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Unlike more familiar phase transformations such as

iIce — water — steam
martensitic phase transformations in crystals (metals and
alloys) involve a diffusionless change of shape of the
underlying crystal lattice at some critical temperature.

e.d. cubic to tetragonal three variants of
. ~ low temperature
austenite e
H phase.
9 > 9(} 9 < HC

martensite




The requirement that the different variants fit together
geometrically (compatibility) leads to characteristic pat-
terns of microstructure that are important for determin-
iINng the macroscopic properties of the material.

CuAlINi single crystal: Chu/James



The aim of the course is to try to understand such
microstructures, using the following ingredients:

(i) A description of crystal lattices,

(ii) A related nonlinear elasticity model,

(iii) An analysis of possible interfaces and
microstructures,

(iv) Techniques of the multi-dimensional calculus of
variations (quasiconvexity ...).



Brief review of nonlinear elastostatics
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Reference configuration Deformed configuration

Assume material iIs homogeneous and occupies a bounded
(Lipschitz) domain € C R3 in a reference configuration.

Elastic free energy at constant temperature 6

I(y) = |_ ¥ (Dy(x),0) dx.

free-energy density



Properties of free-energy density: ¥(A,60) defined for
A c D(),0 € I, where D(2)) is an open subset of

GLT(3,R) = {A € M3%3:det A > 0}.

(i) (frame-indifference)
Y(QA,0) =¢(A,0) for all Q € SO(3),A e D),0 €l

(ii) (material symmetry)
W(AM,0) = (A,0) forall M e S,A € D(1),0 € 1,
where S is a subgroup of the set of unimodular matrices

SL(3) ={A € M3%3:detA =1}
For consistency, we need SO(3)D(y)S = D(v)).



—nergy minimization problem
Minimize
Ii(y) = |_¥(Dy(x),0) dx

among (invertible) y : Q2 — R3 subject to
Yoo, =Y

In order that we can be assured that a minimizer exists
we typically need that in addition (-,0) is quasiconvex

and coercive. However we will see that for elastic crystals
neither condition is generally satisfied.



Bravais lattices

A Bravais lattice is an infinite lattice of points in R3
generated by linear combinations with integer coefficients
of three linearly independent basis vectors bq, b, bs.

Setting B = (b1,by,b3) € GL(3,R) we write the
corresponding Bravais lattice as

L(B) = {mlbl + mobo 4+ m3bg i m; € Z}.

Notice that if B = (B@J) then Bzg = bj - e;, where ¢;
is the unit vector in the it coordinate direction.



We think of a single crystal
as consisting of a part of
a Bravais lattice consisting
of many points, each point
representing an atomic po-
sition.

Typical alloys are solid solutions of different elements, so
that each lattice site has a probability of being occupied by
a particular element according to the overall composition.

Some crystals form multilattices which are finite unions of
translates of a Bravais lattice. We will not consider these.



Examples of Bravais lattices.
1. Face-centred cubic (fcc)
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Note that any atom can be taken as the origin.
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2. Face-centred tetragonal (fct)
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3. Body-centred cubic (bcc)
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Could take the basis vectors as b;
shown, but the conventional and
84 more symmetric choice is
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Body-centered tetragonal (bct) treated similarly.
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GL(3,Z) = {p = (u;5) : ui; € Z,det p = £1}.
Theorem L(B) = L£(C) iff

B = Cpu, for some p € GL(3,7Z).

Proof. Let B = (bl,bz,b:g), C = (Cl,CQ,C3).
If £L(B) = L(C) then b; = pj;c; for some p = (p;;) €
73%3, so that B = Cu. Similarly C = By’ for some
p €733, Sopu =p 1! and pe GL(3,72).
Conversely, if B = Cpu then b; = puj;c; and so
L(B) C L(C). Similarly £L(C) C L(B). ]
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Corollary. If F € GL(3,R), then L(FB) = £(B) iff

F = BuB_1 for some u € GL(3,7Z).

Definition. The point group P(B) of £L(B) is the set
of Q € O(3) such that £(QB) = £(B).

By the Corollary,
P(B) ={Q e 0(3):B1QB e GL(3,2)}.

If B-1QB = € GL(3,Z) then ulp =BIB—1,
and so P(B) is a finite group.
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If R € O(3) then

{Q:R'QR € L(B)}

{RQR" : Q € L(B)}
RP(B)R!

so that P(RB) is orthogonally conjugate to P(B).

