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1 Introduction

Physical systems of PDE often have a Lyapunov function, that is a functional
that decreases along solutions unless the system is in equilibrium. Typically
this arises from the 2nd Law of Thermodynamics, with the Lyapunov function
being the negative of the total entropy, or the total free energy.

Question: does the existence of such a functional enable one to prove that all
solutions tend to equilibrium as time t→∞?

We first discuss this for a finite-dimensional example.

Example 1.1. Consider the ordinary differential equation

ü+ u̇+ u3 − u = 0. (1.1)

Note that f(u) = u3 − u = F ′(u), where F (u) = 1
4 (u2 − 1) is a double-well

potential (see Fig. 1.1). We write (1.1) as a first order system

d

dt

(
u
u̇

)
=

(
u̇

−u̇+ u− u3

)
, (1.2)

that is

ẇ = g(w), (1.3)

Figure 1.1: Double-well potential
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where

w =
(
w1

w2

)
, g(w) =

(
w2

−w2 + w1 − w3
1

)
. (1.4)

The phase space for (1.3) is X = R2, and since g is smooth, for any p ∈ R2

there exists a unique solution w(t) with initial data w(0) = p for t in some
maximal interval [0, tmax), tmax > 0. There are three rest points, namely z± =(
±1
0

)
, z0 =

(
0
0

)
. The linearization of (1.3) about a rest point z is

ẏ = g′(z)y. (1.5)

A short calculation shows that

g′(z±) =
(

0 1
−2 −1

)
, (1.6)

which has eigenvalues −1±i
√

7
2 , so that z± are spiral sinks, and that

g′(0) =
(

0 1
1 −1

)
, (1.7)

which has eigenvalues −1±
√

5
2 and corresponding eigenvectors

(
−1±

√
5

2
1

)
, so

that 0 is a saddle point.

Figure 1.2: Phase portrait near zero (a) linearized (b) nonlinear.

(According to the theory of integral manifolds, the nonlinear equation (1.3)
behaves like the linear one (1.5) in a sufficiently small neighbourhood of the
critical point z. Thus, for example, near zero the linearized equation has the
phase portrait in Fig. 1.2(a), while the nonlinear equation has the phase portrait
in Fig. 1.2(b), with one-dimensional stable and unstable manifolds tangent at
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Figure 1.3: Phase-plane diagram for (1.1)

0 to the linearised ones.) The full phase portrait is shown in Fig. 1.3. We see
from this that apparently every solution w(t) converges to some rest point z as
t→∞. The key to proving this will be the Lyapunov function

V (u, u̇) =
1
2
u̇2 +

1
4
(u2 − 1)2, (1.8)

which satisfies

d

dt
V (u, u̇) = −u̇2. (1.9)

Note that ±1 minimize F , so that the rest points z± are global minimizers of
V . From (1.8), (1.9) we see that every solution is bounded for t > 0, so that in
particular solutions exist for all time t > 0.

We make a first attempt at using (1.9) to prove convergence to a rest point as
t→∞ by noting that it implies that

∫∞
0
u̇2 dt < 0. Suppose f : (0,∞) → [0,∞)

is C1 and
∫∞
0
f(t) dt <∞. This does not in itself prove that f(t) → 0 as t→∞

(give an example). However if also |ḟ(t)| 6 M <∞ then (exercise) f(t) → 0 as
t→∞. So, since d

dt u̇
2 = 2u̇(−u̇− u3 + u) and u(t), u̇(t) are bounded for t > 0,

in fact we do get that u̇(t) → 0 as t → ∞. But this still doesn’t prove that
u(t) → z for some rest point z, for which a more subtle argument is required.

Now consider a large ball B(0, R) ⊂ R2 of initial data. How does it evolve
under the flow? We prove later that it tends to the set A consisting of the three
rest points and the two connecting orbits between them. The set A is the global
attractor for (1.3).
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2 Semiflows on a metric space.

Suppose we have an autonomous system with state space a metric space (X, d).
We suppose that for each p ∈ X there is a unique solution w(t) with w(0) = p,
defined for all t > 0 and depending continuously on p. Write w(t) = T (t)p.
Then if s > 0, t > 0, the state of the system at time s+ t is T (s+ t)p. But this
is the same state as reached starting at T (t)p sfter time s. Hence T (s + t)p =
T (s)T (t)p.

