Leçons Jacques-Louis Lions Sorbonne Université, 20-22 mai 2019

Transformations de phase, compatibilité et microstructure

John Ball

Heriot-Watt University and Maxwell Institute for Mathematical Sciences

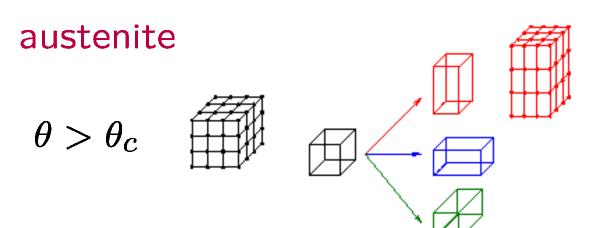
Notes at http://people.maths.ox.ac.uk/ball/teaching.shtml

Unlike more familiar phase transformations such as

ice \longrightarrow water \longrightarrow steam

martensitic phase transformations in crystals (metals and alloys) involve a diffusionless *change of shape* of the underlying crystal lattice at some critical temperature.

e.g. cubic to tetragonal

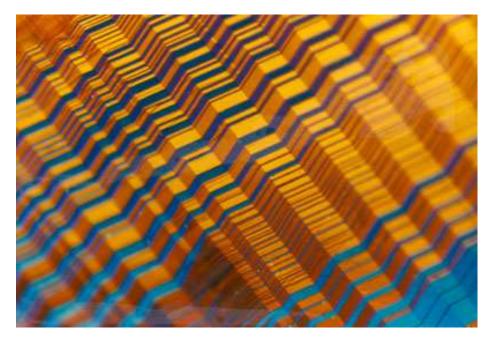


three *variants* of low temperature phase.

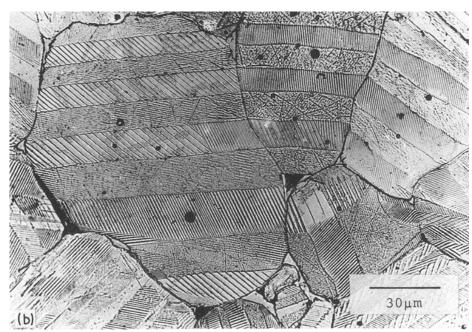
$$\theta < \theta_c$$

martensite

The requirement that the different variants fit together geometrically (compatibility) leads to characteristic patterns of *microstructure* that are important for determining the macroscopic properties of the material.



CuAlNi single crystal: Chu/James

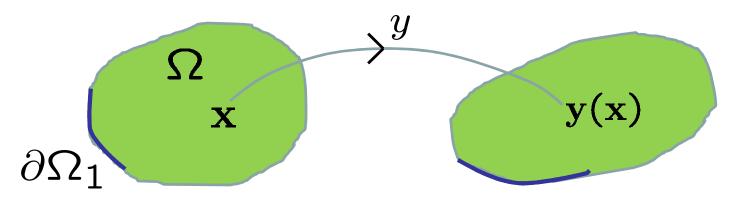


BaTiO₃ polycrystal: G. Arlt 1990

The aim of the course is to try to understand such microstructures, using the following ingredients:

- (i) A description of crystal lattices,
- (ii) A related nonlinear elasticity model,
- (iii) An analysis of possible interfaces and microstructures,
- (iv) Techniques of the multi-dimensional calculus of variations (quasiconvexity ...).

Brief review of nonlinear elastostatics



Reference configuration

Deformed configuration

Assume material is homogeneous and occupies a bounded (Lipschitz) domain $\Omega \subset \mathbb{R}^3$ in a reference configuration.

Elastic free energy at constant temperature θ

$$I_{\theta}(\mathbf{y}) = \int_{\Omega} \psi(D\mathbf{y}(\mathbf{x}), \theta) \, d\mathbf{x}.$$
 free-energy density

Properties of free-energy density: $\psi(\mathbf{A}, \theta)$ defined for $\mathbf{A} \in D(\psi), \theta \in I$, where $D(\psi)$ is an open subset of $GL^+(3,\mathbb{R}) = \{\mathbf{A} \in M^{3\times 3} : \det \mathbf{A} > 0\}.$

(i) (frame-indifference)

 $\psi(\mathbf{Q}\mathbf{A},\theta) = \psi(\mathbf{A},\theta)$ for all $\mathbf{Q} \in SO(3), \mathbf{A} \in D(\psi), \theta \in I$

(ii) (material symmetry)

 $\psi(\mathbf{AM}, \theta) = \psi(\mathbf{A}, \theta)$ for all $\mathbf{M} \in \mathcal{S}, \mathbf{A} \in D(\psi), \theta \in I$, where \mathcal{S} is a subgroup of the set of unimodular matrices $SL(3) = {\mathbf{A} \in M^{3 \times 3} : \det \mathbf{A} = 1}.$

For consistency, we need $SO(3) D(\psi) S = D(\psi)$.

Energy minimization problem

Minimize

$$I_{\theta}(\mathbf{y}) = \int_{\Omega} \psi(D\mathbf{y}(\mathbf{x}), \theta) d\mathbf{x}$$

among (invertible) $\mathbf{y}:\Omega \to \mathbb{R}^3$ subject to

$$\mathbf{y}|_{\partial\Omega_1}=\bar{\mathbf{y}}.$$

In order that we can be assured that a minimizer exists we typically need that in addition $\psi(\cdot, \theta)$ is quasiconvex and coercive. However we will see that for elastic crystals neither condition is generally satisfied.

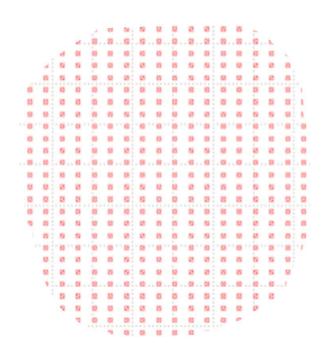
Bravais lattices

A Bravais lattice is an infinite lattice of points in \mathbb{R}^3 generated by linear combinations with integer coefficients of three linearly independent basis vectors $\mathbf{b_1}, \mathbf{b_2}, \mathbf{b_3}$.

Setting $B=(b_1,b_2,b_3)\in \mathit{GL}(3,\mathbb{R})$ we write the corresponding Bravais lattice as

$$\mathcal{L}(\mathbf{B}) = \{ m_1 \mathbf{b}_1 + m_2 \mathbf{b}_2 + m_3 \mathbf{b}_3 : m_i \in \mathbb{Z} \}.$$

Notice that if $\mathbf{B} = (B_{ij})$ then $B_{ij} = \mathbf{b}_j \cdot \mathbf{e}_i$, where \mathbf{e}_i is the unit vector in the i^{th} coordinate direction.



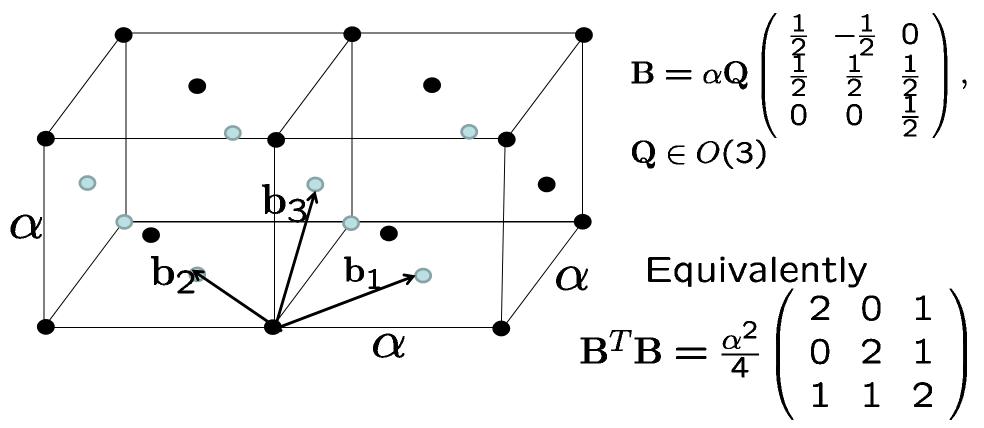
We think of a single crystal as consisting of a part of a Bravais lattice consisting of many points, each point representing an atomic position.

Typical alloys are solid solutions of different elements, so that each lattice site has a probability of being occupied by a particular element according to the overall composition.

Some crystals form *multilattices* which are finite unions of translates of a Bravais lattice. We will not consider these.

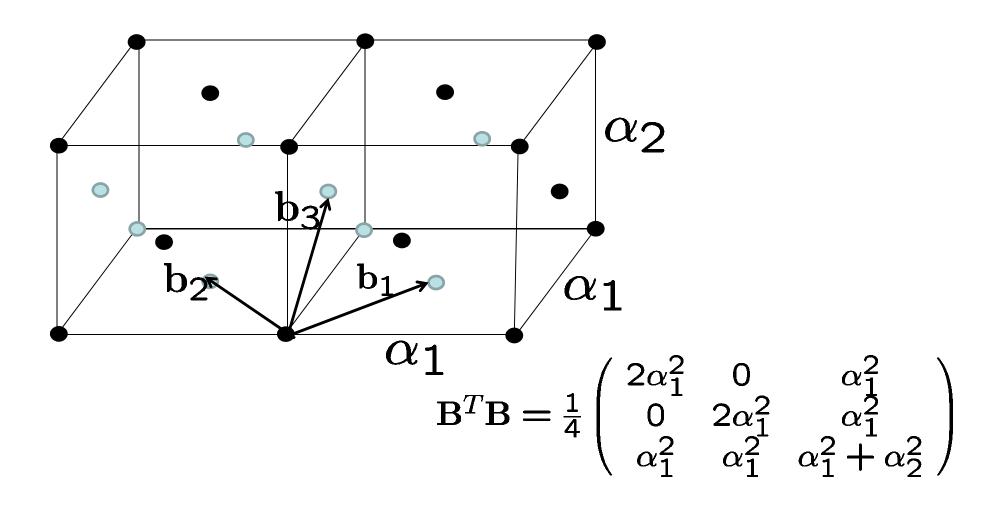
Examples of Bravais lattices.

1. Face-centred cubic (fcc)

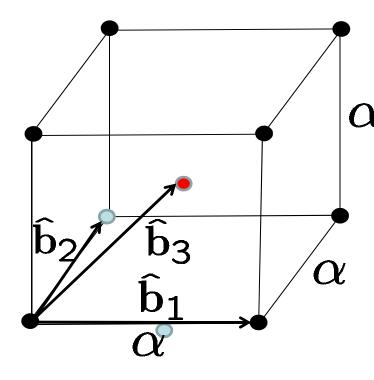


Note that any atom can be taken as the origin.

2. Face-centred tetragonal (fct)



3. Body-centred cubic (bcc)



Could take the basis vectors as $\hat{\mathbf{b}}_i$ shown, but the conventional and lpha more symmetric choice is

$$\mathbf{B} = rac{lpha}{2} \mathbf{Q} \left(egin{array}{cccc} -1 & 1 & 1 \ 1 & -1 & 1 \ 1 & 1 & -1 \end{array}
ight), \ \mathbf{Q} \in O(3)$$
 for which $\mathbf{B}^T \mathbf{B} = rac{lpha^2}{4} \left(egin{array}{cccc} 3 & -1 & -1 \ -1 & 3 & -1 \ -1 & -1 & 3 \end{array}
ight).$

Body-centered tetragonal (bct) treated similarly.

 $GL(3,\mathbb{Z}) = \{ \mu = (\mu_{ij}) : \mu_{ij} \in \mathbb{Z}, \det \mu = \pm 1 \}.$

Theorem $\mathcal{L}(B) = \mathcal{L}(C)$ iff

 $\mathbf{B} = \mathbf{C}\boldsymbol{\mu}$, for some $\boldsymbol{\mu} \in GL(3, \mathbb{Z})$.

Proof. Let $B = (b_1, b_2, b_3), C = (c_1, c_2, c_3).$

If $\mathcal{L}(B) = \mathcal{L}(C)$ then $b_i = \mu_{ji}c_j$ for some $\mu = (\mu_{ij}) \in \mathbb{Z}^{3\times 3}$, so that $B = C\mu$. Similarly $C = B\mu'$ for some $\mu' \in \mathbb{Z}^{3\times 3}$. So $\mu' = \mu^{-1}$ and $\mu \in GL(3,\mathbb{Z})$.

