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The scientific method for mathematicians

Modelling

\ 4

Analysis and predictions
of model

v
Comparison with experiment



Mathematical areas relevant to the study
of solid and liquid crystals

Group theory, linear algebra, invariant theory,

nonlinear analysis, partial differential equations,
calculus of variations, dynamical systems,

probability, statistical mechanics, scientific computation,
geometric measure theory, differential geometry,
topology, algebraic geometry...



Common variational structure

Minimize a free-energy functional |
- m X n matrix

I(w) = [ f(z.u(@), Du(=)) de

among u : 2 — R™, Q2 C R™ open, subject to
suitable boundary conditions and constraints.



Some questions:

Why minimize 7

In what space of mappings should we look for
minimizers, and on what basis do we choose
this space?

Do (local or global) minimizers exist?

If so are they smooth or do they have
singularities (defects)?



Plan of course

This week:
Crystalline solids, interfaces and microstructure

Next week:
Liquid crystals and the description of defects.



Crystalline solids, interfaces and
microstructure



Macrotwins in Nig.Al;c involving two tetragonal
variants (Boullay/Schryvers)




Martensitic microstructures in CuAINi (Chu/James)
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CuZnAl microstructure: Michel Morin (INSA de Lyon)
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Topics

. Nonlinear elasticity.

Existence of minimizers and analysis tools.

. Martensitic phase transformations.

. Microstructure.

. Austenite-martensite interfaces.

. Complex microstructures. Nucleation of austenite.

Local minimizers with and without interfacial energy.
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1. Nonlinear elasticity
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The central model of solid mechanics. Rubber, metals (and
alloys), rock, wood, bone ... can all be modelled as elastic

materials, even though their chemical compositions are
very different.

For example, metals and alloys are crystalline, with grains
consisting of regular arrays of atoms.

Iron carbon
alloy, showing
grain structure
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Polymers (such as rubber) consist of long chain
molecules that are wriggling in thermal motion, often
joined to each other by chemical bonds called
crosslinks.
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Schematic presentation of two strands (blue and green) of natural
rubber after vulcanization with sulphur. (Wikipedia) 15



Wood and bone have a cellular structure.
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White ash Human hip bone

http://classes.mst.edu/civeng120/less Patrick Siemer, San Francisco, USA
ons/wood/cell_structure/index.html
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1678
1705
1742
1744
1821

1822

A brief history

Hooke's Law

Jacob Bernoulli

Daniel Bernoulli

L. Euler elastica (elastic rod)

Navier, special case of linear elasticity via molecular model
(Dalton’s atomic theory was 1807)

Cauchy, stress, nonlinear and linear elasticity

For a long time the nonlinear theory was ignored/forgotten.

1927 A.E.H. Love, Treatise on linear elasticity

1950's R. Rivlin, Exact solutions in incompressible nonlinear elasticity
(rubber)

1960 - 80 Nonlinear theory clarified by J.L. Ericksen, C. Truesdell ...
1980 - Mathematical developments, applications to materials,

biology ...
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Kinematics

y

Reference configuration Deformed configuration

Q2 C R3 bounded domain with

(Lipschitz) boundary 0X2.

Label the material points of the body by the
positions x € €2 they occupy Iin the reference
configuration. 8



Reference configuration Deformed configuration

Typical motion described by a sufficiently smooth
map y : Q2 x [t1,t2] = R>, y = y(x,1).

Deformation gradient
F = Dy(z,t), Fjo = 54

T 8:13‘05 .
19



Invertibility

To avoid interpenetration of matter, we re-
quire that for each ¢, y(-,t) is invertible on €2,
with sufficiently smooth inverse z(-,t). We also
suppose that y(-,t) is orientation preserving;
hence

J=detF(z,t) >0 for xz € Q2. (1)

By the inverse function theorem, if y(-,t) is C1,
(1) implies that y(-,t) is locally invertible.

20



Examples.
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locally invertible but not globally invertible
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y(-,t) invertible on {2 »
not on ()



Global inverse function theorem for
C! deformations

Let Q c R3 be a bounded domain with
Lipschitz boundary 92 (in particular €2 lies on
one side of 8 locally). Let y € C1(&; R3) with

det Dy(z) > 0O for all z € Q

and y|go one-to-one. Then y is invertible on
Q.

Proof uses degree theory. cf Meisters and Olech,
Duke Math. J. 30 (1963) 63-80.
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Notation

<
W
X
W
|

{real 3 x 3 matrices}
M3*3 = {F e M3%3:detF > 0}

SO(3) = {ReMy*°:R'R=1}
{rotations}.

If a € R3, b € R3, the tensor product a ® b is
the matrix with the components

(a ® b)ZJ = aibj.
[Thus (a®b)e= (b-c)a if c € R3]
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Square root theorem

Let C' be a positive symmetric 3 x 3 matrix.
Then there is a unique positive definite
symmetric 3 x 3 matrix U such that

C =U?

(we write U = C1/2).
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Formula for the square root

Since C' is symmetric it has a spectral
decomposition

3
C = Z Ae; R e;.
i=1
Since C' > 0, it follows that A\; > 0. Then

3
1=1

25

satisfies U2 = C.



Polar decomposition theorem

Let I € Mj’_xg’. Then there exist positive

definite symmetric U, V and R € SO(3) such
that

F'=RU=VR.

These representations (right and left
respectively) are unique.
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Proof. Suppose F = RU. Then U? = F1F :=
C. Thus if the right representation exists U
must be the square root of . But if a €
R3 is nonzero, Ca-a = |Fal? > 0, since F is
nonsingular. Hence C' > 0. So by the square
root theorem, U = C1/2 exists and is unique.
Let R=FU~1. Then

RIR=U"1Flry-1l1=1

and det R = det F(detU)~ 1 = +1.

The representation FF= V R is obtained simi-
larly using B := FF1 and it remains to prove
R = Ry. But this follows from F = Ry (RIVRy),
and the uniqueness of the right representation. 5,



Strain tensors and singular values

For FF = Dy, U and V are the right and left
stretch tensors,

C =U2=FI'F and B=V?2 = FFT are the
right and left Cauchy—Green strain (tensors)
respectively.

T he strictly positive eigenvalues vq, vo, vz of U
(or V') are the principal stretches (= singular
values of F).
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Invariants

The characteristic polynomial of C is given by

det(C — A1) = A3+ 1T-20° —IIA+ 111,
= (v — N3 — A)(v5 — A)
Hence
I = v%—l—v%—l—v% = trC
Il = v%v% v%v% v%v%
I[IIy = (vivovg)? = detC.

Note that the invariants of B are the same as
those of C. 29



State of strain
FiXx z, t. Then

y(xz + 2,t) = y(z,t) + F(z,t)z + o(|z]).

Thus to first order in z the deformation is
given by a rotation followed by a stretching
of amounts v; along mutually orthogonal axes,
or vice versa. Equivalently, since

F = RU = RQDQ' = RDQ?,

where D = diag (v1,vo,v3), it is given by a ro-
tation, followed by stretching along the Coor-
dinate axes, then another rotation.



Exercise: simple shear

y(x) — ($1 7$27CE275E3)' // :
) :
v =tané Y/ :r“-— -l
6 = angle of shear/ i /
Show that |
cosy siny 0 [ COSY Sinwg 0 )
— — Sj : 14-sin“ ¢
F = Ssiny cosy O sin Cos U 0
tany = % As v — 0O+ the eigenvectors of U

and V tend to \/Li(el -+ 62),%(61 — 62),63. 31



Cauchy’s stress hypothesis

/s(ytn) T
There is a vector field | AL
s(y,t,n) (the Cauchy \ %/% |
stress vector) that / S /
gives the force per e
unit area exerted across a smooth oriented
surface S on the material on the negative side

of § by the material on the positive side.
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Resultant surface force on y(FE,t) is given by

/<3‘y(E,t) s(y,t,n) da.
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Piola-Kirchhoff stress vector

= g

TN R Rl
m.\l g, / I:I ;‘ / :

(Spt) |
w\SR F/ ;/ y(a: t)y( R>t) |

u:' o

'.\\-“_ '

The Piola—Kirchhoff stress vector sp(x,t, N) is
parallel to the Cauchy stress vector s, but
measures the surface force per unit area in the
reference configuration, acting across the

(deformed) surface y(Sp,t) having normal N
In the reference configuration.



So the resultant surface force on y(FE,t) can
also be expressed as

£ N)dA.
/aE sp(z )

The change of variables formula

nda = (Cof F)N dA.

relates the normal n and area element da Iin the
deformed configuration to the normal N and
area element dA in the reference configuratiog.



Balance law of linear momentum

d
il d :/ +. N)dA / bda,
o /EPR’U x aESR(ﬂ? ) dA + PR
for all E, where v(x,t) = y(x,t) is the velocity
and b = b(y,t) is the body force density.

Cauchy showed that this implies that sp is
linear in N, I.e.

sp(x,t, N) = Tgr(z,t)N

where the second order tensor (matrix) Tp is
called the Piola-Kirchhoff stress tensor. 36



The Cauchy stress tensor
spdA TrN dA
Tr(cof F) 'nda
TRJ_lFTnda

sda

Hence s(y,t) = T'(y,t)n, where the
Cauchy stress tensor T is given by

T =J lTpF'.

T symmetric if and only balance of angular
momentum holds.
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Balance of Energy

d r /1 .
2 (= dr = /b- d
dt/E (20R|yt| +s) T L0 yede
to . dA / d — 'NdA, (1
o LRt Lrdr— [ 4R (1)

for all E C 2, where pp = pr(x) is the density
in the reference configuration, ¢ is the internal
energy density, b is the body force, tp is the
Piola-Kirchhoff stress vector, qr the reference
heat flux vector and r the heat supply.
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Second Law of Thermodynamics

We assume this holds in the form of the Clausius-
Duhem inequality

d qr - N T
Y[ nd >—/ ds /—d >
dt/E" N Y t g (2

for all E, where n is the entropy and 6 the
temperature.
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Thermoelasticity

For a homogeneous thermoelastic material we
assume that T'g, qpr, €, n are functions of F, 0, V6.

Define the Helmholtz free energy by 1 = €—0n.
Then a classical procedure due to Coleman and
Noll shows that in order for such constitutive
equations to be consistent with the Second
Law, we must have

¢ — w(Fae)a T — —DGTPa TR — DF¢

40



The Ballistic Free Energy

Suppose that the the mechanical boundary
conditions are that yv = y(x,t) satisfies

y(-, 1), = y(-) and the condition that the
applied traction on 092, = 022 \ 0271 is zero,
and that the thermal boundary condition is

0(-,t) o0, = 00, ar - Nlo\oo; = O,

where 6 > 0 is a constant. Assume that the
heat supply r is zero, and that the body force
is given by b = —grad,h(z,y), a1



hus from (1), (2) with £ = and the
boundary conditions

d [ 71
— — — 0 hi d <
dt/Q lsz\yt\ + e — 0gn + ] r <

0o
rowas— [ (1-%) g Nas = o
/mR " [ (1-)an

So £ = Jq |3pRlyt|? +¢—0on+h| dz is a
Lyapunov function. (Note that it is not the
Helmholtz free energy ¢(F,0) = e(F,0)—0n(F,0)
that appears in the expression for £ but
e(F,0) — Ogn(F,0), where 0 is the boundary
temperature.) *



Thus it is reasonable to suppose that typically
(y;,y,0) tends as t — oo to a (local) minimizer
of £. If the dynamics and boundary conditions
are such that as t -+ oo we have y — 0 and
6 — 0p, then this is close to saying that y tends
to a local minimizer of

loo(y) = |_[¥(Dy, 00) + h(,y)] do.

(The calculation given follows work of Duhem,
Ericksen and Coleman & Dill.)

43



Of course a lot of work would be needed to
justify this (we would need well-posedness of
suitable dynamic equations plus information on
asymptotic compactness of solutions and more;
this is currently out of reach). And what if the
minimum of the energy is not attained?

For some remarks on the case when 6y depends
on x see J.M. Ball and G. Knowles,

LLyapunov functions for thermoelasticity with
spatially varying boundary temperatures. Arch.
Rat. Mech. Anal., 92:193—-204, 1986.
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Variational formulation of nonlinear
elastostatics

The preceding calculation motivates seeking a
deformation y = y(x) minimizing the total free
energy at temperature 6 given by

Ii(y) = [ ¥(Dy(x),0) da.

subject to suitable boundary conditions, where
we have assumed for simplicity that the body-
force potential is zero.

We regard 6 as a constant parameter (no heat
conduction etc).

45



Properties of

Assume

(H1) %(-,0) : M3*3 — [0,00) is CL.

(H2) ¥ (F,0) — oo as det FF — 0+

(H3) (Frame indifference) ¥ (QF,0) = (F,0)
for all Q € SO(3), F € M3*>.

Hence 4 (F,0) = % (RU,0) = (U,0) = (C,0).

46



Frame-indifference implies T symmetric

Hence balance of angular momentum is
automatically satisfied.
Proof. Let K be skew. Then

d . Kt
0 = 2 F 0)|,—
dt¢(€ )|t=0

Dpip(e"'F,0) - Ke"'F|;—g
Jtr (TK1)

J1; K5,

where we used that T = J1TRpF7T.
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Material symmetry

Some materials have a mechanical response
that depends on how they are oriented in the
reference configuration. To make this precise
we ask the question as to which initial linear
deformations H & Mim do not change 7
That is, for which H do we have

Y(F,0) = ¢(FH,0) for all F € M7"7

These H form a subgroup S of MiX3, the
symmetry group of . For example, if 1 has
cubic symmetry we can take

S = P?* = {rotations of a cube}.

48



Isotropic materials

These are materials for which all rotations are
in the symmetry group, i.e. SO(3) C S.

T heorem

T he following conditions are equivalent:

(i) v is isotropic;

(ii) v(F,0) = h(Ig,IIg,I1Ig,0) for some h;
(iii) Y (F,0) = P(vq,vo,v3,0) for some P that
IS symmetric with respect to permutations of
v1, V2,03,

(iv) T(F,0) = agl + a1 B + a»B?, where ag, a1,
ao are scalar functions of Ig, Ilg, IIIg and 6
(Rivlin—Ericksen representation)



Linear elasticity

This is not a special case of nonlinear elastic-
ity but a linearization of it about a stress free
state, taken to be the reference configuration,
so that T»(1,0) = Dpy(1,0) = 0.

We write y(z,t) = x + u(x,t) where u(x,t) is
the displacement. Then

F(x,t) =14+ Vu(z,t),

and we seek a theory that applies when Vu is
small. 50



The elasticity tensor

Writing F = 1 + H and assuming (-, 0) is C?
near 1 we have that

Y(L+H,0) = $(1,6) + - DFw(1,0)(H, H) + o(|HI?)
Tp(l+ H,0) = DpTr(1,0)- H + o(|H|).

Set C(9) = DpTr(1,0) = D2+(1,0) (elasticity
tensor). Thus C : M3%3 — M3%3  with
(C(O)H)ij = c;51(0) Hy,
where the elasticities
021
OF;;0Fy,

(1,0). 51

c(0) ik =



Symmetries of the elasticity tensor

Major symmetries c;;x = Cglij
Minor symmetries (frame indifference)

Cijkl = Cjikl = Cijlk

Isotropy: linearized stress given by
Ce =2ue+ A(tre) 1, where e = %(Du—l— (Du)?1),
and A\, u are the Lamé constants.

