)Auds.

Hence w € D(B) and Bu = Au. Suppose that
there exists z € D(B) \ D(A). 75



Then, since A\1 — A is onto, (A1 — B)z = (A1 — A)u for
some u € D(A). Hence

(M —B)(z—u) =0,

implying that z = v € D(A) (since A1 — B is one-to-
one). This contradiction implies that B = A, complet-
ing the proof of the theorem. [

Corollary 11 A closed densely defined linear operator
A on X is the generator of a CY—semigroup {T(t)};>0
satisfying

IT@®)] < e

1
if and only if (w,00) C p(A) and [|R,|| < o for A > w.
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Proof. Apply the theorem to S(t) = e WiT(t). O



The wave equation via the Hille-Yosida theorem.

We write the wave equation

Uttt — Au

(e =(m).

or, setting v = wuy,

d {u) _ u (0 1
Cﬁ(fU)—A(v),vvhereA_(AO).
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Let Q C R™ be open, X = H3(Q) x L?().
Lemma 12

D(A) = {( 5 ) € X :Aue L?(Q),ve HAQ)}
is dense in X, and A: D(A) — X is closed.

Proof. D(A) is dense since C5°(£2) x C5°(2) C D(A).

ne v(J) .
et ) U AG) be convergent in X x X,

so that v — u € HY(Q),v) = v € L2(Q),
v) 5 5 e HI(Q), Auld) — 2 € L2(Q).
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Then v = v and since
AuDod :_/V(j).v d
/Q u™’pax o (7} Y ax

for all ¢ € C3°(€2) we have that

. dazz—/ Vu - Vo dz,
Jozede == [ Vu- Ve
so that z = Awu and the graph of A is closed. [
Theorem 13 A is the generator of a CY-semigroup
{T'(t)}+>0 on X, and the energy equation

E(T(Hw) = E(w), t>0

u

is satisfied for all w = ( .

) c X, where

E(w) = /Q(\vu(a;)F + o(2)?) da.
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Proof. We first show that (0,00) C p(A). Thus we
need to prove that for any A > 0 and f € H3(Q),

g € L?(Q) there exists a unique solution (5) c X
with Au € L?2(R2), v € HA(RQ) to

/5
g.

AU — U
A\ — Au

Since v = A\u — f we just need to show that there
is a unique solution u € HA(RQ) to

Nu— Au— (\f+g) =0.
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T he existence follows by minimization of the functional

1w = [ (AvaP+ 20— 0 +9)
uU) — — U —’LL — U
o \2 2 g
over H3(£2). We sketch the standard argument.

First note that I is bounded below, since A\ > 0
and thus

)\2
St = O+ g)u > ——(Af +9)%,

and the RHS is integrable since f,g € L?(Q).

Let | = ianl(Q)I, so that 0 > [ > —oo (since
O .
0 e H&(Q)) and let ©U) be a minimizing sequence.
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Then

1 . A2 . .
- G2 o 2 ()2 (4)
/Q <2W’“ 1<+ 5 U ) dr < /Q(Af—l—g)u dx

X2u(D2(Nf 4 g)2
/Q( 4 T A2 a,

VA

and so
1 . A2 .
/ (—|Vu(=7)|2 + —u(]p) dr < ¢ < o0,
Q\2 4

so that ul9) is bounded in H3(2).

Hence a subsequence uUk) — u in H3(Q), i.e.

/u(jk)vdx%/ uvdfc,/ Vu(jk)-Vvda:%/ Vu-Vudx
Q2 Q2 Q2 Q2

for all v € H(%(Q) (because any bounded sequence in a
Hilbert space has a weakly convergent subsequence).



T herefore

[(u(jk)) — /Q (%Qvu(jk) _ Vu|2 4+ ovulr) vy — |Vu|2)
2 _ , .
_|_%((u(.7k) —w)2 4+ 20Uk gy —42) — (A f + g)u<3k)> dx
> / (vu(jk) VYV — 1|Vu|2
Q 2
FA2O0u = ~u2) = (Af + g)ulV)) de
— I(u).

Hence I(u) =1 and u is a minimizer.

T herefore

im I(u—+tv) — I(u)
t—0 t

/Q (Vu- Vo) +32u-v— (Af + g)v) da
0.
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Hence Au € L?2(2) and

—Au 4+ Nu — (O f

g) =0,

and the unigueness follows by noting that the
difference w between two solutions satisfies

/Q(\vw\Q + 22w2) de = 0.

We will apply Corollary 11; to prove the
resolvent estimate, note that

m(y)=(:



T herefore

Au—v = f
AN Vu—-Vv = Vf
A —Au = g.

Taking the inner product of these equations with
Vu,u,v respectively and adding, we obtain

)\/Q(uQ + |Vu]2 +v)dzr = (v,u)
+ [ (Fu+ V- Vu+ gv)da
But (v,u) < %fQ(uQ + |Vul? + v2) dz.
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Hence

1
(A=3) [ @P+VuP+e?) de < [ (£,V],9)-(u, Vu,g) da

from which the estimate

1

| Ry < for \ > 5

1
\ — =
follows.

It remains to show that the energy equation holds. To
this end we note that

F(w) = /Q(|Vu(x)]2 + v(x)?) dz
is a C! function of w € X, and that if w € D(A) then

E'(w)(Aw) = 2 /Q(Vu . Vv —v-Au)dxr = 0.

Y
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But by Theorem 5(¢), ¢t — T(t)w is C1 for
w € D(A) with derivative AT (t)w.

Thus if w € D(A) then t — E(T()w) is C1 with
derivative

E'(T(#)w)(AT(t)w) = 0.

Hence E(T(t)w) = FE(w) for all t > 0, w € D(A),
and thus also for w € X.
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Remarks. (i) The theorem gives the extra information
that for © unbounded [ju(-, )| p2(qy < /2|l (ug, u1)|lx-

In fact for unbounded €2 it is possible for
||u(-,t)||L2(Q) — 00 aS t — o0.

For example, in the case €2 = R™ with ug = 0 we
have that

sin(¢[t)

u(g,t) = u1(¢) €

For e > 0 let

a1(6) = { 2t refo,1)

r
O r > 1. 88



Then
1
/ 1 |2dE = wn/O r~ 128y < oo,

SO that uq € LQ(R") and is real and radially symmetric.

But

1
wn/O r2€=3sin?(rt) dr

t sin s\ 2
tz(l_g)wn/o 825—1< ) Is
S

~ 112
HUHLQ(Rn)

(ii) We also have the regularity result that if ug €
H3(Q), Aug € L?(R2) and uy € HA(2) then Au €
C([0,T]; L?(2)), ut € C([0,T]; H3(S2)). (This could
alternatively be approached via an energy method.)
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Weak solutions for linear semigroups

Let X be a real Banach with dual space X*. We
denote the action of v € X* on w € X by (w,v).

Let A be a closed linear operator on X with dense
domain D(A). Define D(A*) to be the set of those
v € X* for which there exists v* € X™* such that

(w,v*) = (Aw,v) for all w € D(A).

Note that, since D(A) is dense, if v € D(A*) then v* is
unigue. We then define the adjoint A* : D(A*) — X*

of A by A*v = v*, so that
(w, A*v) = (Aw,v) for all w € D(A). %



Lemma 14 A* is closed.

Proof. Let v{U) € D(A*) with v(1) — o, A*) — 2
in X*. Then

(w, A*vU)y = (Aw, v for all w € D(A),
so that passing to the Ilimit we get

(w, z) = (Aw,v) for all w € D(A).

Therefore v e D(A*) and A®*v =z as required.
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D(A*) is not in general dense. For example,
let X = L1(0,1) and A = &, so that D(A4) =

= 7

wll(0,1). Then X* = L°°(0,1) with

1
(w, v) :/O wo dx.

hen we need

1 14
/O wA v dz :/O S v dx for all w e wllo, 1),

dx
which implies that A*v = -9 with D(4*) =
Wa>°(0,1).

But D(A*) C C(]0, 1]) so that D(A*) is not dense.
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Lemma 15 Let w,z € X satisfty
(z,v) = {w, A™v) for all v & D(A™).

Then w e D(A) and z = Aw.

Proof. Suppose not. Then (w,z) &€ G(A), where
G(A) C X x X denotes the graph of A, which is
closed by hypothesis. Hence by the Hahn-Banach

theorem there exist v,v™ € X™* with
(u,v*) + (Au,v) = 0 for all u € D(A)

and (w,v*) 4+ (z,v) # 0.

But this implies that v € D(A*) and v* = —A*v.

Hence (z,v) # (w, A*v), a contradiction. [ ”



Corollary 16 If X is reflexive then D(A*) is
dense in X™.