Conversely, if $\mathbf{B} = \mathbf{C}\mu$ then $\mathbf{b}_i = \mu_{ji}\mathbf{c}_j$ and so $\mathcal{L}(\mathbf{B}) \subset \mathcal{L}(\mathbf{C})$. Similarly $\mathcal{L}(\mathbf{C}) \subset \mathcal{L}(\mathbf{B})$.

Corollary. If $F \in GL(3,\mathbb{R})$, then $\mathcal{L}(FB) = \mathcal{L}(B)$ iff $F = B\mu B^{-1}$ for some $\mu \in GL(3,\mathbb{Z})$.

Definition. The point group P(B) of $\mathcal{L}(B)$ is the set of $Q \in O(3)$ such that $\mathcal{L}(QB) = \mathcal{L}(B)$.

By the Corollary,

$$P(B) = \{Q \in O(3) : B^{-1}QB \in GL(3, \mathbb{Z})\}.$$

If $\mathbf{B}^{-1}\mathbf{Q}\mathbf{B} = \mu \in GL(3,\mathbb{Z})$ then $\mu^T \mu = \mathbf{B}^T \mathbf{B}^{-T}$, and so $P(\mathbf{B})$ is a *finite* group.

If $\mathbf{R} \in O(3)$ then

$$P(RB) = \{Q : R^TQR \in \mathcal{L}(B)\}$$
$$= \{R\tilde{Q}R^T : \tilde{Q} \in \mathcal{L}(B)\}$$
$$= RP(B)R^T,$$

so that P(RB) is orthogonally conjugate to P(B).

The point groups of the simple cubic ($\mathbf{B} = \alpha \mathbf{Q} \mathbf{1}$), fcc and bcc lattices are the same, namely (taking $\mathbf{Q} = \mathbf{1}$) the cubic group P^c consisting of the 48 orthogonal tranformations mapping the unit cube $(0,1)^3$ into itself.

Thus the point group does not discriminate between the different possible cubic lattices, and to do this one needs to consider the *lattice group*

$$L(\mathbf{B}) = \{ \mu \in GL(3, \mathbb{Z}) : \mathbf{B}\mu\mathbf{B}^{-1} \in O(3) \}$$

 $L(\mathbf{QB}) = L(\mathbf{B})$ for all $\mathbf{Q} \in O(3)$. However $L(\mathbf{B})$ depends on the lattice basis, so that

$$L(\mathrm{B}\mu) = \mu^{-1}L(\mathrm{B})\mu$$
 for all $\mu \in GL(3,\mathbb{Z})$.

The corresponding conjugacy classes determine 14 distinct Bravais lattices (triclinic, monoclinic, orthorhombic, rhombohedral, tetragonal, hexagonal and cubic).

We now fix a reference lattice $\mathcal{L}(\mathbf{B})$ with $\mathbf{B} \in GL^+(3,\mathbb{R})$, and suppose that there is a free-energy function $\varphi(\mathbf{C},\theta)$ defined for \mathbf{C} in an open neighbourhood D of \mathbf{B} in $GL^+(3,\mathbb{R})$ satisfying

$$\mathbf{Q}D\boldsymbol{\mu}\subset D$$
 for all $\mathbf{Q}\in SO(3), \boldsymbol{\mu}\in GL^+(3,\mathbb{Z})(=SL(3,\mathbb{Z}))$

and temperatures θ in some interval I, such that for all $\mathbf{C} \in D, \theta \in I$

(i)
$$\varphi(QC, \theta) = \varphi(C, \theta)$$
 for all $Q \in SO(3)$,

(ii)
$$\varphi(\mathbf{C}\mu, \theta) = \varphi(\mathbf{C}, \theta)$$
 for all $\mu \in GL^+(3, \mathbb{Z})$.

That is, the free-energy is rotationally invariant and depends only on the lattice $\mathcal{L}(\mathbf{C})$.

We now use the Cauchy-Born rule (an implicit coarse-graining) to relate the macroscopic free-energy density ψ to φ . Choosing a reference configuration in which the crystal lattice is \mathbf{B} , we assume that

$$\psi(\mathbf{A},\theta)=\varphi(\mathbf{A}\mathbf{B},\theta), \ \text{for } \mathbf{A}\in D(\psi), \theta\in I,$$
 where $D(\psi)=D\mathbf{B}^{-1}.$

Thus ψ inherits the invariances for all $\mathbf{A} \in D(\psi), \theta \in I$,

- (i) $\psi(\mathbf{Q}\mathbf{A}, \theta) = \psi(\mathbf{A}, \theta)$ for all $\mathbf{Q} \in SO(3)$,
- (ii) $\psi(\mathbf{A}\mathbf{B}\boldsymbol{\mu}\mathbf{B}^{-1},\theta) = \psi(\mathbf{A},\theta)$ for all $\boldsymbol{\mu} \in GL^+(3,\mathbb{Z})$.

Hence ψ has symmetry group $\mathcal{S} = \mathbf{B} GL^+(3, \mathbb{Z}) \mathbf{B}^{-1}$, which is a subgroup of $SL(3, \mathbb{R})$.

Martensitic phase transformations

We now assume that $\varphi(\cdot,\theta)$ is bounded below for each $\theta \in I$ and attains a minimum. We can suppose that the minimum value is zero. Hence also the minimum value of $\psi(\cdot,\theta)$ is zero.

Let
$$K(\theta) = \{ \mathbf{A} \in D(\psi) : \psi(\mathbf{A}, \theta) = 0 \}.$$

Then
$$SO(3)K(\theta)S = K(\theta)$$
.

We consider a martensitic phase transformation that takes place at the temperature θ_c , with the lattice being cubic (fcc or bcc) for $\theta \geq \theta_c$.

This is described by a change of shape of the lattice with respect to the lattice **B** at θ_c given by $\mathbf{U}(\theta) = \mathbf{U}(\theta)^T > 0$.

(Note that by the polar decomposition theorem we can write any $\mathbf{A} \in GL^+(3,\mathbb{R})$ in the form $\mathbf{A} = \mathbf{R}\mathbf{U}$ with $\mathbf{R} \in SO(3)$, $\mathbf{U} = \mathbf{U}^T > 0$, so that we can always describe the change of shape by such a \mathbf{U} .)

Thus we assume that

$$K(\theta) = \begin{cases} \alpha(\theta)SO(3)S & \theta > \theta_c \\ SO(3)S \cup SO(3)U(\theta_c)S & \theta = \theta_c \\ SO(3)U(\theta)S & \theta < \theta_c \end{cases},$$

where $\alpha(\theta) > 0$ gives the thermal expansion of the cubic lattice, with $\alpha(\theta_c) = 1$.

Reduction of the symmetry group

It is convenient to consider a simplified theory in which we only consider those μ that generate elements of the point group, thus ignoring large lattice invariant shears that are typically associated with plasticity.

Theorem. (Ericksen-Pitteri neighbourhood) Given a Bravais lattice $\mathbf{B} \in GL^+(3,\mathbb{R})$ there is an open neighbourhood $\mathcal N$ of SO(3) in $GL^+(3,\mathbb{R})$ such that (i) $SO(3)\mathcal N=\mathcal N$

(ii) if $\mu \in GL^+(3,\mathbb{Z})$ then either $\mathcal{N}B\mu B^{-1} = \mathcal{N}$ (in which case $B\mu B^{-1} \in P(B)$), or $\mathcal{N}B\mu B^{-1} \cap \mathcal{N} = \emptyset$.

Thus, if we restrict $\psi(\mathbf{A}, \theta)$ to $\mathcal N$ then the symmetry group of ψ is reduced to

$$P^{+}(B) = P(B) \cap SO(3) = S \cap SO(3).$$

Proof. We claim that a suitable neighbourhood is given by

$$\mathcal{N}_{\varepsilon} = \{\mathbf{A} : |\mathbf{A}^T\mathbf{A} - \mathbf{1}| < \varepsilon\}$$

for $\varepsilon > 0$ sufficiently small.

Note that $SO(3)\mathcal{N}_{\varepsilon} = \mathcal{N}_{\varepsilon}SO(3) = \mathcal{N}_{\varepsilon}$, since if $\mathbf{Q} \in SO(3)$

$$|(\mathbf{A}\mathbf{Q})^T\mathbf{A}\mathbf{Q} - 1| = |\mathbf{Q}^T(\mathbf{A}^T\mathbf{A} - 1)\mathbf{Q}| = |\mathbf{A}^T\mathbf{A} - 1|.$$

Suppose for contradiction that the result is false for $\varepsilon=j^{-1}$, j=1,2... Then for each j there exists $\mu^{(j)}$ with $\mathrm{B}\mu^{(j)}\mathrm{B}^{-1}\not\in P(\mathrm{B})$ and $\mathrm{C}^{(j)}=\mathrm{D}^{(j)}\mathrm{B}\mu^{(j)}\mathrm{B}^{-1}\in\mathcal{N}_{1/j}$.

We can assume that $C^{(j)} \to R, D^{(j)} \to \tilde{R}, \mu^{(j)} \to \mu$, where $R, \tilde{R} \in SO(3)$, and hence $B\mu B^{-1} \in P(B)$. But $\mu^{(j)} \to \mu$ implies $\mu^{(j)} = \mu$ for j sufficiently large. Contradiction.

If we apply this result to the phase transformation case then we can restrict the symmetry group to $P^+(B)$ provided $U(\theta)$ is sufficiently close to 1 and θ sufficiently close to θ_c .

Thus, restricting ψ to \mathcal{N} , and defining as before

$$K(\theta) = \{ \mathbf{A} \in \mathcal{N} : \psi(\mathbf{A}, \theta) = 0 \},$$

we assume that

$$K(\theta) = \begin{cases} \alpha(\theta)SO(3) & \theta > \theta_c \\ SO(3) \cup \bigcup_{i=1}^{M} SO(3) \mathbf{U}_i(\theta_c) & \theta = \theta_c \\ \bigcup_{i=1}^{M} SO(3) \mathbf{U}_i(\theta) & \theta < \theta_c \end{cases},$$

where $U_i(\theta)$ are the distinct matrices $\mathbf{Q}^T\mathbf{U}(\theta)\mathbf{Q}$ for $\mathbf{Q} \in P^c \cap SO(3) = P^{24}$.

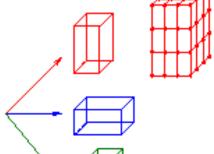
M is the number of martensitic variants. If we let

$$G_i = \{ \mathbf{Q} \in P^c : \mathbf{Q}^T \mathbf{U}(\theta) \mathbf{Q} = \mathbf{U}_i(\theta) \}$$

then $|G_i|$ is independent of i and so M divides 24.

Example 1. (cubic-to-tetragonal)

(e.g. InTl, NiAl, NiMn, BaTiO₃)



$$\mathbf{U}(\theta) = \operatorname{diag}(\eta_2, \eta_1, \eta_1),$$

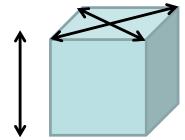
where
$$\eta_1 = \eta_1(\theta) > 0$$
, $\eta_2 = \eta_2(\theta) > 0$, $\eta_1 \neq \eta_2$.