52



EXxercise
A homogeneous isotropic elastic body in a stress-

free state in the reference configuration is rigidly
rotated through an angle 0, so that the
deformation is y(x) = R(0)x, where

cosf sinfd O
R(#) = | —sinf® cosf O
O 0 1

Show that according to nonlinear elasticity the
body remains stress-free ...

53



but that according to linear elasticity the
Cauchy stress has the form
A4 u 0 0

T = —2(1 — cos?) A4+ u O
O O A

For a certain mild steel, A\ = 102.9GPa, u =
80.86GPa. Calculate the value of 6 for which
the maximum ‘phantom’ stress (=|7171]|) reaches
the value 465 x 1073GPa (which would in
tension cause fracture of the material).
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2. Existence of minimizers and analysis tools
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LP spaces

All mappings, sets assumed measurable, all
integrals Lebesgue integrals.

Let 1 <p < 0.

LP(Q) ={u: Q2 —=>R: |ullp < oo},

i
lull, = { Ugqlu(@)[Pdz)r if 1 <p <oo
esssup co |u(x)| if p= oo

LP(2;R™) = {u = (uq,...,un) : u; € LP(2)}.

wl@ — win LPif |u) — ol - 0. =



The Sobolev space WP

Wip={y:Q—=R3:|y|l1, < oo}, where

1wl :{ olly(@) P + [Dy(2)[P] dz)}/P if 1< p < o
P esssupgeq ([y(@)| + |Dy(2)]) if p= oo

i.e. ye LP(2:R3), Dy € LP(QQ; M3%3).

Dy is interpreted in the weak (or distributional)
sense, so that

Oy;
Q2 awa

for all ¢ € C3°(£2).

da:——/ —d,x
¥ Qyzaxa



Weak convergence

— convergence of averages

u{7) converges weakly to u (or weak* if p = co)
in LP, written «U) — 4 (or ul9) X 4 if p = o0)
if

(Dod —>/ dz for all v € LV
/Qu @ dx o updr © ,

1 1
where = = =1.
p—l—p,
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The importance of weak convergence for
nonlinear PDE comes from the fact that if
1 < p < oo then any bounded sequence in LP

has a weakly convergent subsequence (weak*
if p = 00).

If the bounded sequence is a sequence of
approximating solutions to the PDE (e.q.
coming from some numerical method, or a
minimizing sequence for a variational problem),
then the weak limit is a candidate solution.

But then we need somehow to pass to the limit
iIn nonlinear terms using weak convergence.



Example: Rademacher functions.

_[aifo<z<A
0 e(x)_{b ifA<z<1

extended periodically to R.

a— - B

1 0 A1 2 L

Exercise. Define () (z) = 0(jz).

(i) Prove that 6U) X xa + (1 — A\)b in L°(0,1)
(ii) Deduce that if f : R — R is continuous and
such that () X 4 in L implies f(u(9)) 2 £(w)
in L°° then f is affine, i.e. f(v) = av + 3 for
constants «, (.
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We say that y(J) — ¢ in Wlp
it y(j) — gy in LP and Dy(j) — Dy in LP
(— replaced by = if p = 00).

Question: for what continuous
fiM3>3 SR

does y(7) X 4 in W imply
f(Dy)) = f(Dy) in L>7

Answering this turns out to be a key to proving
the existence of minimizers for a realistic class

of materials.
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Reference configuration Deformed configuration

Q c R3 bounded domain with Lipschitz
boundary 02, 0€21 C 0S2 relatively open,
7 : 01 — R3.
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Writing W(F') = ¢ (F,0) we want to minimize

I(y) = /Q W (Dy) dz

IN the set of admissible mappings

A={y € whl: det Dy(xz) >0 a.e., ylpo, = ¥}

(Note that we have for the time being replaced
the invertibility condition by the local
condition det Dy(xz) > 0 a.e., which is easier to
handle.)
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So far we have assumed that
(H1) W : M3 —[0,00) is CT,

(H2) W(F) — oo as det FF — 0+,

so that setting W(F) = oo if detF < 0, we
have that W : M3%3 — [0,00] is continuous,
and that W is frame-indifferent, i.e.

(H3) W(RF) =W(F) for all Re SO(3),F € M3*3.

(In fact (H3) plays no direct role in the
existence theory.)
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Growth condition

’ y = Fx
e
7]
W(F
M ( ) — O
Flsoo |F|3

says that you can’'t get a finite line segment
from an infinitesimal cube with finite energy.
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We will use growth conditions a little weaker
than this. Note that if

W(F) > C(1+ |F]3T¢)

for some £ > 0 then any deformation with finite
elastic energy

/Q W (Dy(z)) da

and satisfying suitable boundary conditions is
in W1:3t¢€ and so is continuous by the Sobolev
embedding theorem.
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Convexity conditions

The key difficulty is that W is never convex

(Recall that W is convex if

WOAF + (1 -2M)G) <AW(F) + (1 - )W(G)
for all F,G and 0 < A <1.)

Reasons
1. Convexity of W is inconsistent with (H2)

because Mf’rxg’ is not convex.
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Remark: M_3|_><3 is

A =diag(1,1,1) not simply-connected.

W(5(A+ B)) = oo
> W (A) + W (B)

(A + B) = diag (0,0,1)

detF' >0

B =diag(-1,-1,1)

68



2. If W is convex, then any equilibrium solution
(solution of the EL equations) is an absolute
minimizer of the elastic energy

I(y) = /Q W (Dy) dz.

Proof.
I(z) = /Q W(Dz)dx >

/Q[Wwy) + DW (Dy) - (Dz — Dy)] dz = I(y).

T his contradicts common experience of nonuni69ue
equilibria, e.g. buckling.



Rank-one matrices and the Hadamard
jump condition

y piecewise affine N

Dy=B, z-N <k

Let C = A—-— B. Then Cx
Thus C(z—(z-N)N) = 0
Cz= (CN ® N)z. Hence

Dy=A, x-N >k

x-N =%k

=0 ifz-N =0.
for all z, and so

Hadamard

A—B=a®N

jump condition

70



More generally this holds for y piecewise Cl,
with Dy jumping across a C1 surface.

AV
/ Dy—l_(xO) =4
7ZQ
Dy~ (zp) = B A—B=a®N

Exercise: prove this by blowing up around =«
using ye(x) = ey(=2).

(See later for generalizations
when y not piecewise C1.) 71



Rank-one convexity

W is rank-one convex if the map
t— W(F 4+ ta® N) is convex for each
F e M3%3 and a € R3, N € R3.

(Same definition for M™*™ )

Equivalently,

WAF + (1 -2)G) < AW(F) 4 (1 - HW(G)

if F,G € M3%3 with F— G =a® N and
A€ (0,1).

72



Rank-one cone

/F A={a®@N :a, N €R3}

Rank-one convexity is consistent with (H2) be-

cause det(F+ta®N) is linear in t, so that

IS rank-one convex
(i.e. if F,G € M3*> with F—G =a® N then

AF

(1-XNG e MP*3)

M3><3

_|_
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If W e C2(M3*3) then W is rank-one convex
i

d2
@W(F +ta ® N)|t=0 > O,

for all F € M_3|_X3,a,N c R3, or equivalently

O2W (F)
8Fm8Fj5

(Legendre-Hadamard condition).

D?°W(F)(a®N,a®N) =

aiNaCLjNﬂ Z O,
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Quasiconvexity (C.B. Morrey,1952)

Let W : M™*" — [0,00] be continuous. W is
said to be quasiconvex at F & M™*" if the
inequality

/Q W (F + Do(z)) dz > /Q W(F)dz gefinition
. D independent
holds for any ¢ € W3 (S, R™), and is  of @

quasiconvex if it iIs quasiconvex at every

s Could replace
Here €2 C R"™ is any bounded open set _

with Lipschitz boundary, and @y~ (€2; R™)
is the set of those y € W1 (Q; R™ywhich are

zero on 0X2 (in the sense of trace). 75




Setting m = n = 3 we see that W is
quasiconvex if for any F € M3%3 the pure
displacement problem to minimize

I(y) = [ W(Dy(a))da
subject to the linear boundary condition

y(x) = Fx, ¢ € 012,

has y(x) = F'x as a minimizer.
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Another form of the definition that is
equivalent for finite continuous W is that

/Q W(Dy)dx > (meas Q)W (F)

for any y € W1 such that Dy is the restriction
to a cube Q (e.g. Q@ = (0,1)") of a Q-periodic
map on R™ with me%SQfQ Dydx = F'.

One can even replace periodicity with almost
periodicity (see J.M. Ball, J.C. Currie, and P.J.
Olver, J. Functional Anal., 41:135—-174, 1981).
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T heorem
If W is continuous and quasiconvex then W is
rank-one convex.

Proof
We prove that

W(F) < AW (F—(1-X)a®N)+(1-XA)W (F+Xa®@N)
forany FF e M™Mm*" g c R N e R*" A€ (0,1).

Without loss of generality we suppose that
N = e1. We follow an argument of Morrey.
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Let D= (—(1 —=X),)\) x (—p,p)" ! and let D;E

be the pyramid that is the convex hul

| of the

origin and the face of D with normal -

:6j.

Let ¢ € WOl’OO(D;Rm) be affine in each

D with ©(0) = A(1 — A)a.

The values of Dy are shown.
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By quasiconvexity

n—1
o w(r) < P Awr (1 - Nawe)

: (2p)"1(1 - N)

n

W(F 4+ Xa®eq)

n n—1
+ > (20) (W (F + p~1A(1 —Aa®ej)
j=2 ="

+W(F —p A1 - Na®e))]

Suppose W (F) < co. Then dividing by (2p)71,
letting p —+ oo and using the continuity of W,
we obtain

WEF))XAMWEFE-(1-Na®er)) +(1-—XNW(F+XAaReq)

as required.



Now suppose that W(F — (1 — MN)a ® e7) and
W(F+ X a®eq) are finite. Then g(7) = W(F +
Ta®eq) lies below the chord joining the points
(=(1 = A),9(=(1—=A))), (A, g(A)) whenever
g(T) < 0o, and since g is continuous it follows
that ¢(0) = W(F) < .

+ 9

< |/

—(1—>\) Py 81




Corollary
If m = 1 or n = 1 then a continuous W :

M™X" — [0, 00] is quasiconvex iff it is convex.

Proof.

If m=1orn=1 then rank-one convexity is
the same as convexity. If W is convex (for any
dimensions) then W is quasiconvex by Jensen'’s
iInequality:

1
W(F + Dy)d
measQ/Q ( p) de

1
> W (
mMeas

. /Q(F + Do) da:) — W(F).

82



Theorem (van Hove)
Let W(F) = c¢;11FijF; be quadratic. Then

W is rank-one convex < W IS gquasiconvex.

Proof.
Let W be rank-one convex. Since for any

1,00
p € WJ

| W(F + D) = W(P)]de = [

we just need to show that the RHS is > 0.

CijklPi,j Pk 1 AT

Extend ¢ by zero to the whole of R"™ and talgge
Fourier transforms.



By the Plancherel formula
/Cijkz%,j@kldw = / CijklPi,j Pk, AT
Q ) Rn Y 9

= 4772/n Re [cjx1$:€Préil d§
> 0

as required.

84



Null Lagrangians

When does equality hold in the quasiconvexity
condition? That is, for what L is

/Q L(F 4+ Do(z)) do = /Q L(F) dx

for all ¢ € W(}’OO(Q;Rm)? We call such L
quasiaffine.
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Theorem (Landers, Morrey, Reshetnyak ...)
If L: M3%3 s R is continuous then the

following are equivalent:

(i) L is quasiaffine.
(ii) L is a (smooth) null Lagrangian, i.e. the
Euler-Lagrange equations DivDgpL(Du) = O
hold for all smooth w.
(iii) L(F) =const.4+C-F+ D -cof F+edet F.

(iv) u— L(Du) is sequentially weakly
continuous from W1lP — L1 for sufficiently

large p (p > 3 will do).
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Proof that v — cof Du is sequentially weakly
continuous.

Consider, for example, J(Du) = uj j1u2 2—u1 2u2 1.

Let w(9) — o in WP p > 2. Then J(Dul?)) is
bounded in LP/? and so we can suppose that
J(Dul)) —~ y in L1

Let ¢ € C5°(£2). For smooth v we have the
identity

J(Dv) = (viv22) 1 — (v1v2.1) 2.

Thus, approximating v € W12 by smooth map-
pings we find that

/Q J(Dv)pdr = /9[0102,190,2 —vivpop 1]dr.  w



Setting v = «9) we get

/Q J(Du(j))cp dr = /Q [ugj)ugi(p,g — ugj)ug%cp,l] dzx.

v Wl e

X Ul u2,1 Ul up2
So
drx = / U U — U1U dx
/QXSO Q[ 1UD 1P 2 — ULUD 2P 1]
— J(Du)pdx.
| I(Dwyg

Hence x = J(Dwu) as required.
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Polyconvexity

Definition
W is polyconvex if there exists a convex
function ¢ : M3%3 x M3%3 x R — (—o0, 00] such

that
W (F) = g(F,cof F,det F) for all F € M3%3.
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T heorem

Let W be polyconvex, with g lower
semicontinuous. Then W IS quasiconvex.

Proof. Writing J(F') = (F,cof F,det F') and

1
dz = /d,
ﬁffa: meas 2 Qf g

][Q W(F 4+ Dp(x)) dz =

Jensen
>

£ 9(I(F + Dp(a))) da

g <][Q J(F 4+ Do) d:z:)
g(J(F))
W(F). 50




Remark
There are quadratic rank-one convex W that

are not polyconvex. Such W cannot be written
in the form

N [
W(F) =QF)+ 3 oy JV(F),
=1

where () > 0 is quadratic and the Jél) are 2 x 2
minors (Terpstra, D. Serre).
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Examples and counterexamples

We have shown that
4= W = det 4 Zhang
W convex = W polyconvex = W quasiconvex
= W rank-one convex.
4 Sverak
The reverse implications are all false.

So is there a tractable characterization of
quasiconvexity? This is the main road-block
of the subject.
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Theorem (Kristensen 1999)

There is no local condition equivalent to
quasiconvexity (for example, no condition
involving W and any number of its derivatives

at an arbitrary matrix F).

his might lead one to think that it is not
possible to characterize quasiconvexity. On the
other hand Kristensen also proved

Theorem (Kristensen)
Polyconvexity is not a local condition.
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For example, one might contemplate a

characterization of the type
W quasiconvex < W is the supremum of a
family of special quasiconvex functions

(including null Lagrangians).
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Quasiconvexity is essentially both necessary and
sufficient for the existence of minimizers (for
the sufficiency under suitable growth
conditions on W).

