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4. Microstructure.
5. Austenite-martensite interfaces.
6. Complex interfaces. 
7. Incompatibility induced metastability and nucleation of          
austenite.
8. Remarks on polycrystals.
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1.  Nonlinear elastostatics
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The central model of solid mechanics.  Rubber, metals (and 
alloys), rock, wood, bone … can all be modelled as elastic 
materials, even though their chemical compositions are 
very different.

For example, metals and alloys are crystalline, with grains 
consisting of regular arrays of atoms. 

http://www.doitpoms.ac.uk

Iron carbon
alloy, showing
grain structure



Polymers (such as rubber) consist of long chain 
molecules that are wriggling in thermal motion, often 
joined to each other by chemical bonds called 
crosslinks. 

Schematic presentation of two strands (blue and green) of natural 
rubber after vulcanization with sulphur. (Wikipedia) 10



http://classes.mst.edu/civeng120/less
ons/wood/cell_structure/index.html

Wood and bone have a cellular structure.

White ash

Patrick Siemer, San Francisco, USA

Human hip bone
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A brief history
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1678   Hooke's Law
1705   Jacob Bernoulli 
1742   Daniel Bernoulli 
1744   L. Euler  elastica (elastic rod)
1821   Navier, special case of linear elasticity via molecular model      

(Dalton’s atomic theory was 1807)
1822   Cauchy, stress, nonlinear and linear elasticity 

For a long time the nonlinear theory was ignored/forgotten.
1927     A.E.H. Love, Treatise on linear elasticity 
1950's  R. Rivlin, Exact solutions in incompressible nonlinear elasticity 
(rubber) 
1960 - 80  Nonlinear theory clarified by J.L. Ericksen,   C. Truesdell …
1980 - Mathematical developments, applications to materials,     
biology …



Description of deformation
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Label the material points of the body by the

positions x 2 ­ they occupy in the reference
con¯guration.
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Exercise: simple shear

19

y(x) = (x1+ °x2; x2; x3):

F =

0B@ cosÃ sinÃ 0
¡ sinÃ cosÃ 0
0 0 1

1CA
0BB@
cosÃ sinÃ 0

sinÃ 1+sin2 Ã
cosÃ 0

0 0 1

1CCA ;

tanÃ = °
2. As ° ! 0+ the eigenvectors of U

and V tend to 1p
2
(e1+ e2);

1p
2
(e1 ¡ e2); e3:

° = tan µ

µ = angle of shear

Show that
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These are materials for which all rotations are

in the symmetry group, i.e. SO(3) ½ S.
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2. Existence of minimizers and analysis tools

25



Lp spaces

Let 1 · p · 1.
Lp(­) = fu : ­! R : kukp <1g;

where

kukp =
8<: (R­ ju(x)jp dx)

1
p if 1 · p <1

ess supx2­ ju(x)j if p=1

Lp(­;Rn) = fu = (u1; : : : ; un) : ui 2 Lp(­)g:

u(j) ! u in Lp if ku(j) ¡ ukp ! 0:

All mappings, sets assumed measurable, all

integrals Lebesgue integrals.
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W1;p = fy : ­! R3 : kyk1;p <1g; where

kyk1;p =
(
(
R
­[jy(x)jp+ jDy(x)jp] dx)1=p if 1 · p <1
ess supx2­ (jy(x)j+ jDy(x)j) if p=1

Dy is interpreted in the weak (or distributional)

sense, so thatZ
­

@yi
@x®

'dx = ¡
Z
­
yi

@'

@x®
dx

for all ' 2 C10 (­).

i.e. y 2 Lp(­;R3);Dy 2 Lp(­;M3£3):
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= convergence of averages

u(j) converges weakly to u (or weak* if p=1)
in Lp, written u(j) * u (or u(j)

¤
* u if p = 1)

if Z
­
u(j)'dx!

Z
­
u'dx for all ' 2 Lp0;

where 1p +
1
p0 = 1.
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The importance of weak convergence for

nonlinear PDE comes from the fact that if

1 < p · 1 then any bounded sequence in Lp

has a weakly convergent subsequence (weak*

if p =1).
If the bounded sequence is a sequence of

approximating solutions to the PDE (e.g.

coming from some numerical method, or a

minimizing sequence for a variational problem),

then the weak limit is a candidate solution.

But then we need somehow to pass to the limit

in nonlinear terms using weak convergence.
29



Example: Rademacher functions.

¸0 1

a

b

µ µ(x) =

(
a if 0 < x · ¸
b if ¸ < x · 1

extended periodically to R.