P(RB)

The point groups of the simple cubic (B = aQ1), fcc
and bcc lattices are the same, namely (taking Q = 1)
the cubic group P¢ consisting of the 48 orthogonal tran-
formations mapping the unit cube (0, 1)3 into itself.
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Thus the point group does not discriminate between
the different possible cubic lattices, and to do this
one needs to consider the lattice group

L(B) ={p e GL(3,Z) : BuB~ 1 € 0(3)}

L(QB) = L(B) for all Q € O(3). However L(B)
depends on the lattice basis, so that

L(Bp) = p tL(B)u for all u e GL(3,7).

The corresponding conjugacy classes determine 14 distinct
Bravais lattices (triclinic, monoclinic, orthorhombic, rhom-
bohedral, tetragonal, hexagonal and cubic).
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We now fix a reference lattice £(B) with B € GLT(3,R),
and suppose that there is a free-energy function ¢(C, 0)
defined for C in an open neighbourhood D of B in
GLT(3,R) satisfying

QDp C D for all Q € SO(3),u € GLT(3,2)(= SL(3,7))

and temperatures 6 in some interval I, such that for all
CeD,0cl

(i) o(QC,0) = o(C,0) for all Q € SO(3I),
(i) ©o(Cu,0) = o(C,0) for all p € GLT(3,7).

That is, the free-energy is rotationally invariant
and depends only on the lattice £(C).
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We now use the Cauchy-Born rule (an implicit coarse-
graining) to relate the macroscopic free-energy density ¢ to
w. Choosing a reference configuration in which the crystal
lattice is B, we assume that

P(A,0) = p(AB,0), for A e D(v),0 €1,
where D(y) = DB~ 1.

Thus 1 inherits the invariances for all A € D(v),0 € 1,
(i) v(QA,0) = ¢(A,0) for all Q € SO(3),
(i) Y(ABuB~1,0) = (A, 0) for all u € GL1(3,7).

Hence 1 has symmetry group S = BGL1(3,2)B1,
which is a subgroup of SL(3,R).
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Martensitic phase transformations

We now assume that ¢(-,0) is bounded below for
each 6 € I and attains a minimum. We can suppose
that the minimum value is zero. Hence also the
minimum value of ¢(-,0) is zero.

et K(0) ={A D) :¢v(A,0) =0}
hen SO(3)K(6)S = K(0).

We consider a martensitic phase transformation that

takes place at the temperature 6., with the lattice be-
ing cubic (fcc or bcc) for 6 > 6.
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This is described by a change of shape of the lattice with
respect to the lattice B at 6. given by U(9) = U(8)? > 0.

(Note that by the polar decomposition theorem we can write
any A € GLT(3,R) in the form A = RU with R € SO(3),
U = UT > 0, so that we can always describe the change of
shape by such a U.)

Thus we assume that

( a(0)SO(3)S 0> 0
K@) =< SOB)SuUSOB)U(b:)S 0 =206 ,
SO(3)U(8)sS 0 < 0.

where a(8) > 0 gives the thermal expansion of the
cubic lattice, with a(6.) = 1.
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Reduction of the symmetry group

It is convenient to consider a simplified theory in which
we only consider those p that generate elements of the
point group, thus ignoring large lattice invariant shears
that are typically associated with plasticity.

Theorem. (Ericksen-Pitteri neighbourhood) Given
a Bravais lattice B € GLT(3,R) there is an open
neighbourhood N of SO(3) in GLT(3,R) such that
(i) SOBN =N

(i) if p € GLT(3,%) then either NBuB~1 = N (in
which case BuB~1 € P(B)), or NBuB~1n N = 0.
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Thus, if we restrict ¥(A,0) to N then the symmetry
group of ¥ is reduced to

PT(B) = P(B)NSO(3) =S8N SO3).

Proof. We claim that a suitable neighbourhood is given by
Ne={A:|ATA -1 <&}
for € > 0O sufficiently small.

Note that SO(3)N: = N=SO(3) = Ng, since if Q € SO(3)
(AQTAQ - 1| = QT (ATA - 1)Q| = |[ATA —1].
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Suppose for contradiction that the result is false for
e=4"1 j=1,2.... Then for each j there exists u(/)
with Bu()B~1 ¢ P(B) and CU) = DWBuWB~1 € Ny ;.