Then M=3 and

$$U_1(\theta) = diag(\eta_2, \eta_1, \eta_1), U_2(\theta) = diag(\eta_1, \eta_2, \eta_1),$$

$$U_3(\theta) = diag(\eta_1, \eta_1, \eta_2).$$

Example 2. (cubic-to-orthorhombic) (e.g. CuAlNi)

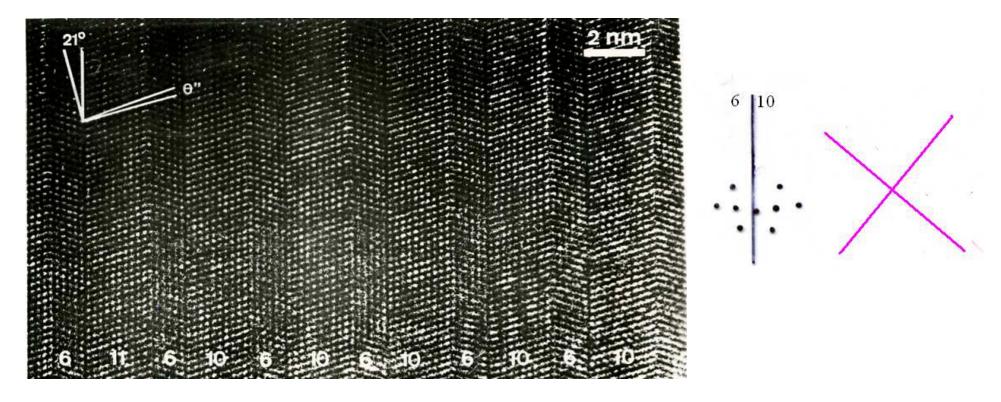


$$\mathbf{U}(\theta) = \begin{pmatrix} \frac{\alpha + \gamma}{2} & \frac{\alpha - \gamma}{2} & 0\\ \frac{\alpha - \gamma}{2} & \frac{\alpha + \gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad \alpha = \alpha(\theta) > 0, \beta = \beta(\theta) > 0, \\ \gamma = \gamma(\theta) > 0$$

$$M = 6$$

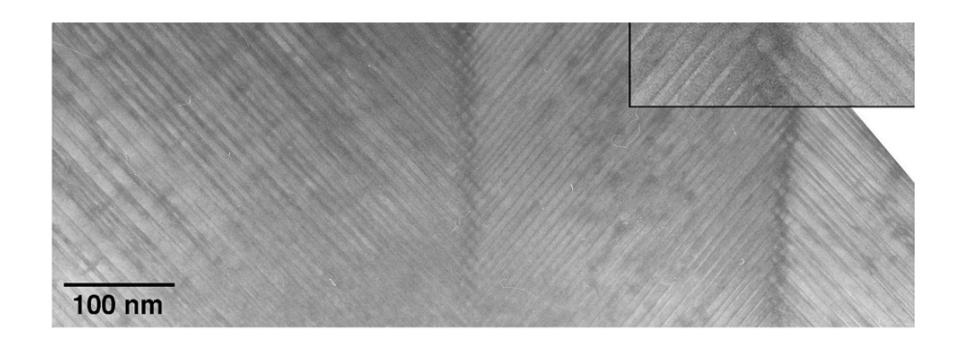
$$U_{1} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2} & 0\\ \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad U_{2} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2} & 0\\ \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} & 0\\ 0 & 0 & \beta \end{pmatrix}, \quad U_{3} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\alpha-\gamma}{2}\\ 0 & \beta & 0\\ \frac{\alpha-\gamma}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix},$$

$$U_{4} = \begin{pmatrix} \frac{\alpha+\gamma}{2} & 0 & \frac{\gamma-\alpha}{2}\\ 0 & \beta & 0\\ \frac{\gamma-\alpha}{2} & 0 & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad U_{5} = \begin{pmatrix} \beta & 0 & 0\\ 0 & \frac{\alpha+\gamma}{2} & \frac{\alpha-\gamma}{2}\\ 0 & \frac{\alpha-\gamma}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix}, \quad U_{6} = \begin{pmatrix} \beta & 0 & 0\\ 0 & \frac{\alpha+\gamma}{2} & \frac{\gamma-\alpha}{2}\\ 0 & \frac{\gamma-\alpha}{2} & \frac{\alpha+\gamma}{2} \end{pmatrix}.$$

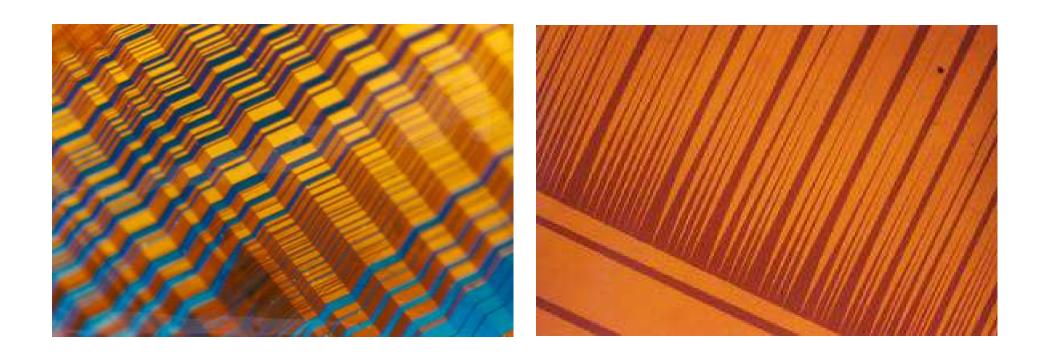


Atomistically sharp interfaces for cubic to tetragonal transformation in NiMn
Baele, van Tenderloo, Amelinckx

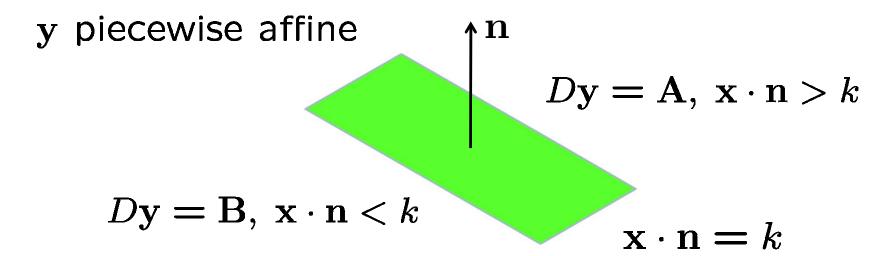
Macrotwins in $Ni_{65}Al_{35}$ involving two tetragonal variants (Boullay/Schryvers)



Martensitic microstructures in CuAlNi (Chu/James)



The Hadamard jump condition



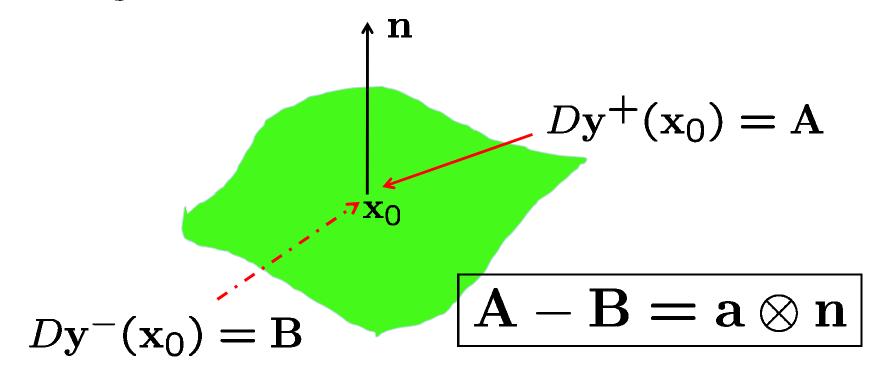
Let C = A - B. Then Cx = 0 if $x \cdot n = 0$. Thus $C(z - (z \cdot n)n) = 0$ for all z, and so $Cz = (Cn \otimes n)z$.

Hence

$$\mathbf{A} - \mathbf{B} = \mathbf{a} \otimes \mathbf{n}$$

Hadamard jump condition

More generally this holds for y piecewise C^1 , with Dy jumping across a C^1 surface.



(See later for generalizations when y not piecewise C^1 .)

Theorem

Let $\mathbf{U} = \mathbf{U}^T > 0$, $\mathbf{V} = \mathbf{V}^T > 0$. Then $SO(3)\mathbf{U}$, $SO(3)\mathbf{V}$ are rank-one connected iff

$$\mathbf{U}^2 - \mathbf{V}^2 = c(\mathbf{n} \otimes \tilde{\mathbf{n}} + \tilde{\mathbf{n}} \otimes \mathbf{n}) \tag{*}$$

for unit vectors \mathbf{n} , $\tilde{\mathbf{n}}$ and some $c \neq 0$. If $\tilde{\mathbf{n}} \neq \pm \mathbf{n}$ there are exactly two rank-one connections between \mathbf{V} and $\mathrm{SO}(3)\,\mathbf{U}$ given by

$${\rm RU}={\rm V}+{\rm a}\otimes{\rm n},\quad \tilde{\rm R}{\rm U}={\rm V}+\tilde{\rm a}\otimes\tilde{\rm n},$$
 for suitable ${\rm R},\tilde{\rm R}\in{\rm SO}(3),\;{\rm a},\tilde{\rm a}\in\mathbb{R}^3.$

(JB/Carstensen version of standard result cf. Ericksen, Gurtin, JB/James ...)

Proof. Note first that

$$det(V + a \otimes n) = det V \cdot det(1 + V^{-1}a \otimes n)$$
$$= det V \cdot (1 + V^{-1}a \cdot n).$$

Hence if $1+V^{-1}a\cdot n>0$, then by the polar decomposition theorem $\mathbf{R}\mathbf{U}=\mathbf{V}+\mathbf{a}\otimes\mathbf{n}$ for some $\mathbf{R}\in\mathsf{SO}(3)$ if and only if

$$\begin{aligned} \mathbf{U}^2 &= & (\mathbf{V} + \mathbf{n} \otimes \mathbf{a})(\mathbf{V} + \mathbf{a} \otimes \mathbf{n}) \\ &= & \mathbf{V}^2 + \mathbf{V} \mathbf{a} \otimes \mathbf{n} + \mathbf{n} \otimes \mathbf{V} \mathbf{a} + |\mathbf{a}|^2 \mathbf{n} \otimes \mathbf{n} \\ &= & \mathbf{V}^2 + \left(\mathbf{V} \mathbf{a} + \frac{1}{2} |\mathbf{a}|^2 \mathbf{n}\right) \otimes \mathbf{n} + \mathbf{n} \otimes \left(\mathbf{V} \mathbf{a} + \frac{1}{2} |\mathbf{a}|^2 \mathbf{n}\right). \end{aligned}$$

If $a \neq 0$ then $Va + \frac{1}{2}|a|^2n \neq 0$, since otherwise

$$\mathbf{V}\mathbf{a} \cdot \mathbf{V}^{-1}\mathbf{a} + \frac{1}{2}|\mathbf{a}|^2 \mathbf{V}^{-1}\mathbf{a} \cdot \mathbf{n} = 0,$$

i.e. $2 + V^{-1}a \cdot n = 0$. This proves the necessity of (*).

Conversely, suppose (*) holds. We need to find $\mathbf{a} \neq \mathbf{0}$ such that $\mathbf{Va} + \frac{1}{2}|\mathbf{a}|^2\mathbf{n} = c\tilde{\mathbf{n}}$ and $\mathbf{1} + \mathbf{V}^{-1}\mathbf{a} \cdot \mathbf{n} > 0$. So we need to find t such that

$$a = cr + ts$$

where $|c\mathbf{r} + t\mathbf{s}|^2 + 2t = 0$ and $1 + (c\mathbf{r} + t\mathbf{s}) \cdot \mathbf{s} > 0$, where we have written $\mathbf{r} = \mathbf{V}^{-1}\tilde{\mathbf{n}}$, $\mathbf{s} = \mathbf{V}^{-1}\mathbf{n}$.

The quadratic for t has the form

$$t^{2}|\mathbf{s}|^{2} + 2t(1 + c\mathbf{r} \cdot \mathbf{s}) + c^{2}|\mathbf{r}|^{2} = 0$$
 with roots

$$t = \frac{-(1 + c\mathbf{r} \cdot \mathbf{s}) \pm \sqrt{(1 + c\mathbf{r} \cdot \mathbf{s})^2 - c^2 |\mathbf{r}|^2 |\mathbf{s}|^2}}{|\mathbf{s}|^2}.$$

Since det $U^2 = \det V^2 \det(1 + c(\mathbf{r} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{r}))$,

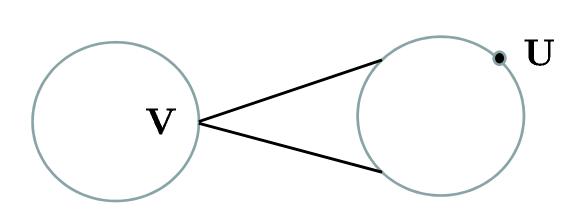
$$det(1 + c(\mathbf{r} \otimes \mathbf{s} + \mathbf{s} \otimes \mathbf{r})) = (1 + c\mathbf{r} \cdot \mathbf{s})^2 - c^2|\mathbf{r}|^2|\mathbf{s}|^2$$

is positive and the roots are real. In order to satisfy $1 + c\mathbf{r} \cdot \mathbf{s} + t|\mathbf{s}|^2 > 0$ we must take the + sign, giving a unique \mathbf{a} , and thus unique \mathbf{R} such that $\mathbf{R}\mathbf{U} = \mathbf{V} + \mathbf{a} \otimes \mathbf{n}$.