Exercise. De¯ne µ(j)(x) = µ(jx).

(i) Prove that µ(j)
¤
* ¸a+ (1¡ ¸)b in L1(0;1)

(ii) Deduce that if f : R! R is continuous and
such that u(j)

¤
* u in L1 implies f(u(j)) ¤

* f(u)

in L1 then f is a±ne, i.e. f(v) = ®v + ¯ for

constants ®; ¯.

2¡1 x
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We say that y(j)* y in W1;p

if y(j)* y in Lp and Dy(j)* Dy in Lp

(* replaced by
¤
* if p=1).
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(In fact (H3) plays no direct role in the

existence theory.)
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Growth condition

1
jF j

y = Fx
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Convexity conditions
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detF < 0 detF > 0

A = diag (1;1;1)

B = diag (¡1;¡1;1)

1
2(A+B) = diag (0;0;1)

Remark: M3£3+ is

not simply-connected.
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Rank-one matrices and the Hadamard
jump condition

N

Dy = A; x ¢N > k

Dy = B; x ¢N < k x ¢N = k

y piecewise a±ne

Let C = A ¡ B. Then Cx = 0 if x ¢ N = 0.

Thus C(z ¡ (z ¢ N)N) = 0 for all z, and so

Cz = (CN ­N)z. Hence

A¡B = a­N
Hadamard

jump condition
40



x0

N

More generally this holds for y piecewise C1,

with Dy jumping across a C1 surface.

Dy+(x0) = A

Dy¡(x0) = B A¡B = a­N

Exercise: prove this by blowing up around x

using y"(x) = "y(x¡x0" ).
(See later for generalizations

when y not piecewise C1.) 41
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Rank-one cone

¤ = fa­N : a;N 2 R3gF
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Quasiconvexity (C.B. Morrey,1952)

de¯nition

independent

of ­

Could replace

by C10 (­;Rm)
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Extend ' by zero to the whole of Rn and take
Fourier transforms.
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By the Plancherel formulaZ
­
cijkl'i;j'k;l dx =

Z
Rn

cijkl'i;j'k;l dx

= 4¼2
Z
Rn
Re [cijkl'̂i»j ¹̂'k»l] d»

¸ 0

as required.
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Null Lagrangians

When does equality hold in the quasiconvexity

condition? That is, for what L isZ
­
L(F +D'(x)) dx =

Z
­
L(F) dx

for all ' 2W
1;1
0 (­;Rm)? We call such L

quasia±ne.
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Theorem (Landers, Morrey, Reshetnyak ...)

If L :M3£3! R is continuous then the
following are equivalent:

(i) L is quasia±ne.

(ii) L is a (smooth) null Lagrangian, i.e. the

Euler-Lagrange equations DivDFL(Du) = 0

hold for all smooth u.

(iii) L(F ) = const.+C ¢F +D ¢ cofF + edetF .

(iv) u 7! L(Du) is sequentially weakly

continuous from W1;p ! L1 for su±ciently

large p (p > 3 will do).
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Polyconvexity
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Examples and counterexamples

The reverse implications are all false.

6( 6( Zhang

6( ·Sver¶ak

So is there a tractable characterization of

quasiconvexity? This is the main road-block

of the subject.
57



This might lead one to think that it is not

possible to characterize quasiconvexity. On the

other hand Kristensen also proved

Theorem (Kristensen)

Polyconvexity is not a local condition.
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The theorem applies to the Ogden materials:

© =
NX
i=1

®i(v
pi
1 + v

pi
2 + v

pi
3 ¡ 3)

+
MX
i=1

¯i((v2v3)
qi+ (v3v1)

qi+ (v1v2)
qi ¡ 3)

+h(v1v2v3)

where ®i; ¯i; pi; qi are constants and h is convex,

h(±) ! 1 as ± ! 0+, h(±)
± ! 1 as ± ! 1,

under appropriate conditions on the constants.
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Sketch of proof

Let's make the slightly stronger hypothesis that

g(F;H; ±) ¸ c0(jF jp+ jHjp0+ j±jq)¡ c1;

for all F 2 M3£3, where p ¸ 2, 1p + 1
p0 = 1,

c0 > 0 and q > 1.