We can assume that CU) — R, DU) = R, u() — o,
where R, R € SO(3), and hence BuB~1 € P(B). But
u(ﬂ — o implies ,u,(j) = u for 5 sufficiently large.
Contradiction. []

If we apply this result to the phase transformation
case then we can restrict the symmetry group to
PT(B) provided U(#) is sufficiently close to 1 and 6
sufficiently close to 6..
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Thus, restricting ¥ to N, and defining as before
K@) ={A e N :y(A,0) =0},

we assume that

( a(60)S0O(3) 0 > 0.
K(0) =14 SOB)UUML,S50(3)U;(0.) =0, ,
\ UM, SO(3)U;(8) 6 < 6,

where U;(0) are the distinct matrices QL U(0)Q for
Q € P°NSO(3) = P24,

M is the number of martensitic variants. If we let

G;={Qe P :Q'U(6)Q = U;(6)}
then |G;| is independent of ¢ and so M divides 24.
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Example 1. (cubic-to-tetragonal) =l

(e.g. InTI, NiAl, NiMn, BaTiO3) 1 E

U(0) = diag (12,11, 11),

where n1 = n1(0) > 0, 1o = n2(0) > 0, n1 # n2.
Then M = 3 and

U;(0) = diag (n2,11,1m1), U2(0) = diag (n1,712,1m1),

U3(0) = diag (11,11, m2)-
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Example 2. (cubic-to-orthorhombic) S

(e.g. CuAlINi)
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— agv a_%,y
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0 0O B
M =06
at+y a—v 0
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Atomistically sharp interfaces for cubic to tetragonal
transformation in NiMn
Baele, van Tenderloo, Amelinckx
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Macrotwins in NigsAlzs involving two tetragonal
variants (Boullay/Schryvers)
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Martensitic microstructures in CuAINi (Chu/James)
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he Hadamard jump condition

y piecewise affine A1

Dy=A,x-n>k

Dy =B, x-n<k
X-n=%k

Let C=A-B. Then Cx =0 if x-n=0. Thus
C(z—(z-n)n) =0 for all z, and so Cz = (Cn®n)z.

Hadamard
jump condition

Hence |A — B =a®n
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More generally this holds for y piecewise C1, with

Dy jumping across a C! surface.
A

DyT(xg) = A

/

'7XO

7
7

Dy~ (x0) =B

A—B=a®n

(See later for generalizations when y not piecewise C1.)
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Theorem
Let U=U! >0, V=V! >0 Then SOR)T,
SO(3)V are rank-one connected iff

U2-V2=c(n®ii+i®n) (%)

for unit vectors n, n and some c # 0.
If n #= +n there are exactly two rank-one
connections between V and SO(3) U given by

RU=V+4+a®n RU=V+a®i,
for suitable R,R € SO(3), a,a € R>.

(JB/Carstensen version of standard result cf. Ericksen, Gurtin, JB/James ...)
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Proof. Note first that

detV -det(1 4+ V la®n)
detV.-(1+V~la-n).

det(V+a®n)

Hence if 14+ V—la.n > 0, then by the polar decompo-
sition theorem RU =V 4+ a®n for some R € SO(3) if
and only if

U2

(V4+n®a)(V+axn)
VZ4+Va®@n+n®Va+|a°n®n

V2 4+ (Va + %\a|2n> n+ng (Va + %Ialzﬂ)
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If a # 0 then Va+ 3|al?n # 0, since otherwise

1
Va- -V~ la+ 5|a\2V_1a -n =0,
i.,e. 24+ V~la.n = 0. This proves the necessity of (*).

Conversely, suppose (*x) holds. We need to find a # 0
such that Va + %|a|2n —=cihand 1+ V~1la.-n>0. So
we need to find ¢t such that

a—=cr -+ ts

where |cr+ts|?+2t =0 and 1+ (er+ts)-s > 0, where
we have written r =V, s =V 1n.
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The quadratic for ¢t has the form

t2|s|? + 2t(1 +cr-s) + c?|r|2 = 0 with roots

(1 +er-s) £ \/(1 + cr-s)2 — 2|r|?[s|?
- s|2 |

Since det U2 = detV2det(1+c¢(r®s+s®r)),

t

det(l4+c(r®@s+s®r)) = (1 4ecr-s)? — c2|r|2|s|2

IS positive and the roots are real. In order to satisfy
1+ cr-s+t|s|2 > 0 we must take the 4 sign, giving a
unique a, and thus unique R such that RU = V+4a®n.
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Similarly we get a unique a and R such that RU =
V +a®n.