Proof. If D(A*) #= X* then by Hahn-Banach,
since X is reflexive, there exists a nonzero z € X
with (z,v) = 0 for all v € D(A*). But then

(z,v) = (0, A™v) for all v € D(A"),

so that by the lemma z = A*0 = 0, a contradic-
tion. [
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Lemma 17 For any CY%—semigroup {T'(¥)};>0
there exists constants M > 1,w > 0 such that

|T()|| < Me“* for all t > 0.

Proof. For each w € X we have that
sup ||T(t)w]|| < oo.
te[0,1]
Hence by the uniform boundedness theorem
sup [|T'(¢)]] < M < oo,
te[0,1]
where M > 1.
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Writing any t > 0 in the form t = m 4+ s where m is
a nonnegative integer and s € [0,1) we deduce that

IT@| = IT@)™T(s)|| < M™TL < pttl = pre(in Mt

Corollary 18 (t,w) — T (t)w is continuous from
[0,00) X X to X.

Proof. Let t; —>t, wj — w. Then

T(t))w; —T()w =T(t;)(w; —w) +T(t;))w—T(t)w
and [|T(t;)(w; —w)| < Mewthwj —wl| — 0. O

96



We consider for = > 0 the equation

w(t) = Aw(t) + f(t), t€ (0,7],  (8)

where f € L1(0,7; X) and A: D(A) — X is closed with
dense domain D(A).

Definition. A function w € C([0, 7]; X) is a weak
solution of (8) on [0, 7] if for every v € D(A*) the
function (w(t),v) is absolutely continuous on [0, 7]
and

%Mt),w = (w(t), A*) + (£(t),v)
for a.e. t € (0,7).
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Theorem 19 There exists for each p € X a
unique weak solution w to (8) satisfying w(0) = p
if and only if A is the generator of a C%—semigroup

{T'(t)}+>0 of bounded linear operators on X, and in
this case

t
w(t) =TWp+ [ T(t=)f(s)ds, te[0,7]. (9)
(solutions of (9) are often called mild solutions of (8))

Proof. Let A generate the C%—semigroup
{T't)}i>0- If w € D(A),v € D(A*) we have by
Theorem 5 that for ¢t > 0O

(T (H)w,v)

t
(p,v) + <./O AT (s)wds,v)
(p,v) + /Ot<T(s)w, A*v)yds. *®



Since D(A) is dense the second equality holds for
w € X, and thus (T'(t)w,v) is absolutely continu-
ous on [0, 7] with derivative

%(T(t)w,v) = (T (t)w, A™v) for a.e. t € [0, T].

Let w(t) be given by (9). Then w € C([0,7]; X), and

(w(®), v) = (T(®)p,v) + [ (T(~ $)f(s),v) ds,

Suppose first that f € C([0,7]; X) and calculate the
time derivative of the second term.
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For h #= 0 we have that

]

[ n = a0 s = [ -9 s0as)
0 ’ 0 ’

1 ot
= [Tt +h=5)f(s) =T(t = 5)f(s),v) ds
1 rt+h
+3 [T+ h = 9)f(s),v) ds

> [T = $)7(), A"} ds + (£, ),

where we used Corollary 18.

T herefore

%m(t),m = (w(t), A*v) 4 (f(£),v)

and so w is a weak solution.
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If f € LY(0,7); X) there exists a sequence f; €
C([0,7]; X) with f; — f in L1(0,7; X).

Let
wi(®) = TWp+ [ T(t— 5)f;(s) ds

Then

i (1) — w(®)]| < M [ ]155(5) ~ ()] ds
so that w; — w in C([0, 7], X).
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But we have that

(i (8),0) = (b0} + [ () (5), A70)+(f5(),0)) ds, £ € [0, 7],

so that passing to the limit we deduce that w is a weak
solution.

To show that w is unique, let v = w — w be the

difference of two solutions. Then
t

(u(t),v) = (/ u(s) ds, A%v)

0
for all v € D(A*), so that by Lemma 15, z(t) :=
JSu(s)ds € D(A) and 2(t) = Az(t). Hence by
Theorem 5(d) z=0 and w = w.
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Conversely let A be such that there is a unique
weak solution for each initial data p, and for t €
[0, 7] define T'(t)p = w(t) — W(t),t € [0,7], where
W is the unique weak solution corresponding to
zero initial data. If ¢t > O then t = m7 4+ s where
m iS @ nonnegative integer and s € [0,7) and we
define T'(t)p = T(7)™T(s)p.

The map 0 : X — C([0,7]; X) defined by 8(p) =
T'(-)p has closed graph, and hence {T'(t)};>0 is a
CY—semigroup.

103



Let B be the generator of {T'(t)};>0, and let p €
D(B). Then if v € D(A*)
d

AT )P, v)i=0+ = (Bp,v) = (p, A™),

so that by Lemma 15 p € D(A) and Ap = B.

So it remains to prove that D(A) C D(B). To this
end note that Lemma 15 implies that if p € D(A)
then fg T(s)pds and fg T(s)Apds belong to D(A)
and

{
T(t)p p+AAT@m@

T(t)Ap = Ap+ A/OtT(s)Ap ds.
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Define

z(t) = /OtT(s)Ap ds — /Ot AT (s)pds.

Then z € C([0,7]; X) and 2(0) = 0. For v €
D(A*) we have that

%(Z(t),@ = (T (t)Ap,v) — (AT (t)p, v)
— <Ap—|—A/OtT(5>ApdSaU>

—(p + A/t T(s)pds, A*v)
p 5 pas,
(z(t), A™v).
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Thus z is a weak solution of z = Az with z(0) = 0,
and the hypotheses imply that z = 0.

Hence
T(h)p — 1 h
im Lp=p —A/ T(s)pds
h— 0+ h h—0+ h JO
1 rh
= lim —/ T(s)Apd
h—0+ h JO (S> pas

= Ap,
so that p € D(B) and Bp = Ap. [
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T he adjoint of the wave operator

For  C R™ open we have X = H3(Q) x L?(Q)
with inner product

<<:}L>,<§>>=/Q(up Vu-Vp+vqg)de.

with

D(A) = {( 5 > c X :AueL?(Q),ve H(Q)}
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(3) e n(3)=(7)

if (i) € X and
(2)(0)=an) (3 ) roran (1) 0w
that is
/Q(pu + Vp- Vu+ qv) da
=/Q(XU—I—VX-VU-I-¢AU) dx
for all u,v € HF () with Au € L?(Q).
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Hence we have the two equations:

/Q(Xv Vx - Vv)dr = /Q qu dzx (10)

for all v € H3(R2), and

/Q(pu—l—Vp-Vu) daz:/QwAudx (11)

for all u € H3(2) with Au € L?(2).

(10) implies that, for ¢ € L2(2), x is the unique
solution of

—Ax + x = q for x € H5(),
which we write as ¢ = (1 — A)y.
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To handle (11) is more tricky. Given p € H3(S2) we
first note that, approximating p by C5° functions,

V-de—/ A dz,
/Qp wdx qux

so that we can write (11) as

d :/ Aud
/qu T Q(p+w> udz
for all u € H3 () with Au € L?().

Now let v € HA(2) be the unique solution of

—Av +v =1,

which we write as v = (1 — A)~ 1y,



Then we have that

—/ vAuda:—I—/ vuda:Z/ Yudx,
Q2 2 Q2

which combined with (11) gives

/Q<—Au +u)(p+ ¥ —v)dx = 0.

Now let u € H3(£2) be the unique solution of

—Au+u=p—+1yY— .

Hence
|+ v —v)?de =0
and sov=p+1v and p=[(1 - A)" 1 —1]p.



We have proved
Theorem 20 The adjoint of A is given by

. 0o (1-a)1-1
w=(y 00 0T,

with
D(A*) = {< 22 > c X :Ax e L2(Q2),¢ € HX(Q)}.

Now let us see what the definition of weak solution

means: we have that w = :f IS such that for any

V = 22 ) € D(A*) we have that (w, V) is differentiable

with derivative

d * 112
£<w(t>7v> — <’LU(t),A V>



That is
d
£/9<ux+w-w+w>dx
= /Q(up-l- Vu - Vp + vq) dz,

d
ﬁfﬂ(uq + vY) dx = /Q(—Vw - Vu + vq) dx
for all ¥ € H3(2) and ¢ = x — Ax with x € H}(2) and
Ay € L2(Q).

Equivalently,

d d
@ d:/ d,—/ cl:—/V-Vd.
dt/gzuqm QU1 gy Jo VY o VY Vuar
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The first equation gives that, for all ¢ € [0, 7],

t
2(x,t) ;= u(x,t) —u(x,0) + /O v(x,s),ds

satisfies

ﬂ*@wmww—AM@ﬁmzo

for all x € H3(Q2) with Ax € L?(2). Choosing x
to solve —Ax+x = z(-,t) we deduce that z(-,t) =
0, so that v = w;.

