VIASM Ha Noi
23, 25 August 2016

Interfaces and hysteresis in solid
phase transformations

John Ball
University of Oxford

Notes at http://people.maths.ox.ac.uk/ball/teaching.shtml

Oxford
EPSRC Lerc [l THE ROYAL cﬂ1 for
P ... @)@ SOCIETY AYE
and sKIUWS Established by the European Commission



Metallic alloys comprise a mixture
of different elements forming a
crystal lattice.

This course is about martensitic phase transformations.
T hese are solid-solid phase transformations in which the
underlying crystal lattice of an alloy changes shape as the
temperature is reduced through a critical temperature.

It turns out that there are different possible symmetry
related variants of the low temperature phase, and the
crystal has to deform in such a way that these different
variants are geometrically compatible. This leads to re-
markable patterns of microstructure that determine how
the alloy behaves macroscopically.
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Questions

1. What exactly are we seeing in these micrographs?

2. What is a good mathematical model?

3. Can we predict the microstructure morphology?

4. Why is the microstructure so fine (i.e. the length-
scale so small)?



Topics

. Nonlinear elastostatics.

. Existence of minimizers and analysis tools.

. Martensitic phase transformations.

. Microstructure.

. Austenite-martensite interfaces.

. Complex interfaces.

. Incompatibility induced metastability and nucleation of
austenite.

8. Remarks on polycrystals.

9. Local minimizers with and without interfacial energy.
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1. Nonlinear elastostatics



The central model of solid mechanics. Rubber, metals (and
alloys), rock, wood, bone ... can all be modelled as elastic

materials, even though their chemical compositions are
very different.

For example, metals and alloys are crystalline, with grains
consisting of regular arrays of atoms.

Iron carbon
alloy, showing
grain structure

http://www.doitpoms.ac.uk



Polymers (such as rubber) consist of long chain
molecules that are wriggling in thermal motion, often
joined to each other by chemical bonds called
crosslinks.

—CH,
. /4
H3C S—S _
\ / \
o SL/S »)—CH;
-owe ﬁ\\\\ 7 /,f g /’—\
S — S
\ /
S CH- CH S
/ \
S (S)n
HaC — HaC
o \ CH
/ 3
CHs {

Schematic presentation of two strands (blue and green) of natural
rubber after vulcanization with sulphur. (Wikipedia) 10



Wood and bone have a cellular structure.

White ash Human hip bone

http://classes.mst.edu/civeng120/less Patrick Siemer, San Francisco, USA
ons/wood/cell_structure/index.html
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A brief history

1678 Hooke's Law

1705 Jacob Bernoulli

1742 Daniel Bernoulli

1744 L. Euler elastica (elastic rod)

1821 Navier, special case of linear elasticity via molecular model
(Dalton’s atomic theory was 1807)

1822 Cauchy, stress, nonlinear and linear elasticity

For a long time the nonlinear theory was ignored/forgotten.
1927 A.E.H. Love, Treatise on linear elasticity

1950's R. Rivlin, Exact solutions in incompressible nonlinear elasticity
(rubber)

1960 - 80 Nonlinear theory clarified by J.L. Ericksen, C. Truesdell ...
1980 - Mathematical developments, applications to materials,
biology ...
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Description of deformation

Reference configuration Deformed configuration

Q c R3 bounded domain with closure € and
(Lipschitz) boundary 0f2.

Label the material points of the body by the
positions x € 2 they occupy in the reference
configuration.



Reference configuration Deformed configuration

A typical deformation is described by a map vy : 2 — R3.

For the time being we suppose that y is smooth with
deformation gradient

0y;
F=Dy(m), Fiq = 6561.
Q

To avoid interpenetration of matter, vy : 2 — R3 should
be invertible.
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Examples.

i
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locally invertible but not globally invertible
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How can we ensure invertibility?

For C1 maps we can use:

Theorem. Let Q C R3 be a bounded domain
with Lipschitz boundary 92 (in particular €2 lies
on one side of 9 locally). Let y € C1(; R3)
with

detDy(x) >0 forallz € Q (%)

and ylgo one-to-one. Then y is invertible on
Q.

(The proof uses degree theory. See, for example, Meisters & Olech, Duke Math.
J. 30 (1963) 63-80.)

When y is not smooth, or is not prescribed on the whole

of 0€2, things are more complicated. For the rest of this
course we ignore issues of invertibility, but we will assume L6
that (x) holds in some sense.



Notation

M3*3 = {real 3 x 3 matrices}
MP*? = {F e M>3:detF >0}
SO(3) = {ReM7}*°:R'R=1}

{rotations}.

If a € R3, b € R3 the tensor product a ® b is the matrix
with the components

(a ® b)’l] — azbj
[Thus (a®b)e = (b-c)a if c € R3]
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Theorem (Square root theorem) Let C be a
positive symmetric 3 x 3 matrix. Then there
IS @ unique positive definite symmetric 3 x 3
matrix U such that C = U?2. If C has spectral

decomposition C = Y3 1 \;é; ® &;, then

1
U=5x3,2"%6®8. (We write U = C3.)

1

Theorem (Polar decomposition)
Let I € M_3|_X3. Then there exist positive defi-
nite symmetric U, V and R € SO(3) such that

F = RU = VR,
1 1
and U = (FTF)2,v = (FF)z.

T hese representations are unique.

Because V = RUR! the strictly positive eigenvalues
v1,vo,v3 Of U and V are the same. They are called the
singular values of F', or the principal stretches.
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Exercise: simple shear

y(a:') — (331 + 733273327333)' / I
i) :
v=tané T i/
6 = angle of shear/ i /
Show that |
cosy siny O [ cos simg O\
— — Sij : 14-sin“
F = siny cosvy O sin T 0

tany = % As v — 04 the eigenvectors of U
and V tend to %5(61 62),%(61 —e5),e3. 1




Variational formulation of nonlinear elasticity

Reference configuration Deformed configuration

Find a deformation y = y(x) minimizing the total free
energy given by

I(y) = | ¥(Dy(@)) do

subject to suitable boundary conditions, for example

vloc, = ¥, Where 3 : 021 — R3 is given.
20



Properties of the free-energy density .
Assume

(H1) 9(-) : M3*® — [0,00) is C1.

(H2) v(F) > o0 as detFF — 0+ .

(H3) (Frame indifference) v (QF) = ¢ (F') for all

Q € SO(3), F e M7*.