To complete the proof it suffices to check the following
Lemma
Ifcn@n+n®n)=d(pp+pp) for unit vectors
p,P and some constant ¢/, then either p@p=4+n®n
Oor p®p = xnQn.

[]
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Corollaries:

1. There are no rank-one connections between
matrices A, B belonging to the same energy well.
Proof. In this case U =V, contradicting ¢ = 0. U

2. There is a rank-one connection between pairs of
matrices A € SO(3) and B € SO(3)U if and only if U
has middle eigenvalue 1.

(Thus it is in generically impossible to have an interface between
constant gradients in the austenite and martensite energy wells.)

Proof. If there is a rank-one connection then 1 is an
eigenvalue since det(U2 - 1) = 0.
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Choosing e withn-e >0,n-e>0andn-e>0,n-e <0,
we see that 1 is the middle eigenvalue. Conversely, if

U=XMMe;1®e1 +exRex+ Azez3 ®ej3

with eigenvectors e; and eigenvalues A1 < 1 < A3 then

A — A2
>—(

U2 -1= (ce1 + Be3) ® (—aeq + Bes)

+ (—aey + Bes) ® (aey + Be3) ),

[ 1-2% As—1
where o = v )\2,5: AQ 2 []
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3. If U;,U; are distinct martensitic variants then
SO(3)U; and SO(3)U; are rank-one connected if and
only if det(U? — UJQ-) — 0, and the possible interface
normals are orthogonal. Variants separated by such
interfaces are called twins.

Proof. Clearly det(U? — UJQ-) — 0 is necessary, since
the matrix on the RHS of (*) is of rank at most 2.

Conversely suppose that det(Uy — U%) = 0.
Then U7;2 — UJQ. has the spectral decomposition

U -—Usf=)de®e+ e @eé.
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Since U; = RU;R! for some R € P2% it follows that
tr (U? — UJQ-) — 0. Hence 4= —\ and

U7 —U7 = Me®e—8Q®e)

—~ —~

e+e e—ce e—e¢ e—+e
>\< & | X )7

as required. [ ]

Remark: Another equivalent condition due to Forclaz
is that det(U; — U;) = 0. This is because of the sur-
prising identity (not valid in higher dimensions)

det(UZ-U?) = (A1+A2) (Ao+A3)(Az+A1) det(U;—U;).
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Mallard’s law

Let U=U7 >0, V=VT > 0 be such that

V=(-142exe)U(-1+2e®e), (1)

where le| = 1. Then SO(3)U and SO(3)V are rank-one
connected with rank-one connections given by

QV =U + a®n,
( —1
2 (|UU——1ee|2 —Ue) Re (Typel),

2
2Ue ® <e - E—efg) (Type II).

a@n — -\

\

(In fact Chen et al (2013) show that if V = RUR?! for some R € SO(3)
then SO(3)U and SO(3)V are rank-one connected iff (1) holds for some e.)
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For example, for cubic-to-tetragonal we can take

U; =diag (n2,m1,m11), Uz =diag (n1,m2,m1),
and then
> 2 1, 5 o
Ur-Us = 5(?72—771) (eo—e1)®(ex+e1)+(exter)R(ex—eq)],

so that twinning is on [110] planes.
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Convexity conditions

Let ¢ : M3%3 5 R be continuous. We say that

W is rank-one convex if t — Y (A 4+ ta®n) is convex for
3x3 3

all A e M>~ , and a,n € R~, Null Lagrangians

W is polyconvex if ¥P(A) = g(A,cof A,detA) for all

A € M3%3 for some convex g,
Y IS quasiconvex if

/ ¥(Dalx)) dx 2 / w(A) o definition

whenever z € Ax @(Q}) independent
of €2

or C8°(S2; R3)
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P polyconvex = 1 quasiconvex = 1 rank-one convex
4= Roughly N&S 4=
for existence

of minimizers
The free-energy function

—  (-,0) is not quasiconvex
because the existence of
rank-one connections be-
tween energy wells implies
that ¢(-,0) is not rank-one
convex.

So we expect the minimum of the energy in general not
to be attained, with the gradients Dy{J) of minimizing
sequences generating infinitely fine microstructures.
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Gradient Young measures

Given a sequence of gradients |,
Dy(j), fix 7,x,0.