Then the second equation gives that

d

i d:—/V-Vdforall c HY Q).
~ | upde =~ | Vu-Vide ¥ € HH()

recovering our previous definition of weak solution,
. . 114
and hence proving unigueness.



Lemma 21 The range of A on H}(S2) is dense
in L2(S), i.e. if z € L2() satisfies

/ zAudxr = 0
Q2

for all uw € HA(Q2) with Au € L?(2) then z = 0.

Proof. It would be nice to find u € HA(S2) with
Au = z, when we could deduce z = 0 immedi-
ately. However in general (for 2 unbounded, e.qg.
2 = R"™) there is no solution u € H3(£2).

Instead, for € > 0O let us be the unique solution
in H3(S2) to
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T hen

[VuP+edyde = [ suda

1 >, 1o
E/Q(gus _I_gz ) dz,

so that eue is bounded in L2(S2) and

lim / IV (eue)|?dz = 0.

Hence eue is bounded in HO(Q) and thus we may
assume that sus — v in H3(S2), and Vv = 0, hence
v =20, and so

OZ—/ zAugde/ z(z—eug)da:%/ 22 dz.
Q2 Q2 Q2
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Theorem 22

(i) A* : D(A*) - X = X™ is one-to-one.

(i) R(A) ={Az:2€ D(A)} is dense in X.

(iii) There is no nontrivial linear constant of mo-
tion, that is there is no nonzero z € X such that
(T'(t)p,z) = (p,z) for all t > 0 and p € D(A).

Proof. If (ii) were false there would exist a

nonzero<w> c X with <<w>,A<u>> = 0 for
Z < (Y

all ( “ ) c D(A), that is

v

/Q(wv + Vw - Vv~ zAu)der =0
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Taking first « = 0 we find that —w + Aw = 0O,
whence

/Q(\vw|2+w2)da; —0
and w=0. Then z=0 by Lemma 21.

Now suppose A* ( i) = 0, for some <1>Z> -
D(A*). Then

(z)+(2)=s

for all (:) c D(A), so that by (ii) x = ¢v = 0.
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Finally, if (T'(t)p, z) is constantint forallp e D(A)
then

0 = %(T(t)p, z)t=0 = (Ap, 2)

for all p e D(A), so that z = 0 by (ii).
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Resolving the puzzle over Kirchhoff's formula

Recall Kirchhoff's formula for a C? solution of the
wave equation for n = 3 and initial data u(-,0) = ug,

ut(-,0) = w1, namely

1 (1
ule, t) = S(z.t) ur(y) dSy+—; (47Tt /S(:c,t) uo(y) ng) |

Supposing ug = 0 we have that

1

— dS
47t JS(x,t) u1(y) Y
t

oy u1(x + zt) dS,

w(x,t)
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Hence, formally we have

1 t
u(x,t) = —u(x,t) + E/SQ Vui(x + zt) - 2dS,

t

= t)+t2A/ (z + 2t) d
= —u(x, — w1 (x + zt) dz,

t VA% xBl

where B = B(0,1).

However we know that for uy € L2(R3) we have
that wi(-,t) € L2(R3) for each ¢t > 0, and so this
seems to suggest that for each w € L2(R3)

wp(x) = /Bw(az + 2)dz

satisfies Awpg € L2(R3).
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Surprisingly this is in fact true, and we have es-
sentially proved it, since we can approximate wuq
in L2(R>) by functions uj; € C§°(R3). Denot-
Ing the solution with initial data ug = O,uq; by
u;(x,t) we have that u; is smooth (this follows
for example from the formula for the solution in
terms of Fourier transforms) and hence, for each
t >0, A [guy;(z 4 2t) dz converges in L?(R3) to
some function v(-,¢t). Multiplying by a function
p € CP(R3) and integrating we obtain

/R3 v(z,t)p(x)dr = /B uq(x + 2t) dz Ap(x) dx

as required. However let us give a more direct
122
and general proof.



Theorem 23 Let w € L?2(R™). Then wp defined
by

wB(:E):/ w(x + z) dz

B
nt1
belongs to H 2 (R").

Lemma 24 The Fourier transform ypg of the charac-
teristic function xp of the unit ball B satisfies

~ ey o cos(fl —z(n+1)) 1
XB(g) - Cn n+1 | O (gg‘l'l) y

&2

as |&| — oo for some positive constant C,.
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Proof. Since B is invariant under rotations, writing & = r6
with » = |£] > 0,0 € S 1, we see that
27)2% =/ e~ 0T g :/
(2m)2%p(6) = | A
where we chose R € SO(n) with RO = ey,.

e—irRH.:z: dr — /B e—im,‘n dz,

But

1 .
/ e~ rin / dx’ dz,
—1 |2/|2<1—x2

1 . 1

W n

_ n—1 e—zmtn(]_ —x%)—Q dxy,.
n—1./-1

/ e~ Tndy
B

The result then follows for example from Makarov
& Podkorytov pp 605-606. We do the calculation
for n = 3.
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1
—ITXT _ 2
/Be 3 dasy = w/_lcos(rt)(l.—t ) dt
COSr | sSiNnr
- 47T< r2 0 p3 )’
so that
1
R _(m\"2( cos[¢ | sin|]
w©=(3) ( GENTE )

Proof of Theorem 23. \We note that

wp(z) = /

oo XB(R)W(z — 2)dz = (W xp)(z).
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Hence wi(€) = (27)3@ (€)% z(€), so that wp €
HO(R™) iff

(1 + [€]Y)w(e)xp(E) € LA(R™),

which holds provided (14 |[£]%)x (&) € L°°(R"),
and the result follows from Lemma 25. [

Remark. Because of results of Herz (Annals of Math.
1962) the same results holds if B is replaced by a
bounded convex set C' C R™ with sufficiently smooth
boundary having everywhere positive Gaussian cur-
vature. However if B is replaced by the unit cube
Q = (—1,1)" then wg(z) = [ow(x+ &) d§ has less reg-
ularity than wg. 126



In fact

1 .
~ iz
X (&) (2m) /Qe da
on i ﬁ Sin fj.

(2m)2 j=1 &

Hence if a > 0 then (1 + |{]*)xo(§) € L*°(R™)
iff « < 1. Hence wg € HY(R™) but in general

wg ¢ HY(R™) for a > 1.
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Semilinear equations

Let X be a real Banach space, and A be the generator
of a Co—semigroup of bounded linear operators on X,

which we henceforth denote by {eAt}tzo- We consider
the semilinear equation

w = Aw + f(w) (12)
with initial data
w(0) =p € X,

where f : X — X is locally Lipschitz, that is for any
M > 0 there exists a constant C'j; > 0 such that

| f(w1)—f(w2)|] < Curllwi—wol| for ||lwi| < M, [Jwa|| < M.
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Definition. A function w € C([0,7]; X) is a weak
solution of (12) on the interval [0, 7], > O, if for
each v € D(A*) the function (w(t),v) is absolutely
continuous on [0, 7] and

%<w(t),v> — (w(t), A*0)+(F(w(t)),v) for all ¢t € [0, 7].

To prove existence we will make use of the contraction
mapping theorem with parameters.

Theorem 25 Let (EF,d) be a complete metric space and A a
metric space of parameters, and let F': E x AN — E be such that
(i) F is a uniform contraction, i.e. there exists k € (0,1) such
that d(F'(u, \), F'(v,\)) < kd(u,v) for all u,v € E, X € A.

(ii) for each w € FE, F(u,\) is continuous in \.

Then for each A € A there exists a unique fixed point u*(\) € F,
i.e. F(u*(A),A) =u™(\), and u*(\) depends continuously on .
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Proof of Theorem 25. The existence of u*(\) follows
from the Banach Fixed Point Theorem, and we just
need to show that «*(\) depends continuously on .
But it A; — A then

d(u™(A;), u*(N))

d(F(u™(X;), Aj), F(u™(A), A))

< d(F(u (X)), A5), F(u™(A), A5))
Fd(F(u™(A), Aj), F(u™(X), A))

kd(u™(A;),u™ (X)) + o(1),

and, since k < 1, d(u*(};),u*(A)) — 0. O

VA
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Theorem 26 For any p € X there exists a unique
weak solution w to (12) satisfying w(0) = p defined
on a maximal interval of existence [0, tmax), tmax > O,
and

w(t) = elp + /Ot eA(t_S)f(w(s)) ds (13)

for t € [0,tmax). If tmax < oo then

tmax
im _w(®)] = oo and | 77| f(w(®))l|dt = oo

t—tmax—
The solution w(-,p) depends continuously on p. More
precisely, if the solution w(-,p) exists on the interval
[0,7] and p; — p in X, then for large enough j the
solution w(-,p;) exists on [0, 7] and w(-,p;) — w(:,p) in
C ([0, 7]; X).
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Proof. By Theorem 19 w is a weak solution on [0, 7]
with w(0) = p iff w satisfies (13) for ¢ € [0, 7].