Hence ¢(F) = v (RU) = ¢(U).
The Piola-Kirchhoff stress tensor is given by

Tr(Dy) = Dy(Dy). d



Material symmetry

Some materials have a mechanical response that depends
on how they are oriented in the reference configuration.
To make this precise we ask the question as to which
initial linear deformations H & Mf’rX3 do not change 7
That is, for which H do we have

Y(F) =¢(FH) for all F e MY*37

These H form a subgroup S of M_:T’_X:)’, the symmetry
group of . For example, if ¢ has cubic symmetry we
can take

S = P?% = {rotations of a cube}.

22



Isotropic materials

T hese are materials for which all rotations are
in the symmetry group, i.e. SO(3) C S.

Theorem

1 is isotropic iff ¥ (F) = ®d(vq1,vp,v3) for some & that is
symmetric with respect to permutations of vy, vo,v3.

Examples of isotropic @ are given by the Ogden models of rubber:
N

D= > o(v) 05 + 5 — 3)
i=1
M
+ > Bi((vav3)% 4 (v3v1)% 4 (v1v2)% — 3)
i=1
+h(v1vov3)

where oy, 8;,p;, q; are constants and h(§) — oo as § — O+. 23



Why do we minimize energy?

This is a deep question, the rough answer being the Second
Law of Thermodynamics.

Under suitable mechanical and thermal boundary conditions the
Second Law endows (Duhem, Ericksen) the equations of
dynamic (thermo)elasticity with a Lyapunov function

PR|yt| + e(Dy, 0) — 6gn(Dy, 9))

entropy
densﬁy
velocity internal constant boundary
temperature temperature
energy

and we expect yy -+ 0, 8 — 0y as t — oco. Thus we expect
the dynamics to generically give minimizing sequences for

Jo ¥ (Dy(x)) dx, where (Dy) = e(Dy,0g) — 0on(Dy, 0p). 24



2. Existence of minimizers and analysis tools
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LP spaces

All mappings, sets assumed measurable, all
iIntegrals Lebesgue integrals.

Let 1 <p < .
IP(Q) ={u:Q2—=>R: |ullp < oo},

where

1
lull, = { Ugqlu(@)[Pdz)r if 1 <p <oo
esssUPgeq [u(z)| if p= o0

LP(;R™) = {u = (u1,...,upn) : u; € LP(Q)}.

wld) = win LP if |ul9) — |, - 0. =



The Sobolev space Wip

wlp — {y: Q2 — R : ||’y||1,p < oo}, where

1yll1., = { (Jolly(@) [P + |Dy(2)|P] dz) /P if 1 < p < oo
P esssupgeq (Jy(@)| + [Dy(z)|) if p= oo

i.e. ye LP(2;R3), Dy € LP(2; M3%3).

Dy is interpreted in the weak (or distributional)
sense, so that

27

for all ¢ € CF°(2).



Weak convergence

— convergence of averages
u{7) converges weakly to u (or weak* if p = co)
in LP, written wU) — 4 (or w9 X 4 if p = 00)

It

B d —>/ dz for all ¢ € LP
/Qu Y ax ngo X p ,

1 1
where = = =1.
p—l—p,

28



The importance of weak convergence for
nonlinear PDE comes from the fact that if
1 < p < oo then any bounded sequence in LP

has a weakly convergent subsequence (weak*
if p = 00).

If the bounded sequence is a sequence of
approximating solutions to the PDE (e.q.
coming from some numerical method, or a
minimizing sequence for a variational problem),
then the weak limit is a candidate solution.

But then we need somehow to pass to the limit
iIn nonlinear terms using weak convergence.



Example: Rademacher functions.

_faifo<z <A
0 H(x)—{b fA<z<1

extended periodically to R.

a - -

b - -

1 0 A1 2 L

Exercise. Define 0U)(z) = 0(jz).

(i) Prove that 6U) X Xa + (1 — \)b in L=(0,1)
(ii) Deduce that if f : R — R is continuous and
such that u(7) X 4 in L™ implies f(u()) X f(u)
in L° then f is affine, i.e. f(v) = av + B for
constants «, (.

30



We say that yJ) — 4 in Wlp
It y(j) — y in LP and Dy(j) — Dy in LP
(— replaced by = if p = 00).

Question: for what continuous f: M3%3 5 R
does y(1) Xy in W imply f(Dy9)) X f(Dy)
in L°°7

Answering this turns out to be a key to proving
the existence of minimizers for a realistic class
of materials.

31



Reference configuration Deformed configuration

Q) c R3 bounded domain with Lipschitz
boundary 0£2, 0£21 C 0<2 relatively open,
Y 891 — R?’.

32



We want to minimize

I(y) = [ w(Dy)da

in the set of admissible mappings

A= {y c Wl’l . det Dy(x) > 0 a.e., y|an = g}

(Note that we have replaced the invertibility
condition by the local condition det Dy(xz) > 0O
a.e., which is easier to handle.)

33



So far we have assumed that

(H1) 4 M3*3 —[0,00) is CT,

(H2) Y(F) — oo as det F' — 0+,

so that setting v(F) = oo if det ' < 0, we have
that ¢ : M3%3 — [0, 00] is continuous, and that
W is frame-indifferent, i.e.

(H3)  ¢(RF) = ¢(F) for all R e SO(3),F € M3*3.

(In fact (H3) plays no direct role in the
existence theory.)

34



Growth condition

>

’ y = Fx

v(F) _

liMm — 00
Fl—oo |F|3

says that you can't get a finite line segment
from an infinitesimal cube with finite energy.

35



We will use growth conditions a little weaker
than this. Note that if

H(F) > C(1 + |F[3T9)

for some £ > 0 then any deformation with finite
elastic energy

| (Dy(@)) da

and satisfying suitable boundary conditions is
in W1:31¢ and so is continuous by the Sobolev
embedding theorem.

36



Convexity conditions

The key difficulty is that ¢ is never convex

(Recall that 9 is convex if
YAEF + (1 = XN)G) < M(F) + (1 - )Y(G)
forall F,G and 0 < A <1.)

Reasons
1. Convexity of 4 is inconsistent with (H2)

because M_:i)’_x‘o’ is not convex.

37



Remark: M_3|_><3 is

A =diag(1,1,1) not simply-connected.