However, as well as being a practically
unverifiable condition, the existence theorems
based on quasiconvexity (still) do not really
apply to elasticity because they assume that
W is everywhere finite, whereas this is

contradicted by (H2).
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Existence based on polyconvexity

We will show that it is possible to prove the
existence of minimizers for mixed boundary value
problems if we assume W is polyconvex and
satisfies (H2) and appropriate growth
conditions. Furthermore the hypotheses are
satisfied by various commonly used models of
natural rubber and other materials.
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Theorem (Miiller, Qi &Yan 1994, following JB 1977)
Suppose that W satisfies (H1), (H2) and

(H4) W(F) > co(|F|? + |cof F|3/2) —¢; for all

F € M3%3, where ¢g > 0,

(H5) W is polyconvex, i.e. W(F) = g(F,cof F,det F")
for all F € M3%3 for g continuous and convex.
Assume that there exists some y In

A= {y e WHH(QR?) : ylsn, = ¥}

with I(y) < oo, where H2(821) > 0 and
y : 021 — R3. Then there exists a global min-
imizer y* of I in A.
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The theorem applies to the Ogden materials:

N
=) a; (v + 05 4 ,013%' —3)
1=1

M
+ > Bi((vov3)% 4 (v3v1)% + (vivp)% — 3)
i=1

h(vivov3)

where «;, 8;, p;, q; are constants and h is convex,
h() — oo as § — 04, h%‘” > 00 aS § — 00,
under appropriate conditions on the constants.
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Sketch of proof
Let’'s make the slightly stronger hypothesis that

g(F,H,5) > co(|[FIP + |HIP +15|9) — c1,

for all F € M3%3, where p > 2, %+% = 1,
co>0and g > 1.

Let [ = infyeAI(y) < oo and let y(j) be a
minimizing sequence for I in A, so that

lim I(yU)) =1.

J]—>00
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Then we may assume that for all 3

+1>  1(yY)

+| det Dy(j)|q] — cl) dx.

Lemma

T here exists a constant d > O such that

/ z|Pdx < d (/ | DzPdx +
Q2 Q2

for all z € WhP(Q2; R3).

> /Q (coll Dy P + |cof Dy (D P

/ zdA
ol
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By the Lemma v{) is bounded in W1? and so
we may assume y{) — * in WlP for some y*.

But also we have that cof Dy(7) is bounded in
LY and that det Dy(9) is bounded in LY. So

we may assume that cof Dy(¥) —~ H in L? and
that det Dy() — § in LY.

By the results on the weak continuity of minors
we deduce that H = cof Dy* and 6 = det Dy*.
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| et U(J) — (Dy(j)’cof Dy(j>,det DyU)),
u = (Dy™*, cof Dy*,det Dy*)). Then

w9 o in LY(Q: R19).

But ¢ is convex, and so (e.g. using Mazur's
theorem),
I(y*) = / g(uw)dz < liminf g(u(j>)da:
7—00

= lim I(yU)) = 1.

J]—>00

But y(J)lan =7 — y*loq, in L1(0Q1;R3) and
so y* € A and y* is a minimizer.



Invertibility

We cheated and replaced the physical
requirement that y be invertible
(non-interpenetration of matter) with
the local condition det Dy(x) > O.

For pure displacement boundary-value prob-
lems, i.e. ylsgo = ylgo, there are extensions
of the global inverse function theorem for C1
maps to mapping belonging to Sobolev spaces
(JB 1981, Sverak 1988)
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For mixed boundary-value problems P.G. Ciar-
let and J. NeCas (1985) proposed minimizing

I(y) = /Q W (Dy) da

subject to the boundary condition ylsn, = ¥
and the global constraint

/Q det Dy(z) dz < volume (y(£2)).

They showed that IF a minimizer y* is
sufficiently smooth then this constraint corre-
sponds to smooth self-contact.
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They then proved the existence of minimizers
satisfying the constraint for mixed boundary
conditions under the growth condition

W(F) 2 co(|F|" + [cof F|? + (det F) %) — ¢,

with p > 3,q > o 1,5 > 0. (The point is to
show that the constraint is weakly closed.)
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3. Martensitic phase transformations
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These involve a change of shape of the crystal
lattice of some alloy at a critical temperature.

e.g. cubic to tetragonal

9 > QC . 3 9 < 0@
cubic

: of martensite
austenite

three tetragonal variants

cubic to X 0 < 0Oc

orthorhombic Six orthorhombic variants
(e.g. CuAlNi) of martensite !
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Energy minimization problem
for single crystal

Minimize I,(y) = /Q b(Dy(z),0) da

subject to suitable boundary conditions, for
example

Yoo, = U

0 = temperature,
v = YP(A,0) = free-energy density of crystal,

defined for A € Mf’I_X:S, where

MP*3 = {A € M3*3 : det A > 0}.
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Energy-well structure
K(0) = {A € M3*3 that minimize (A4, 0)}

_|_
ASSU me / austenite
a(0)SO(3) 6 > 0,
K(0) =<¢ SOB)UUiL,SOB)U;(8:) 6 =0,
U1 SO3)U(0) 0 < 6,

alf.) =1 \

martensite
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The U;(0) are the distinct matrices QU1 (0)Q"
for Q € P?4 = cubic group.

For cubic to tetragonal N = 3 and

Uy = diag (n2,m1,m1), U = diag (n1,n2,n1),
Uz = diag (n1,n1,12)-

For cubic to orthornombic N = 6 and

(25 22 o) =p 22 o) S
Up = | &2 X 0|, = 52 <2 o |, Us=| 0O 8 0 [,
\ 0 0 5/ 0 0 8 T 0 ofr)
(a_ﬂou\ 3 0 0 50 0 )
Uy = 5 3 5 , Us=| 0 &7 ‘*‘? L Us=| 0 27 ’E‘* .
\ 2% 0“7 ) 0 %5+ 5 0 %= 57 )
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By the Hadamard jump condition, interfaces
correspond to pairs of matrices A, B with

A—B=a® N,

where N is the interface normal. At minimum
energy A, B € K(0).

From the form of K(6), we need to know what
the rank-one connections are between two given
energy wells SO(3)U, SO(3)V.

A—B=a®@N #0

SO(3)U A—| B SO(3)V
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Theorem
Let U=ULT >0, Vv=VT>0. Then SO(3)U,
SO(3)V are rank-one connected iff

U°-V?2=c(M®N+NQM) (%)

for unit vectors M, N and some c #= O.
If M #= +N there are exactly two rank-one
connections between V and SO(3) U given by

RU=V4+a®N, RU=V4+ax M,
for suitable R, R € SO(3), a,a € R3.
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Proof. Note first that

det(V+a® N) = detV.-det(l+V la®N)
detV-(14+V~1la-N).
Hence if 1 4+ V—1a- N > 0, then by the polar

decomposition theorem RU =V +a ® N for
some R € SO(3) if and only if

U2 = (V+N®a)(V+axN)
V24 Va@N+N@Va+ |[a|°N@N

1 1
= V24 (Va+a’N) @ N + N @ (Va+ Z|a*N).

If a # O then Va+ 3[a|?N # 0, since otherwise

1
Va -V la+ §|a|2V_1a - N =0,

l.e. 2—|—V_1a-N — 0. This proves the necessity
of (*).
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Conversely, suppose (x) holds. We need to
find a # O such that Va + 3[a]?N = cM and
14+V—1la.-N > 0. So we need to find ¢t such

that

a = cr ts

nere ]cr—l—ts|2—|—2t —=0and 14+ (cr+ts)-s > 0,
here we have written r =V 1M s=V~1N.
ne quadratic for ¢ has the form

2

— 2

t2|s|2 + 2t(L +cr-s) +c?r|° =0
which has roots

(1 4er-s) £ \/(1 +cr - s)2 — c?|r|?s|?
B |52 |

t
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Since detU? = detV2det(l+c(r®s+sxr)),
det(14+c(r®@s+s®r)) = (14cr-s)2—c?|r|?|s|?
IS positive and the roots are real. In order to
satisfy 1 4 cr - s + t|s|2 > 0 we must take the
+ sign, giving a unique a, and thus unique R
such that RU =V +a® N.

Similarly we get a unique @ and R such that
RU=V+ax M.

To complete the proof it suffices to check the
following

Lemma
Ifc(MIN+NQIM)=/(PRQ+ QR P) for
unit vectors P, and some constant ¢/, then
either PQ =M IN or PRQ ==EENQQM. 4



Corollaries.
1. There are no rank-one connections between

matrices A, B belonging to the same energy

well.
Proof. In this case U = V, contradicting ¢ # 0.

2. If U;,U; are distinct martensitic variants
then SO(3)U; and SO(3)U; are rank-one

connected if and only if det(U? _sz) = 0, and
the possible interface normals are orthogonal.
Variants separated by such interfaces are called

twins.

Proof. Clearly det(U7 —U?) =0 is
necessary, since the matrix on the RHS of (*)
Is of rank at most 2.



Conversely suppose that det(U7 — U?) = 0.
Then U? — sz has the spectral decomposition

U7 —U7 =Xe®e+ peé®é,

and since U; = RU;R! for some R € P2% it
follows that tr (U? — U].Q) — 0. Hence u = —\
and

U7 —U? MeRe—eRe)
\ e—I—é@e—é e—e e—+e
V2 V2 P V2 )’

as required.
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Remark: Another equivalent condition due to
~orclaz is that det(U; —U;) = 0. This is
because of the surprising identity (not valid in
nigher dimensions)

det(U7 —U7) = (A1+X2) (ha+A3) (Az+A1) det(Ui—Uj).

3. There is a rank-one connection between
pairs of matrices A € SO(3) and B € SO(3)U;
if and only if U, has middle eigenvalue 1.

Proof. If there is a rank-one connection then
1 is an eigenvalue since det(U? — 1) = 0.
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Choosing e with M-e > 0, N-e > 0 and M-e > O,
N-e < 0, we see that 1 is the middle eigenvalue.
Conversely, if 1 is the middle eigenvalue

A2 — )2
3 5 L ((ce1 + Be3) ® (—aey + Be3s)

+ (—ae1 + PBe3) ® (ae1 + Lez)),
[ 1-72 A2—1
where a = /55,0 = /5.

Exercise Show that for a cubic-to-tetragonal
transformation the possible twin planes are those
with normals in the [110] family (i.e. %(1, 1,0),

1 1
ﬁ(oa 17 1)! \/_5(17 07 1))

U? — 1=

(2
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Layering twins

Simple laminate

A—B=c®N

DyU) —~ Dy=XA+ (1 - )\)B
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4. Microstructure
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Some general considerations

The microstructures arising from martensitic
transformations are driven by compatibility of
gradients. The product phases have to fit
together geometrically, generating a
microgeometry that is partly captured by
gradient Young measures (see below).

In trying to understand why we see some
microstructures and not others, we will use
methods based on energy minimization.
However, the formation of microstructure is
obviously a pattern formation problem, which
really should be treated using an appropriate
dynamical model.
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Such a model should tell us which morpholog-
ical features are predictable (e.g. via invariant
manifolds, attractors ) in a given experiment,
and predict them.

However it is not clear what are appropriate
dynamical equations, and both theoretical and
numerical analysis currently intractable for any
such model.

Unfortunately static theories are not truly
predictive:

(i) Large redundancy in energy minimizers.
(ii) The microstructure geometry is typically
assumed a priori, and shown to be consistent
with the theory (although interesting details
may be predicted).
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The free-energy function ¥(-,0) is not quasi-
convex. This is because the existence of twins
implies that ¥ (-,0) is not rank-one convex.

l-/

So we expect the minimum of the energy in
general not to be attained, with minimizing
segquences y(j) IN general generating infinitely
fine microstructures. 126



Gradient Young measures

Given a sequence of gradients
Dy(j), fix 5,,0. |

Let E C M3*3, where
M3%3 = {3 x 3 matrices}

vol {z € B(x,9) : D(j)(z) E} l
vol B(x,6)

Vx,j,é(E) —

vp(E) = lim Iim v, ;5(F)

d—0 73—

IS the gradient Young measure generated by
Dy(j)_ 7



Gradient Young measure of simple
laminate

Ve — )\5A ' (1 — )\)(53
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Theorem. (Kinderlehrer/Pedregal) A family
of probability measures (vz),.cq IS the Young

measure of a sequence of gradients Dy(j) bounded
in L°° if and only if

(i) Uy is a gradient (Dy, the weak limit of Dy())
(ii) {vg, f) > f(vg) for all quasiconvex f.

Here

and

voi fy = [ F(A) dva(A)
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Quasiconvexification

Of functions:
W9¢ = sup{g quasiconvex : g < W}.

Of sets:
A subset E ¢ M3X3 if E = ¢—1(0) for some
non-negative quasiconvex function g.

Let K ¢ M3%3 be compact,
e.g. K =UN,1S03)U;(9).



g
||

quasiconvexification of K

({E : K C E, E quasiconvex}

{v : vgradient Young measure ,
suppr C K}

Fe M33: g(F) < ma A
{F € g()_AG;ég()

for all quasiconvex g}.

YY9C(F,0) is the macroscopic free-energy
function corresponding to .

K (0)Y9¢ is the set of macroscopic deformation
gradients corresponding to zero-energy
microstructures.
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5. Austenite-martensite interfaces
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How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface
between austenite and martensite, because this
requires the middle eigenvalue of U, to be one,
which in general is not the case (but see studies of

James et al on low hysteresis alloys).

So what does it do?
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(Classical) austenite-martensite interface in CuAlNi
(courtesy C-H Chu and R.D. James)
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habit Gives formulae of the
e crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for
cubic-to-tetragonal

boundary layer

ve =4 + (1~ 2)dp
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Rank-one connections for A/M interface
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Zzﬂ\?ﬁ\\?\&\\\"@

Possible lattice parameters

for classical austenite-martensite

Interface .

V2
1- V1 /=2
v¥2+ ?,/ B
] ///jl
1/V2 1 l‘ﬁ 7y
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Macrotwins in Nig.Al;c involving two tetragonal
variants (Boullay/Schryvers)
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Crossings and steps

L]

18 % ..
LS O
. -




Macrotwin formation

010},
*< € 90° i ODIWT
WL ’af\}_ﬁ_\_\é ) -] 10},
2

Similar effects and analysis
m in g-titanium: T. Inamura,

M. Ii, N. Kamioka,

’
’
|

plate | '
— /

(xy 1),

M. Tahara, H. Hosoda,
. ) S. Miyazaki ICOMAT 2014
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Macroscopic deformation gradient in martensitic
plate is

1+0®m
1
m o= ( x(0 + vT), 1{ (v —9),1)
b = (EXG(é g HT)? EXCH(UT - 6)* ﬁ)

where v =1for A = A*, v = —1for A= 1—\*, the
microtwin planes have normals (1,%,0) and y =
]

Table 1: Rotations ¢7 and 2 that bring Plate II into compatibility with Plate I (&;
The direction of rotation is that of a right-handed screw

the corresponding macrotwin normals N; and Nos.