Similarly we get a unique $\tilde{\mathbf{a}}$ and $\tilde{\mathbf{R}}$ such that $\tilde{\mathbf{R}}\mathbf{U} = \mathbf{V} + \tilde{\mathbf{a}} \otimes \tilde{\mathbf{n}}$.

To complete the proof it suffices to check the following **Lemma**

If $c(\mathbf{n} \otimes \tilde{\mathbf{n}} + \tilde{\mathbf{n}} \otimes \mathbf{n}) = c'(\tilde{\mathbf{p}} \otimes \mathbf{p} + \mathbf{p} \otimes \tilde{\mathbf{p}})$ for unit vectors $\mathbf{p}, \tilde{\mathbf{p}}$ and some constant c', then either $\mathbf{p} \otimes \tilde{\mathbf{p}} = \pm \mathbf{n} \otimes \tilde{\mathbf{n}}$ or $\mathbf{p} \otimes \tilde{\mathbf{p}} = \pm \tilde{\mathbf{n}} \otimes \mathbf{n}$.



Corollaries:

- 1. There are no rank-one connections between matrices A, B belonging to the *same* energy well. Proof. In this case U = V, contradicting $c \neq 0$.
- 2. There is a rank-one connection between pairs of matrices $A \in SO(3)$ and $B \in SO(3)U$ if and only if U has middle eigenvalue 1.

(Thus it is in generically impossible to have an interface between constant gradients in the austenite and martensite energy wells.)

Proof. If there is a rank-one connection then 1 is an eigenvalue since $det(U^2 - 1) = 0$.

Choosing e with $\tilde{\mathbf{n}} \cdot \mathbf{e} > 0$, $\mathbf{n} \cdot \mathbf{e} > 0$ and $\tilde{\mathbf{n}} \cdot \mathbf{e} > 0$, $\mathbf{n} \cdot \mathbf{e} < 0$, we see that 1 is the middle eigenvalue. Conversely, if

$$U = \lambda_1 e_1 \otimes e_1 + e_2 \otimes e_2 + \lambda_3 e_3 \otimes e_3$$

with eigenvectors e_i and eigenvalues $\lambda_1 \leq 1 \leq \lambda_3$ then

$$U^{2} - 1 = \frac{\lambda_{3}^{2} - \lambda_{1}^{2}}{2} \left((\alpha \mathbf{e}_{1} + \beta \mathbf{e}_{3}) \otimes (-\alpha \mathbf{e}_{1} + \beta \mathbf{e}_{3}) + (-\alpha \mathbf{e}_{1} + \beta \mathbf{e}_{3}) \otimes (\alpha \mathbf{e}_{1} + \beta \mathbf{e}_{3}) \right),$$

where
$$\alpha=\sqrt{\frac{1-\lambda_1^2}{\lambda_3^2-\lambda_1^2}}, \beta=\sqrt{\frac{\lambda_3^2-1}{\lambda_3^2-\lambda_1^2}}.$$

3. If U_i, U_j are distinct martensitic variants then $SO(3)U_i$ and $SO(3)U_j$ are rank-one connected if and only if $\det(U_i^2 - U_j^2) = 0$, and the possible interface normals are orthogonal. Variants separated by such interfaces are called *twins*.

Proof. Clearly $\det(\mathbf{U}_i^2 - \mathbf{U}_j^2) = 0$ is necessary, since the matrix on the RHS of (*) is of rank at most 2.

Conversely suppose that $\det(\mathbf{U}_i^2 - \mathbf{U}_j^2) = 0$. Then $\mathbf{U}_i^2 - \mathbf{U}_j^2$ has the spectral decomposition

$$\mathbf{U}_i^2 - \mathbf{U}_j^2 = \lambda \mathbf{e} \otimes \mathbf{e} + \mu \hat{\mathbf{e}} \otimes \hat{\mathbf{e}}.$$

Since $\mathbf{U}_j = \mathbf{R}\mathbf{U}_i\mathbf{R}^T$ for some $\mathbf{R} \in P^{24}$ it follows that $\operatorname{tr}(\mathbf{U}_i^2 - \mathbf{U}_j^2) = 0$. Hence $\mu = -\lambda$ and

$$\begin{array}{rcl} \mathbf{U}_i^2 - \mathbf{U}_j^2 &=& \lambda (\mathbf{e} \otimes \mathbf{e} - \hat{\mathbf{e}} \otimes \hat{\mathbf{e}}) \\ &=& \lambda \left(\frac{\mathbf{e} + \hat{\mathbf{e}}}{\sqrt{2}} \otimes \frac{\mathbf{e} - \hat{\mathbf{e}}}{\sqrt{2}} + \frac{\mathbf{e} - \hat{\mathbf{e}}}{\sqrt{2}} \otimes \frac{\mathbf{e} + \hat{\mathbf{e}}}{\sqrt{2}} \right), \\ \text{as required.} \end{array}$$

Remark: Another equivalent condition due to Forclaz is that $\det(\mathbf{U}_i - \mathbf{U}_j) = 0$. This is because of the surprising identity (not valid in higher dimensions)

$$\det(\mathbf{U}_i^2 - \mathbf{U}_j^2) = (\lambda_1 + \lambda_2)(\lambda_2 + \lambda_3)(\lambda_3 + \lambda_1) \det(\mathbf{U}_i - \mathbf{U}_j).$$

Mallard's law

Let $U = U^T > 0$, $V = V^T > 0$ be such that

$$\mathbf{V} = (-1 + 2\mathbf{e} \otimes \mathbf{e})\mathbf{U}(-1 + 2\mathbf{e} \otimes \mathbf{e}), \tag{\dagger}$$

where $|\mathbf{e}| = 1$. Then $SO(3)\mathbf{U}$ and $SO(3)\mathbf{V}$ are rank-one connected with rank-one connections given by

$$\mathbf{QV} = \mathbf{U} + \mathbf{a} \otimes \mathbf{n},$$

$$\mathbf{a} \otimes \mathbf{n} = \begin{cases} 2\left(\frac{\mathbf{U}^{-1}\mathbf{e}}{|\mathbf{U}^{-1}\mathbf{e}|^2} - \mathbf{U}\mathbf{e}\right) \otimes \mathbf{e} & \text{(Type I)}, \\ 2\mathbf{U}\mathbf{e} \otimes \left(\mathbf{e} - \frac{\mathbf{U}^2\mathbf{e}}{|\mathbf{U}\mathbf{e}|^2}\right) & \text{(Type II)}. \end{cases}$$

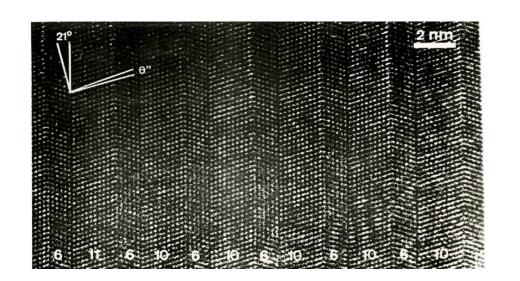
(In fact Chen et al (2013) show that if $V = RUR^T$ for some $R \in SO(3)$ then SO(3)U and SO(3)V are rank-one connected iff (†) holds for some e.)

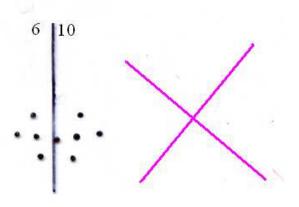
For example, for cubic-to-tetragonal we can take

$$\mathbf{U}_1 = \text{diag}(\eta_2, \eta_1, \eta_1), \ \mathbf{U}_2 = \text{diag}(\eta_1, \eta_2, \eta_1),$$

and then

$$\begin{split} U_1^2 - U_2^2 &= \frac{1}{2} (\eta_2^2 - \eta_1^2) \Big((e_2 - e_1) \otimes (e_2 + e_1) + (e_2 + e_1) \otimes (e_2 - e_1) \Big), \\ \text{so that twinning is on [110] planes.} \end{split}$$



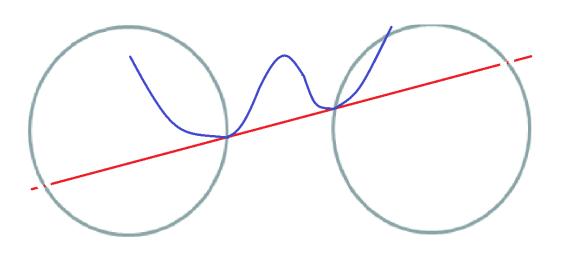


Convexity conditions

Let $\psi: M^{3\times 3} \to \mathbb{R}$ be continuous. We say that ψ is rank-one convex if $t \mapsto \psi(\mathbf{A} + t\mathbf{a} \otimes \mathbf{n})$ is convex for all $\mathbf{A} \in M^{3\times 3}$, and $\mathbf{a}, \mathbf{n} \in \mathbb{R}^3$, Null Lagrangians ψ is polyconvex if $\psi(\mathbf{A}) = g(\mathbf{A}, \operatorname{cof} \mathbf{A}, \det \mathbf{A})$ for all $\mathbf{A} \in M^{3\times 3}$ for some convex g, ψ is quasiconvex if

$$\int_{\Omega} \psi(D\mathbf{z}(\mathbf{x})) \, d\mathbf{x} \geq \int_{\Omega} \psi(\mathbf{A}) \, d\mathbf{x}$$
 definition independent of Ω or $C_0^{\infty}(\Omega; \mathbb{R}^3)$.

 ψ polyconvex $\Rightarrow \psi$ quasiconvex $\Rightarrow \psi$ rank-one convex $\not\leftarrow$ Roughly N&S $\not\leftarrow$ for existence of minimizers



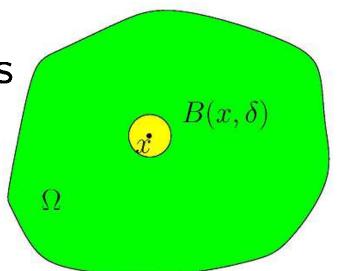
The free-energy function $\psi(\cdot,\theta)$ is not quasiconvex because the existence of rank-one connections between energy wells implies that $\psi(\cdot,\theta)$ is not rank-one convex.

So we expect the minimum of the energy in general not to be attained, with the gradients $D\mathbf{y}^{(j)}$ of minimizing sequences generating *infinitely fine* microstructures.

Gradient Young measures

Given a sequence of gradients $D\mathbf{y}^{(j)}$, fix j, \mathbf{x}, δ .

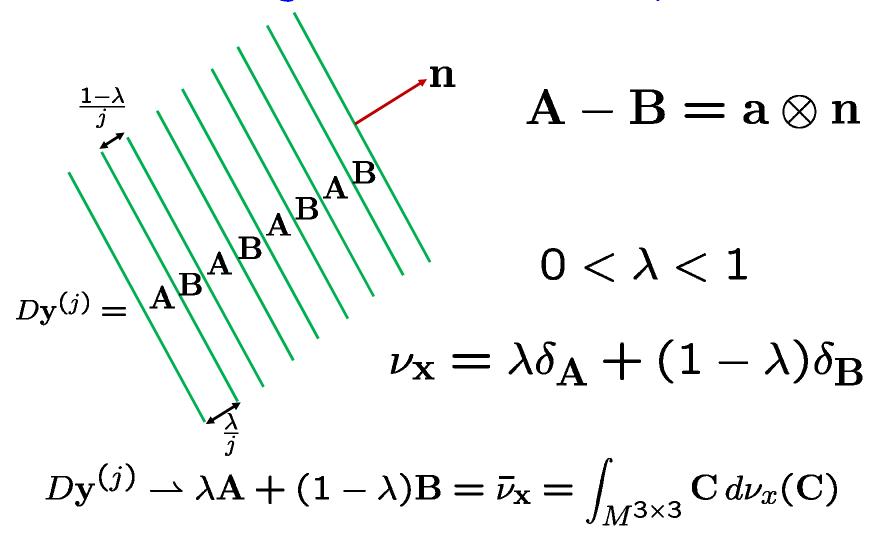
Let $E \subset M^{3\times3}$.



$$\nu_{\mathbf{x},j,\delta}(E) = \frac{\text{vol } \{\mathbf{z} \in B(\mathbf{x},\delta) : D\mathbf{y}^{(j)}(\mathbf{z}) \in E\}}{\text{vol } B(\mathbf{x},\delta)}$$

$$\nu_{\mathbf{X}}(E) = \lim_{\delta \to 0} \lim_{j \to \infty} \nu_{\mathbf{X},j,\delta}(E) \quad \begin{array}{l} \text{Gradient Young} \\ \text{measure} \end{array}$$

Gradient Young measure of a simple laminate



Theorem (Kinderlehrer/Pedregal)

A family of probability measures $(\nu_x)_{x \in \Omega}$ is the Young measure of a sequence of gradients $Dy^{(j)}$ bounded in L^{∞} if and only if

- (i) $\bar{\nu}_{\mathbf{x}}$ is a gradient (Dy, the weak limit of $D\mathbf{y}^{(j)}$)
- (ii) $\langle \nu_{\mathbf{X}}, f \rangle := \int_{M^{3\times 3}} f(\mathbf{C}) \, d\nu_{\mathbf{X}}(\mathbf{C}) \geq f(\bar{\nu}_{\mathbf{X}})$ for all quasiconvex f.