P(3(A+ B)) = 0
> 2 (A) + S¢(B)

%(A + B) = diag (0,0, 1)

detF >0

B =diag(-1,-1,1)

38



2. If ¢ is convex, then any equilibrium solution (solution
of the EL equations) is an absolute minimizer of the
elastic energy

I(y) = | ¥(Dy)da

Proof.
I(z) = | $(D2)da >
| [(Dy) + Dv(Dy) - (Dz = Dy)] de = 1(y).

This contradicts common experience of nonunique equilibria,
e.g. buckling.

39



Rank-one matrices and the Hadamard
jump condition
TN

y piecewise affine
Dy=A, x-N >k

Dy=DB, z-N <k x-N =%k

Let C = A—-—B. Then Cx =0 if x- N = 0.
Thus C(z — (z- N)N) = 0 for all z, and so
Cz= (CN ® N)z. Hence

A—B=a® N

Hadamard
jump condition

40




More generally this holds for y piecewise Cl,
with Dy jumping across a C1 surface.

AV
/ Dy—I_(ZEO) =4
70
Dy~ (zg) = B A—B=a®N

Exercise: prove this by blowing up around x
T—IQ

using ye(z) = ey(——22).

(See later for generalizations
when y not piecewise C1.) 41



Rank-one convexity

W IS rank-one convex if the map

t— Y(F +ta® N) is convex for each
Fe M3*%3 and a € R3, N € R3.

(Same definition for M™*™ )

Equivalently 7 is rank-one convex if

YAF 1+ (1 = 2N)G) < Pp(F) + (1 = M)Y(G)
if F.G e M3%3 with F—G=a® N and X € (0,1).

42



Rank-one cone
A={a®N :a,N € R3}

F

Rank-one convexity is consistent with (H2) because
det(F + ta ® N) is linear in ¢, so that Mf’rXB’ is rank-one
convex (i.e. if F,G € M>*3 with F — G = a® N then

_I_
AF + (1-X0)G e M373)

43



If ¢ € C2(M*3) then ¢ is rank-one convex iff

2

d
@w(F +ta ® N)|t=0 > 0O,

for all F € Mf’rX?’,a,N c R3, or equivalently

0% (F)
OF;o0F;5

(Legendre-Hadamard condition).

D?(F)(a®N,a®@N) =

a;jNaajNg = 0O,

44



Quasiconvexity (C.B. Morrey,1952)

Let o : M™M*™ — [0,o00] be continuous. 1 is
said to be quasiconvex at F & M™*" if the
Inequality

| o(F+Dp(@) dw > [ $(F)de  aefinition
1 independent
holds for any ¢ € Wy (2; R™), and is  of 0

quasiconvex if it is quasiconvex at everyCOuId replace

Fre Mmr, by C§°(S2; R™)
Here €2 C R" is any bounded open set

with Lipschitz boundary, and

is the set of those y € W1:°°(Q2; R™) which are

zero on 9L2 (in the sense of trace). 45




Setting m = n = 3 we see that ¢ is
quasiconvex if for any F € M3%3 the pure
displacement problem to minimize

I(y) = [, ¥(Dy()) de
subject to the linear boundary condition

y(x) = Fz, x € 0X2,

has y(xz) = Fx as a minimizer.

46



T heorem
If ¢ is continuous and quasiconvex then % is

rank-one convex.

Corollary If m =1 or n = 1 then a continuous
Y o MM — [0, oo] is quasiconvex iff it is convex.

Proof.
If m=1or n =1 then rank-one convexity is

the same as convexity. If ¢ is convex then by
Jensen’'s inequality:

1
meas <2 / Y+ D) du

/ (F + Do) d:c) — W(F). .

>
Z Y (measQ



Theorem (van Hove)
Let (F) = ¢;;11FijF be quadratic. Then
1 IS rank-one convex < 1 IS quasiconvex.

Proof.
Let ¢ be rank-one convex. Since for any

Y € Wg’oo
| W(F + D) = ()] dz = |

Q
we just need to show that the RHS is > 0.

CiiklPi,j Pk, AT

Extend ¢ by zero to the whole of R"™ and tal§8e
Fourier transforms.



By the Plancherel formula
/Q CijklPi,j Pk, AT = /ncijleOi,jSOk,l dx

= 4r? / Rec;ji®i&ieréil dé
> 0

as required.

49



Null Lagrangians

When does equality hold in the quasiconvexity
condition? That is, for what L is

/Q L(F 4+ Do(z)) do = /Q L(F) dx

for all ¢ € Wol’OO(Q;IRim)? We call such L
quasiaffine.

50



Theorem (Landers, Morrey, Reshetnyak ...)
If L : M3%3 s R is continuous then the

following are equivalent:
(i) L is quasiaffine.
(ii) L is a (smooth) null Lagrangian, i.e. the
Euler-Lagrange equations DivDgpL(Du) = O
hold for all smooth w.
(iii) L(F) =const.4+C-F+ D -cof F+edet F.

(iv) u— L(Du) is sequentially weakly
continuous from WP — L1 for sufficiently

large p (p > 3 will do).

51



Proof that v — cof Du is sequentially weakly
continuous.

Consider, for example, J(Du) = uq jup 2—u1 2u2 1.

Let u) —~ 4 in WP, p>2. Then J(Dul)) is
bounded in LP/2 and so we can suppose that
J(Dul)) —~ y in L1

Let ¢ € C5°(£2). For smooth v we have the
identity

J(Dv) = (viv22)1 — (v1v2.1) 2.

Thus, approximating v € W12 by smooth map-
pings we find that

/Q J(Dv)pdr = /Q[’Ul’vz,ls@,z —vivo @ 1]dr. =



Setting v = u(9) we get

/Q J(Du(j))cp dr = /Q [ugj)ug%cp,g — ugj)ug%g@,l] dx.

e Wl e

X ujl u21 Ul up2

So
/QXSO Q[ 1U2.1$.2 1U2 2¢ 1]

= J(D dzx.
| J(Dw)pde
Hence x = J(Dwu) as required.
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Polyconvexity

Definition

W IS polyconvex if there exists a convex
function ¢ : M3%3 x M3%3 x R — (—o00, 00] such
that

W(F) = g(F,cof F,det ) for all F ¢ M3%3,

54



Theorem
Let ¢ be polyconvex, with g lower
semicontinuous. Then ¥ IS quasiconvex.