Definition 2.1. A semiflow {T (t)}t>0 on a metric space (X, d) is a family of
continuous maps T (t) : X → X satisfying

(i) T (0) = identity,
(ii) T (s+ t) = T (s)T (t) for all s > 0, t > 0,
(iii) for each p ∈ X the map t 7→ T (t)p is continuous from [0,∞) → X.

(In the literature a semiflow is sometimes called a (nonlinear) semigroup or
dynamical system.)

It is possible to consider weaker versions of (iii), for example that for each
p the map t 7→ T (t)p is strongly measurable from [0,∞) → X, and surprisingly
this implies that t 7→ T (t)p is continuous from (0,∞) → X (see [1]). Another
similar example of the semigroup property (ii) strengthening continuity proper-
ties is:

Theorem 2.1 (Chernoff & Marsden [5]). If {T (t)}t>0 is a semiflow on X, then
the map (t, p) 7→ T (t)p is continuous from (0,∞)×X → X.

Proof. Let pj → p in X. Let 0 < a < b <∞, and for ε > 0,m = 1, 2, . . ., set

Sm,ε = {t ∈ [a, b] : d(T (t)pj , T (t)p) 6 ε for all j > m}.

By (iii) Sm,ε is closed, and by the continuity of T (t)
∞⋃

m=1

Sm,ε = [a, b].

By the Baire Category Theorem, some Sr,ε contains an open interval. Since we
may apply this argument to any [a, b] ⊂ (0,∞) there exists a dense open subset
Sε of (0,∞) such that if t0 ∈ Sε there exists an open neighbourhood Nε(t0) of
t0 and rε(t0) such that d(T (t)pj , T (t)p) 6 ε whenever j > rε(t0), t ∈ Nε(t0).
Let

K =
∞⋂

i=1

S1/i.

Clearly T (tj)pj → T (t)p whenever tj → t and t ∈ K. Again by the Baire
Category Theorem, K is dense in (0,∞).

Now let t > 0 be arbitrary and tj → t. Let t1 ∈ K, 0 < t1 < t. Then
T (t1 + tj − t)pj → T (t1)p and so

T (tj)pj = T (t− t1)T (t1 + tj − t)pj → T (t− t1)T (t1)p = T (t)p.

4



Corollary 2.2 (Dorroh [6], Chernoff [4]). If X is locally compact then the map
(t, p) 7→ T (t)p is continuous from [0,∞)×X → X.

(This is false in general if X is not locally compact; there are examples for
X = Hilbert space [4], [2].)

Proof of Corollary. We just need to show that if pj → p, tj → 0+, then T (tj)pj →
p. Suppose not. Then there is a subsequence (not relabelled) such that d(T (tj)pj , p) >
ε > 0 for all j. We can also suppose that d(pj , p) < ε. By (iii) there exists
sj ∈ [0, tj ] with d(T (sj)pj , p) = ε. By local compactness we can assume that
T (sj)pj → y with d(y, p) = ε. If t > 0 then T (t + sj)pj → T (t)p by the theo-
rem. But T (t+sj)pj = T (t)T (sj)pj → T (t)y. Hence T (t)p = T (t)y, and letting
t→ 0+ we deduce that p = y, a contradiction.

Let {T (t)}t>0 be a semiflow on the metric space (X, d). The positive orbit
of p ∈ X is the set (see Fig. 2.1)

γ+(p) = {T (t)p : t > 0}.

The ω−limit set of p is the set

ω(p) = {χ ∈ X : T (tj)p→ χ for some sequence tj →∞}

=
⋂
t>0

⋃
τ>t

T (τ)p. (2.1)

Figure 2.1: Positive orbit

A map ψ : R → X is a complete orbit if

ψ(t+ s) = T (t)ψ(s) for all s ∈ R, t > 0.

(Note that we do not assume backwards uniqueness, so there might be more
than one complete orbit passing through a point p ∈ X (see Fig. 2.2).)
If ψ is a complete orbit then the α-limit set of ψ is the set

α(ψ) = {χ ∈ X : ψ(tj) → χ for some sequence tj → −∞}

=
⋂
t60

⋃
τ6t

ψ(τ).
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Figure 2.2: More than one complete orbit passing through a point.

If E ⊂ X, t > 0, we set

T (t)E = {T (t)p : p ∈ E}.

A subset E ⊂ X is positively invariant if T (t)E ⊂ E for all t > 0, and invariant
if T (t)E = E for all t > 0.