Convexifications with respect to a cone

Let G be a convex cone of continuous functions $f: M^{3\times3} \to \mathbb{R}$. Examples are the cones of convex, polyconvex, quasiconvex and rank-one convex functions.

For a continuous $\psi:M^{3 imes3} o\mathbb{R}$ define the G-convexification ψ^G of ψ by

$$\psi^G = \sup\{f \in G : f \le \psi\}.$$

Then $\psi^c \leq \psi^{pc} \leq \psi^{qc} \leq \psi^{rc}$.

 $\psi^{qc}(\mathbf{A}, \theta)$ is the macroscopic free-energy function corresponding to ψ .

Similarly, for $K \subset M^{3\times3}$ compact define (Šverák)

$$K^G = \{ \mathbf{A} : f(\mathbf{A}) \le \max_K f \text{ for all } f \in G \}.$$

Then $K^{rc} \subset K^{qc} \subset K^{pc} \subset K^c$.

Theorem (JB/Carstensen (to appear) following Krucik 2000)

$$K^G = \{ \mathbf{A} \in M^{3 \times 3} : \exists \mu \in \mathcal{P}(K) \text{ with } f(\mathbf{A}) \le \langle \mu, f \rangle \ \forall f \in G \}$$

In particular

 $K^{qc} = \{\bar{\nu} : \nu \text{ homogeneous gradient YM}, \text{supp } \nu \subset K\}.$

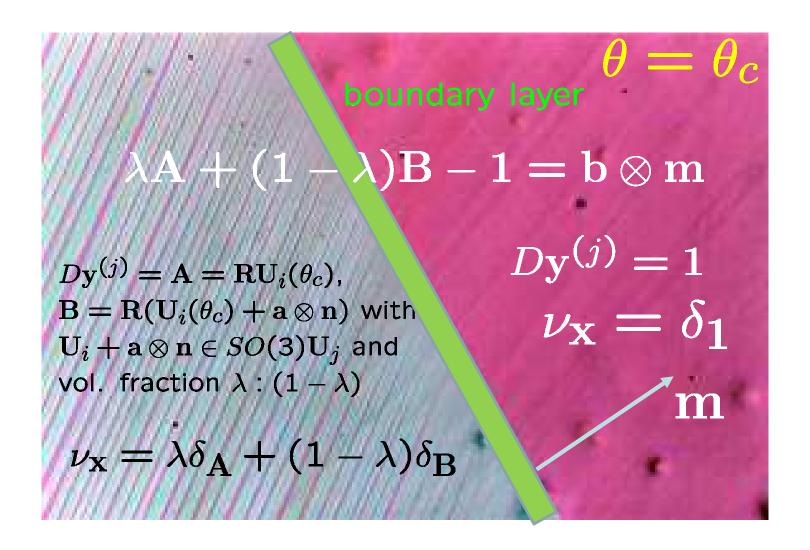
 $K(\theta)^{qc}$ is the set of macroscopic deformation gradients corresponding to zero-energy microstructures.

Phase nucleation

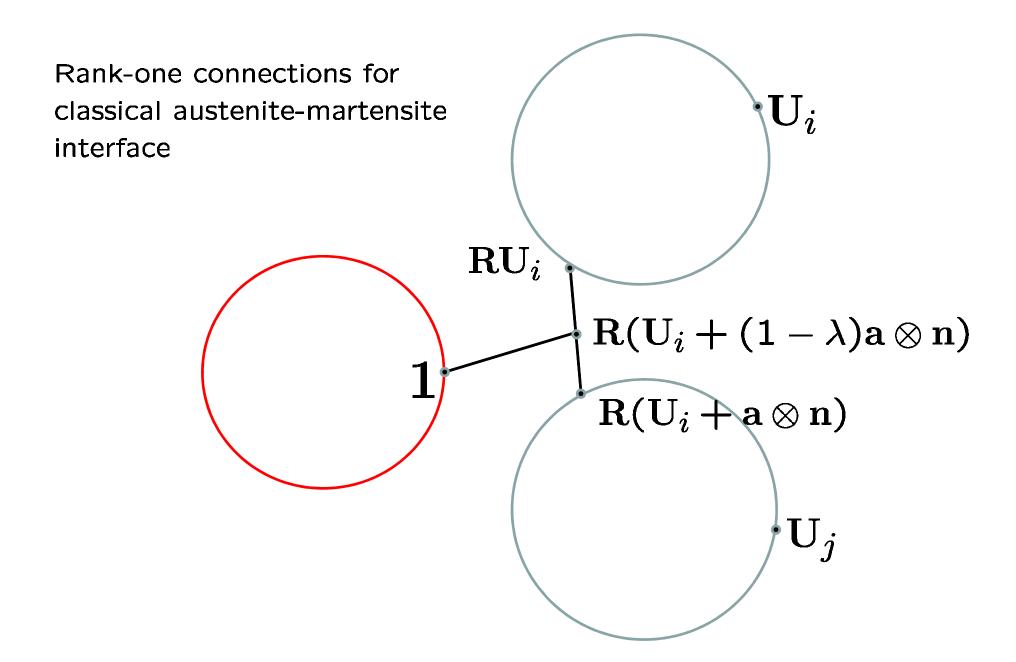
How does austenite transform to martensite as θ passes through θ_c ?

It cannot do this by means of an exact interface between austenite and martensite, because this requires the middle eigenvalue of $U_i(\theta)$ to be one, which in general is not the case (but see later).

So what does it do?



(Classical) austenite-martensite interface in CuAlNi (courtesy C-H Chu and R. D. James)



We have to solve

$$\mathbf{R}(\mathbf{U}_i+(1-\lambda)\mathbf{a}\otimes\mathbf{n})-1=\mathbf{b}\otimes\mathbf{m}$$
 for $\mathbf{R}\in SO(3), \lambda\in[0,1]$ and $\mathbf{b},\mathbf{m}\in\mathbb{R}^3.$

The solutions (JB/James 1987) give the formulae of the *crystallographic theory of martensite* (Wechsler, Lieberman & Read 1953)

Let
$$\delta^* = \mathbf{a} \cdot \mathbf{U}_i (\mathbf{U}_i^2 - 1)^{-1} \mathbf{n}$$
.

Case 1. If U_i does not have an eigenvalue 1 then there is a solution iff $\delta^* \leq -2$ and

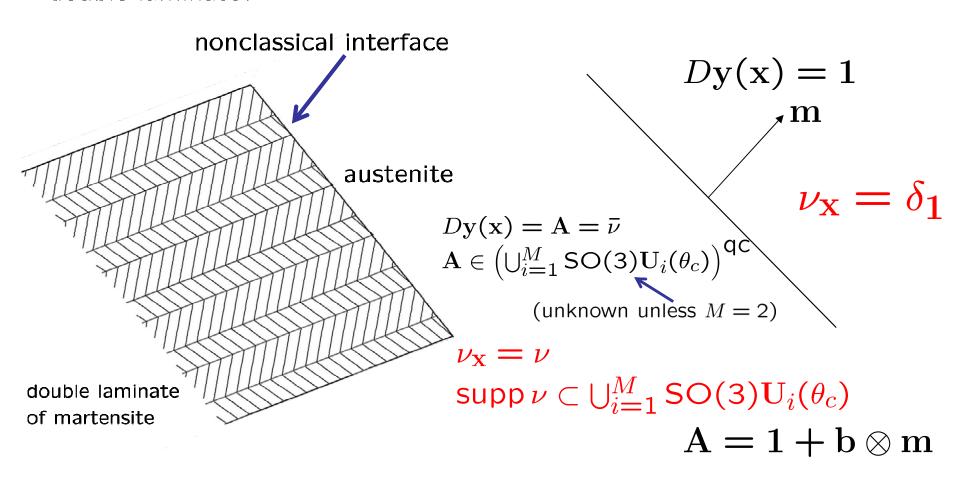
$$\operatorname{tr} \mathbf{U}_{i}^{2} - \det \mathbf{U}_{i}^{2} - 2 + \frac{1}{2\delta^{*}} |\mathbf{a}|^{2} \ge 0,$$

and if $\delta^* < -2$ there are exactly four solutions

$$(\mathbf{R}_1, \lambda^*, \mathbf{b}_1^+ \otimes \mathbf{m}_1^+), \quad (\mathbf{R}_2, \lambda^*, \mathbf{b}_1^- \otimes \mathbf{m}_1^-), \\ (\mathbf{R}_3, 1 - \lambda^*, \mathbf{b}_2^+ \otimes \mathbf{m}_2^+), \quad (\mathbf{R}_4, 1 - \lambda^*, \mathbf{b}_2^- \otimes \mathbf{m}_2^-), \\ \text{where } \lambda^* = \frac{1}{2} \left(1 - \sqrt{1 + \frac{2}{\delta^*}} \right).$$

Case 2. There are solutions for every $\lambda \in [0,1]$ iff the following cofactor conditions \mathbf{U}_i has middle eigenvalue 1 $\mathbf{a} \cdot \cot (\mathbf{U}_i^2 - 1)\mathbf{n} = 0$, $\operatorname{tr} \mathbf{U}_i^2 - \det \mathbf{U}_i^2 - \frac{|\mathbf{a}|^2}{4} - 2 \geq 0$ hold.

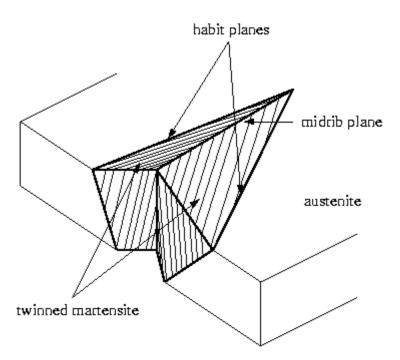
But why (cf JB/Carstensen 1997) should the martensitic microstructure be a simple laminate, rather than something more complicated, such as a double laminate?

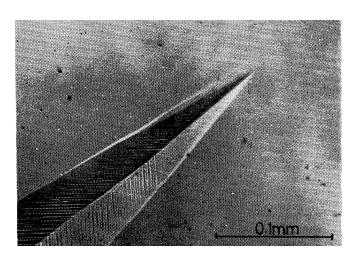


Nonclassical austenite-martensite interface in CuAlNi (H. Seiner)

Special compositions and the discovery of low hysteresis alloys.

1. The wedge microstructure (Bhattacharya 1991)





Wedge microstructure in CuAlNi Otsuka & Shimizu (1969)

Microstructure supported on energy wells impossible for cubic-to-tetragonal, possible for cubic to orthorhombic iff the eigenvalues α, β, γ of the transformation strain $U_i(\theta_c)$ satisfy a special relation $f(\alpha, \beta, \gamma) = 0$, which holds to high accuracy for the actual compositions close to Cu-14.2wt.%AI-4.3wt.%Ni used in shape-memory alloys.

2. Ultra-low hysteresis alloys

James et.al. (2013) tuned the composition of a ZnAuCu alloy so that the cofactor conditions were very nearly satisfied, with dramatic results.

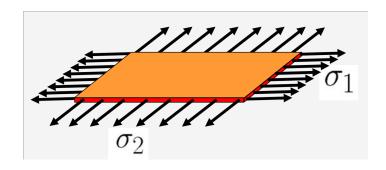
- (i) the thermal hysteresis was reduced from typical values of $50^{\circ} 70^{\circ}$ C to about 2°C.
- (ii) Material undamaged after thousands of thermal cycles (millions for a material discovered later by Quandt, Wuttig et al 2014).
- (iii) During thermal cycling remarkable martensitic microstructures are observed that are completely different in each cycle.