Proof. Writing J(F') = (F,cof F,det F') and

1
do = / dz.
][Qf g meas <2 Qf g

fQ W(F + Dp(z))de = ][Q g(J(F + Dy(z))) dz

Jensen

> g (][Q J(F + Do) dm)
g(J(F))
Y(F).

55



Remark

There are quadratic rank-one convex ¥ that
are not polyconvex. Such ¢ cannot be written
in the form

N [
p(F) =Q(F) + Y a8 (1),
[=1

where (Q > 0 is quadratic and the Jg) are 2 x 2
minors (Terpstra, D. Serre).
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Examples and counterexamples

We have shown that
4= W= det 4= Zhang
) convex = ¥ polyconvex = ¥ quasiconvex
= 1) rank-one convex.
= Sverak
The reverse implications are all false.

So is there a tractable characterization of
quasiconvexity? This is the main road-block
of the subject.

57



Theorem (Kristensen 1999)

There is no local condition equivalent to
quasiconvexity (for example, no condition
iInvolving 3 and any number of its derivatives
at an arbitrary matrix F).

This might lead one to think that it Is not
possible to characterize quasiconvexity. On the
other hand Kristensen also proved

Theorem (Kristensen)
Polyconvexity is not a local condition.
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For example, one might contemplate a

characterization of the type
1) quasiconvex < ¢ is the supremum of a
family of special quasiconvex functions

(including null Lagrangians).
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Quasiconvexity is essentially both necessary and suffi-
cient for the existence of minimizers (for the sufficiency
under suitable growth conditions on ).

However, as well as being a practically unverifiable condition,
the existence theorems based on quasiconvexity (still) do not
really apply to elasticity because they assume that ¢ is every-
where finite, whereas this is contradicted by (H2).

However we will show that it is possible to prove the exis-
tence of minimizers for mixed boundary value problems if we
assume v is polyconvex and satisfies (H2) and appropriate
growth conditions. Furthermore the hypotheses are satisfied
by various commonly used models of natural rubber and other
materials (but not, as we see later, for materials undergoing

martensitic phase transformations). -



Theorem (Miiller, Qi &Yan 1994, following JB 1977)
Suppose that ¢ satisfies (H1), (H2) and

(H4) ¢(F) > co(|F|2+|cof F|3/2)—¢; forall F € M3%3,
where cg > O,

(H5) v is polyconvex, i.e. ¢Y(F) = g(F,cof F,det F') for
all FF € M3%3 for g continuous and convex.

Let

I(y) = [ ¢(Dy(2)) do.
Assume that there exists some y in
A= {y e WHHQ;R?) 1 ylpq, = 7}

with I(y) < oo, where H2(8€21) > 0 and 7 : 827 — R3.
Then there exists a global minimizer y* of I in A.
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The theorem applies to the Ogden materials:

N
=) a; (vt + vit + ,ng' —3)
1=1

M
+ Z Bi((vov3)? + (vavy ) + (viv)? — 3)

1—=1
+h(vivov3)

where «;, G, p;, q; are constants and h is convex,
h(d) — oo as 6 — 0+, h(55) » 00 aS § — o0,
under appropriate conditions on the constants.
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Sketch of proof
Let’'s make the slightly stronger hypothesis that

g(F, H,8) > co(|F|P + |H|P + |8]9) — e,

for all F € M3%3, where p > 2, %+% = 1,
co>0and g > 1.

Let [ = infyeAI(y) < oo and let y(j) be a
minimizing sequence for I in A, so that
lim 1(yU)) =1.
7—>00
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Then we may assume that for all 3

I+1>  I(yW)

+| det Dy(j)|q] — cl) dz.

Lemma

T here exists a constant d > 0 such that

/ |z|Pdx < d (/ | Dz|Pdx +
Q2 Q2

for all z € WhP(Q2; R3).

> /Q (col| Dy P + |cof Dy(D|P

/ zdA
9,

64



By the Lemma y{) is bounded in WP and so
We may assume y(j) — y* in WP for some y*.

But also we have that cof Dy{%) is bounded in
L? and that det Dy() is bounded in L4. So

we may assume that cof Dy(¥) —~ H in LP and
that det DyJ) — § in LY.

By the results on the weak continuity of minors
we deduce that H = cof Dy* and 6 = det Dy*.
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L et () — (Dy(j)jcgf Dy(j),det Dy(j)),
u = (Dy*, cof Dy*,det Dy*)). Then

w9 =g in L1 R9).

But ¢ is convex, and so (e.g. using Mazur's
theorem),
I(y™) —/ g(uw)dx < liminf g(u(j))dat
] o

= lim I(y(j)) =

J]—>00

But y|sq0, =7 — y*laq, in L1(8921;R3) and
so y* € A and y* is a minimizer.



3. Martensitic phase transformations
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These involve a change of shape of the crystal lattice of
some alloy at a critical temperature.

e.g. cubic to tetragonal

9 > GC . ¥ 9 < Hc

cubic =] three tetragonal variants
) of martensite

austenite

cubic to X 0 < 0.

orthorhombic SiX orthornombic variants
(e.g. CUAINi) of martensite ”
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Atomistically sharp interfaces for
cubic to tetragonal transformation
iIn NiMn

Baele, van Tenderloo, Amelinckx
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Energy minimization problem
for single crystal

Minimize I,(y) = /Qfgb(Dy(:c), 0) da

subject to suitable boundary conditions, for
example

Yo, = Y-

0 = temperature,
v = P(A,0) = free-energy density of crystal,

defined for A ¢ M;Q’rX3.
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Energy-well structure
K(0) = {A € M3*3 that minimize ¥(A4,0)}

_|_
Assume / austenite
Oz(é’)SO(i%) 0 > 0.
K(0) =< SO3)UUN.,SOB)U;(6.) 6 =8,
U, SO(3)U (6) H < O,

alf.) =1 \

martensite
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The U;(0) are the distinct matrices QU7 (0)Q*

for Q € P?* = cubic group.

For cubic to tetragonal N = 3 and

U, = diag (n2,n1,n1), U = diag (n1,m2,11),
Uz = diag (n1,n1,12).

For cubic to orthornombic N = 6 and

U1

Uy

(OH"Y y—a 0\

\ 0 0 4
(8 0 0 )

0 oty a—vy
oy aty
\0 %7 T

, Us

, Uz =

\

\

(B
0

0
a—7y
2

Y

(=5

w

0

o

+
2

—&

0 Y

N
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By the Hadamard jump condition, interfaces
correspond to pairs of matrices A, B with

A—B=a®N,
where N is the interface normal. At minimum

energy A, B € K(0).