Step 1 (local existence). We show that given M > O
there exists Tj; > 0 such that if ||p|| < M then there is
a unique solution w(-,p) of (13) on [0,T)], and that if
p; — p, llpjll < M, then w(-,p;) — w(-,p) in C([0,Ty]; X).
Recall that by Lemma 17

leAt|| < K for all t € [0, 1]

for some K > 1, and let Ty, = min(CzKMQK%+IIf(O)II’ 1).

Let E = {w e C([0,Ty]; X) : |w| <2KM}, where
| w| :=max,cior,,1 lw®. Then E is a closed sub-
set of C([0,Ty/]; X) and hence is complete with re-

spect to the metric d(wi,wp) = |w1 —wa|. 132



For ||p|| £ M and w € E define

t
T(w,p)(t) = eMp + | I f(w(s)) ds.
Then T'(w,p) € C([0,Tyy]; X) and for w € E, t € [0, T)/]

[T < KM+ K [[(15(w()) ~ FO)] +] £ ds
< KM+ KTy(Cogpy2KM + || £(0)]]) < 2K M,

so that T'(\,p) : E — E.

Furthermore, if wy,ws € E and ¢ € [0,T),] then

1T (w1, p)(¢) — T (w2, p)(2)]] /OTM K| f(w1(s)) — f(w2(s))] ds

<
< Ty KCopp | w1 —wa|,

and Ty KCoprpr < % so that T'(-,p) is a uniform contraction.



AlsO, since

| T (w,p)(t) —T(w,q)@)]| < K|p—ql

p — T(w,p) is continuous for ||p|| < M. Hence
by Theorem 25 there exists a unique fixed point
w(-,p) € E which depends continuously on p for
Ipl] < M.

Step 2 (definition of tmax and uniqueness).

Define for p € X

tmax = sup{r > 0 : 3 a solution w on [0, 7] with w(0) = p}.

By Step 1 tmax > 0.
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Let p € X and suppose for contradiction that there are
two solutions w # w defined on [0, 7], 7 > 0, with w(0) =

w(0) = p.

Let tog = inf{t € [0,7] : w(t) # w(t)}. Then by Step 1
to > 0, and clearly tg < 7. Since w(t) = w(t) for all
t € [0,tg), by the continuity of solutions w(tg) = w(tg).
Hence we can apply Step 1 with initial data w(tg) to
conclude that there exists a unique solution w of

(1) = eMuw(to) + | L AG=9) (5 () ds

on some interval [0,¢], € > O.
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But w(t+tg) = eAlttto) 4 /Ot-l_to eA(t+tO_S)f(w(s)) ds
= M (w(to) ~ [ A0 f(u(s)) ds)
+ / o eAMH0=5) f(w(s)) ds

0
_I_
eAtw(to) + /tt ‘o eA(t+to—8)f(w(s)) ds
0

eMw(to) + /Ot eAUH105) ¢ (1 (tg + s)) ds.

Hence w(t + tg) = w(t + tg) = w(t) for t € [0, <],
and this contradiction proves uniqueness.

Step 3 (continuous dependence). Let w be a solution on
[0, 7] with w(0) = p and choose M > maX.c[g 1 [w(t)]].
Let p; — p. Then we can assume that ||p;|| < M for all j
and so by Step 1 a solution w; with w;(0) = p; exists on
[0, Tyy] for each j, and w; — w in C([0, Ty]; X). 136



If 7 < Ty we are done. If 7 > Ty then w;(Ty) —
w(Tyy), and repeating the argument with initial data
w;(Th) we have that w; is defined on [0,2T),]

and w; — w in C([Ty,2Ty]; X), and hence in
C([0,2Ty]; X). After N such steps, where (N—1)Ty; <

T < NT), we obtain w; — w in C([0, 7]; X) as required.

Step 4 (blow-up if tmax < 00).

Let tmax < oo and assume for contradiction that there
exists a sequence t; — tmax— With |lw(Z;)|| bounded.
Then by Step 1 with initial data w(t;) we get existence
of a solution on [t;,t; + ¢] for some € > 0 independent

of 5, contradicting the definition of tmax.
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Hence

lim t)|| = oo.
im Jw(D)] = oo

Since [[et]| < K < oo for ¢ € [0, tmax] We have that

tmax
fw@ ] < Kllpll+ & [ 7 1 (wls))|ds,

and so

L@l d=co. T

We now show that the under suitable hypotheses
the weak solution satisfies an energy identity.
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Theorem 27 Suppose that there exist functions
Ve Cl(X),h e C(X) such that

(Aw + f(w), V'(w)) = h(w) for all w € D(A).

Then the weak solution w in Theorem 26 satisfies

V(w(t)) = V(p)—l—/ot h(w(s))ds for all t € [0, tmax).

Proof. Let O < 7 < tmax and for t € [0,7] let
F(t) = f(w(t)). Then F ¢ C([0,7]; X) and so
there exists a sequence F; € C([0,7]; X) with
F; — F in C([0,7]; X). Also let p; — p in X with
p; € D(A) for all j. .



Define
w;(t) = eAtpj + /Ot eA(t_S)Fj(s) ds.
Then
wi(t) = eAlp; + /O t eASFi(t — s) ds
so that w; € C1([0,7]; X).
But if v e D(A*) then

(w;(t),v) = (w;(t), A%v) + (F;(t),v),
so that by Lemma 15 we have w;(t) € D(A) and

w] (t) = ij(t) F](t) 0




Hence

V(i) = V) + [ (Awi(s) + Fi(s), V/(wj())) ds
= V) + [ (Awy() + Fwi()), V() () ds
+ [{E(5) — (), V! (wj(5))) ds
[ () ~ (), V' (wi())) ds.
But

t
Juy(®) = w® < K (lIp; = pll + [ 175 = F@)lds)
so that w; — w in C([0,7]; X)
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Since V is C! we thus have that

Vi) = V) + [ hw;(s))ds +o(1),

and passing to the limit we obtain

Vw(t) = V(p) + /Oth(w(s)) ds, for t € [0, 7]

as required. [

Note that D(A) is a Banach space under the norm

|wlpay = llw]l + [|Aw]],
and that {e/?};~q is a CO—semigroup on D(A).
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Theorem 28 (see Pazy, Thm 6.1.6) Let X be reflexive.
Then if p e D(A) the unique weak solution w in Theorem
25 belongs to CL([0,tmax); X) N C([0,tmax); D(A)) and
satisfies

w(t) = Aw(t) + f(w(t)), for all t € [0, tmax).

Proof. Let w be a solution on [0,7], 7 > 0. For ¢t € [0,7)
and sufficiently small A > 0 we have that

JAR
S+ —u@) = (),

h
+% ( / T A=) f(u(s)) ds — /Ot eN5) £ (w(s)) ds>

0
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Ah _q 1 rh
— At (6 . )p_l_h/O eA(t—I—h—s)f(w(S))dS

1 teA(t_S> w(s — f(w(s s
+ | (F(w(s +h)) = f(w(s)))d

The sum of the first two terms tends to eAt(Ap—I—f(p))
as h — 0. Hence

w(t+ h) — w(t) t
e B N

so that by Gronwall's inequality

Hw(t + h) — w(t)
h

w(s+ h) — w(s)
h

| ds, t € [0, 1),

| < celt telo, 7).

144



Hence, since X is reflexive for fixed ¢t there is a se-
quence h; — 0 such that as 7 — o©

w(t + h;) —w(t)

h

» z(t) in X.

But for any v € D(A*)

(w(®), 0) = (p,0) + [ ((w(s), A"} + (F(w(s)),v)), ds,

and so

.1 ytthy .
@) = Jim o [ (e, A%) + (), 00), do,

(w(t), A*) + (f(w()),v).
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Hence by Lemma 15, w(t) € D(A) and
2(t) = Aw(t) + f(w(?)).

Also (z(t),v) is continuous in t for each v € D(A*)
with ||z(t)|| < Cef't for t € [0,7). Since by Corollary 16
D(A*) is dense, it follows that z: [0,7) — X is weakly
continuous, hence separably valued, and thus strongly
measurable and integrable. Therefore

t
(w(t) —p— [ 2(s)ds,v) =0
for all v e D(A*), so that

t
w(t) =p—|—/O z2(s)ds for all t € [0, 7T),

giving the result. O
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Remark. This gives a different proof of Theorem
27 in the case X reflexive, since we have that, for
p € D(A), V(w(-)) € CH([0,tmax); X) with

%ww(m = (Aw()+f(w(®)), V'(w(t)) = h(w(t)),
so that

V(w(t)) = V(p)—l—/ot h(w(s)) ds for all t € [0, tmax),

and if p € X we can approximate by p; € D(A).
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Let us apply these results to the semilinear wave equa-
tion
uy — Au + g(u) = 0,

which we write in the form

w = Aw + f(w), (14)
U 0O 1 0
vvherew:<v>,A:<A O)andf(w):<_g(u)>.