B/Schryvers 2003

Different martensitic plates
never compatible
(Bhattacharya)

= x1 =

= 1) and

in the direction of the given axis. For the case Ko = v = 1,2 = —1 see the text.
Parameter Values o} (Jo
Ko X2 Vo Axis Angle Ny Axis Angle [y
-1 1 ] (.70,0,-.71) 1.64° (0,1,0) (.75,0,.66) [ (1,0,0)
-1 -1 ] (0,.99,.16) 7.99° (1,0,0) (0,.99,-.14 7.99° (0,1,0)
-1 1 -1 (.65,.48,-.59) | 6.76° (.59,-.81,0) (.68,.50,.54) 6.91° | (-.81,-.59,0)
-1 -1 -1 (= 48 .65, a‘)) 6.76° | (-.81,-.59,0) | (-.50,.68,-.54) | 6.91° .59,-.81,0)
1 1 -1 | (-.54,.54,.64) | 5.87° ﬁ(m 0) | (-57,57,-.59) | 6.08° | —5(1,-1,0)
1 -1 -1 (.60,.60,-.52) | 7.37° —2(1,-1,0) (.62,.62,.47) 7.47° \%(J.,]_,O)




Nonclassical austenite-martensite
interfaces (B/Carstensen 97)

speculative nonhomogeneous
martensitic microstructure
with fractal refinement

near interface

curved nonclassical
interface
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Nonclassical interface with double
laminate

AN

\

\\
pure phase ', double laminate
of austenite / ) of martensite

AUV

\AHIA

/
/

: 14
planar nonc lassica 1 3

interface



Nonclassical interface calculation

Dy(x) =F =v
Fe (UX, so(3)y;

N

(unknown unless N = 2)

)"

V, = U

supp v C Uiil SO(3)U;
F=14+bxXm
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Two martensitic wells
Let K = SO(3)U; U SO(3)Us, where

Ul — dlag (77177727773)9 U2 — dlag (7727 T, 773)7

and the 7; > 0 (orthorhombic to monoclinic).

Theorem (Ball & James 92) K9¢ consists of the matrices
F € MJ*° such that

a ¢ 0
FIF=| ¢ b 0 |,
0 0 3

where a > 0,b > 0,a + b+ |2¢c| < nf +n3, ab — ¢* = nins.



he proof is by calculating KP¢ and showing
by construction that any F € KP¢ belongs to

K1e.

For a nonclassical interface we need that for
some a, b, ¢ satisfying these inequalities the mid-
dle eigenvalue of FL'F is one, and we thus get
(Ball & Carstensen 97) such an interface pro-

vided

ot <m<lorl<nyt<n ifnz<i,

m<nit<lorl<mn<ny! ifng>1.
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More wells — necessary conditions

The martensitic variants U; all have the same singular
values (= eigenvalues) 0 < Nmin < Pmid < Pmax-

Let F' € KP¢ have singular values

0 < O-min(F) g Umid(F) g UmaX(F)-
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KP¢ ={F € M™ " : p(F) < max p(G)

First choose ¢(G)

- GeK

for all polyconvex o}

- det(G). Then

det I' = Umin(F)Umid(F)UmaX(F) — TlminT/midT/max -

Next choose ¢(G) = omax(G) = max|, = |G|,
which is convex, hence polyconvex. Thus

Umax(F) é Nmax -
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Finally choose o(G) = omax(cofG), which is a

convex function
of cof (G) and hence polyconvex. Then

Umid(F)UmaX(F) < NmidMmax

But FF =14 b® m implies omig(F) = 1.

Combining these inequalities we get that
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For cubic to tetragonal we have that

Uy = diag (n2,m1,11), Uz = diag (n1,7m2,11),
Uz = diag (n1,m1,12),

and the necessary conditions become
—1 :
n <mny- <mpif n1 < no,
—1 :
e <ny - <m if gy >no.

But these turn out to be exactly the conditions
given by the two-well theorem to construct a
rank-one connection from

(SO(3)U1 USO(3)U»)%¢ to the identity!

Hence the conditions are sufficient also.
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Values of deformation parameters allowing classical and
nonclassical austenite-martensite interfaces

M, 47

| Interfaces possible

classical and nonclassical
interfaces possible

nly nonclassical
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Interface normals
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AUSTENITE

Optical
micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure

The arrows
indicate the
orientations of
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planes of
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Twin crossing gradients 156



Possible nonclassical interface normals

-1.0

0.0

0.5

-10 |
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)
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4 r/.- 7l I é‘
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P or/coMROUNDYZ )

Curved interface between crossing twins and austenite resulting from the inhomogenejty of
compound twinning. (Optical microscopy,H. Seiner)



Construction of curved interface

This Is possible at zero stress provided 1 is
rank-one connected to a relative interior point
of the set K = UY_;SO(3)U; of the martensitic
wells, where relative is taken with respect to
theset D ={A :det A =detU;}. Such relative
iInterior points are known to exist in the cubic-
to-tetragonal case due to a result by Dolzmann
and Kirchheim.

JB, K. Koumatos 2014 159



6. Complex microstructures. Nucleation of austenite.
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Zn,:Au,,Cu, ultra low hysteresis alloy

Yintao Song, Xian Chen, Vivekanand Dabade,

Thomas W. Shield, Richard D James, Nature, 502, 85—-88 (03 October 2013) »



CuZnAl microstructure: Michel Morin (INSA de Lyon)
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Suppose y € Wh(Q; R™),

l.e y Lipschitz.

Can we define Dyt (a), Dy~ (a),
and if so how are they related?

Blow up. For z € B(0,1) let
zs(x) = 6 1y(a + o).

Then Dzs(x) = Dy(a + 6x).
et 5j — 0 to get gradient
Young measure vz, x € B(0,1).

Let G(a,y) be the set of such v = (Vw)a;eB(o,l)-

Dyf(a)= |J [(J{E closed :suppv, C E a.e. z € B¥}

veG(a,y)
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Theorem 1 (B/Carstensen). There exists
be R"™ with b® N € DyT(a)¢ — Dy~ (a)°.

Theorem 2 (B/Carstensen).
Let m =n = 2. Then there exists b € R? with
b N € DyT(a)PC — Dy (a)PC.

Proof of Theorem 2 uses quasiregular maps,
which are useful also in constructing nonpoly-
convex quasiconvex functions. False in higher
dimensions (Iwaniec, Verhota, Vogel 2002)

164



Description of polycrystals

Consider a polycrystal occupying in a refer-
ence configuration a bounded domain 2 C R",
composed of a finite number of disjoint grains
2;,79=1,...,N, where each {2, is a bounded

domain, so that
N N
2 = int U Qj
i=1
Interior grains are ones for which
02 C Uk, 02, and the others are
boundary grains.
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A and B are interior grains
but touch 0f2.

The set of triple points is

T = U 897;1 M 897;2 M 8Qi3.
1<21<15<23

The union of grain boundaries is D = [JI¥_; 02;.
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Theorem (JB/Carstensen). Suppose each grain
Qj IS convex. Then every interior grain is a
convex polyhedron (i.e. an intersection of a

finite number of open half-spaces).

Theorem. (JB/Carstensen) If n = 2 and each
grain is the interior of a closed Jordan curve,
then there are at most 2(IN — 2) triple points.

The bound is sharp.

Theorem.(JB/Carstensen). Forn > 2, if each

Qj IS a topological manifold with boundary

then T is nowhere dense in D.
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Application to a bicrystal
K(0) =S0O(3)U; USO(3)Us

Grain 1
supp vy C K(0)

Grain 2
supp vz C K(0)Ra

Ra€3 — €3

Always possible to have zero-energy
microstructure with Dy = i, = (n3n2)1/31
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Question: Is it true that whatever the orien-
tation of the planar interface between the two
grains there must be a nontrivial microstruc-

ture in both grains? B o \\\-: VAN
A\\\\\\\\\\# 2
SO\ ~&\\\ % 0

Microstructure in polycrystalline }. ,,«.\\\\\\\“ o 3

BaTiO3 (G. Arlt). »{'- LN T
NSNS NN ",/’7;’, .

J;;‘ .:.,»,_ NN 7 L

e

RIS o S O
Results 1. Whatever the orientation there al-
Ways exists a zero-energy microstructure which
has a pure phase (i.e. vz = §4) in one of the
grains. 169




Result 2. Suppose that a = n/4. Then itisim-
possible to have a zero-energy microstructure
with a pure phase in one of the grains if the
interface contains a normal (cosé@,sinf) € D4
and another normal (cos®’,sin@") € D>, where

T 37 570 Or 117 137 1bn

D:, U 3 U ’ U 9

=G, U U = DU, =)
—T T 37 b (7 97 117 137

D> = : U : U : U :

> = (L DHUE SHUuE SHu =0
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Proofs use:

1. A reduction to the case m = n = 2 using
the plane strain result for the two-well problem
(JB/James).

2. he characterization of the quasiconvex
hull of two wells (JB/James), which equals
their polyconvex hull.

3. Use of the generalized Hadamard jump con-
dition to show that there has to be a rank-one
connection b® N between the polyconvex hulls
for each grain.

4. Long and detailed calculations. -




Nucleation of austenite in martensite
JB, Konstantinos Koumatos, Hanus Seiner 2012, 2013

Localized heating experiment:

Specimen: single crystal of CuAINi prepared by
the Bridgeman method in the form of a
prismatic bar of dimensions 12x3x3mm?3 in
the austenite with edges approximately along
the principal cubic directions.

By unidirectional compression along its longest

edge, the specimen was transformed into a

single variant of mechanically stabilized

martensite. Due to the mechanical stabiliza-

tion effect the reverse transition did not occur

during unloading. 172



The martensite-to-austenite transition temper-
atures were Ag = —6°C and Ap = 22°C. The
critical temperature T for the transition from
the stabilized martensite induced by homoge-
neous heating for this specimen was ~60°C.
This was estimated from optical observations
of the transition with one of the specimen faces
laid on and thermally contacted with a gradu-
ally heated Peltier cell, using a heat conducting

gel.

The specimen was freely laid on a slightly pre-
stressed, free-standing polyethylene (PE) foil
to ensure minimal mechanical constraints, then
locally heated by touching its surface with an
ohmically heated tip of a (digital) soldering
iron with temperature electronically controlled
to be 200°C, i.e. significantly above the Ag
and T temperatures.
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11.00mmn

Single crystal of CuAINi. Pure variant of martensite. Heated by tip of MQ iron.




When touched at a corner, nucleation of austen-
Iite occured there immediately. When touched

at an edge or face, nucleation did not oc-

cur at the site of the localized heating, but

at some corner, after a time delay (sufficient

for heat conduction to make the temperature

there large enough).
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Proposed explanation. Nucleation Is geomet-
rically impossible in the interior, on faces and
at edges, but not at a corner. We express this
by proving in a simplified model that if Us de-
notes the initial pure variant of martensite then
at Us the free-energy function is quasiconvex
(in the interior), quasiconvex at the boundary
faces, and quasiconvex at the edges, but not
at a corner.

To make the problem more tractable we as-
sume that ¥ (A,0) ;= W(A) is infinite outside
the austenite and martensite energy wells. 1



Idealized model

I(v) = /Q(Va;,W> do = /Q /M3X3W(A) dve(A) d.

where

(-5 A eSO(3)
W(A)=<{ 0 AelUs;S03); ,
\ +o00 otherwise

and 0 > 0.
So W(A) < co on

6
K =S0(3)U | ] S0(3)U;

180
1=1



Nucleation impossible in the interior

Vi =6U5

2

S:suppv, K

Theorem I(v) > I(dg,)
(quasiconvexity at Us)
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Nucleation impossible at faces or edges

- V=0 U,
e

=0y, S:supp v, cK

== S:suppy, CK

Similarly in these cases we have

Theorem 1(v) > I(dy,)
(quasiconvexity at the boundary and
edges at Us)



Nucleation possible at a corner

Vx :6{}5

I(l/) < I(5US)
I not quasiconvex at such a corner.



Remarks

1. We are able to prove quasiconvexity at faces
with most, but not all, normals. What would
happen for a specimen that was a ball?

Possible face normals for which we
can prove guasiconvexity, using
deformation parameters for Seiner’s
specimen.

0.0z

39




2. We have shown that a /ocalized nucle-
ation can only occur at a corner, but one could
hope to show using methods of Grabovsky &
Mengesha (2009) that any v sufficiently close
to 4y, with I(v) < I(éy,) must involve nucle-
ation at a corner.
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Mechanical stabilization

Above Ag = —6°C the energy of the
austenite is less than that of the martensite.
So why doesn’t the transition from the
stabilized martensite to austenite by
homogeneous heating take place at a much
lower temperature than T, ~ 60°C? In other
words, what is the explanation for the
mechanical stabilization effect?
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One piece of evidence is that under
homogeneous heating the nucleation still takes
place at a corner, suggesting the relevance of
the quasiconvexity calculations.

While a general explanation is lacking, a

relevant consideration is the following: if we
nucleate a small volume V of austenite from

a single laminate of martensite (idealizing the
thermally induced martensite) by introducing

an austenite-martensite interface at a corner,

we reduce the energy by oV plus a term pro-
portional to V, representing the energy of the
interfaces between twins in the laminate which

are no longer there in the austenite. 187



7. Local minimizers with and without interfacial energy
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Incompatibility-induced hysteresis

JB/James 2014

Example.
Consider the integral W(A) _W(B>$ A

I(y) = [ W(Dy)d,

where W : M3%3 5 R and W has two
local minimizers at A, B with rank(A—-B) > 1
and W(A) — W(B) > 0 sufficiently small.
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Claim. Under suitable growth hypotheses on
W, y(x) = Az + ¢ is a local minimizer of I in
L1(Q:R3), i.e. there exists £ > 0 such that

I(y) 2 I(y) if Jqly —yldz <e.

Idea: since A and B are incompatible, if we
nucleate a region in which Dy(x) ~ B there
must be a transition layer in which the increase
of energy is greater than the decrease of energy
In the nucleus.

transition
layer

Dy(z) = A Dy~ B
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Definition. Let Kq,..., Ky be nonempty, dis-
joint, compact subsets of M™*"_  Then the
{K;} are incompatible if whenever (vz),cq iS a
gradient Young measure with

N

supp vz C | J K; a.e. €
i=1
then
supp v, C K a.e. x € <2
for some r.

Otherwise, the {K;} are compatible.
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Example 1

K1 = {Al}, o Ky = {AN}, A; € MMXT

A necessary condition for the sets Ky,..., Ky
to be incompatible is that

rank (4; — A;) > 1, for all i # j.
T his is sufficient iff N < 3.

B/James

Sverak
Counterexample of
Tartar/Scheffer.

22 =2
|
AWN
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Contrast with case of exact gradients.
If N <4 then

N

Dy(x) € U {Az} d.e.
1=1

implies

Dy(x) = A, a.e. for some r

(Chlebik/Kirchheim) but this is false for N > 5
(Kirchheim /Preiss).
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Example 2
Let m = n,

Kl — SO(n)Ul, . .,KN — SO(n)UN
U; = Ul > 0 distinct.

A necessary condition for the sets Kq,... Ky to
be incompatible is that there are no rank-one
connections between the K;.

Sufficient if n = 2 (Sverak) and for

n = 3, N = 2 for certain classes of Uy, U>
(Matos, Kohn/Lods,
Dolzmann/Kirchheim /Mdiller /Sverak).
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However the

Conjecture (Kinderlehrer)
K1, K> are incompatible iff K1, K> not rank-one
connected.

IS unresolved.
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A function f: M™*" — RU {400} is

quasiconvex if there exists a nondecreasing se-

quence fU) : M™mXn _ R of quasiconvex func-

tions with
f(A)::j[gLfQ”(A)fbraH.Aezﬂimx”.