Let E C M3%3,

vol {z € B(x,9) : DyU)(z) e E}
vol B(x,9)

VX,j,(S(E) —

vx(E) = lim Iim ijd(E> Gradient Young
0—0j—00 measure
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Gradient Young measure of a simple laminate
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Theorem (Kinderlehrer/Pedregal)
A family of probability measures (vx)xecq IS the

Young measure of a sequence of gradients Dy({)
bounded in L°° if and only if

(i) Ux is a gradient (Dy, the weak limit of Dy(1))
(ii) (v, f) = [ L F(C)dux(C) = ()

for all quasiconvex f.
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Convexifications with respect to a cone

Let G be a convex cone of continuous functions
f: M3%3 5 R. Examples are the cones of convex, poly-
convex, quasiconvex and rank-one convex functions.

For a continuous v : M3%3 — R define the
G—convexification ¥& of ¢ by

W& =sup{f € G: f <}
Then ¢ < P < P9c < P'e.

YY9<(A, 0) is the macroscopic free-energy
function corresponding to .
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Similarly, for K ¢ M3%3 compact define (Sverak)
KC = {A: f(A) < m[?xf for all f € G}.
Then K" C K9° C KP° C K°.
Theorem (JB/Carstensen (to appear) following Krucik 2000)
K% ={A e M33 .3, e P(K) with f(A) < (u, f)Vf € G}
In particular

K9° = {U : v homogeneous gradient YM,suppv C K}.

K (6)9¢ is the set of macroscopic deformation gradients
corresponding to zero-energy microstructures.
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Phase nucleation

How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface be-
tween austenite and martensite, because this requires
the middle eigenvalue of U,(#) to be one, which in
general is not the case (but see later).

So what does it do?
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(Classical) austenite-martensite interface in CuAlINi
(courtesy C-H Chu and R. D. James)
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Rank-one connections for
classical austenite-martensite U,L
interface

RU,

/\ R(U; (1—XM)a®n)

1 "R(U; Fa®n)

.U]
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We have to solve

R(U;+(1—-XMNa®n)—1=b®m
for R € SO(3),X € [0,1] and b, m € R3.

The solutions (JB/James 1987) give the formulae of
the crystallographic theory of martensite (Wechsler,
Lieberman & Read 1953)
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Let §* =a-U;(U? —1)"1n.

Case 1. If U; does not have an eigenvalue 1 then there
is a solution iff 6* < —2 and

1

2 2 2

trU; —detU; — 2 + —25*|a| > 0,
and if 6 < —2 there are exactly four solutions

(RlaA*vbil_@)miI_)a (RQ,)\*,bI(X)mI),
(R371_>‘*7b3—®m§|_)7 (R471_>‘*7b5®m5>7

(1—\/@)

N|—

where \* =
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Case 2. There are solutions for every X € [0, 1]
Iff the following cofactor conditions

U, has middle eigenvalue 1

a-cof (U? —1)n =0,
trU?—detU%—%—zzo
hold.
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But why (cf JB/Carstensen 1997) should the martensitic microstructure
be a simple laminate, rather than something more complicated, such as a
double laminate?

nonclassical interface

Dy(x) =1

Dy(x) =A=v

A € (UM, SO3)U;(8))
(unknown unless M = 2)

Ux = UV

suppr C UM, SO(3)U;(6.)
A=14+bxm

double laminate
of martensite
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Nonclassical austenite-martensite interface in CuAINi (H. Seiner)



Special compositions and the discovery of low hysteresis alloys.

1. The wedge microstructure (Bhattacharya 1991)

habit planes

midrib plane

austenite

"’//A\

- Wedge microstructure in CuAlINi
twinned martensite

Otsuka & Shimizu (1969)

Microstructure supported on energy wells impossible for cubic-to-
tetragonal, possible for cubic to orthorhombic iff the eigenvalues
a, 3,y of the transformation strain U;(6.) satisfy a special relation
f(a, B,v) = 0, which holds to high accuracy for the actual compositions
close to Cu-14.2wt.%AI-4.3wt.%Ni used in shape-memory alloys.
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2. Ultra-low hysteresis alloys

James et.al. (2013) tuned the composition of a ZnAuCu alloy
so that the cofactor conditions were very nearly satisfied, with
dramatic results.

(i) the thermal hysteresis was reduced from typical values of
50° — 70°C to about 2°C.

(ii) Material undamaged after thousands of thermal cycles
(millions for a material discovered later by Quandt, Wuttig et

al 2014).
(iii) During thermal cycling remarkable martensitic microstruc-
tures are observed that are completely different in each cycle.