Let Q C R™ be open and X = H3 () x L?(R2), so
that

D(A) = {( 3 ) c X :Auec L2(Q),v e HAQ)}.
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We assume that g : R — R is locally Lipschitz, and that
if n > 1, for some constant C > 0O,

g(u) — g(@)] < (L + |uP~t + |@|P~ 1) ju — 4| for all u,,

where 1 < p < _2 if n >3, p>1 arbitrary if n =2. If
L™"(2) = co we assume additionally that g(0) = 0.

We claim that f : X — X and is locally Lipschitz,
equivalently g : HA(Q2) — L2(Q2) and is locally Lips-
chitz.

Recall that HO(Q) IS continuously embedded in
L1(2), where 2 < g < _2 if n >3, g > 2 arbitrary
if n = 2, and that if n 1 HO(Q) is continu-
ously embedded in Cg(£2), the space of bounded

149

continuous functions on £2 with the sup norm.



Hence if n > 3, for example, if HuHH(%’ ||€‘L||Hé < M,

Ol + [P~ + @Yy (u — @)

Cll (L + Jul2 + |ﬂ|nf2><u -2
CClu=llz + |72 + 87 ) (u = D))
C(l|lu — uljop + Mn=2||u — ﬂll%)

C(M)||lu—u

|g(u) — g(@)||2

IA AN N IA

[

|H%7
where the constants change from line to line.

Setting uw = 0 we get in particular that

lg(u)ll2 < [lg(0)l2 + C(M)lull 1,

so that (since ¢g(0) = 0 when L"(Q2) = o0)
g : H3(2) — L?(2) and is locally Lipschitz, as
required. 150



Hence, from Theorems 26 and 28 we obtain

Theorem 29 Given p = <ZO) € X there exists a
1

Ut
C([0,tmax); X) of (14) with w(0) = p, depending con-
tinuously on p, and if tmax < oo then

unique maximally defined weak solution w = < Y ) S

im0l + e 0)]12) = oo,

/tmax lg(u(-, )]z dt = oo

0
If in addition Aug € L?(Q),u; € H3(2), then Au €
C([0, tmax); L?(€2)) and u; € C([0, tmax); Hol(Q))
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Now let

V(w) = %/Q(|Vu\2 4 [v]?) da + /Q G(u) dz.
where G(u) := [ g(z) dz.

Note that (again taking the case n > 3)
Gl = | [ g(s)ds
[ (1901 +Ct +172)1s1) s
0
> 2n—2
< Jullg(0)|+ € (Jul? + [ul 7 ),

so that V : X — R and is continuous (because if
u; — u € H3(S2) then |G(u;)| is bounded above by
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a strongly convergent sequence in L1()).
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Next note that

(s) —g(u))ds

G(1) — G(u) — g(u) (& — u)

—~

i 2 2
[+ 1572 4 fufm2

[

<C

s — u| ds

_2 _2 u
c7(1- \uP%Q-+-HHn—2)Q/‘|s——u|ds
u

c@fumn2+mmz)a—uﬁ
so that
|/ G(u)dm—/ G(u)daz—/ g(u)(u — u) dx

for [[ull 3. lll 3 < M.

< C”’LL o U’H 2n 9
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Hence FE(u) = o G(u)dx is differentiable with derivative

E'(w)(v) = /Qg(u)v dx.

But if u; — u in H}(Q) then

| Couy) ~ g())vda

_2_ _2_
<C [+ Iyl 72 + ufT2)|u; - ulfv] da.

_2 2

<C (IIuj — ul2]jv]]2 + (II%’IIE + IIUI|£> lu;
n—2 n—?2

< Clluj = ull gy vl .

so that E'(u;) — E'(u) in (H}(2))*.

Hence V is C1 with

— ul| 20 [[v]| 2n_
n—2 n—

<( 22 ) Vi(w)y = (Vu, Vx) + (v,¢) + (9(w), x), -

)



u

T herefore if w = ( y

> c D(A) then

(Aw + f(w), V'(w))
= (Vu,Vv) + (v, Au — g(u)) + (g(u),v) = 0.

So from Theorem 27 we deduce

Theorem 30 The unique weak solution w = :j )
t

in Theorem 29 satisfies the energy identity

V(w(t)) — V(p) for all t € [O,tmax).

Under an additional hypothesis, the energy identity im-
plies boundedness of ||w(t)|| independent of ¢t > 0, so that

by Theorem 29 tmax = oo and we have global e><istence.155



Theorem 31 In addition to the hypotheses of Theorem
29, assume that for some constants £ >0 and a <O

G(u) + ku® > a for all w.

Then tmax = oo, and setting T'(t)p = w(t) we have that
weak solutions of (14) generate a semiflow {T'(¢) };>0 on
X with (¢t,p) — T'(t)p continuous from [0,00) X X — X.

Proof. First recall that in the case £"(2) o0 WE
have assumed that g(0) = 0. Hence G/(0) = 0 and
by our growth assumption G’ = g is locally Lipschitz.
T herefore by increasing £k we may assume that a = 0.
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From the energy equation we have that
l(llu D15 + IVu, DIB) + al™(2) — kllu(-, )13
S ulluels E12 y U)112 » U)12
< V(w(?)) = V(w(0))
so that
lue (-, )N15 < d(1 + flul,£)]|2)?
for t € [0,tmax) and some d > 0.

But u(-,t) —upg = fé ut(+,8) ds, so that

1 1t
1+ JuC, 8)|l2 < 1+ |Juglln + d2 /O (1+ |luC:, s)[|2) ds.
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By Gronwall's inequality [|u(-,t)||2 is bounded on

compact intervals of [0,tmax), and thus so is
|lw(t)||x, 9iving tmax = oo. That weak solu-

tions generate a semiflow with the joint continuity
property then follows from Theorem 26.

Remark. Since the equation

ut — Au 4+ g(u) =0

IS Invariant under changing ¢t to —t, we can also solve
it for t <0, so that {T'(t)}+cr is a flow (or group).
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he fact that {e4'},cr is a group of continuous
linear operators can either be proved by checking
that —A generates a C%—semigroup, or by verify-
INng that

ar._ (1 0N af1 O
=(o 5) (6 5

satisfies e Atet = 1 by calculating

d . _At At

—(e e = 0.

- p)
Under still stronger conditions ||w(t)|| x is bounded for
all t > 0. To this end define

A (D) = inf Vul|? dz. 159
1
uEHF (), |luf 2=1 /92



Notice that if £L™*(£2) < oo then, because in that
case the embedding of HA(Q2) in L%(Q) is com-
pact, the minimum is attained and X1(2) > O
(and A1(€2) is the smallest eigenvalue of —A in
HE(2)).

But A\1(£2) > 0 for any domain for which the Poincaré
inequality holds, for example any domain of finite
width. On the other hand A\{(2) = 0, for example,
if Q =R".

Now suppose that there exist A < A1(€2) and a < 0,
with a = 0 if L"(2) = oo, such that

A
G(u) + Euz > q for all w.
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A (S)—A
A1(2)+1

/Q <%|Vu\2 + G(u)> dx
>/ ( 5|Vu|2—|— (1 — A (D)u? — ;\u2—|—a) x
== /Q(\vu|2 n u2) dz + aL™ ().

so that ||w(t)||x is bounded for t € R.

Then setting ¢ = > 0 we obtain

For example for n = 3 we can take g(u) = u3 — u,
and we have global existence for any €2, and bound-
edness of |[|w(t)| x if A\1(2) > 1, for example for a
domain €2 of finite width < .
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Finite-time blow-up

Consider, for n = 3 and Q c R3 open with
£3(2) < oo, the equation

Ut — Au = u”,

so that g(u) = —u3.

uQ
Ul
there exists a unique weak solution w(t) with w(0) = p
defined on a maximal interval of existence [0, tmax)

with tmax > O.

By Theorem 29, if p = € X = HA(Q) x L?(2)

We show that it can happen that tmax < oo and
study the behaviour of w(t) when t — tmax—.



Given p € X we know that the energy equation
V(w(t)) = V(p) holds for t € [0, tmax), Where

1 1
V(w) = Z(IVull® + llue|?) = 5 | u* do.