T heorem

Kq,..., Ky are incompatible iff

(i) the sets K!° are gradient incompatible

(ii) for each ¢ = 1,..., N the functions

o; . M™M*™ — [0, oo] defined by

f

1 if Ac KJ©
$i(A) =170 if AUz K
. +oo otherwise

are guasiconvex. 196



Transition layer estimate:
Suppose Kq, K> C M™*™ incompatible,
2 C R™ a bounded Lipschitz domain.
Let 1 < p < oco. Then there exist constants
Eo(Kl,Kg,p, Q) > 0, ”yO(Kl,Kg,p,Q) > 0 such
that if 0 < e <eq, y € WHP(Q; R™) then
p
[+ Dyl da
> vo MIN{L™(21 (y)), L"(22.(y))},

where
Q; (y) ={z € Q2 : Dy(z) € Ne(K;)}

T&:(y) — {'CE c 2. Dy(x) € Ng(Kl) U Ng(KQ)}lw



Hence one can prove a metastability theorem
for microstructures with a pair of incompatible
sets K1, K> replacing the matrices A, B.

Applications:
1. Biaxial experiments on CuAINi of Chu &James.
2. Pure dilatational transformations with en-
ergy wells SO(3) and kSO(3) with k£ > 0.
3. Terephthalic acid. Huge transformation
strain

0.970 0.038 -0.121

U= 0.038 0.835 —-0.017
—0.121 —-0.017 1.298 198



Interfacial energy

Some interfaces are atomistically sharp
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Diffuse (smooth)
interfaces in
Pb,V,0q

Manolikas, van Tendeloo,
Amelinckx
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Diffuse interface in perovskite (courtesy Ekhard Salje)
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No interfacial energy

Suppose that
Dy(a(0)1,0) = 0,

D*y(a(0)1,0)(G, G’) > 1|G)? for all G = G7,
some f > 0. Then y(z) = a(f)r +cis a

local minimizer ot
wa%

But () = a(f)x + ¢ is not a local minimizer of Iy
in WhP(Q;R?) for 1 < p < oo because nucleating
an austenite-martensite interface reduces the eneegy.

in WhH>°(Q; R?).



Second gradient model for diffuse interfaces
JB/Elaine Crooks (Swansea)

How does interfacial energy affect the predic-
tions of the elasticity model of the austenite-
martensite transition?

d < 0.

a(0)1 U1(0) U200) Us(9)
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Use simple second gradient model of interfacial
energy (cf Barsch & Krumhansl, Salje ), for
which energy minimum is always attained.

Fix 0 < 6., write v(A) = ¥ (A,0), and define

1) = | (¢(Dy) +<2|D?P) da

where |D?y|? = y; ogYi.a8 € > 0,

It is not clear how to justify this model on the
basis of atomistic considerations (the wrong
sign problem — see, for example, Blanc, LeBris,
Lions). -



Hypotheses

No boundary conditions (i.e. boundary trac-
tion free), so result will apply to all boundary
conditions.

Assume 1) € OQ(ME’FX?’),

W(A) = oo for det A <0,

W(A) — oo as det A — 0+,

Y(RA) = ¢¥(A) for all R € SO(3),

1 bounded below, € > 0.

Dy(al) =0
D2y (al)(G,G) > u|G|? for all G = G7,
for some p > 0. Here a = «a(0). 205




Theorem. y(z) = aRz+a, R € SO(3),a € R3,
is a local minimizer of T in L1(2; R3).
More precisely,

IW-1@ > o [ (IWDy Dy - a1 +[D?yP?) da

for some o > 0 if ||y — aRx — al|1 is sufficiently
small.

Remark.

/Q |\/DyTDy — al|?dx

> ¢ inf — aRz —a||3 + || Dy — R||3) .

2o, onf ol |2+ 1Dy — R3)
206

by Friesecke, James, Muller Rigidity Theorem



ldea of proof

Reduce to problem of local minimizers for

V) = [ (@) +mp?e2|DUJ?) da.
studied by Taheri (2002), using

IDAU(A)| < p
for all A, where U(A) =V AT A.
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Smoothing of twin boundaries

Seek solution to equilibrium equations for

1) = [ ,(W(Dy) + D%y da

such that

Dy— Aasx-N — —o0

Dy — B as x- N — 400,

where A, B= A+ a® N are twins.
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Lemma

Let Dy(z) = F(z-N), where F € W2 (R; M3%3)
and

F(z-N)— A,B

as - N —- +o00. Then there exist a constant
vector a € R3 and a function v : R — R3 such
that

u(s) — 0,a as s - —oo, 00,
and for all z € R3

F(r-N)=A4u(x-N)® N.
In particular

B=A4a® N. 209



The ansatz

Dy(x) = A4+ u(xz-N)® N.

leads to the 1D integral

Flu) = /R[W(A u(s) ® N)

2|u(s)|%] ds

. 7 2011 2
= [ W (u(s)) + 2l ()] ds.

For cubic — tetragonal or orthorhombic (under
a nondegeneracy assumption) we have

W(0) =W(a) =0, W(u) >0 for v # 0, a,

and so by energy minimization (Alikakos &

Fusco 2008) we get a solution.
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Remarks

1. The solution generates a solution to the full
3D equilibrium equations. However if we use

instead the ansatz

Dy(x) = A

v(z - N)a® N

with v a scalar, then the corresponding solution
does not in general generate a solution to the

3D equations.

2. The solution is not in general unique even
within the class given by the ansatz, but more

wOrk needs to be done in this direction.
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Liquid crystals and the description of defects.
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Topics

1. Liquid crystals, phase transitions and order parameters.
2. The Landau — de Gennes and Oseen — Frank theories.

3. Onsager theory.
4. The description of defects.
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Some themes

e Function spaces as a part of models in physics

e Relation between different levels of
description (e.g. molecular vs continuum,
order parameters of different dimensions)

e |Lessons from solid mechanics

e Constraints (equality and inequality) on
unknowns in variational problems
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1. Liquid crystals, phase transitions and order parameters
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What are liquid crystals?

An intermediate state of matter between liquids and solids.

Liquid crystals flow like liquids, but the constituent
molecules retain orientational order.

A multi-billion dollar industry.

|-
ol ..

HP bistable display




Molecular structure

Liquid crystals are of many different types, the main
classes being nematics, cholesterics and smectics

Nematics consist of rod-like molecules.

Length 2-3 nm ‘-"4”9%_%”2‘”” <Q> 0—CHs

Methoxybenzilidene Butylanaline (“MBBA™)

Prof. Dr. Wolfgang Muschik
TU Berlin
http://wwwitp.physik.tu-berlin.de/muschik/
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Commercial liquid crystal displays use a mixture of several different fluids.



Depending on the nature of the molecules, the
interactions between them and the temperature
the molecules can arrange themselves in

different phases.

Isotropic fluid — no orientational
or positional order

[
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Nematic phase Smectic A Smectic C

orientational but phase phase
no positional
order Orientational and some positional order

The molecules have time-varying orientations
due to thermal motion.



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/Iclinks.html
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Cholesterics

If a chiral dopant is added the
molecules can form a cholesteric
phase in which the mean
orientation of the molecules
rotates in a helical fashion.

DolTPoMS, Cambridge
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Isotropic to nematic phase

transition

The nematic phase typically forms on cooling
through a critical temperature 6. by a phase
transformation from a high temperature isotropic

phase.

17°C MBBA 45°C
| |
em 9(3
0 < O 0 < 0 < 0. 0 > 0
other LC or nematic ISOtropic

222

solid phase



DolTPoMS,
Cambridge




The director

A first mathematical description of the nematic
phase is to represent the mean orientation of
the molecules by a unit vector n = n(xz,t).

But note that for most liquid
crystals n is equivalent to —n,
so that a better description is
Tn via a line field in which we
M identify the mean orientation
by the line through the origin
parallel to it.
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The twisted nematic display

Faolarizer

\

Light not
Light transmitted tranzmitted
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(a] Yoltage OFF (b]Yoltage ON



Modelling via molecular dynamics

Monte-Carlo simulation using Gay-Berne
potential to model the interaction between
Mmolecules, which are represented by ellipsoids.

This interaction potential is
an anisotropic version of the
Lennard-Jones potential
between pairs of atoms

or molecules.
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S -~ \1? S
U = 4e0e(Tyj, U;, Uj) [u(Ty;, U5, U5) ~“—u(r;;, U;, U;)

where
Oc

rij — o(Tij, U5, 0;) + oc’

u (T, U;, 05) =

ri; = |T;;|, and where the functions o(r;;, 4;, 1)
and s(fij,ﬁi,ﬁj) measure the contact distance
between the ellipsoids and the attractive well
depth respectively (depending in particular on
the ellipsoid geometry) and g, oc are empirical
parameters.

],
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Twisted nematic display simulation

944,784 molecules, including 157,464 fixed in layers near the
boundaries to prescribe the orientation there.

M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni, 2009,
(courtesy Claudio Zannoni)



Continuum models

Consider a nematic
liquid crystal filling
a container Q c R3.

To keep things simple consider
only static configurations,
for which the fluid velocity is zero.
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Microscopic state variables

We represent a typical liquid crystal molecule
by a 3D region M (rod, ellipsoid, parallepiped
...) of approximately the same shape and

symmetry. We place M in a standard position

with centroid at the origin, e.g. 1

and define the isotropy /
groups >
Gy = {R€O(3):RM = M}

+
GM

{Re SO3): RM = M}
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If G = G]‘\Z then the molecule is said to be
chiral (as in cholesterics).

RM = RM for R,R € SO(3) iff RTR ¢ G
Hence the orientation of a molecule can be rep-

resented by an element of the space of cosets
SO(3)/G]‘\|'4 (cf Mermin 1979).

For M a cylindrical rod _pbiﬁ—’p
or ellipsoid of revolution  ——

we can identify SO(3)/G]T4 with RP2, that is
with lines through the origin parallel to the long
axis, or equivalently with matrices p®@p,p € S2.
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Molecular orientations of nematics

Fix x € €2 and a
small 6 > 0.

Might also want to average
-P over a small time interval. -



The distribution of orientations of molecules
in B(x,6) can be represented by a probability
measure on IR{PQ, that is by a probability mea-
sure u = ug on the unit sphere S?2 satisfying

uw(E) = u(—FE) for E C S2.

Example:
U = %(56 + d_.) represents a state of perfect

alignment parallel to the unit vector e.

For a continuously distributed measure
du(p) = p(p)dp, where dp is the element of

surface area on S2 and p > 0, [g2 p(p)dp = 1,
p(p) = p(—p).
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If the orientation of molecules is equally
distributed in all directions, we say that the
distribution is isotropic, and then u = ug, where

1

for which p(p) = -

A natural idea would be to use as an order
parameter the probability measure u = ug.
However this represents an infinite-dimensional
state variable at each point x, and if we use as
an approximation an order parameter consist-
ing of a finite number of moments of u then
we have instead a finite-dimensional state
variable.
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Because u(FE) = u(—F) the first moment

| ,pdu(p) =0

T he second moment

M = fS2p®pdu(p)

IS @ symmetric non-negative 3 X 3 matrix
satisfying trM = 1.
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The second moment tensor of the isotropic
distribution pg, dug = z-dp, is

1 1
M / ds = =1
0= 41 PP 3

(since [q2p1p2dS =0, [e2pTdS = [q2p3dS etc
and tr Mg = 1.)

The de Gennes (Q-tensor

Q=M—Mo=/52 <p®p—-:1-3-1> dp(p)

thus measures the deviation of M from its
Isotropic value.
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Since @ is symmetric and tr@)Q = 0,

Q@ = A1n1 @ ny + Azxno ® no + Azng ® ngs,
where {n;} is an orthonormal basis of eigen-
vectors of () with corresponding eigenvalues
A; = \;(Q) satisfying A1 + A + A3 = 0.

Since @ > —%1, each \; > —% and hence

L < 2
_§§A2S3-

Conversely, if each \; > —% then M is the
second moment tensor for some u, €.g. for

3 1.1
=1

1—



If Amax(Q) = % then for the corresponding

eigenvector emax we have

Memax : emax = /SQ(p : Gmax)zdp =1,

and hence
/SQ P ® p — emax ® 6max|2d,u = 0,

and so p = %(5€max + 0—emax)-
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If Amin(Q) = —3 then for the corresponding
eigenvector emin Wwe have Qemin * eémin = _%,
and hence

)2 —
/SQ(p - emin) “du(p) = 0O,

and so u is supported on the great circle of S2
perpendicular to emin-

Remark. Q = 0 does not imply u = up.
For example we can take

1 3
H= — Z (567; + 5—67;)- 239
67321



If two eigenvalues of () are equal then @ is said
to be wuniaxial and has the form

Q=s<n®n—%1>,

where n € S2 and the scalar order parameter
s € [-3,1]. Otherwise Q is biaxial.

In fact it is extremely difficult to find ) that
are not very close to uniaxial with a constant
value of s (typically 0.6-0.7). We will see why
this is to be expected later.
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Note that

In-n = %
1
— <(p'n)2—§>
_ >, 1
= (cos“ 6 3),

where 6 is the angle between p and n. Hence

3 1
s = —(cos®H — =).
2 3
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If @ is uniaxial and s > 0 then Amax(Q) = %3
and n = nmax(Q), the corresponding eigenvec-

tor of ). For general biaxial (Q the director is
often identified with nmax(Q).

If Q=s(n®n — %1) iS uniaxial then

QI = 3 detQ = -
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Proposition.
Given Q = Q1, trQ = 0, Q is uniaxial iff

Q|° = 54(det Q)?.

Proof. The characteristic equation of @ is

det(Q — A1) = det Q — Atrcof Q 4+ 0X2 — \3.

But 2trcof Q = 2(>\2)\3—|—)\3)\1 —I—)\l)\Q) = ()\1 +
A2+ A3)2 — (A2 4+ 25+ A3) = —|Q|%. Hence the
characteristic equation is

1
A3 — §|Q|2,\ —detQ =0,

and the condition that A3 —p\+¢ = 0 has two
equal roots is that p > 0 and 4p3 = 2747.
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Thus for nematic liquid crystals we have
various choices for the order parameter:

the probability density function p (co-dimensional,
Onsager-type theories)

@ (5-dimensional, Landau - de Gennes theory)

(s,n) (3-dimensional, Ericksen theory)

n (2-dimensional, Oseen-Frank theory)
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The Landau — de Gennes and Oseen — Frank theories
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Landau — de Gennes theory

For simplicity we work at a constant temper-
ature 0. Let Q be a bounded domain in R3.
At each point x € 2, we have a corresponding
order parameter tensor Q(x). We suppose that
the material is described by a free-energy den-
sity ¥v(Q,VQ,0), so that the total free energy
IS given by

Q) = | ¥(Q),VQ(),0) da.

We write v = ¢¥(Q,D,0), where D is a third
order tensor. 246



Frame-indifference

We consider two observers, one using the Carte-
sian coordinates x = (z1,x5,x3) and the sec-
ond using translated and rotated coordinates
2=+ R(x — ), where R € SO(3), and we
require that

where Q*(x) is the value of () measured by the
second observer.
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Then
1
Q@ = [,(a®q—31)duz(R"q)
1
P ® Fp = 21)duz(p)

1 T
R 82(p®p—§1)du:z(p)R -

Hence Q*(7) = RQ(Z)R!.
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T herefore

i (Z)

8Zk

0 _
@(Rille(x)ij)

0 Ox
——(RyQumRjm) 5

Oxp
6le
Oxp '

8Zk

R Rjm Ry

Thus, for every R € SO(3),

v(Q", D%,0) = v(Q,D,0),
where Q* = RQR", D}, = Ry{RjmRipDimp.