From the form of K(6), we need to know what
the rank-one connections are between two given

energy wells SO(3)U, SO(3)V.
A—B=a®N #0

SO(3)U A—| B SO(3)V
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Theorem
Let U=UL >0, V=V >0. Then SO3)U,
SO(3) V are rank-one connected iff

U°-V?2=c(MQN+NQM) (%)

for unit vectors M, N and some c #= 0.
If M #= +N there are exactly two rank-one
connections between V and SO(3) U given by

RU=V+a®N, RU=V+ax M,
for suitable R, R € SO(3), a,d € R3.
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Corollaries.
1. There are no rank-one connections between

matrices A, B belonging to the same energy

well.
Proof. In this case U = V/, contradicting ¢ # O.

2. If U;,U; are distinct martensitic variants
then SO(3)U; and SO(3)U; are rank-one

connected if and only if det(U7 —U?) = 0, and
the possible interface normals are orthogonal.
Variants separated by such interfaces are called

twins.

Proof. Clearly det(U? — sz) =0 is
necessary, since the matrix on the RHS of (*)
IS of rank at most 2.



Conversely suppose that det(U7 — U?) = 0.
Then U? — sz has the spectral decomposition

U7 —U7 =Xe®e+ pe®E,

and since U; = RU;R! for some R € P2% it
follows that tr (U? — sz) — 0. Hence p = —\
and

Uf —U? Me®e—éERe)
N e—l—é@e—é e—e e—+e
V2 T V2 V2 T V2 )

as required.
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Remark: Another equivalent condition due to
~orclaz is that det(U; — U;) = 0. This is
pecause of the surprising identity (not valid in
nigher dimensions)

det(U7—U7) = (A14+A2) (Aa+A3) (Az+A1) det(U;—U;).

3. There is a rank-one connection between
pairs of matrices A € SO(3) and B € SO(3)U;
if and only if U; has middle eigenvalue 1.

Proof. If there is a rank-one connection then
1 is an eigenvalue since det(U? — 1) = 0.
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Choosing e with M-e > 0, N-e > 0 and M-e > O,
N-e < 0, we see that 1 is the middle eigenvalue.
Conversely, if 1 is the middle eigenvalue

U-2—1 — ()\2—1)61@)814-()\%—1)63@83

Z A3 — A%
L ((ae1 + Be3) @ (—ae1 + Bez)

+ ( ae] + Bez) @ (aeq + Bes)),

1-)2 /\2 1
where a = X2—A2 AQ,

Exercise Show that for a cubic-to-tetragonal
transformation the possible twin planes are those
with normals in the [110] family (i.e. %(1, 1,0),

1 1
ﬁ(oa 17 1)1 ﬁ(lv 07 1))
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Atomistically sharp interfaces for
cubic to tetragonal transformation
iIn NiMn

Baele, van Tenderloo, Amelinckx
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Layering twins

Simple laminate

A—B=c®N

//[1’ —AMJ

M1

DyU) —~ Dy = XA+ (1 - )\)B

80



4. Microstructure

81



he free-energy function (-,0) is not quasi-
convex. This is because the existence of twins
implies that ¥ (-,0) is not rank-one convex.

l,

So we expect the minimum of the energy in
general not to be attained, with minimizing
sequences y(j) IN general generating infinitely
fine microstructures. 82



Gradient Young measures

Given a sequence of gradients
Dy(j), fix 7,x,0.

Let E C M3%3, where
M3%3 = {3 x 3 matrices}

vol {z € B(x,9) : Dy(j)(z) c E}
vol B(x,d)

Vm,j,é(E) —

vp(E) = lim lim v, ; s(E)

d—0 73—
IS the gradient Young measure generated by
Dy(9), N



Gradient Young measure of simple
laminate

vy = MNoa 1 (1= \)ép
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Theorem. (Kinderlehrer/Pedregal) A family
of probability measures (vg),co on M™X" |js
the Young measure of a sequence of gradients
Dy'9) bounded in L™ if and only if

(i) Uz is a gradient (Dy, the weak limit of Dy(J))
(ii) {ve, f) > f(vg) for all quasiconvex f.

Here

and

o, ) = [ F(A) dva(A)

men 35



Quasiconvexification

Of functions:
W9¢ = sup{g quasiconvex : g < W}.

Of sets:
A subset E ¢ M3*%3 if E = ¢g—1(0) for some
non-negative quasiconvex function g.

Let K ¢ M3%3 be compact,
e.g. K =L, SOB)U;(9). s



g
||

quasiconvexification of K

({E : K C E, E quasiconvex}

{v : vgradient Young measure ,
supprv C K}

Fe M33: g(F) < maxag(A
1F e g()_%%g()

for all quasiconvex g}.

YY9C(F,0) is the macroscopic free-energy
function corresponding to .

K (0)Y9¢ is the set of macroscopic deformation

gradients corresponding to zero-energy
Mmicrostructures.
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5. Austenite-martensite interfaces
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How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface between
austenite and martensite, because this requires the mid-
dle eigenvalue of U; to be one, which in general is not

the case (but see studies of James et al on low hysteresis
alloys).

So what does it do?

89



(Classical) austenite-martensite interface in CuAlNi
(courtesy C-H Chu and R.D. James)
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habit Gives formulae of the
A crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for
cubic-to-tetragonal

boundary layer
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Rank-one connections for A/M interface

AR U (1 — A)RoU,
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Possible lattice parameters

for classical austenite-martensite

interface .
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Macrotwins in Nig:Al;c involving two tetragonal
variants (Boullay/Schryvers)
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Crossings and steps
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Macrotwin formation

« < 90° 00),4
- - ] - — e—

Similar effects and analysis
in B-titanium: T. Inamura,
M. Ii, N. Kamioka,

M. Tahara, H. Hosoda,

plate Ii

(X -y 1),

- , 96
(xy 1),




Macroscopic deformation gradient in martensitic

plate is

wherev =1for A= A", v =—1for A = 1— A* the
microtwin planes have normals (

]

Table 1: Rotations ¢ and @2 that bring Plate II into compatibility with Plate I (&,
the corresponding macrotwin normals N; and Nos.