Note that if E invariant then there is a complete orbit contained in E pass-
ing through any point of E. Indeed if p ∈ E then there exist p−1 ∈ E with
T (1)p−1 = p, p−2 ∈ E with T (1)p−2 = p−1, and so on, so that

ψ(t) =
{
T (t)p, t > 0
T (t+ i)p−i, t ∈ [−i,−i+ 1), i = 1, 2, . . .

defines a complete orbit passing through p.

Theorem 2.3. (i) Let γ+(p) be relatively compact. Then ω(p) is nonempty,
compact, invariant and connected. As t→∞,

dist (T (t)p, ω(p)) → 0,

where dist (q, E) := infχ∈E d(q, χ).
(ii) Let ψ be a complete orbit with {ψ(t) : t 6 0} relatively compact. Then

α(ψ) is nonempty, compact, invariant and connected, and as t→ −∞

dist (ψ(t), α(ψ)) → 0.

Proof. We prove (i). The proof of (ii) is similar and is left to Problem ??. That
ω(p) is nonempty is clear. Since ω(p) is by (2.1) the intersection of compact
sets, it is compact. To prove the invariance, let χ ∈ ω(p). Then T (tj)p→ χ for
some sequence tj →∞. If t > 0 then, since T (t) is continuous,

T (t+ tj)p = T (t)T (tj)p→ T (t)χ

and so T (t)ω(p) ⊂ ω(p). Also {T (tj − t)p} is relatively compact, and so

T (tjk
− t)p→ q ∈ X

for some subsequence {tjk
}. Therefore

T (tjk
)p = T (t)T (tjk

− t)p→ T (t)q = χ.

Hence T (t)ω(p) ⊃ ω(p) and so ω(p) is invariant.
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If dist (T (t)p, ω(p)) 6→ 0 as t → ∞, then there exist ε > 0 and a sequence
tj →∞ such that d(T (tj)p, z) ≥ ε for all z ∈ ω(p). But a subsequence T (tjk

)p→
χ ∈ ω(p), a contradiction.

Figure 2.3: Proof of connectedness of ω(p)

Suppose ω(p) is not connected. Then ω(p) = A1∪A2 with A1, A2 nonempty
disjoint compact sets. (Indeed, by the definition of connectedness we can write
ω(p) = V1 ∪ V2 with V̄1 ∩ V2 = V1 ∩ V̄2 = ∅, and since ω(p) is closed we have
ω(p) = V̄1 ∪ V̄2. Thus V̄1 ∩ V̄2 = ∅ and we can set A1 = V̄1, A2 = V̄2. Since
A1, A2 are closed subsets of a compact set, they are themselves compact.) Let
U1, U2 be disjoint open sets with A1 ⊂ U1, A2 ⊂ U2. We can take, for example,
Ui = {q ∈ X : dist (q, Ai) < ε} for ε > 0 sufficiently small. Then there
exist sequences sj > tj with tj → ∞ such that T (sj)p ∈ U1, T (tj)p ∈ U2 and
hence, by Definition 2.1(iii), there exists τj ∈ (tj , sj) with T (τj)p 6∈ U1 ∪ U2

(see Fig. ??). Hence by the relative compactness of γ+(p) there exists some
χ ∈ ω(p)\(A1 ∪A2), a contradiction.

3 Approach to equilibrium

A point z ∈ X is a rest point if T (t)z = z for all t ≥ 0. The set Z of rest points
is closed.
A function V : X → R is a Lyapunov function if

(i) V is continuous,
(ii)V (T (t)p) 6 V (p) for all p ∈ X, t > 0,
(iii) If V (ψ(t)) = c for some complete orbit ψ, all t ∈ R and some constant

c, then ψ(t) = z for all t ∈ R for some rest point z.
(Note that (ii) implies that V (T (t)p) 6 V (T (s)p) for all t > s > 0, since
V (T (t)p) = V (T (t− s)T (s)p) 6 V (T (s)p).)

Theorem 3.1 (LaSalle invariance principle). Let V be a Lyapunov function,
and let p ∈ X with γ+(p) relatively compact. Then ω(p) consists only of rest
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points. If the only nonempty connected subsets of Z are single points (for exam-
ple, if there are only a finite number of rest points) then ω(p) = {z} for some
rest point z, and T (t)p→ z as t→∞.