(2

Such 1 are called hemitropic. 249



Material symmetry

The requirement that

when z =+ R(x — %), where R=1—2eQe,
le|] = 1, is a reflection is a condition of ma-
terial symmetry satisfied by nematics, but not
cholesterics, whose molecules have a chiral na-
ture.
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Since any R € O(3) can be written as RR,
where R € SO(3) and R is a reflection, for a

nematic
v(Q", D*,0) =v(Q,D,0)
where Q* = RQR", D}, = Ry RjmRyp Dy and

1

R € O(3). Such v are called isotropic.
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Bulk and elastic energies

We can decompose ¢ as

vp(Q,0) +¢ve(Q,VQ,0)
bulk 4 elastic,

so that ¥p(Q,0) = ¢¥(Q,0,0).

By frame-indifference we have that

v(RQRL,0) = 4v5(Q,0) for all R e SO(3).

Hence ¥ g(Q,0) depends only on the invariants
of , and one of these, tr@Q, is zero. Hence
vp(Q,0) = ¥i(|Q|%, det Q, 0) for some function

YB.
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The domain of ¢

For what @, D should ¥ (Q, D,0) be defined?
Let E={Q e M33: Q=01 trQ =0}

D ={D = (Djx) : Dij. = Dj;p, Dyr; = 0}.
We suppose that ¥ (-,0) : domy — R, where

dom = {(Q, D) € £ x D,(Q) >~}

But in order to differentiate ¢ easily with re-
spect to its arguments, it is convenient to ex-
tend ¥ (-,0) to all of M3*%3x(3rd order ten-
sors). To do this first set ¥(Q,D,0) = oo if
(Q,D) € £ x D with some \;(Q) < —%.



Then note that
1 1
PA = 5(A + A1) — g(tr Al

is the orthogonal projection of M3%3 onto &.
So for any Q, D we can set

V(Q,D,0) =¢(PQ, PD,0),
where (PD); i = 5(Djji + Djir) — 3Dubij-

Thus we can assume that ¢ satisfies

op _ o OY — 0
0Qi; 0Qji 0Qi |

oYy oY oy
0D, 0D, 9Dy




Q-tensor description of the isotropic
to nematic phase transformation

Following de Gennes, Schophol & Sluckin PRL
59(1987), Mottram & Newton, Introduction
to QQ-tensor theory arXiv:1409.3542, we con-

sider the special quartic bulk energy

$5(Q,0) = a(8)tr Q2 — 2gl’tr Q@+ St

where b > 0,¢ > 0,a = (6 — 6*),a > O.
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T hen

3., 263, 3,
¢B=aZ/\i—gZ/\¢+§Z/\i-
1=1 =1 1=1

Yp attains a minimum subject to Y2 _; \; = 0.
A calculation shows that the critical points
have two A; equal, so that A{ = Ao = A\, A3 =
—2A say, and that

M a + bX + 3cX?) = 0.

Hence A=0 or A = A4, and

—b + \/b2 — 12ac
Oc '
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For such a critical point we have that
v = 4aX® + 4bX3 + 9e?,
which is negative when

4a + 4bX\ + 9eA? = a + b\ < O.

A short calculation then shows that a+b\_ < O

: 2
if and only if a < 22
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Hence we find that there is a phase trans-
formation from an isotropic fluid to a uniax-
lal nematic phase at the critical temperature
On = 07 2271’&26. If & > O\ then the unique
minimizer of ¥ is Q = 0.

If 0 < Ong then the minimizers are

1
Q=smn(n®n — 51) for n & 52,

2_
b \/b2c 12ac >~ 0.
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Form of the elastic energy.

Usually it is assumed that v 5(Q, VQ, 0) is quadratic
In V. Examples of isotropic functions quadratic
in V@ are:

I = Qi iQik kr 12 = Qik Qijk
I3 = Qi kQijky 1a = QurQij 1@k
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Note that
I —Ip = (Q4jQik k) ,j — (QijQik.i) k

IS @ null Lagrangian.

An example of a hemitropic, but not isotropic,
function is

Is = ;i Qukj1 k-

For the elastic energy we take
4 Or 5

1=1

where the L, = L;(0#) are material
constants, with Lg = 0 for nematics.
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To summarize, we assume that for nematics
and cholesterics

4 Or 5

1=1

where ¥5(Q,0) = $p(|Q|%, detQ,0), and
L; = L;(0), with L = 0 for nematics.
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The constrained theory

For small L; it is reasonable to consider a
constrained theory in which we require () to be
uniaxial with a constant scalar order parameter
s = s(0) > 0, so that

1
Q=s(n®n—§1>, n € S2.

(For recent rigorous work studying whether and when
this is justified see Majumdar & Zarnescu, Nguyen &
Zarnescu, Bauman, Phillips & Park.)

Then the bulk energy just depends on 6, so we
only have to consider the elastic energy

1/(Q) = |_¥p(Q.VQ.6) dx.

262



Oseen-Frank energy

Formally calculating ¢¥g in terms of n,Vn we
obtain the Oseen-Frank energy functional

Iy(n) = /Q[Kl(olivn)2 4 Ko(n - curlntqp)? + Ka|n x curln|?
+ (K2 + K4)(tr(Vn)? — (divn)?)] dz,

where

K1 = L1s? 4+ Lps? 4+ 2L3s% — 5L4s3,
Kp = 2L3s% — 5L4s3,

K3 = L15° 4+ Ls? 4+ 2L3s° 4+ 5L4s°,

Lgs?
Kq = Lps?, gqog = —33% an
4 257, 40 2K2ad

qgo = 0 for nematics, qg #= O for cholesterics.
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Boundary conditions

(a) Constrained LdG/Oseen-Frank theory.

(i) Strong anchoring

n(x) = £tn(x), x € OX2.

Special cases:

1. (Homeotropic) n(x) = v(x),
v(x) = unit outward normal

2. (Planar) n(z) -v(x) = 0.
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(ii) Conical anchoring:

n(z) - v(z)| = alz) € [0,1], z € 952,

where v(x) is the unit outward normal.

Special cases:

1. a(x) = 1 homeotropic .

2. o(x) = 0 planar degenerate (or tangent),
director parallel to boundary but preferred
direction not prescribed.

(iii) No anchoring: no condition on n on 0f2.
This is natural mathematically but seems dif-
ficult to realize in practice. >



(iv) Weak anchoring. No boundary condition
IS explicitly imposed, but a surface energy term
IS added, of the form

/89 w(x,n)dS

where w(z,n) = w(x, —n).

For example, corresponding to strong
anchoring we can choose

w(z,n) = —K(n(z) - i(x))?,

formally recovering the strong anchoring
condition in the Iimit K — oo. 266



(b) Landau - de Gennes
(i) Strong anchoring:

Q(z) = Q(z), ¢ € 0%2.
(ii) Weak anchoring: add surface energy term

/é?Q w(xz, Q) dS.
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But is the derivation of the Oseen-Frank the-
ory from Landau - de Gennes correct? The
constrained Landau - de Gennes theory is Iin-
variant to changing n to —n, but is Oseen-
Frank?

The issue here is whether a line field can be
oriented, i.e. turned into a vector field by as-
signing an orientation at each point. If we
don’'t care about the regularity of the vector
field this can always be done by choosing an
arbitrary orientation at each point.
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For s a nonzero constant and n & S2 et
1
M(n) =s(n®n—§1) ,
and set

Q = {QEM3X3 : Q = MN(n) for some n € 82}.

Thus N : S22 — Q. The operator M provides us
with a way of ‘unorienting’ an S2-valued vector
field.
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Given Q € WP(Q, Q) we say Q is orientable if
we can write

Q(x) = MN(n(x)),

where n € WlP(Q,52). In topological lan-
guage this means that Q has a lifting to WHP(Q, S2).
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Relating the Q and n descriptions

Proposition

Let Q = s(n®n — %1), s a nonzero constant,
In| =1 a.e., belong to WhP(Q; RP?) for some
p, 1 <p<oo. If nis continuous along almost
every line parallel to the coordinate axes, then

n € WHP(Q,S2) (in particular n is orientable),
and

Nk = Qij k-
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Theorem. An orientable () has exactly two
orientations.

Proof

Suppose that n and ™ both generate ¢ and
belong to WhH1(Q,S52), where 72(z) = 1 a.e..
Let C' C €2 be a cube with sides parallel to
the coordinate axes. Let xo,x3 be such that
the line 1 — (x1,x9,x3) intersects C. Let
L(xo,x3) denote the intersection. For a.e. such
x>, x3 we have that n(x) and 7(x)n(x) are ab-
solutely continuous in 1 on L(x»,z3). Hence
n(x) - 7(x)n(x) = 7(x) is continuous in x1, SO
that 7(x) is constant on L(x»o,x3).
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Let o € C5°(C). Then by Fubini's theorem

T dazz/ T dr = 0,
/O ©.1 C( ©) .1

so that the weak derivative 77 exists in C' and
IS zero. Similarly the weak derivatives 75,73
exist in C and are zero. Thus V=0 in C and

hence 7 is constant in C. Since €2 is connected,
7 IS constant in €2, and thus =1 or = —1
in €2.
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A smooth nonorientable line field
In a non simply connected region.
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Theorem (JB/Zarnescu 2011) If Q2 is
simply-connected and Q € WiP, p > 2,
then () is orientable.

(There is a related topologically more general
lifting result of Bethuel and Chiron 2007.)

Thus In a simply-connected region the uniaxial de
Gennes and Oseen-Frank theories are equivalent.
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Ingredients of proof

e Lifting possible if ) is smooth and €2 is
simply connected

e Pakzad-Riviere theorem (2003) implies that
if 0C2 is smooth, then there is a sequence of
smooth QU) : Q@ — RP? converging weakly to
Q in wi?2

e \We can approximate a simply-connected
domain with boundary of class CY by ones that
are simply-connected with smooth boundary.
(This can be avoided using an argument of
Bedford (2015))

e Orientability is preserved under weak
convergence
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Non-equivalence of Oseen-Frank and constrained LdG in
non simply-connected 2D domain

Tangent boundary conditions
on outer boundary. No (free)
boundary conditions on inner
circles.

Q) = |_IVQPde

I(n) = 25° /Q Vn|2da
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For M large enough the
minimum energy
configuration is
unoriented, even though
there is a minimizer
among oriented maps.
(In fact this is true
whatever M is.)

If the boundary
conditions correspond to
the Q-field shown, then
there is no orientable Q
that satisfies them.

279



Existence in Landau — de Gennes theory
Let E={Q e M3*3:Q =Q!,trQ = 0}.

Theorem (Davis & Gartland 1998)
Let Q C R3 be a bounded domain with smooth
boundary 02. Let yvg(-,0) be continuous and

bounded below, L4 = Lg = 0 and
3 1

L3 >0,—L3z < Ly <2L3, —gL3 — 1—OL2 < L7.

Let Q : 02 — £ be smooth. Then

3
Q= [ [¥5(Q.0) + 3 LiI(VQ)]da
i=1
attains a minimum on

A={Q e WH2(2; &) : Qlon = Q1.
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Proof

By the direct method of the calculus of vari-
ations. Let QU) be a minimizing sequence in
A. the inequalities on the L; imply that

3
N L (VQ) > p|VQJ?
i=1

for all @ (in particular 2, I;(VQ) is convex in
V(@Q). By the Poincaré inequality we have that

QW) is bounded in W12

so that for a subsequence (not relabelled)

Q) « Q* in wl?

for some Q* € A.



We may also assume, by the compactness of
the embedding of W12 in L2, that QU) — Q
a.e. in 2. But

1(Q*) < liminf 1(QW)

Y d®

by Fatou’'s lemma and the convexity in VQ.
Hence Q* is a minimizer.

In the quartic case we can use elliptic regularity
(Davis & Gartland) to show that any minimizer
Q* is smooth.
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But what if Ls # 07

Proposition (JB/Majumdar) For any bound-
ary conditions, if Lo #= 0 then

4
Q= | [¥5(Q.0) + X Liljlda
1=1

iIs unbounded below.
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Proof. Choose any (@ satisfying the boundary
conditions, and multiply it by a smooth func-
tion ¢(x) which equals one in a neighbourhood
of 0€2 and is zero in some ball B C €2, which
we can take to be B(0,1). We will alter @ in

B so that

4
HQ) = [ [W5(Q.0) + 3 Lilj)da
i=1
is unbounded below subject to Q|gp = 0.
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Choose

Q(z) = h(r) | ® 1|, h(1) =0,

where r = |z|. Then

2 4
2 __ 12 2

and

4 3
Iq = QriQij kQij1 = §h(h’2 — T—th)-
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Hence

J(Q) <4n [

O

1 4

2 [yp(Q) +C (SH2 + 5h%) +

r
4 3
La—h (h’2 - —h2)] dr.
49 r2
where (' is a constant.
Provided h is bounded, all the terms are bounded
except

1 2 4
4 / 2(—(1 °r h) W2 dr.
7'('07“ 3 —|—94 r
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Choose

" ho(2 + sin kr) 0<r<%

hir) = i 2ho(2+sinf)(1—r) F<r<1

The integrand is then bounded on (%,1) and
we need to look at

1
5 5 /(2 4
A /O * 2 (gc + 5L4h0(2 + sin kr)) hak? cos® kr dr,

which tends to —oo if Lghg is sufficiently neg-
ative.
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Analogy with nonlinear elasticity

Y

Minimize

I(y) = [ W(Dy(@)) da

subject to suitable boundary conditions,
e.9. ylpn, = V-



To prevent interpenetration of matter we
required that y Is invertible, and in particular
that

det Dy(z) > 0 a.e. x € 2.

To help ensure this we assumed that

W(A) - o as det A — 0+



Correspondingly, it is natural to suppose that

1
¥vp(Q,0) = 00 as Aqin(Q) — -

3

Such a suggestion was made by Ericksen in the
context of his model of nematic liquid crystals.

We show how such an ¥ can be constructed
on the basis of a microscopic model, the

iInterpretation being that perfectly aligned states
have entropy —oo.

This will also allow us to get existence of a
minimizer when L, # 0.



3. Onsager theory.
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In the Onsager model the probability measure
1S assumed to be continuous with density p =
p(p), and the bulk free-energy at temperature
6 > 0 has the form

Ig(p) = U(p) — 0n(p),

where the entropy is given by

n(p) = —kp /SQ p(p) In p(p) dp,

where kg is Boltzmann's constant.
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We suppose that U is given by

Up) = [, .o K(p 2)p(p)p(a) dpda.

We assume that K is frame-indifferent, so that

K(Rp,Rq) = K(p,q) for all R € SO(3),
which holds iff

K(p,q) = k(p-q)
for some k:[-1,1] — R.
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Two important examples of the potential k are:

(i) k(p- @) = k(3 — (p- 9)?) (Maier-Saupe)

(i) k(p-q) = Hﬁ\/l — (p- q)? (Onsager),

where k > 0 iIs a coupling constant.