Let l = infy2A I(y) <1 and let y(j) be a

minimizing sequence for I in A, so that
lim
j!1 I(y(j)) = l:
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Then we may assume that for all j

l+1 ¸ I(y(j))

¸
Z
­

³
c0[jDy(j)jp+ jcofDy(j)jp0

+jdetDy(j)jq]¡ c1
´
dx:

Lemma

There exists a constant d > 0 such thatZ
­
jzjpdx · d

ÃZ
­
jDzjpdx+

¯̄̄̄
¯
Z
@­1

z dA

¯̄̄̄
¯
p!

for all z 2W1;p(­;R3). 64



By the Lemma y(j) is bounded in W1;p and so

we may assume y(j)* y¤ in W1;p for some y¤.

But also we have that cofDy(j) is bounded in

Lp0 and that detDy(j) is bounded in Lq. So

we may assume that cofDy(j) * H in Lp0 and
that detDy(j)* ± in Lq.

By the results on the weak continuity of minors

we deduce that H = cof Dy¤ and ± = detDy¤.

65



Let u(j) = (Dy(j); cofDy(j);detDy(j)),

u= (Dy¤; cofDy¤;detDy¤)). Then

u(j) * u in L1(­;R19):

But g is convex, and so (e.g. using Mazur's

theorem),

I(y¤) =
Z
­
g(u) dx · lim inf

j!1

Z
­
g(u(j)) dx

= lim
j!1 I(y(j)) = l:

But y(j)j@­1 = ¹y * y¤j@­1 in L1(@­1;R3) and
so y¤ 2 A and y¤ is a minimizer.
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3.  Martensitic phase transformations
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µ > µc

cubic

austenite

µ < µc

three tetragonal variants

of martensite

µ < µc

six orthorhombic variants

of martensite
68



Atomistically sharp interfaces for 
cubic to tetragonal transformation 
in NiMn   

Baele, van Tenderloo, Amelinckx 69



Energy minimization problem
for single crystal
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Energy-well structure

austenite

martensite

K(µ) = fA 2M3£3+ that minimize Ã(A; µ)g
Assume
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For cubic to tetragonal N = 3 and

U1 = diag (´2; ´1; ´1); U2 = diag (´1; ´2; ´1);

U3 = diag (´1; ´1; ´2):

The Ui(µ) are the distinct matrices QU1(µ)Q
T

for Q 2 P24 = cubic group.

For cubic to orthorhombic N = 6 and
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From the form of K(µ), we need to know what

the rank-one connections are between two given

energy wells SO(3)U, SO(3)V .

SO(3)U SO(3)VA
B

A¡ B = a­N 6= 0

73



Theorem

Let U = UT > 0, V = V T > 0. Then SO(3)U ,

SO(3)V are rank-one connected i®

U2 ¡ V 2 = c(M ­N +N ­M) (¤)
for unit vectors M , N and some c 6= 0.
If M 6= §N there are exactly two rank-one

connections between V and SO(3)U given by

RU = V + a­N; ~RU = V +~a­M;

for suitable R; ~R 2 SO(3); a;~a 2 R3.
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Corollaries.

1. There are no rank-one connections between

matrices A;B belonging to the same energy

well.

Proof. In this case U = V , contradicting c 6= 0.
2. If Ui; Uj are distinct martensitic variants

then SO(3)Ui and SO(3)Uj are rank-one

connected if and only if det(U2i ¡U2j ) = 0, and

the possible interface normals are orthogonal.

Variants separated by such interfaces are called

twins.

Proof. Clearly det(U2i ¡ U2j ) = 0 is

necessary, since the matrix on the RHS of (*)

is of rank at most 2.
75



Conversely suppose that det(U2i ¡ U2j ) = 0.

Then U2i ¡ U2j has the spectral decomposition

U2i ¡ U2j = ¸e­ e+ ¹ê­ ê;

and since Uj = RUiR
T for some R 2 P24 it

follows that tr (U2i ¡ U2j ) = 0. Hence ¹ = ¡¸
and

U2i ¡ U2j = ¸(e­ e¡ ê­ ê)

= ¸

Ã
e+ êp
2
­ e¡ êp

2
+

e¡ êp
2
­ e+ êp

2

!
;

as required.
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3. There is a rank-one connection between

pairs of matrices A 2 SO(3) and B 2 SO(3)Ui

if and only if Ui has middle eigenvalue 1.

Remark: Another equivalent condition due to

Forclaz is that det(Ui ¡ Uj) = 0. This is

because of the surprising identity (not valid in

higher dimensions)

det(U2i ¡U2j ) = (¸1+¸2)(¸2+¸3)(¸3+¸1) det(Ui¡Uj):

Proof. If there is a rank-one connection then

1 is an eigenvalue since det(U2i ¡ 1) = 0.
77
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Atomistically sharp interfaces for 
cubic to tetragonal transformation 
in NiMn   

Baele, van Tenderloo, Amelinckx 79



Simple laminate

Layering twins

80



4.   Microstructure

81



The free-energy function Ã(¢; µ) is not quasi-
convex. This is because the existence of twins

implies that Ã(¢; µ) is not rank-one convex.