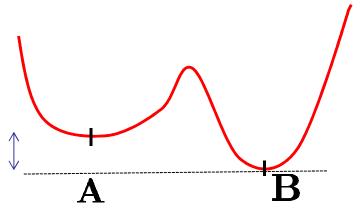
 ${\sf Zn_{45}Au_{30}Cu_2}$ ultra-low hysteresis alloy Song, Chen, Dabade, Shield, James, 2013 'Moving mask' approximation analyzed by Della Porta (2018), who has also identified further conditions on the ${\sf U}_i$ allowing new microstructures, closely satisfied in this alloy.

Incompatibility-induced metastability

Example 1

Special case of JB/James 2014 designed to explain hysteresis in the bi-axial experiments of Chu & James on CuAlNi single crystals, in which a transformation occurs under load between two martensitic variants.





Consider the integral

$$W(\mathbf{A}) - W(\mathbf{B})$$

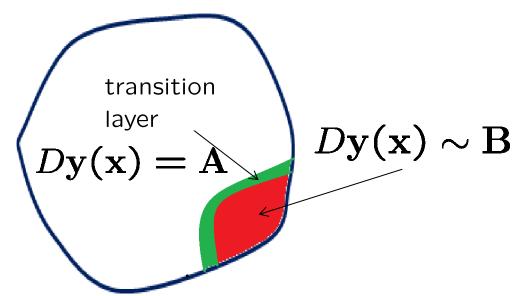
$$I(\mathbf{y}) = \int_{\Omega} W(D\mathbf{y}) \, d\mathbf{x},$$

where $W: GL^+(3,\mathbb{R}) \to \mathbb{R}$ and W has two $W(\mathbf{A}) = \psi(\mathbf{A},\theta) - \mathbf{T} \cdot \mathbf{A}$ local minimizers at \mathbf{A}, \mathbf{B} with rank $(\mathbf{A} - \mathbf{B}) > 1$ and $W(\mathbf{A}) - W(\mathbf{B}) > 0$ sufficiently small.

Claim. Under suitable growth hypotheses on W, $\bar{\mathbf{y}}(\mathbf{x}) = \mathbf{A}\mathbf{x} + \mathbf{c}$ is a local minimizer of I in $L^1(\Omega; \mathbb{R}^3)$, i.e. there exists $\varepsilon > 0$ such that $I(\mathbf{y}) \geq I(\bar{\mathbf{y}})$ if $\int_{\Omega} |\mathbf{y} - \bar{\mathbf{y}}| d\mathbf{x} < \varepsilon$.

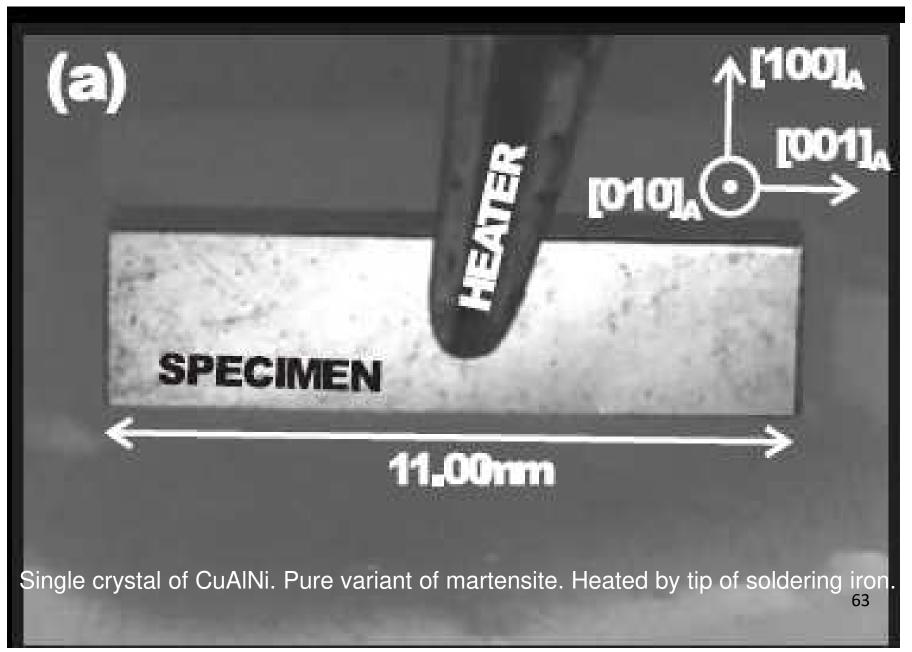
Idea: since $\bf A$ and $\bf B$ are incompatible, if we nucleate a region in which $D{\bf y}({\bf x}) \sim {\bf B}$ there must be a transition layer in which the increase of energy is greater than the decrease of energy in the nucleus.

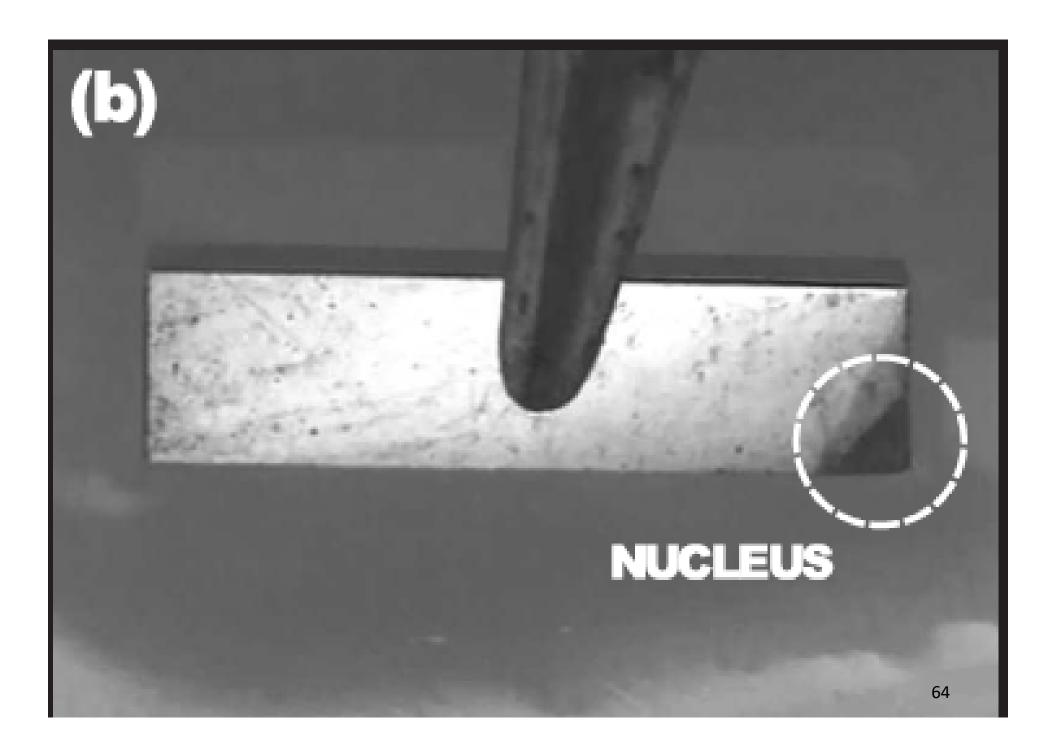
Related work: Kohn & Sternberg 1989, Grabovsky & Mengesha 2009

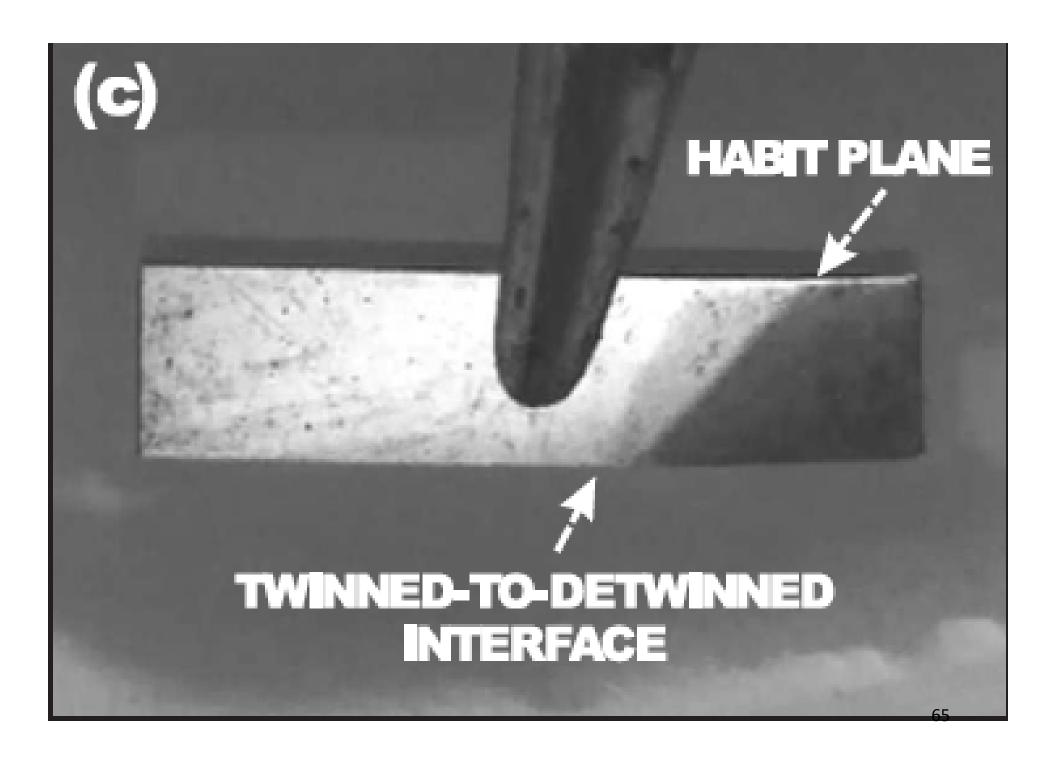


Example 2. Nucleation of austenite in martensite

(JB/K. Koumatos/H. Seiner 2013,2014)







Twinning and slip in Bravais lattices

Consider a Bravais lattice B. What are the rank-one connections between SO(3) and SO(3)M, where $M = B\mu B^{-1} \notin P(B)$?

We try $\mu=-1+\mathbf{p}\otimes\mathbf{q}$ with $\mathbf{p},\mathbf{q}\in\mathbb{Z}^3$ and $\mathbf{p}\cdot\mathbf{q}=2$, when $\mathbf{B}\mu\mathbf{B}^{-1}=-1+\mathbf{B}\mathbf{p}\otimes\mathbf{B}^{-T}\mathbf{q},$

$$\mathbf{M}^{T}\mathbf{M} - \mathbf{1} = (-1 + \mathbf{B}^{-T}\mathbf{q} \otimes \mathbf{Bp})(-1 + \mathbf{Bp} \otimes \mathbf{B}^{-T}\mathbf{q}) - 1$$

$$= -\mathbf{B}^{-T}\mathbf{q} \otimes \mathbf{Bp} - \mathbf{Bp} \otimes \mathbf{B}^{-T}\mathbf{q} + |\mathbf{Bp}|^{2}\mathbf{B}^{-T}\mathbf{q} \otimes \mathbf{B}^{-T}\mathbf{q}$$

$$= (-\mathbf{Bp} + \frac{1}{2}|\mathbf{Bp}|^{2}\mathbf{B}^{-T}\mathbf{q}) \otimes \mathbf{B}^{-T}\mathbf{q}$$

$$+ \mathbf{B}^{-T}\mathbf{q} \otimes (-\mathbf{Bp} + \frac{1}{2}|\mathbf{Bp}|^{2}\mathbf{B}^{-T}\mathbf{q}).$$

Hence SO(3) and $SO(3)\mathbf{M}$ are rank-one connected, with normals parallel to $\mathbf{B}^{-T}\mathbf{q}$ and $-\mathbf{B}\mathbf{p} + \frac{1}{2}|\mathbf{B}\mathbf{p}|^2\mathbf{B}^{-T}\mathbf{q}$.

Note also that if $1 + a \otimes n = QM$ then

$$\operatorname{tr} \mathbf{M}^T \mathbf{M} - 3 = \operatorname{tr} (\mathbf{1} + \mathbf{n} \otimes \mathbf{a}) (\mathbf{1} + \mathbf{a} \otimes \mathbf{n}) - 3$$

= $|\mathbf{B}\mathbf{p}|^2 |\mathbf{B}^{-T}\mathbf{q}|^2 - 4$,

so that
$$|{\bf a}|^2 = |{\bf Bp}|^2 |{\bf B}^{-T}{\bf q}|^2 - 4$$
.