59



Zna5Au3zgCus ultra-low hysteresis alloy Song, Chen, Dabade, Shield, James, 2013

‘Moving mask’ approximation analyzed by Della Porta (2018),
who has also identified further conditions on the U, allowing
new microstructures, closely satisfied in this alloy.
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Incompatibility-induced metastability

Example 1 L

Special case of JB/James 2014 designed to
explain hysteresis in the bi-axial experiments
of Chu & James on CuAlNi single crystals,
in which a transformation occurs under load
between two martensitic variants.

Consider the integral W(A) - W(B) i

I(y) = [ W(Dy)dx

where W : GL1T(3,R) = R and W has two
local minimizers at A,B with rank (A —B) > 1 and
W(A) — W (B) > 0 sufficiently small.

A ‘B

W(A) =¢(A,0)—T-A
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Claim. Under suitable growth hypotheses on W,
y(x) = Ax+c is a local minimizer of I in L1(Q; R3),
i.e. there exists ¢ > 0 such that I(y) > I(y) if
Jaly —yldx <e.

Idea: since A and B are incompatible, if we nucleate
a region in which Dy(x) ~ B there must be a transi-
tion layer in which the increase of energy is greater
than the decrease of energy in the nucleus.

transition
layer

Dy(x) = A

Related work:
Kohn & Sternberg 1989,
Grabovsky & Mengesha 2009

| Dy(x) ~B
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Example 2. Nucleation of austenite in martensite
(JB/K. Koumatos/H. Seiner 2013,2014)

Single crystal of CuAINi. Pure variant of martensite. Heated by tip Wering iral.













Twinning and slip in Bravais lattices

Consider a Bravais lattice B. What are the rank-one connections
between SO(3) and SO(3)M, where M =BuB~1 ¢ P(B)?

We try p = —1+p®q with p,q € Z3 and p-q = 2, when

BuB 1= _1+BpoBTIq,

(-1+B 1qeBp)(-1+BpaB~Iq)—1
B TqeBp-Bp®B Tq+|Bp?°B TqeBIq

1 } -
(—Bp + EIBPIQB T B Tq

MIM -1

_ 1 _
+B 'Tq® (-Bp + §!BPIQB Tq).
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Hence SO(3) and SO(3)M are rank-one connected,
with normals parallel to B~"q and —Bp+4|Bp[?°B~q.

Note also that if 1 +a®n = QM then

tr MM — 3 tr(l+n®a)(l+a®n)— 3
Bp|?B~1q|* -4,

so that |a|2 = |Bp|?|B~1q|? — 4.
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For a bcc lattice we can take

-1 1 1 O 1 1
B=%| 1 -1 1 |,Bt=[101
1 1 -1 1 1 0
1 1
Then the first case withp=| 1 |, qgq= 1| 1 | gives
1 0
+1
the normals | £1 | and |a]? =31
2

These are the most commonly observed normals for bcc metals
and alloys, and work of Bevis & Crocker (1968,1969), Jaswon &

Dove (1956,1957,1960) probably shows that they minimize |a|.
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For fcc we can take

1 -1 0 1 1 -1
B=3|l1 1 1|, Blt=|-11 -1
O 0 1 O 0 2
1 1
Then with p = —1 , q = O we get the commonly
observed normals and |a]2 =3

2 .
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Another possibility is to take pu =1+ p&® q with p-q = 0, when
we have M =1+ BpoB~1q and

MIM-1 = BTgeBp+BpeB L+ |Bp?°B LTgeBTq
. | B T
= (Bp+§prlzB TH oB g
o N 1 T
4B Tq®(Bp+§\BP|QB 1),

so that again SO(3) and SO(3)M are rank-one connected with
normals B=7g and Bp + 3|Bp|°B~7q and |a|° = |Bp|2|B~Tq|>.

O 1 2
For bcc withpv=| 1|, gq=| 0 |, we get the normals 1
1 0 1

O
(twinning), | 1 | (slip) with |a|? = 2.
1
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Polycrystals

Different orientations of the crystal lattice in each grain.

No diffusion, within the
grains, or of the grain
boundaries.
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Description of grain geometry

Consider a polycrystal that occupies in a reference con-
figuration a bounded domain (open, connected set)
Q C R3 composed of a finite number of disjoint grains
Q;,7=1,...,N, where each £2; is a bounded domain

with Lipschitz boundary 8Qj, so that

N —_—
2 = int U Qj
=1
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Topology and graphs

Some topological information is encoded in the
graph whose vertices are the grains (labelled
1,...,N) and with edges (i,j) corresponding to
grains €2;,€2; with H2(92; N 9$2;) > 0 (in 2D this
is used in the proof of the four colour theorem).