Proof. Since V is continuous and γ+(p) is relatively compact, V (T (t)p) is bounded
below for t > 0. But t 7→ V (T (t)p) is nonincreasing, and so

V (T (t)p) → c as t→∞

for some constant c. Let z ∈ ω(p). Then, since ω(p) is invariant, z = ψ(0) for a
complete orbit ψ contained in ω(p). Hence V (ψ(t)) = c for all t ∈ R, and so by
(iii) z is a rest point.

If the only nonempty connected subsets of Z are single points then since
ω(p) is connected, ω(p) = z for some rest point, so that T (t)p→ z as t→∞ by
Theorem 2.3.

4 Lyapunov stability

Definitions 4.1. The rest point z is (Lyapunov) stable if given ε > 0, there
exists δ > 0 such that if p ∈ B(z, δ) then T (t)p ∈ B(z, ε) for all t > 0. The rest
point z is unstable if it is not stable. The rest point z is asymptotically stable
if z is stable and there exists ρ > 0 such that p ∈ B(z, ρ) implies T (t)p→ z as
t→∞.

If the rest point z is asymptotically stable then clearly z is isolated, that is
there is some ε > 0 such that z is the only rest point in B(z, ε).

Theorem 4.1. Let z be an isolated rest point, let V be a Lyapunov function,
let γ+(p) be relatively compact for any p with γ+(p) bounded, and suppose that
for all δ > 0 sufficiently small

inf
d(p,z)=δ

V (p) > V (z) (Existence of a potential well) (4.1)

Then z is asymptotically stable.

Proof. Suppose z is not stable. Then there exist ε > 0, pj → z, tj > 0 with
d(T (tj)pj , z) > ε. We can suppose that ε is small enough such that

cε := inf
d(p,z)= ε

2

V (p) > V (z),

and such that z is the only rest point in B(z, ε). Let j be sufficiently large.
Then since V is continuous, V (pj) < cε. By the continuity of t 7→ T (t)pj there
exists τj ∈ (0, tj) with d(T (τj)pj , z) = ε

2 , and thus

cε 6 V (T (τj)pj) 6 V (pj) < cε,

a contradiction.
By the stability, given ε > 0 there exists ρ > 0 such that if d(p, z) < ρ then

T (t)p ∈ B(z, ε) for all t > 0. Then γ+(p) is bounded, and so by the assumption
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of the theorem relatively compact. Thus, by Theorem 3.1, ω(p) ⊂ Z ∩ B(z, ε)
and so ω(p) = {z} and T (t)p→ z as t→∞.

Remark 1. If X = Rn then the existence of a potential well (see (4.1)) is
equivalent to the condition that z is a strict local minimizer of V , i.e. that there
exists ε > 0 such that V (p) > V (z) if 0 < d(p, z) 6 ε. This follows easily from
the fact that the sphere S(z, ε) is compact, so that V attains a minimum on
S(z, ε) = {p : d(p, z) = ε}. But if X is a metric space whose spheres S(z, ε)
are not compact (as is the case for infinite-dimensional normed vector spaces)
then the existence of a potential well is a stronger condition than being a strict
local minimizer. If we just assumed that z was a strict local minimizer then
the danger would be that orbits could leak out of balls by going into higher and
higher dimensions.

Theorem 4.2. Let V be a Lyapunov function and suppose that γ+(p) is rel-
atively compact for any p with γ+(p) bounded. Let z be an isolated rest point
which is not a local minimizer of V (i.e. for any ε > 0 there is a point p with
d(p, z) < ε and V (p) < V (z)). Then z is unstable.

Proof. Let ε > 0 be sufficiently small so that z is the only rest point in B(z, ε).
Suppose for contradiction that z is stable. Then there exists δ > 0 such that
d(p, z) < δ implies d(T (t)p, z) < ε for all t > 0. But since z is not a local
minimizer there exists p with d(p, z) < δ and V (p) < V (z). Since γ+(p) ⊂
B(z, ε), γ+(p) is by assumption relatively compact. Hence by the invariance
principle there exist a sequence tj →∞ and a rest point z̃ = limj→∞ T (tj)p in
ω(p) with z̃ ∈ B(z, ε). But V (z̃) = limj→∞ V (T (tj)p) < V (z). Hence z̃ 6= z, a
contradiction.

The region of attraction of a rest point z is the set

A(z) = {p ∈ X : T (t)p→ z as t→∞}.

Theorem 4.3. A(z) is connected.