Suppose for contradiction that tmax = oo and let

F(t) = |lu(-, )3
Then F € C2%([0,00)) and

F(t)

~2/|Vu(, 1B + 2llu- O3 +2 | ula,t)* do
4urC- D2+ [ ula, ) de — 4V (p)
> kF(t)% — 4V (p),

where k = (£3(2))~! (Justified e.g. by first assuming
p € D(A) and approximating).




Now let us assume that V(p) < O and that if
V(p) = 0 then (ug,uy) > 0.

If V(p) < 0 then F(t) > 0 for large enough ¢, so that
we may assume that (ug,u1) > 0. Hence

F)F(t) > kF(t)2F(t),

and F'(t) > F(0), implying that F(t) — oo as t — oo,
and that

. 2k
F(t)? > §F<t)3 +C
for some constant C.

Fix s sufficiently large for %kF(s)?’ + C > 0.
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Then fort > s

d [(F() dF
_/ Z 17
dt JF(s) \/C—|-2.ZCF3
so that
E(t) dF
/ >t —s
F(s) \JC + 2kF3
for all t > s. But
< 00,

/OO dF
F(s) \/C + 2kF3

a contradiction.
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Theorem 32 If V(p) <0, with (ug,u1) > 0if V(p) = 0,
then the weak solution w(t) has maximal interval of
existence [0, tmax) With tmax < oo and

ime - ([[Vad, 15+ e (-, t)||2)— hime - lu ) la = oo,
max— mMmax—

tmax

L7 G012 de = oo

Proof. We have already shown that tmax < oo and
the other assertions follow from Theorem 29, the fact
that ||Vul|2 is an equivalent norm on H3($2), and the
energy equation.

166



Remark. The argument to prove tmax < oo was based

on establishing a differential inequality for F'(t) whose
solutions blow up in finite time. However this doesn’t

prove that limy_¢.— |[u(-,t)|[o = oo (and it isn't clear
whether or not this is true). All it does is to give an

upper bound for tmax.
y F(t)

tmax 167



The following example shows this is a real issue.
Consider for €2 € R™ bounded and open the equa-
tion

w = Au — </Qu2da:'> u, x € C2,t > 0,
with boundary condition u|go = 0 and initial con-
dition u(xz,0) = up(x).
Letting X = L2(2), A = A with
D(A) = {v e H}(Q) : Av e L2(Q)},

and defining f: X — X by f(v) = — (fQ V2 daz) v We can
apply Theorem 26 to deduce that given ug € X there
exists a unique weak solution u € C' ([0, tmax); X) with
u(0) = ug. o8



In fact it can be shown that u(t) € D(A) for t > 0O
(smoothing of the initial data as for the heat equa-
tion).

Now consider the corresponding backwards equation

vy = —Av + (/szdx)v

with the same boundary conditions.

For the forwards equation choose ug € X\D(A). Thus
the solution v to the backwards equation with initial
data w(r), where 0 < 7 < tmax has maximal interval
of existence [0, 7], since if it were longer then by the
smoothing of the forwards equation we would have
ug € D(A).
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Furthermore

lim [[o(8)]|2 = [luollz < oo
—T

However, we will show that for v we have tmax < oo
by a “blow-up’ argument.

Indeed, letting F(¢t) = ||v(t)||3 we have that
F(t) > 2F ()7,

from which it follows that

F(t) > — o
7(0)
t—y 1

and the RHS blows up as t — SFO) 17




Commentary

1. There are many variants of the semigroup
method applied to semilinear equations corre-
sponding especially to ‘parabolic cases’ in which
{eAt}~q is smoothing for ¢ > 0. These are de-
scribed, for example, in Pazy and Henry.

2. There is a vast literature on semilinear wave
equations treated by PDE methods (see e.qg.
Tao), mostly for the case 2 = R", when the crit-
ical power in the nonlinearity g(u) = |ulP~lu is
found to be p = %f% and not p = =5 (thus, for
n = 3, p =5 rather than p = 3).
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2. contd. Then we get global existence, uniqueness and en-
ergy conservation results for 2 < p < Z—‘l‘% using Strichartz
space-time estimates. Whether this can in general be made
to work for different, in particular bounded, €2 is the object of
current research, and has been done for smooth bounded do-
mains in R3 by Burg, Lebeau, Planchon JAMS 2008 (see also
Ibrahim & Jrad, JDE 2011 and Blair, Smith & Sogge, Analyse
Nonlinéaire 2009 for results for n = 2, n = 4 respectively).

Finite-time blow-up for the focussing case g(u) = —|ulP~lu,
and details of limiting profiles as t — tmax— are also studied
in many papers (e.g. by Kenig, Merle, Zaag ...). Two
types of blow-up are possible: Type I in which the energy
norm blows up, and Type II when it doesn’'t and there is a
concentration effect.
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Finally, the case g(u) = |u|P~lu can be studied for
p > % via the Galerkin method (see e.g. J.-L. Li-
ons). Then we get existence of a weak solution, but
uniqueness and energy conservation are (after many

years) still almost virgin territory.
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Damped hyperbolic equations and the approach
to equilibrium

Motivating example. u -+ u —+ w3 —u=0

Rest points
u=0,£1,u =0

Every solution converges
to a rest point as t — oo.

There is a global attractor
consisting of the restpoints
and unstable manifold of O.

Lyapunov function

1 1 .
V(u, i) = §u2 + Z(“2 ~-1)?%, Vv

) 174
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Asymptotic behaviour of semiflows

Let {T'(t)}+>0 be a semiflow on the metric space
(X,d). The positive orbit of p € X is the set

YT (p) ={T()p:t >0}

The w—Ilimit set of p is the set

w(p) = {xe X :T(t;)p— x
for some sequence t; — oo }

) U T()p.

t>071>t
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A map v : R — X is a complete orbit if

Dt +s) = T(t)w(s) for all s € R.t > 0.

Note that we do not assume backwards unique-
ness, so there might be more than one complete
orbit passing through a point p € X.
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If 1 iIs a complete orbit then the a-limit set of ¥
IS the set

a(y) = {xeX 1 9(t;) = x
for some sequence t; — —oo}

(U »().

t<0 1<t

If EC X, t>0, we set
T(HE={T(t)p:p€ E}.

A subset E C X is positively invariant if T(1)E C E
for all ¢ > 0, and invariant if T(t)E = E for all
t 2 0. 177



Note that if E invariant then there is a complete
orbit contained in E passing through any point of E.

Indeed if p € E then there exist p_1 € E with
T(1)p-1 =p, p2 € E with T(1)p_> = p_1, and
SO on, so that

_ ) T()p, t>0
Y(t) = { T+ )p_;, te|—i,—i+1),i=1,2,...

defines a complete orbit passing through p.
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T heorem 33

(i) Let vT(p) be relatively compact. Then w(p) is

nonempty, compact, invariant and connected. AS
T — o0,

dist (T'(t)p,w(p)) — O,

where dist (¢, F) 1= inf, cg d(q, x).

(i1) Let ¢ be a complete orbit with {(t) : t <0} rel-
atively compact. Then a(vy) is nonempty, compact,
invariant and connected, and as t - —

dist (¢o(t), a(yp)) — O.
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We prove (i). The proof of (ii) is similar. That
w(p) is nonempty is clear. Since w(p) is the inter-
section of compact sets, it is compact.

To prove the invariance, let x € w(p). Then
T(t;)p — x for some sequence t; — co. If £ > 0
then, since T'(t) is continuous,

T(t+t)p=T)T(t;)p — T(t)x
and so T(t)w(p) C w(p).
Also {T(tj — t)p} is relatively compact, and so
T(th —t)p —>q € X

180

for some subsequence {tjk}'



T herefore

Tt )p=T{)T(; —t)p—T(t)g= X

Hence T (t)w(p) D w(p) and so w(p) is invariant.

If dist(T(t)p,w(p)) & 0 as t — oo, then there
exist € > 0 and a sequence t; — o0 such that

d(T(t;)p,z) > € for all z € w(p). But a subse-
quence T'(t;, )p — x € w(p), a contradiction.

Suppose w(p) is not connected. Then w(p) = A1 U A>
with A1, A> honempty disjoint compact sets.
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(Indeed, by the definition of connectedness we can

write w(p) = V71 U Vs with ‘71 NVo =V N ‘72 = (), and

since w(p) is closed we have w(p) = V7 U V,>. Thus

ViNVo =0 (because if z € V1 NV5 then z € V1 UW>)

and we can set A; = V7, 4> = V5. Since Ay, A> are

closed subsets of a compact set, they are themselves

compact.)

Let U1,U> be disjoint open sets with Ay C U1, A> C U>.
We can take, for example, U; = {q € X : dist(q, 4;) <
e} for € > O sufficiently small.