For a bcc lattice we can take

$$\mathbf{B} = \frac{1}{2} \begin{pmatrix} -1 & 1 & 1 \\ 1 & -1 & 1 \\ 1 & 1 & -1 \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \end{pmatrix}.$$

Then the first case with
$$\mathbf{p}=\begin{pmatrix}1\\1\\1\end{pmatrix}$$
, $\mathbf{q}=\begin{pmatrix}1\\1\\0\end{pmatrix}$ gives

the normals
$$\begin{pmatrix} \pm 1 \\ \pm 1 \\ 2 \end{pmatrix}$$
 and $|\mathbf{a}|^2 = \frac{1}{2}$.

These are the most commonly observed normals for bcc metals and alloys, and work of Bevis & Crocker (1968,1969), Jaswon & Dove (1956,1957,1960) probably shows that they minimize $|\mathbf{a}|$.

For fcc we can take

$$\mathbf{B} = \frac{1}{2} \begin{pmatrix} 1 & -1 & 0 \\ 1 & 1 & 1 \\ 0 & 0 & 1 \end{pmatrix}, \ \mathbf{B}^{-1} = \begin{pmatrix} 1 & 1 & -1 \\ -1 & 1 & -1 \\ 0 & 0 & 2 \end{pmatrix}.$$

Then with
$$\mathbf{p}=\begin{pmatrix}1\\-1\\1\end{pmatrix}$$
, $\mathbf{q}=\begin{pmatrix}1\\0\\1\end{pmatrix}$ we get the commonly observed normals $\begin{pmatrix}\pm1\\\pm1\\1\end{pmatrix}$ and $|\mathbf{a}|^2=\frac{1}{2}$.

Another possibility is to take $\mu = 1 + \hat{\mathbf{p}} \otimes \hat{\mathbf{q}}$ with $\hat{\mathbf{p}} \cdot \hat{\mathbf{q}} = 0$, when we have $\mathbf{M} = 1 + \mathbf{B}\hat{\mathbf{p}} \otimes \mathbf{B}^{-T}\hat{\mathbf{q}}$ and

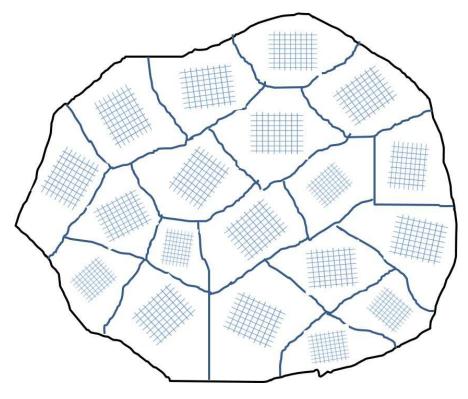
$$\begin{split} \mathbf{M}^T \mathbf{M} - \mathbf{1} &= \mathbf{B}^{-T} \widehat{\mathbf{q}} \otimes \mathbf{B} \widehat{\mathbf{p}} + \mathbf{B} \widehat{\mathbf{p}} \otimes \mathbf{B}^{-T} \widehat{\mathbf{q}} + |\mathbf{B} \widehat{\mathbf{p}}|^2 \mathbf{B}^{-T} \widehat{\mathbf{q}} \otimes \mathbf{B}^{-T} \widehat{\mathbf{q}} \\ &= (\mathbf{B} \widehat{\mathbf{p}} + \frac{1}{2} |\mathbf{B} \widehat{\mathbf{p}}|^2 \mathbf{B}^{-T} \widehat{\mathbf{q}}) \otimes \mathbf{B}^{-T} \widehat{\mathbf{q}} \\ &+ \mathbf{B}^{-T} \widehat{\mathbf{q}} \otimes (\mathbf{B} \widehat{\mathbf{p}} + \frac{1}{2} |\mathbf{B} \widehat{\mathbf{p}}|^2 \mathbf{B}^{-T} \widehat{\mathbf{q}}), \end{split}$$

so that again SO(3) and $SO(3)\mathbf{M}$ are rank-one connected with normals $\mathbf{B}^{-T}\hat{\mathbf{q}}$ and $\mathbf{B}\hat{\mathbf{p}} + \frac{1}{2}|\mathbf{B}\hat{\mathbf{p}}|^2\mathbf{B}^{-T}\hat{\mathbf{q}}$ and $|\mathbf{a}|^2 = |\mathbf{B}\hat{\mathbf{p}}|^2|\mathbf{B}^{-T}\hat{\mathbf{q}}|^2$.

For bcc with
$$\hat{\mathbf{p}}v=\begin{pmatrix}0\\1\\1\end{pmatrix}$$
, $\hat{\mathbf{q}}=\begin{pmatrix}1\\0\\0\end{pmatrix}$, we get the normals $\begin{pmatrix}2\\1\\1\end{pmatrix}$ (twinning), $\begin{pmatrix}0\\1\\1\end{pmatrix}$ (slip) with $|\mathbf{a}|^2=2$.

Polycrystals

Different orientations of the crystal lattice in each grain.



No diffusion, within the grains, or of the grain boundaries.

Description of grain geometry

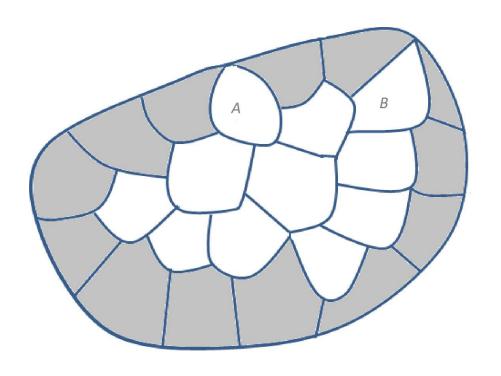
Consider a polycrystal that occupies in a reference configuration a bounded domain (open, connected set) $\Omega \subset \mathbb{R}^3$ composed of a finite number of disjoint grains Ω_j , $j=1,\ldots,N$, where each Ω_j is a bounded domain with Lipschitz boundary $\partial\Omega_j$, so that

$$\Omega = \operatorname{int} \bigcup_{i=1}^{N} \overline{\Omega}_{j}.$$

Topology and graphs

Some topological information is encoded in the graph whose vertices are the grains (labelled $1, \ldots, N$) and with edges (i,j) corresponding to grains Ω_i, Ω_j with $\mathcal{H}^2(\partial \Omega_i \cap \partial \Omega_j) > 0$ (in 2D this is used in the proof of the four colour theorem).

For each grain i let M(i) be the number of $j \neq i$ for which (i, j) is an edge.



A and B are interior grains but touch $\partial\Omega$.

Interior grains are ones for which $\partial\Omega_j\subset\bigcup_{k\neq j}\partial\Omega_k$, and the others are boundary grains.

The set of *triple points* is

$$T = \bigcup_{1 \le i_1 < i_2 < i_3 \le N} \partial \Omega_{i_1} \cap \partial \Omega_{i_2} \cap \partial \Omega_{i_3}.$$

Theorem Suppose each grain Ω_j is convex. Then every interior grain Ω_i is a convex polyhedron (i.e. an intersection of a finite number of open half-spaces) with at most M(i) faces.

Theorem If each $\overline{\Omega}_j$ is a topological manifold with boundary then T is nowhere dense in $\bigcup_{j=1}^N \partial \Omega_j$.

Zero-energy microstructures for a polycrystal

For a polycrystal the total free energy is given by

$$I(\mathbf{y}) = \int_{\Omega} W(D\mathbf{y}(\mathbf{x}), \mathbf{x}) d\mathbf{x},$$

where $W(\mathbf{A}, \mathbf{x}) = \psi(\mathbf{A}\mathbf{R}_i^T)$ for $\mathbf{x} \in \Omega_i$ and $\mathbf{R}_i \in SO(3)$.

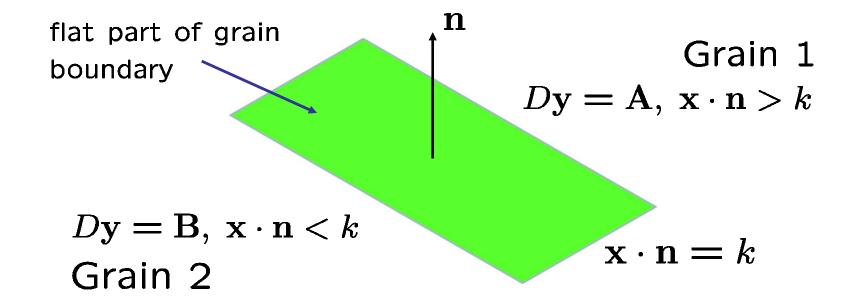
We fix $\theta < \theta_c$ and write $K = K(\theta)$, $U = U(\theta)$ etc.

Then a zero-energy microstructure corresponds to a gradient YM $(\nu_x)_{x\in\Omega}$ with supp $\nu_x\subset K\mathbf{R}_i$ for a.e. $\mathbf{x}\in\Omega_i$, or equivalently to a macroscopic deformation gradient with

$$D\mathbf{y}(\mathbf{x}) \in (K\mathbf{R}_i)^{\mathsf{qc}} = K^{\mathsf{qc}}\mathbf{R}_i$$

for a.e. $\mathbf{x} \in \Omega_i$.

Constant deformation gradient in adjacent grains



We can assume that grain 1 has unrotated crystal axes. Hence for this to be a zero-energy deformation $\mathbf{A}=\mathbf{Q_1U_i},\ \mathbf{B}=\mathbf{Q_2U_j\tilde{R}},\ \text{where }\mathbf{Q_1},\mathbf{Q_2}\in SO(3)\ \text{and }\tilde{\mathbf{R}}\in SO(3)$ is the rotation of grain 2.

Note that $\mathbf{U}_j = \bar{\mathbf{R}}^T \mathbf{U}_i \bar{\mathbf{R}}$ for some $\bar{\mathbf{R}} \in P^{24}$.

Thus for a rank-one connection we must have

$$\det(\mathbf{U}_{\mathbf{i}}^2 - (\bar{\mathbf{R}}\tilde{\mathbf{R}})^{\mathrm{T}}\mathbf{U}_{\mathbf{i}}^2\bar{\mathbf{R}}\tilde{\mathbf{R}}) = 0.$$

The function

$$R \mapsto \text{det}(U_i^2 - R^T U_i^2 R)$$

is real analytic on SO(3) and for U_i not a multiple of 1 is not identically zero. Hence (c.f. Mityagin 2015) its zero set is of measure zero. Thus for generic grain rotations such a zero-energy deformation is impossible.

Zero-energy microstructures possible for any grain geometry and rotations

These correspond to gradient YMs $(\nu_x)_{x\in\Omega}$ such that supp $\nu_x \subset \bigcap_{R\in SO(3)} KR$ a.e., or equivalently to macroscopic deformation gradients satisfying

$$D\mathbf{y}(\mathbf{x}) \in \mathcal{E} := \bigcap_{\mathbf{R} \in SO(3)} K^{\mathsf{qc}}\mathbf{R} \text{ for a.e. } \mathbf{x} \in \Omega.$$

The set \mathcal{E} was essentially defined in Bhattacharya & Kohn (1996,1997) in connection with the 'Taylor bound'.

Note that \mathcal{E} is *isotropic*, i.e.

$$\mathbf{Q}\mathcal{E}\mathbf{R} = \mathcal{E}$$
 for all $\mathbf{Q}, \mathbf{R} \in SO(3)$.

The case of two wells

We take

$$K = SO(3)U_1 \cup SO(3)U_2,$$

$$U_1 = diag(\eta_1, \eta_2, \eta_3), \ U_2 = diag(\eta_2, \eta_1, \eta_3),$$

and $\eta_2 > \eta_1 > 0$, $\eta_3 > 0$ (e.g. tetragonal to orthorhombic, or special orthorhombic to monoclinic transformations).

The advantage of this case is that it is the only one for which K^{qc} is known.