Proof. Suppose not, so that A(z) = U ∪ V with U, V nonempty and U ∩ V̄ =
Ū ∩ V = ∅. Let p ∈ U, q ∈ V . For any t > 0, T (t)p ∈ A(z). Let S = {t >
0 : T (t)p ∈ U}. Let tj ∈ S, tj → t. Then T (t)p = limj→∞ T (tj)p ∈ Ū and
so T (t)p ∈ U . Hence S is closed in [0,∞). Similarly S is open, and thus
γ+(p) ⊂ U . Similarly γ+(q) ⊂ V . But z ∈ Ū , hence z 6∈ V . Similarly z 6∈ U .
But z ∈ A(z) = U ∪ V , a contradiction.

Theorem 4.4. If z is an asymptotically stable rest point then A(z) is open.

Proof. Let ρ > 0 be as in Definition 4.1, and let p ∈ A(z). Then there exists s >
0 such that d(T (s)p, z) < ρ. Hence by the continuity of T (s) there exists σ > 0
such that d(p, q) < σ implies d(T (s)q, z) 6 d(T (s)q, T (s)p)+d(T (s)p, z) < ρ, so
that by asymptotic stability T (t)q → z as t→∞ and hence q ∈ A(z).
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Applying these results to (1.1) we deduce that

R2 = A(z−) ∪A(z0) ∪A(z+)

with A(z±) connected and open. A(z0) consists of z0 = 0 together with the two
orbits that approach 0 as t→∞.

5 Global attractors

Definitions 5.1. The semiflow {T (t)}t>0 is asympttically compact if for any
bounded sequence {pj} in X and any sequence tj →∞ T (tj)pj has a convergent
subsequence. It is point dissipative if there is a bounded set B0 such that for
any p ∈ X, T (t)p ∈ B0 for all t sufficiently large.

A subset A ⊂ X attracts a set E ⊂ X if

dist (T (t)E,A) → 0 as t→∞,

where
dist (B,C) := sup

b∈B
inf
c∈C

d(b, c) = sup
b∈B

dist (b, C).

(If A is compact this is the same as saying that given any open neighbourhood
U ⊃ A, T (t)E ⊂ U for t sufficiently large.)

The subset A is a global attractor if A is compact, invariant, and attracts all
bounded sets.

If B ⊂ X is bounded, the ω-limit set of B is

ω(B) = {χ ∈ X : T (tj)pj → χ for some sequences pj ∈ B, tj →∞}.

Theorem 5.1. A semiflow {T (t)}t>0 has a global attractor if and only if it is
point dissipative and asymptotically compact. The global attractor is unique and
given by

A =
⋃
{ω(B) : B a bounded subset of X}.

Furthermore A is the maximal compact invariant subset of X.

Proof. See [7, 8, 2].

We discuss now (following [3]) how asymptotic compactness and approach to
equilibrium can be proved in an infinite-dimensional example for which (unlike
for corresponding parabolic problems) T (t) is not compact for t > 0 (so that
compactness only occurs ‘at infinity’).

Let Ω ⊂ R3 be bounded and open, and consider the semilinear hyperbolic
PDE for u = u(x, t), x ∈ Ω, t > 0

utt + βut −∆u+ u3 − u = 0, (5.1)

where β > 0 is a constant, with boundary condition

u|∂Ω = 0. (5.2)
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We can write (5.1) as the system

d

dt

(
u
v

)
=

(
v

−βv + ∆u

)
+

(
0

u− u3

)
, (5.3)

or, setting w =
(
u
v

)
, where v = ut, as

ẇ = Aw + f(w), (5.4)

where

A =
(

0 I
∆ −βI

)
, f

(
u
v

)
=

(
0

u− u3

)
.

We regard (5.4) as an equation in the Hilbert space X = H1
0 (Ω) × L2(Ω).

Because of the embedding H1
0 (Ω) ⊂ L6(Ω), f : X → X. We claim that f is

locally Lipschitz (i.e. for any K > 0 there exists CK such that ‖f(z)−f(z̄)‖X 6
CK‖z − z̄‖X if ‖z‖X 6 K, ‖z̄‖X 6 K) because∫

Ω

(u3 − ū3)2dx =
∫

Ω

(u− ū)2P4(u, ū) dx

6

(∫
Ω

(u− ū)6dx
) 1

3
(∫

Ω

P4(u, ū)
3
2 dx

) 2
3

6 CK‖u− ū‖26,

if |u‖6, ‖ū‖6 6 K, where P (u, ū) is a fourth order polynomial. Also f : X → X
is sequentially weakly continuous. i.e. w(j) ⇀ w in X implies f(w(j)) ⇀ f(w)
in X.