For each grain i let M (2) be the number of j #% i for
which (z,4) is an edge.
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A and B are interior grains
but touch 0f2.

Interior grains are ones for
which 0€2; C Ug; 082y, and
the others are boundary
grains.

The set of triple points is

T = U 8Qi1 M 89?;2 M 891-3.
1<iy <ip<izg<N
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Theorem Suppose each grain Qj IS convex. Then
every interior grain €2; is a convex polyhedron (i.e. an
intersection of a finite number of open half-spaces)
with at most M (i) faces.

Theorem If each Q; is a topological manifold with
boundary then T is nowhere dense in Ué-\le 0%2;.
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Zero-energy microstructures for a polycrystal

For a polycrystal the total free energy is given by

I(y) = [ W(Dy(x),x)dx,
where W(A,x) = ¢ (AR}) for x € Q; and R; € SO(3).
We fix 6 < 6. and write K = K(6), U =U(0) etc.

Then a zero-energy microstructure corresponds to a gra-
dient YM (vx)xeq With supprvx C KR, for a.e. x € €2;, or
equivalently to a macroscopic deformation gradient with

Dy(x) € (KR;)9¢ = K9°R,

for a.e. x € €2;.
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Constant deformation gradient in adjacent grains

flat part of grain R

Grain 1
boundary
\ Dy =A,x-n>k

Dy=B, x-n<k 1
, X -n =
Grain 2

We can assume that grain 1 has unrotated crystal
axes. Hence for this to be a zero-energy deformation

A = Q1U;, B = QuU;R, where Q1,Q2 € SO(3) and R € SO(3)
IS the rotation of grain 2.
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Note that U; = R?U,;R for some R € P24,

Thus for a rank-one connection we must have

det(U? — (RR)1UZRR) = 0.

The function
R — det(UZ — RTUZR)

is real analytic on SO(3) and for U; not a multiple of 1 is
not identically zero. Hence (c.f. Mityagin 2015) its zero
set is of measure zero. Thus for generic grain rotations
such a zero-energy deformation is impossible.
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Zero-energy microstructures possible for any
grain geometry and rotations

These correspond to gradient YMsS (vx)yxeq Such

that supprx C MNresoz) KR a.e., or equivalently to
macroscopic deformation gradients satisfying

Dy(x)e&:= () K9Rforae xe
ReSO(3)

The set £ was essentially defined in Bhattacharya & Kohn
(1996,1997) in connection with the ‘Taylor bound’.

Note that £ is isotropic, i.e.

QER =€ for all Q,R € SO(3).



T he case of two wells

We take
K =50(3)U1US0(3)U»,,

U; = diag (n1,712,n3), U2 =diag (n2,n1,13),

and o > mn1 > 0, n3 > 0 (e.g. tetragonal to orthorhom-
bic, or special orthorhombic to monoclinic transforma-
tions).

The advantage of this case is that it is the only one
for which K49¢ is known.

81



Theorem (B/James 92) K9¢ consists of the matrices

A € GLT(3,R) such that

a C
ATA=1| ¢ b
0 0

where a > 0,b > 0,a

b

n%, ab — ¢?

= 1713,

In addition (B/James 91), if Dy(x) € KY9¢ a.e. then

y IS a plane strain, I.e.

Y(X> — Q(yl(x>a yQ(X)v 1313 + &),

where y1 3 =y23 =0, Q € SO(3) and a € R.
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T heorem

c_ |0 it n3 7 /M2
 SO@B)nz  if n3 = /m1m2

Proof. Suppose D = diag (d1,d>,d3) € £. Then for
any R € SO(3) we have DR € £, and so there exist

a,b,c with a > 0, b > 0, ab—czzn%ng, a+b+|2c <

a ¢ O d%OO
c b 0 |=R| 0 d5 0 |R.
0 0 n3 0 0 d2
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Hence dy = dy = dz = n3 and both sides equal 731,
so that we must have a = b = n3,c = 0. Thus

n3 = /M1m2, when indeed 272 + 0 < % + n3.

(For particular grain geometries and rotations there
could be additional zero-energy microstructures.)
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Now consider the set

Eop = ﬂ K9R.
ReSO(3), Res==ej3

T heorem
A e &p iff A= RDR, where R, R ¢ SO(3), Re3 = *+eg3,
vi O O
D= 0 v, 0 |,
O O mn3

2 2
and v1 > 0,vo > 0, vivo = n1ny, |v;| < ’\/@.