We will assume that « is independent of 6. If
x depends on 6 (due to steric effects) then the
analysis is similar.
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Denoting by

Q) = [ (e - p(m) dp

the corresponding @-tensor, we have that
1 1
2
= ——=1) - ——1 dpd
QP = [, [, (p®p—1 (4@ 31)p(p)p(a)dpda

[ [l 02 = J1p@)p(@) dpda

Hence for the Maier-Saupe potential
U(p) = —r|Q(p)|? and

I5(p) = kb [, p(p) N p(p) dp — KIQ(p) .
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Theorem (Fatkullin & Slastikov 2005, Liu,
Zhang & Zhang 2005)

For the Maier-Saupe potential all critical points
of p can be explicitly determined and are uni-
axial. The isotropic state p = % IS a critical
point for all 8. At the largest bifurcation point
6. there is a transcritical bifurcation, so that p

is stable for 86 > 0., and unstable for 6 < 6..

Using equivariant bifurcation theory and an anal-
ySis involving spherical harmonics, Michaela VVollmer
(2015) has established a similar bifurcation pic-
ture for a class of potentials k£ including the
Onsager potential. 296



For the Maier-Saupe potential, given Q we
define (here and below we follow JB/Majumdar

2012)

Yp(Q,0) inf -~ U(p) — 0n(p)

{p:Q(p)=Q}

k6 inf pmpdp—ﬁ?QQ.
5 rQln=q} /52 <!

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.
R. and Sluckin, T. J.(1986))

hus we just need to understand how
to minimize

1(p) = [, p(p)In p(p) dp

subject to Q(p) = Q.
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Given Q with Q = Q1 trQ = 0 and satisfying
A(Q) > —1/3 we seek to minimize
I(p) = [q2 p(p) In p(p) dp ON

Ag={pe L (5% :p>0,Q(p) = Q}.
Remarks: Note that for p € Ay the constraint

/SQ p(p)dp =1

follows from tr Q(p) = 0. Also we do not
impose the condition p(p) = p(—p), since it
turns out that the minimizer in Ag satisfies
this condition automatically.



Lemma. AQ IS nonempty.

Sketch of proof. We can suppose that
QQ = diag (A1, A2, A3). The singular measure

13 1
/’L(p) — Ez; ()\’L + 5) (567; + 5—67;)

satisfies [qo (p@p— %1) du(p) = @ and can be
approximated by an L1 function p satisfying

QR(p) = Q.
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Theorem. [ attains a minimum at a unique
PQ € .AQ.

Proof. Let p(j) be a minimizing sequence for

I in AQ. By the de |la Vallée Poussin criterion

and the superlinear growth of plnp, we may
assume that pU) — pg in L1(S?) for some pp,

and pg > 0, Q(pg) = Q.

Since plnp is convex,

I(p@) <liminfj o0 I(p1)),

so that PQ IS @ minimizer, which Is unigue since
plnp is strictly convex.

300



The Euler-Lagrange equation for |

Theorem. Let (Q = diag (A\1,A2,A3). Then

exp(u1p? + pop3 + 13p3)
Z(p1, 1o, 143)

pq(p) =

Y

where

Z(p1, p2, p3) = /SQ

The pu; (unique up to adding a constant to
each) solve the equations

olnZz
O

exp(p1pt + pops + pzp3) dp.

1
:>\2+§, Z:1,2,3.
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To show that pg satisfies the corresponding
Euler-Lagrange equation, the u; appearing as
Lagrange multipliers, is a bit tricky because
of the possibility that PO IS hot bounded away
from zero. A quicker proof is to use a ‘dual’
variational principle for uy = (u1, uo, n3) (cf Mead
& Papanicolaou 1984), from which the exis-
tence of a minimizer pg also follows.
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Write 7; = A; + 3, so that v, > 0,%3_;7; = 1,
and v = (v1,72,73). For v € R3 let

Jw) =~v-v—InZ().

Note that if m = (1,1,1) then for any 7 € R

3

J(v+1mm) = 7-y+7—|n[92exp(zyipg+7>dp
1=1
= ~v-v—InZ(v) = J),

so that it is sufficient to consider J(v) for v
with v -m = 0.
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Consider the problem
or equivalently

max, ... J(v),
where m+ = {v e R3:v.m = 0}.

Lemma. J(v) is a strictly concave function
on m~+ with J(v) — —oo as |v| — oo, and hence

attains a unique maximum on m-=.
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Proof. If a-m = 0 then a calculation shows
that

02 1n Z(u)
5%@%

2Z(u)2 /52 /52 (

exp ( S ue(pp + q;?)) dp dg.

k=1

a;a; =

2
a;(p? — q; ))

=1
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To prove that J(v) - —o0 as |v| — oo it suffices
to prove that exp(—J(v)) — co. But

3
exp(—J(v)) = /Qexp (Z vi(p? — w)) dp

S

=1
and
3
S v —v) = vi(2pT+p5 — 271 — 12)
1=1

+vo(2p3 + pT — 2795 — 711).

The result follows by examining the sets of
p € S2 where the two quantities in brackets are
positive and negative. 7



Given a maximizer p of J we have that
VudJ(u) =0, that is
VMZ(M) _

v
Z ()
expressing the fact that

exp (Y31 nip?)
Z (1)

pQ(p) =

satisfies Q(pg) = Q.
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Now let p € Ag, p # pg- Then by the strict
convexity of plnp we have that

I(p) = | _pinpdp

> lpg 1N pg

3
(p—p0)(L+ Y pipf —InZ(w))]dp
1=1

= I(pg),
so that pg Is the unique global minimizer.
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Note that we have the dual extremum result

min I(p) = max J(u),
pEAQ R3

whereas the usual Lagrange duality principle
(cf Borwein & Lewis 1991) is

min I(p) = maxJ(p),
,OE.AQ R3

where

3
J(u) =v-p— /52 exp( Y pipf — 1) dp < J(p).
1=1
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Let f(Q) = I(pg) = infpeAQ I(p), so that

ve(Q,0) = 0kpf(Q) — k|Q|>.

Hence the bulk free energy has the form

3 3
Yp(Q,0) = kpb (Z i (A + %) —In Z(;Q) —r > A2,
1=1 =1
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Theorem
f is strictly convex in 2 and

lim f(Q) = oo.
Amin(Q)%—%‘F

Proof
The strict convexity of f follows from that

of plnp. Suppose that Apmin(QY) — -2 but
£(QU)) remains bounded. Then

. . . 1 . .
QWD) 421eD2 = /S P @) (peP)%dp — 0,

where e(J) is the eigenvector of QU) corre-
sponding to Amin(QU)). 11



But we can assume that p,;) — p in L1(S?),

where [¢2 p(p) dp = 1 and that ell) — ¢, le| = 1.
Passing to the Iimit we deduce that

2 _
J2p@®)(p-e)?dp = 0.

But this means that p(p) = 0 except when
p-e = 0, contradicting [¢2 p(p)dp = 1.

312



Asymptotics
T heorem

C1— NOmin(@+3) < F(@) < C-INCmin(@)+)

for constants C'1, C>.

The proof uses our initial construction of a
function p € Ap to get the upper bound, and
the dual variational principle to get the lower
bound.
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Other predictions

1. All stationary points uniaxial and phase
transition predicted from isotropic to uniaxial
nematic phase just as in the quartic model.

2. Minimizers p* of U(p) — 0n(p) correspond to

minimizers over @ of ¥g(Q@,0). As already
mentioned, these p* were calculated and shown

to be uniaxial by Fatkullin and Slastikov (2005),
and by Liu, Zhang & Zhang (2005).

3. Existence when L4 # 0 under suitable
inequalities on the L;, because

1 14
I = QiQi 1Qij K = —§|VQ|2- 3



4. Near (Q = 0 we have (see also Katriel et al)
the expansion

L 5(Q,0) = In4r 4 (15 & )tr@2

Okp 4 20kp
225 3 225 N
tr ' tr
25 Q~ 112( Q)"+

The ratio of the coefficients of the last two
terms gives % — 2, while experimental values
reported in the literature are for MBBA 1.19,
and for 5CB 0.82.
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Given appropriate boundary conditions, do
Mminimizers of

Q) = |_[¥5(Q.0) + ¥5(Q.VQ), 0] da

have eigenvalues which are bounded away from

—%, i.e. for some >0

_%4_5 < Amin(Q(2)) < Amax(Q(x)) < %—s for a.e. © € £27

If not, this would mean that a minimizer of I
would have an unbounded integrand. Surely
this is inconsistent with being a minimizer ....
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Similar nonlinear elasticity problem: Do mini-
mizers for suitable boundary conditions of

I(y) = [ W(Dy)da
with W(A) — oo as det A — 0+ satisfy

detDy(xz) > e >0 a.e. x € Q

for some € > 07

This seems to be very difficult.

317



One might think that for a minimizer to have
the integrand infinite somewhere is some kind
of contradiction, but in fact this is a common
phenomenon in the calculus of variations, even
IN one dimension.

Example (B & Mizel)
Minimize
1
I(u) = /_1[(334 — u6)2u£8 + eug] dx
subject to

u(—1) = -1, u(1) =1,

with 0 < € < eg &~ -001.



Result of finite-element minimization, minimiz-
ing I(up) for a piecewise affine approximation
up, tO u on a mesh of size h, when h is very
small. The method converges and produces

two curves u~.
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1 08 06404 02 02 A4 06 08 1

However the real minimizer is «*, which has a
singularity

2
u*(x) ~ |z|3signx as = ~ 0.
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Theorem (JB/Majumdar) Let (Q minimize

1(Q) = [ [¥5(Q,0) + K(©0)|VQ] da.

subject to Q(x) = Qp(x) for x € 0L2, where
K(8) > 0 and Qqu(-) is sufficiently smooth with

Amin(Qo(z)) > _%- Then

1
Amin(Q(x)) > ~3 + €,

for some € > 0 and () is a smooth solution of
the corresponding Euler-Lagrange equation.
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Proof: Project using the nearest point projec-
tion onto the convex set

for large M. It can be shown that this reduces
both terms in the integral.

Open problem. Prove this for the case of
three or more elastic constants. The above
method does not work. In the three elastic
constant case Evans & Tran prove partial reg-

ularity, but not Amin(Q(x)) > -1 +¢.
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Developments.

1. Jamie Taylor (2015) has generalized the
construction of the singular potential to a broad
class of moment problems, with various appli-
cations.

2. For studies of dynamics using the singular
potential see

E. Feireisl, E. Rocca, and G. Schimperna, An-
nali di Matematica Pura ed Applicata (2013)
M. Wilkinson, Arch. Rat. Mech. Anal. (2015)
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4. The description of defects
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Summary of LC models

For simplicity we drop the explicit dependence
on the temperature 6.

Landau - de Gennes

4 Or 5
i@ = [ (¢s(@+ Y L) da
i=1
where ¥ (Q) has one of the forms discussed,
I = Q45 iQik ky 12 = Qik iQij ks
I3 = Qi kQij ks 1a = QrQi;1Qij k:
Is = ;kQuQ 1 k>

and the L; are constants with Lg = 0 for
nematics.
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Uniaxial ansatz @ = s(n®n — 31) for constant

s > 0 leads to the
The work of Lamy (2014)

shows/suggests that few
Oseen-Frank energy - /. .
equilibrium solutions of

. LdG are uniaxial (whereas
Ior(n) = /Q W(n, Vn) dz, most are nearly uniaxial).

where

W (n,Vn) = Ki(divn)? + Ko(n - curln4qg)? + K3|n x curln|?
+ (K2 + K4)(tr(Vn)? — (divn)?),

and the K; and ¢qp are constants with g = 0
for nematics.

If s = s(x) we get the Ericksen energy

IE(S,n) = /Q W(s,Vs,n,Vn)dz. 326



Natural function spaces.

Landau - de Gennes: Q € Wh2(Q,€&), where
E={Q e M3*3:Q=Q",trQ = 0}.

Oseen-Frank: n € W12(Q, 52). Indeed if
qo = 0 then under the Ericksen inequalities

2K1 > Ko+ K4, Ko > |Ky4|, K3>0
we have that

C'|Vn|? < W(n,Vn) < C|Vn/|?.

Ericksen: (s,n) € W12(Q,R) x Wh2(Q,5?).



Defects

Roughly these can be thought of as regions of
sharp change in the director or line field.

Schlieren texture of a nematic film
with surface point defects (boojums).
Oleg Lavrentovich (Kent State)

Zhang/Kumar 2007

Carbon nano-tubes as liquid crystals
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Point defects
The Euler-Lagrange equation for =
Iop = /Q W(n,Vn)dz \

has solutions representing point defects, e.q.

_ x .
n(x) = ﬁ (radial hedgehog)

Xz
newbp for1<p<3
finite energy for

Vi(z)]? = |x2|2 quadratic models

fol r27Pdr < oo for 1 < p < 3.
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Ifqo =0, Ki=Ky=K3=K, Kg =0 (the one
constant approximation) then n is the unique
minimizer of Ipr = K [o |Vn|?dx subject to its
own boundary conditions (Brezis, Coron, Lieb
1986). In this case any minimizer is smooth
except for a finite number of point defects
(Schoen & Uhlenbeck 1982) at points x(7) such
that

x — x(2)
z — z(2)|
for some R(i) € SO(3).

n(x) ~ £R(7) as ¢ — x(1),
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Much less is known about point defects in the
Oseen-Frank theory for the general case of un-
equal elastic constants. For example it is not
known if a minimizer can have infinitely many
point defects.

Helein (1987) proved that n is not a minimizer
if 8(K1 — K») > K3, this condition being sharp
(Cohen & Taylor (1990)).

Why is one-constant approximation easier?
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Remark: for Oseen-Frank the Euler-Lagrange
equation is
o oW oW
&cj 8nz

where the Lagrange multiplier A(z) is given by

o [ oW oW
AMz) = — —— | ng.
dx; \Ong ; onyg.

= 2K|Vn|?
for the one-constant approximation,
but Iin general depends on second

derivatives of n.  Ap.n = —|Vn|2

= A(x)n;,
o (z)n;

for n € S2 332



Description of defects in the Landau — de
Gennes theory

Since weak solutions in Landau - de Gennes
are smooth, modulo difficulties with the eigen-
value constraints, defects are not represented
by singularities in Q. Rather they can be seen
as singularities in the eigenvectors of ), which
can occur when eigenvalues coincide. (cf de
Gennes, Biscari ...)
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T he situation might be different for free-energy
densities ¥ (Q,VQ) which are convex but not
quadratic in V. For such integrands there is
a counterexample of Sverak & Yan which has
a singular minimizer of the form

1

Qz) = |z (HQ@m—gl) .
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Point defects in the Ericksen and Landau - de
Gennes theories

Since weak solutions in Landau - de Gennes
are smooth, point defects are not represented
by point singularities in Q. In both the Lan-
dau - de Gennes and Ericksen theories there
are solutions to the Euler-Lagrange equations
representing melting hedgehogs, of the form

€ €T 1
r) = s(|x — X — ——=1],

where s(0) = 0.
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For the quartic bulk energy ¥p and the one
constant elastic energy such a solution is shown
by Ignat, Nguyen, Slastikov & Zarnescu (2014)
to be a local minimizer for Q = R3 subject to
the condition at infinity

1
Q(x) = Smin ( il G —1) as |x| — oo,
2]~ Ja] 3
2
where smin = b""\/bQ;lQac > 0, for tempera-

tures close to the nematic initiation tempera-
ture.