Theorem (B/James 92) K^{qc} consists of the matrices $\mathbf{A} \in GL^+(3,\mathbb{R})$ such that

$$\mathbf{A}^T \mathbf{A} = \begin{pmatrix} a & c & 0 \\ c & b & 0 \\ 0 & 0 & \eta_3^2 \end{pmatrix},$$

where $a > 0, b > 0, a + b + |2c| \le \eta_1^2 + \eta_2^2, \ ab - c^2 = \eta_1^2 \eta_2^2.$

In addition (B/James 91), if $Dy(x) \in K^{qc}$ a.e. then y is a plane strain, i.e.

$$y(x) = Q(y_1(x), y_2(x), \eta_3 x_3 + a),$$

where $y_{1,3} = y_{2,3} = 0$, $Q \in SO(3)$ and $a \in \mathbb{R}$.

Theorem

$$\mathcal{E} = \begin{cases} \emptyset & \text{if } \eta_3 \neq \sqrt{\eta_1 \eta_2} \\ SO(3)\eta_3 & \text{if } \eta_3 = \sqrt{\eta_1 \eta_2} \end{cases}$$

Proof. Suppose $\mathbf{D}=\operatorname{diag}\left(d_1,d_2,d_3\right)\in\mathcal{E}$. Then for any $\mathbf{R}\in SO(3)$ we have $\mathbf{D}\mathbf{R}\in\mathcal{E}$, and so there exist a,b,c with $a>0,\,b>0$, $ab-c^2=\eta_1^2\eta_2^2$, $a+b+|2c|\leq \eta_1^2+\eta_2^2$ and

$$\begin{pmatrix} a & c & 0 \\ c & b & 0 \\ 0 & 0 & \eta_3^2 \end{pmatrix} = \mathbf{R} \begin{pmatrix} d_1^2 & 0 & 0 \\ 0 & d_2^2 & 0 \\ 0 & 0 & d_3^2 \end{pmatrix} \mathbf{R}^T.$$

Hence $d_1=d_2=d_3=\eta_3$ and both sides equal $\eta_3^2 1$, so that we must have $a=b=\eta_3^2, c=0$. Thus $\eta_3=\sqrt{\eta_1\eta_2}$, when indeed $2\eta_3^2+0\leq \eta_1^2+\eta_2^2$.

(For particular grain geometries and rotations there could be additional zero-energy microstructures.)

Now consider the set

$$\mathcal{E}_{2D} = \bigcap_{\mathbf{R} \in SO(3), \mathbf{Re}_3 = \pm \mathbf{e}_3} K^{\mathsf{qc}} \mathbf{R}.$$

Theorem

 $A \in \mathcal{E}_{2D}$ iff $A = RD\tilde{R}$, where $R, \tilde{R} \in SO(3)$, $\tilde{R}e_3 = \pm e_3$,

$$\mathbf{D} = \left(\begin{array}{ccc} v_1 & 0 & 0 \\ 0 & v_2 & 0 \\ 0 & 0 & \eta_3 \end{array} \right),$$

and $v_1 > 0, v_2 > 0$, $v_1 v_2 = \eta_1 \eta_2$, $|v_i| \le \sqrt{\frac{\eta_1^2 + \eta_2^2}{2}}$.

(See Kohn & Niethammer (2000) and the book of Dolzmann (2003).)

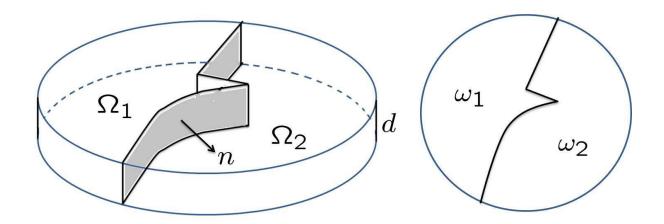
There are nontrivial deformations \mathbf{y} with $D\mathbf{y}(\mathbf{x}) \in \mathcal{E}_{2D}$ a.e. $\mathbf{x} \in \Omega$, such as

$$\mathbf{y}(\mathbf{x}) = (\sqrt{\eta_1 \eta_2} x_1, \sqrt{\eta_1 \eta_2} x_2, \eta_3 x_3) + \varepsilon g(\mathbf{x} \cdot \mathbf{e}^{\perp}) \mathbf{e},$$

where $|\mathbf{e}| = |\mathbf{e}^{\perp}| = 1, \mathbf{e}^{\perp} \cdot \mathbf{e} = \mathbf{e} \cdot \mathbf{e}_3 = 0, |g'| \leq M < \infty$ and $|\varepsilon|$ sufficiently small.

Such deformations nontrivially deform the grain boundaries (it would be interesting to have experimental results on grain boundary deformation resulting from martensitic transformations).

Zero-energy microstructures for a bicrystal



Energy wells $K = SO(3)U_1 \cup SO(3)U_2$

$$U_1 = \text{diag}(\eta_2, \eta_1, \eta_3), U_2 = \text{diag}(\eta_1, \eta_2, \eta_3),$$

 $\eta_2 > \eta_1 > 0, \eta_3 > 0$

Grain 1

$$\Omega_1 = \omega_1 \times (0, d)$$

supp $\nu_x \subset K$ a.e. $x \in \Omega_1$

Grain 2

$$\Omega_2 = \omega_2 \times (0, d)$$

 $\operatorname{supp} \nu_{\mathbf{x}} \subset K\mathbf{R}(\alpha) \text{ a.e. } \mathbf{x} \in \Omega_2$
 $\mathbf{R}(\alpha)\mathbf{e}_3 = \mathbf{e}_3$

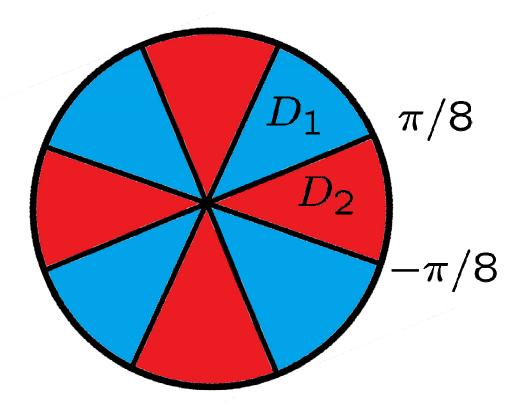
Question: Is it true that every zero-energy microstructure is nontrivial (i.e. not a pure phase $\nu_{\mathbf{x}} = \delta_{\mathbf{A}}$) in each of the grains?

(If the interface between the grains were not vertical, so that it had the form $x_3 = g(x_1, x_2)$ for some open set of (x_1, x_2) , we cannot have a pure phase in one of the grains because a short calculation shows that it violates the microstructure being a plane strain in the other grain.)

Result 1. If the interface is *planar* then whatever its normal n there always exists a zero-energy microstructure which has a pure phase (i.e. $\nu_x = \delta_A$) in one of the grains.

Therefore the interface needs to be curved in order to show that the microstructure has to be nontrivial. Write the normal to the interface as $n = (\cos \theta, \sin \theta, 0)$.

Result 2. Suppose that $\alpha = \pi/4$. Then it is impossible to have a zero-energy microstructure with a pure phase in one of the grains if the boundary between the grains contains a normal with $\theta \in D_1$ and another normal with $\theta' \in D_2$.

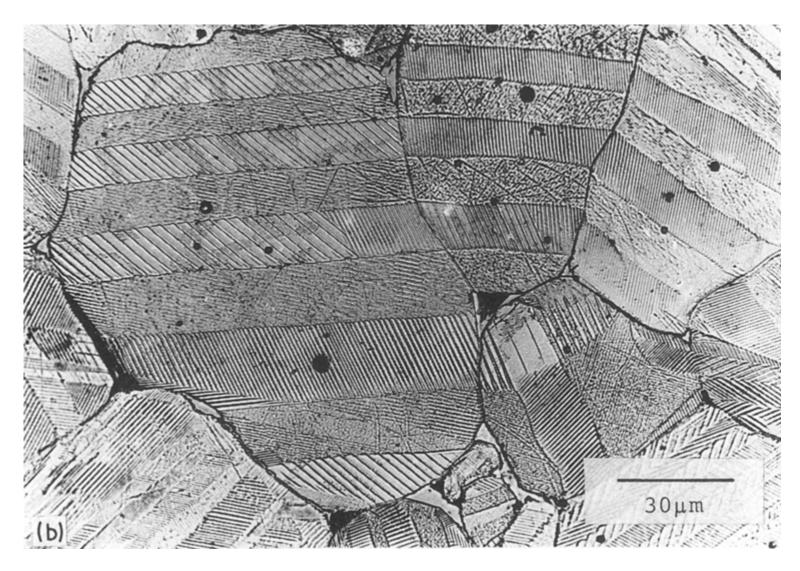


Proofs use:

- 1. A reduction to 2D using the plane strain result for the two-well problem.
- 2. The characterization of the quasiconvex hull of two wells.
- 3. Use of a generalized Hadamard jump condition in 2D to show that there has to be a rank-one connection $\mathbf{b} \otimes \mathbf{N}$ between the polyconvex hulls for each grain.
- 4. Long and detailed calculations.

For the details see, JB & C. Carstensen, *Interaction of martensitic microstructures in adjacent grains*, ICOMAT 2017 Proceedings.

Polycrystal microstructures for more than two wells



BaTiO₃ ceramic: G. Arlt, J. Materials Science, 25 (1990) 2655-2666,

Consider a cubic-to-tetragonal transformation with

$$K = \bigcup_{i=1}^{3} SO(3)\mathbf{U}_{i},$$

$$U_1 = \text{diag}(\eta_2, \eta_1, \eta_1), \ U_2 = \text{diag}(\eta_1, \eta_2, \eta_1), \ U_3 = \text{diag}(\eta_1, \eta_1, \eta_2).$$

Theorem

 \mathcal{E} contains a relatively open neighbourhood of $(\eta_1^2\eta_2)^{\frac{1}{3}}SO(3)$ in $\mathcal{D}:=\{\mathbf{A}\in GL^+(3,\mathbb{R}): \det\mathbf{A}=\eta_1^2\eta_2\}.$

Proof. \mathcal{E} is isotropic and by Dolzmann & Kirchheim (2013) K^{qc} contains a relatively open neighbourhood of $(\eta_1^2 \eta_2)^{\frac{1}{3}} 1$ in \mathcal{D} .

In fact, if the austenite is cubic and the transformation strain \mathbf{U} is not a dilatation then K^{qc} always contains a nontrivial set of tetragonal wells (c.f. Bhattacharya (1992), B/Koumatos (2014)) and so \mathcal{E} contains a relatively open neighbourhood of $(\det \mathbf{U})^{\frac{1}{3}}SO(3)$ in $\mathcal{D}:=\{\mathbf{A}\in GL^+(3,\mathbb{R}): \det \mathbf{A}=\det \mathbf{U}\}$. Hence, for example, we have a nontrivial \mathcal{E} for cubic to orthorhombic transformations.

A related remark is:

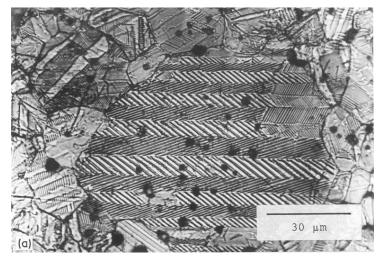
Theorem There is no homogeneous gradient Young measure

$$\nu = \sum_{i=1}^4 \lambda_i \delta_{\mathbf{A}_i}, \quad \lambda_i \ge 0, \sum_{i=1}^4 \lambda_i = 1,$$

with $\mathbf{A}_i \in K$ and $\bar{\nu} = (\eta_1^2 \eta_2)^{1/3} 1$.

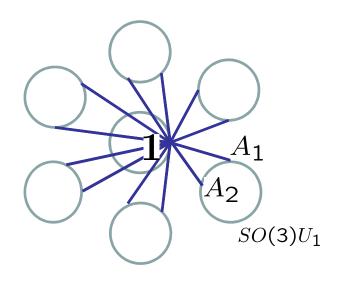
Arlt (1990).

Microstructure with approximately four gradients in BaTiO₃.



Is the apparent conflict with experiment due to ignoring interfacial energy, or because the deformation is not a dilatation on the boundary?

Another issue (c.f. recent work of F. Della Porta) is whether all microstructures with supp $\nu_{\mathbf{x}} \subset K^{\mathsf{qc}}\mathbf{R}_i$ for a.e. $\mathbf{x} \in \Omega_i$ are obtainable by a suitable path starting from the austenite.



$$\mathsf{rank}\,(\mathbf{A_i}-1)=1,$$
 $i=1,\ldots,12$ $\mathsf{rank}\,(\mathbf{A_i}-\mathbf{A_j})>1,$ $i\neq j$

What is $\{A_1, \ldots, A_{12}\}^{qc}$?