1

| —
(é}fg(é gz LFT)}

1
(E}:(é T HT): §

1+6@m

1,%,0) and x =

xk(vr —6),1)

SXCs(vT = 8), B

B/Schryvers 2003

Different martensitic plates
never exactly compatible
(Bhattacharya)

=vy1 = = 1) and
The direction of rotation is that of a right-handed screw

in the direction of the given axis. For the case ko = 12 = 1, y2 = —1 see the text.
Parameter Values oF [P
kg Y2 Vg Axis Angle Ny Axis Angle 9
-1 1 (.70,0,-.71) 1.64° (0,1,0) (.75,0,.66) 1. TH* (1,0,0)
-1 -1 ] (0 .99,.16) 7.99° (1,0,0) (0,.99,-.14) 7.99° (0,1,0)
-1 -1 (.65, 48 59) | 6.76° | (.59,-.81,0) | (.68,.50,.54) 6.91° | (-.81,-.59,0)
-1 - -1 (- 48 65,.59) | 6.76° | (-.81,-.59,0) | (-.50,.68,-.54) | 6.91° .59,-.81,0)
1 -1 | (-.54,.54,.64) | 5.87° ﬁ(l_}l_}o} (-57,57,-59) | 6.08° | —=(1,-1,0)
1 -1 -1 (.60,.60,-.52) | 7.37° —2{1,-1 0) (.62,.62,.47) 7.47° LQ(],.I.,O)




Nonclassical austenite-martensite
interfaces (B/Carstensen 97)

speculative nonhomogeneous
martensitic microstructure
with fractal refinement

near interface

Q\

curved nonclassical
interface

98



Nonclassical interface with double
laminate

JHNANEATANSATAANANER

N

\\
pure phase ', double laminate
of austenite / of martensite

[ANNARARRNRARRANRRRNNN

\AIIA




Nonclassical interface calculation

Dy(x) =F =v
F e (UX, so@3)y;

N\

(unknown unless N = 2)

)"

Uy = UV

supp v C Ufil SO(3)U;
F=14+bxm
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Two martensitic wells
Let K = SO(3)U; U SO(3)Us,, where

U, = diag (n1,1m2,m3), Uz = diag (n2,11,m3),

and the 7; > 0 (orthorhombic to monoclinic).

Theorem (Ball & James 92) K9¢ consists of the matrices
F € M7*? such that
a 0
F'F={ ¢ 0
0

oSO

U
where a > 0,0 > 0,a + b+ |2¢| < n# + 13, ab — c* = nan3.



The proof is by calculating KP¢ and showing
by construction that any F € KP¢ belongs to
Kac.

For a nonclassical interface we need that for
some a, b, c satisfying these inequalities the mid-
dle eigenvalue of FLF s one, and we thus get
(Ball & Carstensen 97) such an interface pro-
vided

) <771<1OI’1<772 <n ifnz3 <1,

772<7711<10I’1<772<7711 if n3 > 1.
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More wells — necessary conditions

The martensitic variants U; all have the same singular
values (= eigenvalues) 0 < Nmin < Pmid < Pmax-

Let F' € KP¢ have singular values

0 < Umin(F) S Jmid(F) S Umax(F)-

103



KP¢={F € M™*" : p(F') < max p(G)

First choose ¢(G)

- GeK

for all polyconvex ¢}

- det(G). Then

det F = Umin(F)Umid(F)Umax(F) — 77mi1177mid771r1r1aX°

Next choose p(G) = Omax(G) = max)y=1 |Gx|,
which is convex, hence polyconvex. Thus

amax(F) é Tmax -

104



Finally choose ¢(G) = omax(cofG), which is a
convex function of cof (G) and hence polycon-

VeXx. hen

omid(F)omax(F) < nmidNmax

But F =14 b® m implies omnig(F) = 1.

Combining these inequalities we get that
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For cubic to tetragonal we have that

Uy = diag (n2,n1,n1),Ux = diag (n1,12,11),
Uz = diag (11,11, m2),

and the necessary conditions become
-1 :
n1 <ny - <npif 1 <o,

1 :
e <ny- <m it n1 > no.

But these turn out to be exactly the conditions given by
the two-well theorem to construct a rank-one connection
from (SO(3)U1 USO(3)U»)4%¢ to the identity!

Hence the conditions are sufficient also.
106



Values of deformation parameters allowing classical and
nonclassical austenite-martensite interfaces

777/ classical and nonclassical
7/ interfaces possible

only nonclassical
interfaces possible
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Interface normals
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(a)

i

MARTENSITE
(SINGLE VARIANT)

Experimental

AUSTENITE

procedure

(H. Seiner)
3.9x3.8x4.2mm CuAlNi
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AUSTENITE

Optical
micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure

The arrows
indicate the

orientations of
twinning
planes of
Type-Il and
compound
twinning
systems
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Twin crossing gradients 12



Possible nonclassical interface normals

-1.0

0.0

-0.5

-10 |
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Curved interface between crossing twins and austenite resulting from the inhomogenejty of
compound twinning. (Optical microscopy,H. Seiner): theory JB/Koumatos



6. Complex interfaces.
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Zn,s:Au5,Cu, ultra low hysteresis alloy

Yintao Song, Xian Chen, Vivekanand Dabade,

Thomas W. Shield, Richard D James, Nature, 502, 85-88 (03 October 2013) i




Question: in general, how are the gradients or
gradient Young measures on either side of an

interface related?

Knowledge of this could help in understanding
Mmicrostructure morphology.



Suppose y € W1 (Q: R™),

l.e y Lipschitz.

Can we define Dyt (a), Dy~ (a),
and if so how are they related?

Blow up. For z € B(0,1) let
zs(z) = 6 ly(a + 6z).

Then Dzg(x) = Dy(a + dox).
Let 6; — O to get gradient
Young measure v, x € B(0,1).

Let G(a,y) be the set of such v = (Vw)xeB(o,l)-

Dyt(a) = |J [(J{E closed :suppv, C E a.e. z € B¥}
veG(a,y)
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Theorem 1 (JB/Carstensen) At every point a
in an open set 2 C R", for any direction N &
sn—1 and for any locally Lipschitz y : Q2 — R™,
we have

0 € [DyT™ (a) 1-N@N)|9~ Dy (a) 1-NaN)]<.