(See Kohn & Niethammer (2000) and the book of
Dolzmann (2003).)
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There are nontrivial deformations y with Dy(x) € &p
a.e. x € {2, such as

y(x) = (/T2 1, /172 T2, 1323) + eg(x - el )e,

where le| =|et|=1,el.-e=e-e3=0, |¢/| < M < o and
le| sufficiently small.

Such deformations nontrivially deform the grain
boundaries (it would be interesting to have ex-
perimental results on grain boundary deformation
resulting from martensitic transformations).
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Zero-energy microstructures for a bicrystal

=

Energy wells K =SO((3)U; USO(3)U,

U; = diag (n2,11,n3), U = diag (n1,12,13),
nm> >mn1 > 0,1m13 >0

_ Grain 2
Grain 1 Qs = wy x (0,d)
Q1 = w1 x (0,d) supprx C KR(«a) a.e. x € 2

supprvy C K a.e. €21 R(a)es =e3
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Question: Is it true that every zero-energy microstructure is
nontrivial (i.e. not a pure phase vx = §,) in each of the grains?

(If the interface between the grains were not vertical, so that
it had the form z3 = g(xq1,25) for some open set of (x1,z5),
we cannot have a pure phase in one of the grains because a
short calculation shows that it violates the microstructure being
a plane strain in the other grain.)

Result 1. If the interface is planar then whatever its
normal n there always exists a zero-energy microstructure
which has a pure phase (i.e. vx = d ) in one of the grains.

T herefore the interface needs to be curved in order to
show that the microstructure has to be nontrivial. Write
the normal to the interface as n = (cos#,sin6,0).
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Result 2. Suppose that o = w/4. Then it is impossible
to have a zero-energy microstructure with a pure phase
in one of the grains if the boundary between the grains
contains a normal with 8 € D1 and another normal with

= Do.
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Proofs use:

1. A reduction to 2D using the plane strain result for
the two-well problem.

2. The characterization of the quasiconvex hull of two
wells.

3. Use of a generalized Hadamard jump condition in
2D to show that there has to be a rank-one connection
b ® N between the polyconvex hulls for each grain.

4. Long and detailed calculations.

For the details see, JB & C. Carstensen, Interaction of

martensitic microstructures in adjacent grains, ICOMAT
2017 Proceedings.
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Polycrystal microstructures for more than two wells

ri

T

I

BaTiO3 ceramic: G. Arlt, J. Materials Science, 25 (1990) 2655—266(3i



Consider a cubic-to-tetragonal transformation with

3
K= |]J so@ld)u,
1=1

U; =diag (n2,m1,7m1), Up = diag (n1,m2,11),
Uz = diag (91,11, 12).

T heorem
E conltains a relatively open neighbourhood of
(n$12)3S0(3) in D:={A € GLT(3,R) : det A = n$no}.

Proof. £ is isotropic and by Dolzmann & Kirchheim
(2013) KY¢ contains a relatively open neighbour-

1
hood of (n212)31 in D.
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In fact, if the austenite is cubic and the transfor-
mation strain U is not a dilatation then KY9¢ al-
ways contains a nontrivial set of tetragonal wells
(c.f. Bhattacharya (1992), B/Koumatos (2014))
and so & ciontains a relatively open neighbourhood
of (detU)3S0(3) in D := {A € GLT(3,R) : detA =
det U}. Hence, for example, we have a nontrivial £
for cubic to orthorhombic transformations.
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A related remark

Theorem There is no homogeneous gradient Young measure

V_Z/\(SA, A >0, Z/\ =1,
=1 =1

with Ai c K and v = (77%772)1/31.

Arlt (1990).
Microstructure with
approximately four
gradients in BaTiOg3.

23 NN

B e A eEe T

Is the apparent conflict with experiment due to ignoring interfacial en-
ergy, or because the deformation is not a dilatation on the boundary?
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Another issue (c.f. recent work of F. Della Porta) is whether
all microstructures with supprvx C K9°R,; for a.e. x € ; are
obtainable by a suitable path starting from the austenite.

TizgNbos Al
(T. Inamura)
cubic to

rank(Ai—l)zl, )\2:1
i=1,....12

rank(Ai—Aj) > 1,
L7 ]
What is {Al, e ,AlQ}qC?