Then there exist sequences s; > t; with t; — oo
such that T'(s;)p € U1,T(t;)p € U and hence, by
the continuity in t, there exists 7; € (¢j,s;) with
T(mj)p & Uy UU>. -



Hence by the relative compactness of vT(p) there
exists some x € w(p)\(A1 U As), a contradiction. [J
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A point z € X is a rest point if T(t)z = z for all
t > 0. The set Z of rest points is closed.

Definition.
A function V : X — R is a Lyapunov function if

(i) V is continuous,

(i) V(T()p) <V(p) forallpe X,t >0,

(iii) If V(¥(t)) = ¢ for some complete orbit ¢, all
t € R and some constant ¢, then (t) = z for all
t € R for some rest point z.

(Note that (ii) implies that V(T'(t)p) < V(T (s)p) for
all t > s > 0, since V(T (t)p) = V(T(t —s)T(s)p) <

V(T(s)p).) 184



Theorem 34 (LaSalle Invariance Principle) Let V
be a Lyapunov function, and let p € X with v1(p)
relatively compact. Then w(p) consists only of rest
points. If the only nonempty connected subsets of
Z are single points (for example, if there are only
a finite number of rest points) then w(p) = {z} for
some rest point z, and T'(t)p — z as t — oo.

Proof. Since V is continuous and v 1 (p) is relatively
compact, V(T'(t)p) is bounded below for t > 0. But
t — V(T (t)p) is nonincreasing, and so

V(T(t)p) - cast— oo

for some constant c. 185



Let z € w(p). Then, since w(p) is invariant, z = ¥ (0) for
a complete orbit ¢ contained in w(p). Hence V(¢ (t)) = ¢
for all t € R, and so by (iii) z is a rest point.

If the only nonempty connected subsets of Z are
single points then since w(p) is connected, w(p) = z
for some rest point, so that T'(¢)p — z as t — oo by
Theorem 33. L[]

Definitions. The rest point z is (Lyapunov) stable if
given € > 0, there exists § > 0 such that if p € B(z,6)
then T(t)p € B(z,e) for all t > 0. The rest point
z IS unstable if it is not stable. The rest point z is
asymptotically stable if z is stable and there exists p >
O such that p € B(z,p) implies T'(t)p — z as t — oo.
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If the rest point z is asymptotically stable then
Clearly z iIs isolated, that is there is some ¢ > 0O
such that z is the only rest point in B(z,¢).

Theorem 35 Let z be an isolated rest point, let
V be a Lyapunov function, let vT(p) be relatively
compact for any p with v (p) bounded, and suppose
that for all 6 > O sufficiently small

inf V(p) >V(z) (Existence of a potential well)
d(p,z)=4

Then z is asymptotically stable.

Proof. Suppose z is not stable. Then there exist
e > 0, p; — 2, t > 0 with d(T(tj)pj,Z) > €. 187



We can suppose that € is small enough such that

= inf V(p) > V(2),
= Lt V() > V()

and such that z is the only rest point in B(z,¢).

Let 5 be sufficiently large. Then since V is contin-
uous, V(p;) < ce. By the continuity of ¢t — T'(t)p,
there exists 7; € (0,t;) with d(7'(7;)p;,2) = 5, and
thus

ce < V(T'(15)p;) < V(p;) < ce,

a contradiction.
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By the stability, given € > 0 there exists p > 0 such
that if d(p,z) < p then T'(t)p € B(z,¢) for all t > 0.
Then v 1 (p) is bounded, and so by the assumption of
the theorem relatively compact. Thus, by Theorem
44, w(p) C ZNB(z,e) and so w(p) = {z} and T'(t)p —
z as t — oo. U

Remark. If X = R" then the existence of a potential
well is equivalent to the condition that z is a strict
local minimizer of V, i.e. that there exists ¢ > 0
such that V(p) > V(z) if 0 < d(p,z) < e. This
follows easily from the fact that the sphere S(z,¢) is
compact, so that V attains a minimum on S(z,¢) =

{p : d(p, Z) — 6}. 189



But if X is a metric space whose spheres S(z,¢) are
not compact (as is the case for infinite-dimensional
normed vector spaces) then the existence of a po-
tential well is a stronger condition than being a strict
local minimizer. If we just assumed that z was a
strict local minimizer then the danger would be that
orbits could leak out of balls by going into higher and
higher dimensions.

Theorem 36 Let V be a Lvyapunov function and
suppose that vT(p) is relatively compact for any p
with vT(p) bounded. Let z be an isolated rest point
which is not a local minimizer of V (i.e. foranye >0
there is a point p with d(p,z) <e and V(p) < V(2)).
Then z is unstable. 190



Proof. Let € > 0 be sufficiently small so that z is the
only rest point in B(z,g). Suppose for contradiction
that z is stable. Then there exists 6 > 0 such that
d(p,z) < 6 implies d(T(t)p,z) < ¢ for all t > 0. But
since z is not a local minimizer there exists p with

d(p,z) <6 and V(p) < V(z).

Since vt (p) C B(z,2), vT(p) is by assumption rela-
tively compact. Hence by the invariance principle
there exist a sequence t; — oo and a rest point
zZ = lim,; o T(tj)p in w(p) with z € B(z,¢). But
V(Z) = 1im V(T(t;)p) < V(2). Hence z # z, a

contradiction. [
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The region of attraction of a rest point z is the set

A(z) ={pe X :T{t)p — z as t — oo}.
Theorem 37 A(z) is connected.

Proof. Suppose not, so that A(z) = U UV with
UV nonempty and UNV =UNV = 0. Let p €
Uqge V. Forany t > 0, T(t)p € A(z). Let § =
{t > 0:T{)p € U}. Let t; € S, t; — t. Then
T(t)p=1im;_T(t;)p € U and so T'(t)p € U. Hence
S is closed in [0,00). Similarly S is open, and thus
~T(p) c U. Similarly v (¢) C V. But z € U, hence
z & V. Similarly z € U. But z € A(z) = U UV, a
contradiction. -



Theorem 38 If z is an asymptotically stable rest point
then A(z) is open.

Proof. By assumption there exists p > 0 such
that » € B(z,p) implies T'(t)r — z as t — oco. Let
p € A(z). Then there exists s > 0 such that
d(T(s)p,z) < p. Hence by the continuity of T(s)
there exists ¢ > 0 such that d(p,q) < o implies
d(T(s)q,z) < d(T(s)q,T(s)p) + d(T'(s)p,z) < p, SO
that by asymptotic stability T'(t)g — z as t — oo and
hence g € A(z). O

193



Definitions. The semiflow {T'(t)};>0 is asymptoti-
cally compact if for any bounded sequence {p;} in
X and any sequence t; — oo T'(t;)p; has a conver-
gent subsequence. It is point dissipative if there is a
bounded set Bg such that for any p € X, T'(t)p € Bg
for all t sufficiently large.

A subset A C X attracts a set E C X if

dist (T (t)E,A) — 0 as t — oo,
where

dist (B,C) = sup inf d(b,c) = supdist (b, C).
beB ceC beB

(If A is compact this is the same as saying that given any open
neighbourhood U D A, T(t)E C U for t sufficiently large.)
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Definitions. The subset A is a global attractor if A
IS compact, invariant, and attracts all bounded sets.
If B C X is bounded, the w-limit set of B is

w(B) = {X c X : T(t])p] — X
for some sequences p; € B,t; — oo}.

Theorem 39. A semiflow {T'(t)};>0 has a global attractor if
and only if it is point dissipative and asymptotically compact.
The global attractor is unigue and given by

A =| J{w(B) : B a bounded subset of X}.

Furthermore A is the maximal compact invariant subset of X.

Proof. See Hale, Ladyzhenskaya, JB (Nonlinear
Science 7 1997, erratum 1998). 195



We apply this theory to the semilinear damped hy-
perbolic equation

utt—l—ﬁut—Au—Fu?’—u:O,

where Q C R3 is open with £3(Q) < o and 8> 0 is
a constant, with boundary condition u|go = 0.

In order to apply our previous theory we let as before
X = H}(Q) x L?(2), and write the equation as

w = Aw + f(w), (15)

U O 1 0
wherew=<v>,A=<A O) and f(w):<—6v—u3—|—u>'

Then f: X — X is Lipschitz.
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uQ
uj
unique weak solution w € C([0,00); X) to (15) with

Theorem 39 Given p= € X there exists a

w(0) =p, and T (t)p = w(t) = ;”t defines a semi-

flow {T'(t)};>0 on X with (¢,p) — T'(t)p continuous
from [0,00) x X — X. The solution satisfies the
energy equation

V(T (#)p)+3 /Ot /Q wi(z, $)2 deds = V(p), for all t > 0,

where

1 1
V(w) =3 /Q<|Vu|2 + o) da+ [ (2 —1)?da
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Proof. Local existence and continuity in p fol-
lows from Theorem 26. The energy equation fol-
lows from Theorem 27 using the same calculations
as for the undamped case, which in turn implies
global existence. [

In order to understand the asymptotic behaviour of
solutions we will need to know that T'(t) is not only
continuous, but (sequentially) weakly continuous.