However for lower temperatures the melting
hedgehog is not a minimizer (Gartland & Mkad-
dem (1999)) and numerical evidence suggests
a biaxial torus structure for the defect without
melting.
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Line defects

n(z) = (2, %2, 0) 7‘=\/a?%—|—:£%

/r-)rr-ﬂ

Vi(x))]? =L

r

ﬁ,@zs(ﬁ@ﬁ—%l) EWP e 1<p<?
infinite energy for Oseen-Frank and constrained
Landau-de Gennes quadratic models >



Index one half defects

Zhang/Kumar 2007
Carbon nano-tubes
as liquid crystals
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VLT

The index one half singularities are non-orientable

< 5

}_

Q ¢ W2 since otherwise orientable
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Can one change @ (while remaining uniaxial)
IN @ core around the defect in such a way that

the energy becomes finite?

Yes for the cylindrical hedgehog by ‘escape into
the third dimension’.

J No for the index 5 defects because

then @@ would be nonorientable and

in W12 contradicting the orientability
\\ result for simply-connected domains.
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Lessons from solid mechanics

For nonlinear elasticity, with free-energy func-
tional

I(y) = [ W(Dy(a)) da.

minimizers can have singularities, and the pre-
dictions of the model depend on the function

space.
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e.g. cavitation: given X > 0 the minimizer of
_ 2
[w)= [, Dy +h(det Dy)ldr +k area Sy

among smooth y subject to y(x) = A\x for
x| = 1 is y*(x) = Az.

isfies r(0) > 0.

(Lavrentiev phenomenon)

But is W12 the largest such function space?

No, because the body could develop frac’

surfaces across which y is discontinuous.
Francfort-Marigo theory of fracture.

y € SBV (special functions of bounded
variation), jump set Sy

h()
A




As we have seen, there can also be planar dis-
continuities in Dy representing phase bound-
aries. 1)

NiMn, # Baele, van Tenderloo,
Ameljhckx

Macrotwins in NigsAlzs
single crystal (D. Schryvers) Sharp, and

diffuse
interfaces
And there are models similar to Landau - de

Gennes allowing both sharp and diffuse
interfaces, e.d.

I(y) = /Q [v(Dy) + 5|D2y|2] dr + karea Sp,. rosie. Salje.
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The important conclusion to draw for liquid
crystals is that the function space is part of
the model. (Proof. Change the function space
and the predictions change.)

Indeed the Lavrentiev phenomenon (the
infimum of the total free energy is different in
different function spaces is different) occurs in
the Oseen-Frank theory. In fact we have that
for the unit ball B

. = oo if X =01
inf / K|Vn|? dz > I
neX,nlpp=x.B vn { <oo If X=wl?2

(Hardt & Lin 1986 give an example with smooth

degree zero boundary data for which both
infima are finite but that in W12 is lower.)
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Director modeling of line defects with
finite energy

That these defects have infinite energy arises
from the quadratic growth in Vn of W(n,Vn).

But there is no reason to suppose that W(n, Vn)
is quadratic for large |Vn| (such as near

defects).

S0 a possible remedy would be to assume that
W(n,Vn) has subquadratic growth, i.e.

W(n,Vn) < C(|Vn|” + 1),

where 1 < p < 2, which would make line defects

have finite energy. 345



For example, we can let

2
Wa(n,Vn) = — ((1 + oW (n, Vn))% — 1) ,
jole’
where a« > 0 is small. Then Wu(n,Vn) —
W((n,Vn) as a — 0. Also, assuming the Erick-
sen inequalities, W, satisfies the growth con-

ditions
Co(|VnlP — 1) < Wa(n, Vn) < Ca|Vn/P,
for positive constants Cg, C/,. Setting
Io(n) = /Q Wa(n,Vn)dz,

we obtain that In(n) < oo as desired. Also
Wa(n,-) is convex.
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Boundary conditions:

If Q c R3 has smooth boundary and a
sufficiently smooth unit vector field N is given
on the boundary 02, then it is known (Hardt
& Lin 1987) that there is a unit vector field
n € WH2(Q: 52) with n = N on 9%2.

However, if, for example, 2 = (0,1)3 is a cube
and N is the inward normal to the boundary,
then (Bedford) there is no such n. Thus the
Oseen-Frank theory does not apply to homeotropic
boundary conditions on a cube, although a
theory with subquadratic growth would be OK.
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But the index % singularities cannot be

modelled this way because they are not
orientable.

As we have seen the same ‘_//

iIssue arises for smooth
line fields in non

simply-connected regions.

This can be handled by
allowing n to jump to
—mn aCross suitable
surfaces.




3
Wwl2(Q; M3%3), where s # 0 is constant. Then

there exists a unit vector field m € SBV such
that m®@ m = n®n, and my = —m_ across
any jump.

Theorem (Bedford). Let Q = s (n Qn — 11) c

This applies to the second situation above but
not to index % defects, for which an extension
to WlP 1 < p< 2, would be required.
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Ericksen theory. Here we can model point and
line defects by finite energy configurations in
which n is discontinuous and s = 0 at the de-
fect (melting core). In this case there is no
need to change the growth rate at infinity.

For example, if we consider the special case
when

ILac(@) = | [KIVQP +¥p(Q)] de,

then the uniaxial ansatz

O(z) = s(z) (n(m) @ n(z) — %1)

gives the functional

Ig(s,n) = /Q[KUVSF +252|Vn|?) + ¢(s)] da,

where ¥y(s) = $(%5°, %),



Then n can have a singularity at a point or
curve which has finite energy because s can
tend to zero sufficiently fast as the point or
curve is approached to make Ig(s,n) finite.
However for non simply-connected domains or
index % defects there is the same orientability
problem as in the Oseen-Frank theory, which
can be ‘cured’ by allowing jumps from n to —n

across surfaces.
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Theorem [Bedford]Let Q € W12(Q2; M3%3) be
uniaxial with s € C(2). Then s € W12(Q) and
there exists a vector field

m € SBVioc(Q\ {s = 0}; 5°)

such that m®@m=nxQn .

T here is also the possibility of ‘genuine’ planar
defects in this theory (see later).
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Planar defects (JB/Bedford)

Let’'s explore whether it might be reasonable
to consider a free-energy functional for ne-
matic and cholesteric liquid crystals of free-
discontinuity type

I(n) = /Q W(n,Vn)dx + /nf(n_|_,n_,1/) dH?,

for n € SBV(£,S?9), where v is the normal to
the jump set S,,. Here W (n,Vn) is assumed to
have the Oseen-Frank form or be modified so
as to have subquadratic growth as suggested
previously.
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Admissible interfacial energies

Suppose that f:S2 x S2 x S2 — [0,00) is
continuous and frame-indifferent, i.e.

f(Rn—l—aRn—aRV) :f(n—l—an—ay) (1)

for all R € SO(3),ny,n_,v € S2, and that f
IS invariant to reversing the signs of ny,n_,
reflecting the statistical head-to-tail symmetry
of nematic and cholesteric molecules, so that

f(_n+7n—7 V) — f(n—|—7 —n—, V) — f(n+7n—7 V)'
(2)

3



Theorem. A necessary and sufficient condi-
tion that a continuous f : S?x 52 x 52 — [0, 00)
satisfies (1) and (2) is that

f(n—|—7n—a V) —
g((ng-n)?, (ng - )2, (n_ - )%, (ng - n)(ng - v)(n_-v))

for a continuous function g : D — [0,00), where

D = {(&, 8,7,0) : @, 8,7 € [0,1],8% = afBy, a+L+7—25 < 1}.

An equivalent representation is in terms of the matrices
My =ny®@®nye, M_=n_Q@n_, N=rvQvr, namely

fny,no,v) =g(My - M_,My - N,M_ - N,tr (M4 M_N)).

In fact the theorem, though without the characteriza-
tion of the domain of g, follows from a representation
theorem (Smith 1971) for isotropic functions of sym-
metric matrices. 355



Possible candidates for planar defects.

1. Nematic elastomers

The energy functional for nematic elastomers
proposed by Bladon, Terentjev, Warner (1993)
IS given by

I(y,n) =/ L (Dy(Dy)" - Lgh - 3) da,

Q2
Stripe domains in nematic elastomer
Where Kundler & Finkelmann
2 1 Mathematical theory due to De Simone &
Lopn=a3n®@n+a 6(1 —n®n) Dolzmann

and p > 0,a > 0 are material parameters.

The material is assumed incompressible, so that
y is subjected to the constraint det Dy = 1.
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By minimizing the integrand over n € S2 we
obtain the purely elastic energy

I(y) = | W(Dy)dz, (1)
where

W(A) =

N =

(a7303(4) + a3 (3(A4) +03(4)) ).

and v1(A) > v>(A) > v3(A) > 0 denote the
singular values of A, that is the eigenvalues of

VAT A,
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As discussed by De Simone & Dolzmann (2002)
the free-energy function (1) is not quasicon-
vex, and admits minimizers in which Vy jumps
across planar interfaces, so that the minimizing
n Of the integrand also jumps. Of course the
functional ignores Frank elasticity, i.e. terms in
Vn, but the experimental observations might
suggest that even with such terms allowing
jumps in n may be a useful approximation.
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Order reconstruction
Qs = (0,17) x (0,12) x (0,5)
n = fe3 r3 =0

Barbero & Barberi (1983) / t
Palffy-Muhoray, Gartland / n=-+e; —>

& Kelly (1994) 3 =0

(a) Analysis using Landau - de Gennes

Boundary conditions:

Q(z1,22,0) = Q) Q(z1,22,8) = QW),

for a.e. (z1,22) € (0,17) x (0,15), where

Q(O) = sq (el ®e1 — %1) : Q(l) = (63 ® ez — %1) :
and @ periodic in x1,xo.
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Assume that Ly, = 0 with the Longa inequali-
ties

3 1
L3 >0, —L3z < Ly <2Lg3, —gL3 — ELQ < L,

which imply that

vE(VQ) > a|VQ|?

for some a > 0.

Rescale, defining

P(z1,z2,23) = Q(1,72,073),
so that I;4(Q) = 6~ 1E°(P), where

B (P) = [ [8¢5(P) + ¥p(6P1,6P2, P3)) da
and D = (0,17) x (0,15) x (0, 1). 0



Theorem. Let P? be a minimizer of E°. Then
as o —0

P’ — P, P% — P3, 6P§ — 0, 6P% — 0 in L?(D; S),

where
P(z) = (1 — 23)QY) + 23Q),
and S ={Q € M3*3:Q=0Q7T,trQ = 0}.

So for sufficiently small 9, @) is given approxi-
mately by

Q(z) = (1 — 6 23)Q® + 57 123Q),

for which the director (the eigenvector of @
corresponding to the largest eigenvalue)

eq If0<$3<8+825
e3 If8_|_85<233<1

n(x) = {
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A. Pizzirusso, R. Berardi, L. Muccioli, M. Riccia, and C. Zannoni. Predicting
surface anchoring: molecular organization across a thin film of 5CB
liquid crystal on silicon. Chem. Sci., 3:573-579, 2012.
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(b) Analysis using director model

Consider for simplicity the functional
I(n) =/Q K’|Vn|2d:c—|—k’/s (1—(np-n_)2)?%) dH>,
) n

where k¥’ > 0 and 0 < r < 1, with boundary con-
ditions n(x1,z5,0) = $eq, n(xq1,x2,0) = =e3
and [ =l = 1.

Formally this can be obtained from the Landau
- de Gennes functional

1Q = [ KIVQPde+k [ Q4 —Q-["aH?,
Qs So
by making the uniaxial ansatz

Q) = s (n(@) @ () — 1),

where |n(z)] = 1 and s € (0,1) is constant,

. 363
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Some care is needed when interpreting the bound-
ary conditions and periodicity, since it iIs possi-
ble that Q might jump at the boundary 925 of
(5. This is handled by minimizing I(Q) among

Q € SBVig(R2 x (—1,8 + 1); M3%3) satisfying

1
Q(x1,x0,23) = S (el X e1 — 51) for -1 < x3 <0,

1
Q(x1,z0,23) = s (63 ® ez — §1> for 6 < x3z < d+1,

and Q(afl

l1,29,23) = Q(z1,7?

l2,333) —

Q(ZC]_,ZCQ,SC:-},) for all (.581,5[32,33‘3) C RQ X (_175+
1). With this interpretation SQ can be partly

on 695.
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Candidates for minimizers of I are the two
smooth () given by

I4cos™E 0 £sinTEE )
QE(x) == 0 -2 0
2\ tsinmes O3 2 — cos™I3 |
\  Esin 3 5

which are the minimizers of [ |VQ|?dz among
uniaxial Q € W12(Q; M3%3) satisfying the bound-
ary conditions, and which correspond to the
two Oseen-Frank solutions in which the line
field rotates anticlockwise (resp. clockwise) in
the (x1,x3) plane from horizontal to vertical.
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Theorem. For any 0 > 0 there exists at least
one minimizer Q € SBV (25 : M3%3) of I sub-
Jject to the boundary conditions.

Conjecture. There is a small 6o > O such that
if 6 > 89 then QT are the only minimizers, while
if O < d < dg then any minimizer Q has a single
Jump with jump set Sg = {z : z3 = ~(J)},
where 0 < v(6) < 9.
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That QT are not minimisers for & sufficiently
small is easily seen. In fact, |VQT| = % for

some C > 0, so that I(Q¥) = Ksz%z. But if

~ (s 61@61—%1 ifO<:U3<%
Q(z) = | 1 Y
S e3®e3z—3l) if 5<wr3 <0

then 1(Q) = ks"22, so that I(Q) < I(QF) if
ST_Q% < 2_%02.
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3. Smectic thin films

AFM image
8CB smectic thin films Michel Lacaze
Zappone, Lacaze et al, 2010 '

et al, 2004
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Models of smectics

de Gennes approach: model using a complex
order parameter W(z) = r(z)e?®(@)  in terms of
which the molecular density is given by

po + p(z) = po + ReW(z) = pg + r(x) cos ¢(x),

where pg > 0 is a constant average density.
Thus p(x) describes the fluctuations in the den-
sity due to the smectic layers, and V¢ gives the
normals to the layers.
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Various free-energy densities for smectics have
been proposed (Chen & Lubensky, Kleman &
Parodi, Leslie, Stewart & Nakagawa, Mcmil-
lan, Zhang ...). We will restrict attention to
smectic A liquid crystals, for which it is often
assumed that r(x) is constant, with the free-
energy density being expressed in terms of n
and ¢. For example, the free-energy functional
proposed by Kleman & Parodi is given by

I(0,6) = [ (W(n, V) + 5B(n = V6) - (n— Vo) ) da,

where B = B |1 + (BH — B )n®n and BJ_,B”
are positive material constants.
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E (1994) argued that a good approximation is
given by

| (Ka(diva)? 4 By(|99) - 1)) da,
together with the constraint
Vo
n—= ——
Vol

that rigidly enforces that the director points
parallel to the normal.

Existence of a minimizer for the Kleman & Par-
odi model is easy, but for the reduced one un-
Clear.
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Modified Pevnyi, Selinger & Sluckin model (2014)

2

2
1(Q,p) = fQ (wE(Q, VQ) + B|D?%p + % (3Q+s1)p

+ f(p)) dx

" dH2

 fo 1@+ @
Q(x) =s (n(m) R n(x) — %1)

Then under suitable hypotheses on v and f
one can prove the existence of a minimizing

pair Q,p in
A= {Q c SBV (Q,R?’X?’) 0 EW22(QR) :

Q=S(n®’n—%1)a In| =1, Q\a§2=§}
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