So we expect the minimum of the energy in

general not to be attained, with minimizing

sequences y(j) in general generating in¯nitely

¯ne microstructures. 82



Gradient Young measures
Given a sequence of gradients

Dy(j), ¯x j; x; ±.

Let E ½M3£3, where
M3£3 = f3£ 3 matricesg

ºx;j;±(E) =
vol fz 2 B(x; ±) : Dy(j)(z) 2 Eg

vol B(x; ±)

ºx(E) = lim
±!0 limj!1 ºx;j;±(E)

is the gradient Young measure generated by

Dy(j).
83



Gradient Young measure of simple 
laminate

84
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Quasiconvexification

Let K ½M3£3 be compact,
e.g. K =

SN
i=1 SO(3)Ui(µ).

Of functions:

Wqc = supfg quasiconvex : g ·Wg:
Of sets:

A subset E ½ M3£3 if E = g¡1(0) for some
non-negative quasiconvex function g.
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Kqc = quasiconvexi¯cationofK

=
\fE : K ½ E; E quasiconvexg

= f¹º : º gradient Young measure ;

supp º ½ Kg
= fF 2M3£3 : g(F ) · max

A2K g(A)

for all quasiconvex gg:
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5.  Austenite-martensite interfaces
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(Classical) austenite-martensite interface in CuAlNi
(courtesy C-H Chu and R.D. James)
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Gives formulae of  the 
crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for 
cubic-to-tetragonal

91



Rank-one connections for A/M interface

92



Possible lattice parameters
for classical austenite-martensite
interface .
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Macrotwins in Ni65Al35 involving two tetragonal 
variants (Boullay/Schryvers)
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Crossings and steps
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Macrotwin formation

Similar e®ects and analysis

in ¯-titanium: T. Inamura,

M. Ii, N. Kamioka,

M. Tahara, H. Hosoda,

S. Miyazaki ICOMAT 2014
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B/Schryvers 2003

Different martensitic plates 
never exactly compatible 
(Bhattacharya)
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Nonclassical austenite-martensite
interfaces (B/Carstensen 97)
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Nonclassical interface with double 
laminate

99



Nonclassical interface calculation

ºx = ±1

ºx = º
supp º ½ SN

i=1 SO(3)Ui

100



Two martensitic wells
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For a nonclassical interface we need that for

some a; b; c satisfying these inequalities the mid-

dle eigenvalue of FTF is one, and we thus get

(Ball & Carstensen 97) such an interface pro-

vided

´¡12 · ´1 · 1 or 1 · ´¡12 · ´1 if ´3 < 1;

´2 · ´¡11 · 1 or 1 · ´2 · ´¡11 if ´3 > 1:

The proof is by calculating Kpc and showing

by construction that any F 2 Kpc belongs to

Kqc.
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More wells – necessary conditions

K =
N[
i=1

SO(3)Ui

103



First choose '(G) = § det(G). Then

detF = ¾min(F )¾mid(F )¾max(F ) = ´min´mid´max:

104



Combining these inequalities we get that

´min · ´¡1mid · ´max:
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For cubic to tetragonal we have that

U1 = diag (´2; ´1; ´1); U2 = diag (´1; ´2; ´1);

U3 = diag (´1; ´1; ´2);

and the necessary conditions become

´1 · ´¡11 · ´2 if ´1 · ´2;

´2 · ´¡11 · ´1 if ´1 ¸ ´2:
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Values of deformation parameters allowing classical and 
nonclassical austenite-martensite interfaces

107



Interface normals

108



Experimental 
procedure
(H. Seiner)

109

Theory JB/Koumatos, Seiner



Optical 
micrograph 
(H. Seiner) of 
non-classical 
interface 
between 
austenite and 
a martensitic 
microstructure
. 
The arrows 
indicate the 
orientations of 
twinning 
planes of 
Type-II and 
compound 
twinning 
systems
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Twin crossing gradients 112



Possible nonclassical interface normals

113



Curved interface between crossing twins and austenite resulting from the inhomogeneity of 
compound twinning. (Optical microscopy,H. Seiner): theory JB/Koumatos
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6. Complex interfaces.