Formally (5.1), (5.2) have the Lyapunov function

V (u, ut) =
∫

Ω

(
1
2
|ut|2 +

1
2
|∇u|2 +

1
4
(u2 − 1)2

)
dx, (5.5)

for which

V̇ = −β
∫

Ω

u2
t dx. (5.6)

These ingredients imply that weak solutions of (5.3) generate a semiflow on X
with Lyapunov function V . The proof uses the equivalent variation of constants
formula

w(t) = eAtw(0) +
∫ t

0

eA(t−s)f(w(s)) ds. (5.7)

Furthermore T (t) : X → X is sequentially weakly continuous for each t > 0.

Theorem 5.2. {T (t)}t>0 is asymptotically compact.
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Proof. We use the auxiliary functional

I(u, ut) = V (u, ut) +
β

2
(u, ut), (5.8)

where (·, ·) is the inner product in L2(Ω). Then

dI

dt
= −β‖ut‖22 +

β

2
‖ut‖22 +

β

2

(
−β(u, ut)− ‖∇u‖22 +

∫
Ω

(u2 − u4) dx
)

= −βI + β

∫
Ω

(
1
4
(u2 − 1)2 +

u2 − u4

2

)
dx

= −βI +H(u),

where H(u) = β
4

∫
Ω
(1− u4) dx.

Hence, given any M > 0 and any z ∈ X,

I(T (M)z) = e−βMI(z) +
∫ M

0

eβ(t−M)H(u(t)) dt, (5.9)

where T (t)z =
(
u(t)
u̇(t)

)
.

Let zj be bounded, tj →∞. Then T (tj)zj is bounded and we may suppose
that T (tj)zj ⇀ χ,T (tj −M)zj ⇀ χ−M for some χ, χ−M ∈ X. Hence T (t+ tj −
M)zj ⇀ χ−M and thus T (M)χ−M = χ. Apply (5.9) with z = T (tj −M)zj to
obtain

I(T (tj)zj) = e−βMI(T (tj −M)zj) +
∫ M

0

eβ(t−M)H(uj(t)) dt, (5.10)

where T (t+ tj −M)zj =
(
uj(t)
u̇j(t)

)
. Passing to the limit and using again (5.9)

with z = χ−M we get

lim sup
j→∞

I((tj)zj) 6 Ce−βM + I(χ)− e−βMI(χ−M ). (5.11)

Letting M →∞ we obtain

lim sup
j→∞

I(T (tj)zj) 6 I(χ) 6 lim inf
j→∞

I(T (tj)zj). (5.12)

Hence I(T (tj)zj) → I(χ) and from the form of I we deduce that ‖T (tj)zj‖X →
‖χ‖X so that T (tj)zj → χ strongly.

Hence ω(p) consists only of rest points for every p. Also, the set Z of rest

points is bounded, since for any rest point z =
(
u
0

)
,∫

Ω

|∇u|2dx =
∫

Ω

(u2 − u4) dx 6
1
4
meas Ω.

Hence {T (t)}t>0 is point dissipative and there exists a global attractor.

12



References

[1] J. M. Ball. Measurability and continuity conditions for nonlinear evolution-
ary processes. Proc. Amer. Math. Soc., 55:353–358, 1976.

[2] J. M. Ball. Continuity properties and attractors of generalized semiflows and
the Navier-Stokes equations. Nonlinear Science, 7:475–502, 1997. Erratum,
ibid 8:233,1998; corrected version appears in Mechanics: from Theory to
Computation, Springer, 2000.

[3] J. M. Ball. Global attractors for damped semilinear wave equations. Discrete
and Continuous Dynamical Systems, 10:31–52, 2004.

[4] P. R. Chernoff. A note on continuity of semigroups of maps. Proc. Amer.
Math. Soc., 53:318–320, 1975.

[5] P. R. Chernoff and J. E. Marsden. On continuity and smoothness of group
actions. Bull. Amer. Math. Soc., 76:1044–1049, 1970.

[6] J. R. Dorroh. Semi-groups of maps in a locally compact space. Canad. J.
Math., 19:688–696, 1967.

[7] J. K. Hale. Asymptotic behavior of dissipative systems. Amer. Math. Soc.,
Providence, 1988.

[8] O. Ladyzhenskaya. Attractors for semigroups and evolution equations. Cam-
bridge University Press, Cambridge, 1991.

13