Lemma 40 If 7" : X — X is a continuous linear
map, then it is sequentially weakly continuous, i.e.

p; — p In X implies Tp; — T'p.
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Proof. If v € X™ then voT € X*. Hence
(Tpj,v) = (T'p,v).

Lemma 41 Letp;, —pin X, t; = tin [0,00). Then

eAtip. — eAtp

Proof. We have that for any v € D(A*)
< At]pja >: <p]7 _I_/ pgaA* >d

By Lemma 40 we therefore have that

lim (eip;,v) = (e?p,v),
j—00

giving the result since D(A*) is dense. [ 199



Lemma 42 f: X — X is sequentially weakly contin-
uous, i.e. p; — p in X implies f(p;) — f(p) in X.

Proof. We just need to show that u; — u in H3(2)

implies u? — u3 in L?(2). But since HA(RQ) is contin-

uously embedded in L°($2), we can extract a subse-
quence such that ufk — y in L%(2), and by the com-

pactness of the embedding of H(2) in L?(£2) we may
suppose that u;, — v a.e..

Thus ¥ = u3 a.e. (e.g. by Lusin's or Mazur’'s The-
orem), and since the limit is unique the whole se-
quence converges weakly to u3 as required. [
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Lemma 43. Let 7 > 0 and let z; be a bounded
sequence in C(]|0,7]; X) such that for any v € X*
the functions (z;(-),v) are equicontinuous on [0, 7].
Then there exist a subsequence Zj, and a weakly
continuous map z : [0, 7] — X such that (z;,(-),v) —
(z(+),v) uniformly on [0, 7] for all v € X*.

Proof. Since z;(t) is bounded in the reflexive space
X for each t € [0, 7] there exists a diagonal subse-
quence z; such that for each rational ¢ € [0, 7] there
exists z(q) € X with z; (q) — 2(q).

We claim that (z; (r),v) is convergent for every
r € [0,7] and v € X*. Indeed let ¢g; — r with g;
rational.
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T hen

(25, (1), 0) = (25, (1), 0) | < ({25, (1), v) = (25, (gm), V)]
|<Z]k(qm>, U> - <Zjl(qm>7 U>|
|<zjl(qm)7 U> o <Zjl(7“), ’U>|,

and the claim follows from the equicontinuity.

It then follows easily that z; (r) — z(r) for some
z(r) and that z : [0,7] — X is weakly continuous. O

Theorem 43 The semiflow {T'(t)}>0 is jointly se-
quentially weakly continuous, i.e. if p; —p in X and
t; —tin [0,00) then T'(t;)p; — T'(t)p in X.
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Proof. Let w;(t) =T(t)p;, and let 0 <t <t+h < 7. Then if
ve X*

(wj(t + k) —w;i(8),0) = (AT —eAypj o)
t+h
([ A () s, )

~(f F A9 (i (s)) ds, v)
= ((AUH) _eAlyp, o) + /tt+h<€A(t+h_S)f(wj(5>>v v) ds

+ (AR _ AG=9)) £ (s)), 0) d,

and it follows from Lemmas 40, 41 and the uniform bounded-
ness of ||w;(t)|x, || f(w;(t))]x that (w;(-),v) is equicontinuous
on [0, 7].

Hence by Lemma 43 there is a subsequence wj, and a
weakly continuous w : [0,7] — X such that (w; (1),v) —
(w(t),v) uniformly on [0, 7] for each v € X*. 203



Then we can pass to the Ilimit in

(5 (9, 0) = (Apj, ) + [ (A flawg, (), ) dis

to deduce that w(t) = T(¢t)p. The uniqueness of
the limit then shows that (T'(t)p,,v) converges to
(T'(t)p,v) uniformly on [0, 7] as required. [

Theorem 44 {T'(t)};>0 is asymptotically compact.

Proof. Let

I(ua ’th) — V(u7 ut) + g(ua ’U,t).
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Then

dl
== —Bllull3 + w3
+2 (8w u) ~ 1Vl + [ @ - u)de)
2 4
:—B[——ﬁ/( u—1)2|u2u>d$
— _BI il H(U),

where H(u) = & [o(1 —u?) dz.

Hence, given any M > 0 and any z € X,

I(T(M)z2) = e PM ()4 /O IR VH (u(t)) dt, (16)

where T'(t)z = ( Zgg )
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Let p; be bounded, t; — co. Then T'(t;)p; is bounded and
we may suppose that T'(t;)p; — x, T'(t; — M)p; — x—_ps for
some x,x_p € X. Hence T'(t+t; — M)p; — T(t)x_ps and
thus T'(M)x_pr = X.

Apply (16) with 2z =T(¢t; — M)p; to obtain

1)) = e PV (= Mp)+ [ M B (1)) di.

o _ w ()

where T'(t +t; — M)p; ( i) )

Passing to the limit and using again (16) with z = y_; we
get

limsup I(T(t;)p;) < Ce ™M + 1(x) — e PMI(x_pp).

| — OO
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Letting M — oo we obtain

lim sup I(T(tj)p]) < I(X) < lim inf I(T(tj)p])

J—00 J—700

Hence I(T'(t;)p;) — I(x) and from the form of I we
deduce that ||T'(t;)p;||x — ||x|lx so that T'(¢t;)p; — x
strongly. [

Hence w(p) consists only of rest points for every p.
Also, the set Z of rest points is bounded, since for

any rest point z = ( 8 )

1
v2d:/ 2 _uM de < =L£3(Q).
| IVuPde = [ (u? = u*)do < 5£3(52)
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Hence {T'(t)}:>0 is point dissipative and so we have proved

Theorem 45 There exists a global attractor for (15).
For each complete orbit v in A the a and w limit sets of o
are connected subsets of the set Z of rest points on which V
iIs constant. If Z is totally disconnected then the limits

Z_ =t_|:g1 Y(t), z4 = I|m W(t)
exist and z_, zy are rest points; furthermore, T'(t)p tends to a
rest point in X as t — oo for every solution p € X.

Remarks. 1. It is not true in general that Z is totally
disconnected. To construct an example, let 2 = Bp =
B(0, R) for some R >0, and B = {z € By : +z3 > 0}.
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Let vt minimize

E(u) = /B?z' <%|Vu|2 + %(u2 — 1)2) dx
in H(%(B;%"). It is easily checked that for R > 0 suf-
ficiently large u™ #= 0, since we can take as a test
function ue(x) = 1 for dist (z,dB}) with a suitable in-
terpolation to zero in the e—neighbourhood of 6‘B];t.
Also uT is a smooth solution of —Au+ 43 —u =0 in

B# which is smooth up to {z3 = 0}.

Now define @ as the odd extension of uT to Bp, i.e.

uT(z), x3> 0,
_u_l_(xl)an _333)7 3 < 0.

u(x) = {
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Then w is also a solution to —Au—l—u3 —u=01In B]?i which is
smooth up to {z3 = 0}. Let v € C5°(Bg). Then

~ ~3 - _ A~ ~3 =~
/BR(Vu Vo + (4° — a)v) dx /B}_%( AU+ w” — )vde
N ST S
+/B;z"( AuT 4+ u uT )vdx

; +

—|-/ <8u ~ Ou )vdS
:13%+:13%<R2 0x3 0x3

= 0,

so that w is a rest point.

Clearly u is not radial, since there exists x = (z1,xz2,x3) € Bp
with a(xq, x5, 23) = —u(xq, x5, —x3) 7= 0, and Qo € SO(3) with
Qozr = (71,72, —x3), SO that u(Qq-) # u(-).

Note that w(Q-) is a rest point for any Q € SO(3). Let
E ={Q € SO3) : u(Q-) = u(-)}. Then E C SO(3) is
closed, and 1 € E. Let Q* € JE. O



Then in any neighbourhood of @Q* there is a rotation
Q' & E, so that @ is not isolated.

However Saut & Temam, Comm. PDE 1979 show
that for generic 2 diffeomorphic to a ball there are
only finitely many rest points.

2. Kalantarov, Savostianov & Zelik, Ann. Henri
Poincaré 2016, prove a version of Theorem 45 in
R3 with a quintic nonlinear term.

Remark added after course. An alternative way to prove
Lemma 21 is to use the fact that A with domain D(A) =
{u € HY(Q) : Au € L?(Q)} is self-adjoint on L2(£2). This
also simplifies the proof of Theorem 20, in which part of
the argument effectively proves the self-adjointness.