Corollary There exists b € R"™ with
b® N € Dyt (a)¢ — Dy~ (a)C.
Proof. By the theorem

0 ¢ [Dy™™V(a)(1 -~ N®N)]°— [Dy N(a)(1 - N® N)]°
= [DyT™V(a)* -~ Dy N (a)](1 — N ® N).
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Theorem 2 (JB/Carstensen).
Let m =n = 2. Then there exists b € R® with

b N € DyT(a)PC — Dy (a)PC.

Proof of Theorem 2 uses quasiregular maps, which are
useful also in constructing nonpolyconvex quasiconvex
functions. False in higher dimensions (Iwaniec, Verhota,

Vogel 2002)

121



A probabilistic model for martensitic avalanches.

JB/P. Cesana/B. Hambly 2015

1 1

08 s : T

a6 06

04 04 i

0z 2 i oz

o o T os o O 0e o4 06 08
2 directions 4 directions

General branching random walk analysis
(Cesana/Hambly) predicts approximate power
laws for plate lengths, as observed for acoustic
emissions.



7. Incompatibility induced metastability
and nucleation of austenite

123



Two examples of incompatibility-
induced metastability

1. Special case of JB/James 2014 designed to
explain hysteresis in the bi-axial experiments
of Chu & James on CuAlINi single crystals, in
which a transformation occurs under load
between two martensitic variants.

WA -WB) | A

Consider the integral
I(y) = /Q W (Dy) du, W(A) =¥(A,0)—T- A

where W : M3%3 R and W has two
local minimizers at A, B with rank(A - B) > 1
and W(A) — W(B) > 0 sufficiently small.



Claim. Under suitable growth hypotheses on
W, y(x) = Az + ¢ is a local minimizer of I in
L1(©;R3), i.e. there exists ¢ > 0 such that

I(y) 2 I(y) if Joly —yldr <e.

Idea: since A and B are incompatible, if we
nucleate a region in which Dy(x) ~ B there
must be a transition layer in which the increase
of energy is greater than the decrease of energy
in the nucleus.

transition
layer

Related work: Dy(z) = A
Kohn & Sternberg 1989,

Grabovsky & Mengesha 2009

Dy~ DB



Nucleation of austenite in martensite
JB, Konstantinos Koumatos, Hanus Seiner 2012, 2013

Localized heating experiment:

Specimen: single crystal of CuAINi prepared by
the Bridgeman method in the form of a
prismatic bar of dimensions 12x3x3mm?3 in
the austenite with edges approximately along
the principal cubic directions.

By unidirectional compression along its longest

edge, the specimen was transformed into a

single variant of mechanically stabilized

martensite. Due to the mechanical stabiliza-

tion effect the reverse transition did not occur

during unloading. 126



) [100L,
£ [001],
5 [010],

11.00mm

Engle crystal of CuAINi. Pure variant of martensite. Heat




When touched at a corner, nucleation of austen-
ite occured there immediately. When touched
at an edge or face, nucleation did not oc-
cur at the site of the localized heating, but
at some corner, after a time delay (sufficient
for heat conduction to make the temperature
there large enough).

128



(b)









Proposed explanation. Nucleation is geomet-
rically impossible in the interior, on faces and
at edges, but not at a corner. We express this
by proving in a simplified model that if Ugs de-
notes the initial pure variant of martensite then
at Us the free-energy function is quasiconvex
(in the interior), quasiconvex at the boundary
faces, and quasiconvex at the edges, but not
at a corner.

To make the problem more tractable we as-
sume that ¥(A,0) .= W(A) is infinite outside
the austenite and martensite energy wells. 12



Idealized model

I(v) = /Q%,W} do = /Q /M3X3W(A) dve(A) dz.
where

—§ AeS0(3)
WA =<{ 0 AelUS,S0R3); ,
+o00 otherwise

and o0 > 0.
So W(A) < co on

§)
K =S503)U | sold)y;

133
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Nucleation impossible in the interior

¥ :6Us

—

S:suppv, K

Theorem I(v) > I(4y,)
(quasiconvexity at Ug)
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Nucleation impossible at faces or edges

e R— V= 6Us
e

Y=oy, S:suppv, cK

o S:supph

Similarly in these cases we have

Theorem I(v) > I(6y,)
(quasiconvexity at the boundary and
edges at Usg)



Nucleation possible at a corner

Vx :6Us

I(l/) < I(éUS)
I not quasiconvex at such a corner.



8. Remarks on polycrystals
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Description of polycrystals

Consider a polycrystal occupying in a refer-
ence configuration a bounded domain 2 C R",
composed of a finite number of disjoint grains
24,7 =1,...,N, where each €2; is a bounded
domain, so that

Interior grains are ones for which
0€2; C Uk 02k, and the others are
boundary grains.
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A and B are interior grains
but touch 0f2.

The set of triple points is

T = U 85-27;1 M 697;2 M 8913.
1<1<19<13

The union of grain boundaries is D = UJi¥_; 99;.
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Theorem (JB/Carstensen). Suppose each grain
(2; is convex. Then every interior grain is a
convex polyhedron (i.e. an intersection of a

finite number of open half-spaces).

Theorem. (JB/Carstensen) If n = 2 and each
grain is the interior of a closed Jordan curve,
then there are at most 2(IN — 2) triple points.

The bound is sharp.

Theorem.(JB/Carstensen). Forn > 2, if each

Qj IS a topological manifold with boundary

then T is nowhere dense in D.
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Two results using the nonlinear elasticity model
without interfacial energy.

In this model, at a constant temperature the
total free energy of the polycrystal in a defor-
mation y : Q2 — R3 is given by

I(y) = | W(a, Dy(a)) da,

where W (x, A) = ¥(AR;) for x € Q;, v = ¥(A)
IS the free-energy density corresponding to a
single crystal, and R; € SO(3).

Suppose we are at a temperature for which
the free-energy of the martensite (taken to be
zero) is less than that for the austenite. Then
1 > 0 and

M
K={A:y(A)=0}= ] SO(3)U;.
1=1



Microstructures are described by gradient Young
measures v = (vz)cq, With corresponding en-

ergy

I(v) = /Q /M3X3W(x,A)dyx(A)da:

M
j; /Qj /M3x3 Y(AR;) dvz(A) dz.

(Here we assume that the grains have suffi-
ciently regular, e.g. Lipschitz, boundaries.)

Zero-energy microstructures thus correspond
to v such that suppvy C KR}-F for z € Q;.