115



CuZnAl  microstructure:  Michel Morin (INSA de Lyon) 116



Zn45Au30Cu2 ultra low hysteresis alloy
Yintao Song, Xian Chen, Vivekanand Dabade, 
Thomas W. Shield, Richard D James, Nature, 502, 85–88 (03 October 2013)
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Let G(a; y) be the set of such º = (ºx)x2B(0;1).
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A
B

Two examples of incompatibility-
induced metastability

W (A) = Ã(A; µ)¡ T ¢ A



transition

layer

Dy(x) = A



Specimen: single crystal of CuAlNi prepared by

the Bridgeman method in the form of a

prismatic bar of dimensions 12£3£3mm3 in
the austenite with edges approximately along

the principal cubic directions.

126

Nucleation of austenite in martensite
JB, Konstantinos Koumatos, Hanus Seiner 2012, 2013

Localized heating experiment:

By unidirectional compression along its longest

edge, the specimen was transformed into a

single variant of mechanically stabilized

martensite. Due to the mechanical stabiliza-

tion e®ect the reverse transition did not occur

during unloading.



Single crystal of CuAlNi. Pure variant of martensite. Heated by tip of soldering iron. 
127



When touched at a corner, nucleation of austen-

ite occured there immediately. When touched

at an edge or face, nucleation did not oc-

cur at the site of the localized heating, but

at some corner, after a time delay (su±cient

for heat conduction to make the temperature

there large enough).
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Proposed explanation. Nucleation is geomet-

rically impossible in the interior, on faces and

at edges, but not at a corner. We express this

by proving in a simpli¯ed model that if Us de-

notes the initial pure variant of martensite then

at Us the free-energy function is quasiconvex

(in the interior), quasiconvex at the boundary

faces, and quasiconvex at the edges, but not

at a corner.

To make the problem more tractable we as-

sume that Ã(A; µ) := W(A) is in¯nite outside

the austenite and martensite energy wells. 132



Idealized model

I(º) =
Z
­
hºx;W i dx=

Z
­

Z
M3£3

W(A) dºx(A) dx;

where

W(A) =

8><>:
¡± A 2 SO(3)

0 A 2 S6i=1 SO(3)Ui
+1 otherwise

;

and ± > 0.

So W(A) <1 on

K = SO(3) [
6[

i=1

SO(3)Ui
133



Theorem I(º) ¸ I(±Us)

(quasiconvexity at Us)

Nucleation impossible in the interior

134



Similarly in these cases we have

Theorem I(º) ¸ I(±Us)

(quasiconvexity at the boundary and

edges at Us)

Nucleation impossible at faces or edges

135



Nucleation possible at a corner

I(º) < I(±Us)

I not quasiconvex at such a corner.136



137



138



139



140











145



Question: Is it true that whatever the orien-

tation of the planar interface between the two

grains there must be a nontrivial microstruc-

ture in both grains?
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9.  Local minimizers with and without interfacial energy

149



NiMn Baele, van Tenderloo, Amelinckx

Some interfaces are atomistically sharp

while others are diffuse … 150

Interfacial energy



Diffuse (smooth) 
interfaces in 
Pb3V2O8

Manolikas, van Tendeloo, 
Amelinckx 

151



Diffuse interface in perovskite (courtesy Ekhard Salje)

152



No interfacial energy

153



Second gradient model for diffuse interfaces
JB/Elaine Crooks (Swansea) 

How does interfacial energy a®ect the predic-

tions of the elasticity model of the austenite-

martensite transition?

154



Use simple second gradient model of interfacial

energy (cf Barsch & Krumhansl, Salje ), for

which energy minimum is always attained.

It is not clear how to justify this model on the

basis of atomistic considerations (the wrong

sign problem { see, for example, Blanc, LeBris,

Lions).
155



No boundary conditions (i.e. boundary trac-

tion free), so result will apply to all boundary

conditions.

156

Hypotheses



by Friesecke, James, Müller Rigidity Theorem
157



Reduce to problem of local minimizers for

158

Idea of proof



159

Smoothing of twin boundaries



Lemma

Let Dy(x) = F (x¢N), where F 2W 1;1
loc (R;M

3£3)
and

F (x ¢N)! A;B

as x ¢ N ! §1. Then there exist a constant
vector a 2 R3 and a function u : R! R3 such

that

u(s)! 0; a as s! ¡1;1;

and for all x 2 R3

F(x ¢N) = A+ u(x ¢N)­N:

In particular

B = A+ a­N: 160



161



162