For cubic-to-tetragonal (more generally for cu-

bic austenite) a result of Bhattacharya on self-

accommodation implies that in the absence of

boundary conditions on 90€2 there is always a

zero-energy microstructure with uniform macro-
scopic deformation gradient

_ 1
Uy = M3X3Ad1/$(A) = Vy(x) = (det U7)31.

How complicated does v, have to be?



Cubic to tetragonal: K = (J?_; SO(3)U;, where

Uy = diag (n2,n1,n1), Uz = diag (n1,n2,11),
Uz = diag (n1,m1,12).

Theorem There is no homogeneous gradient
Young measure

4 4
V:ZAi(SAi’ )\iZO,Z/\Z':].,

1=1 1=1

with 4; € K and v = (n?n2)1/31.

e \\\‘ &

Arlt (1990).
Microstructure with
approximately four
gradients in BaTiOg3.




Zero-energy microstructures for a bicrystal

K =5S0(3)U1 USsO(3)Us

Grain 1
suppr, C K

Grain 2
supp v C KR(«)

R(a)e3 = e3
o = angle of rotation.

Always possible to have zero-energy
microstructure with Vy = o, = (n9n2)1/31
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Question: Is it true that whatever the orien-
tation of the planar interface between the two
grains there must be a nontrivial microstruc-
ture in both grains?

Result 1. Whatever the orientation there al-
ways exists a zero-energy microstructure which
has a pure phase (i.e. vz = §4) in one of the
grains.

Now consider the case when the boundary be-
tween the two grains has the form S x (0, d),
where S is a smooth curve in the plane, so
that the normal at any point is of the form
(cosf.sin6,0).



Result 2. Suppose that a« = n/4. Then it is
Impossible to have a zero-energy microstruc-
ture with a pure phase in one of the grains
If the boundary between the grains contains a
normal with 6 € Dy and another normal with
0’ € D>, where

T 37 5n0 1w Or 117 137 157

= (5, 20U, U, DU, =25

— 7T T 31 57 (7 97 117 137

DQZ(?,g)U(8’8)U(8,8)U( 3 ' 8 )
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Proofs use:

1. A reduction to the case m = n = 2 using
the plane strain result for the two-well problem
(JB/James).

2. The characterization of the quasiconvex
hull of two wells (JB/James), which equals
their polyconvex hull.

3. Use of a generalized Hadamard jump con-
dition to show that there has to be a rank-one
connection b® N between the polyconvex hulls
for each grain.

4. Long and detailed calculations.
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9. Local minimizers with and without interfacial energy
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Diffuse interface in perovskite (courtesy Ekhard Salje)
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No interfacial energy

Suppose that
Dy(a(0)1,6) = 0,

D*y(a(0)1,0)(G, G) > 1|G|? for all G = G7,
some p > 0. Then y(x) = a(f)x + cis a

local minimizer of
/wD%

But g(x) = a(0)x + ¢ is not a local minimizer of Iy
in WhP(Q;R?) for 1 < p < oo because nucleating
an austenite-martensite interface reduces the eneggy.

in WL (Q; R3).



Second gradient model for diffuse interfaces
JB/Elaine Crooks (Swansea)

How does interfacial energy affect the predic-
tions of the elasticity model of the austenite-
martensite transition?

d < .

a(0)1 U1(0) Ux(8) Us(9)
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Use simple second gradient model of interfacial
energy (cf Barsch & Krumhansl, Salje ), for
which energy minimum iIs always attained.

Fix 0 < 6., write ¥(A) =14 (A,0), and define

1) = [ (w(Dy) +?D?yP) da

where |Dzy|2 = Y;,a8Y%,a81 € > O,

It is not clear how to justify this model on the
basis of atomistic considerations (the wrong
sign problem — see, for example, Blanc, LeBris,
Lions). -



Hypotheses

No boundary conditions (i.e. boundary trac-
tion free), so result will apply to all boundary
conditions.

Assume 1) € OQ(ME’FX?’),

W(A) = oo for det A <0,

W(A) — oo as det A — 0+,

Y(RA) = ¢ (A) for all R € SO(3),

1 bounded below, ¢ > 0.

Dy(al) =0
D2y (al)(G,G) > u|G|? for all G = GT,
for some n > 0. Here o« = 06(9) 156




Theorem. 4(z) = aRzx+a, R € SO(3),a € R3,
is a local minimizer of T in L1(2; R3).
More precisely,

IW~1@ > o [ (IWDy Dy - a12 +|D%2) da

for some o > 0 if ||y — aRx — al|1 is sufficiently
small.

Remark.

/Q |\/DyTDy — al|? da

> c inf — aRr — a3 Dy — R||3).

>co inf - (lly 3+ 1Dy - RI13)
157
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ldea of proof

Reduce to problem of local minimizers for

1(U) = /wa) mp2e2|DU|?) da,
studied by Taheri (2002), using

DAU(A)| < p
for all A, where U(A) = VAT A.

158



Smoothing of twin boundaries

Seek solution to equilibrium equations for

1) = [ ,(W(Dy) + D%y da

such that

Dy— Aasx-N — —o0

Dy — B as x- N — 400,

where A, B= A+ a® N are twins.
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Lemma

Let Dy(z) = F(z-N), where F € W2 (R; M3%3)
and

F(z-N)— A,B

as - N — +o00. Then there exist a constant
vector a € R3 and a function v : R — R3 such
that

u(s) — 0,a as s — —o0, 0,
and for all z € R3

Flr - N)=A4u(x-N)® N.
In particular

B=A4+a® N. 160



The ansatz
Dy(z) = A+ u(z- N)® N.
leads to the 1D integral
Flu) = [ W(A+u(s) @ N)+&2lu'()[?] ds
= [ W(u(s)) + 2/ ()P ds.

For cubic — tetragonal or orthorhombic (under
a nondegeneracy assumption) we have

W(0) =W(a) =0, W(u) >0 for v # 0, a,

and so by energy minimization (Alikakos &
Fusco 2008) we get a solution.



Remarks

1. The solution generates a solution to the full
3D equilibrium equations. However if we use
instead the ansatz

Dy(x) =A+v(xz-N)a® N

with v a scalar, then the corresponding solution
does not in general generate a solution to the
3D equations.

2. The solution is not in general unigue even
within the class given by the ansatz, but more
work needs to be done in this direction. .



