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Topics

1. Liquid crystals, phase transitions and order parameters.

2. The Landau — de Gennes, Oseen — Frank and Ericksen
theories.

3. Onsager theory.

4. The description of defects.



Some themes

e Function spaces as a part of models in physics

e Relation between different levels of
description (e.g. molecular vs continuum,
order parameters of different dimensions)

e |essons from solid mechanics

e Constraints (equality and inequality) on
unknowns in variational problems



Modelling

\4

Analysis and predictions
of model

v

Comparison with experiment



1. Liquid crystals, phase transitions and order parameters



What are liquid crystals?

An intermediate state of matter between liquids and solids.

Liquid crystals flow like liquids, but the constituent
molecules retain orientational order.

A multi-billion dollar industry.
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Molecular structure

Liquid crystals are of many different types, the main
classes being nematics, cholesterics and smectics

Nematics consist of rod-like molecules.

Length 2-3 nm C&”ﬂ@”**'—@ﬁ—ma

Methoxybenzilidene Butylanaline (“MBBA™)

Prof. Dr. Wolfgang Muschik
TU Berlin
http://wwwitp.physik.tu-berlin.de/muschik/

7
Commercial liquid crystal displays use a mixture of several different fluids.



Depending on the nature of the molecules, the
interactions between them and the temperature
the molecules can arrange themselves in
different phases.

Isotropic fluid — no orientational
or positional order
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Nematic phase Smectic A Smectic C

orientational but phase phase
no positional
order Orientational and some positional order

The molecules have time-varying orientations
due to thermal motion.



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/Iclinks.html
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Cholesterics

If a chiral dopant is added the
molecules can form a cholesteric
phase in which the mean
orientation of the molecules
rotates in a helical fashion.

DolTPoMS, Cambridge
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Isotropic to nematic phase

transition

The nematic phase typically forms on cooling
through a critical temperature 6. by a phase
transformation from a high temperature isotropic
phase.

17°C MBBA 45°C
| |
Om Oc
0 < O0m Om < 0 < 6. 0 > 0.
other LC or nematic isotr0|oi<:12

solid phase



2 - . MBBA

DolTPoMS,

Cambridge



The director

A first mathematical description of the nematic
phase is to represent the mean orientation of
the molecules by a unit vector n = n(z,t).

But note that for most liquid
crystals n is equivalent to —n,
so that a better description is
Tn via a line field in which we
M identify the mean orientation
by the line through the origin
parallel to it.
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The twisted nematic display

Falarizer

\

Light not
Light transmitted transmitted
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Modelling via molecular dynamics

Monte-Carlo simulation using Gay-Berne
potential to model the interaction between
molecules, which are represented by ellipsoids.

This interaction potential is
an anisotropic version of the
Lennard-Jones potential
between pairs of atoms

or molecules.

16

http://mw.concord.org



S . \1D S
U = 4e0e(Tyj, U;, U)) [u(Ty;, Uy, U) " —u(Ty;, g, Uy)

where
Oc

rij — o(Tij, U5, 05) + oc’

u(T;5, Uz, Uj) =

ri; = |Ti;|, and where the functions o(7;;, 4;, U;)
and s(i‘ij,ﬁi,ﬁj) measure the contact distance
between the ellipsoids and the attractive well
depth respectively (depending in particular on
the ellipsoid geometry) and eg, o, are empirical
parameters.

],
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Twisted nematic display simulation

944,784 molecules, including 157,464 fixed in layers near the
boundaries to prescribe the orientation there.

M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni, 2009
(courtesy Claudio Zannoni)



Continuum models

Consider a nematic or cholesteric
liguid crystal filling a container
Q C R3.

To keep things simple consider
only static configurations,
for which the fluid velocity is zero.
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Microscopic state variables

We represent a typical liquid crystal molecule
by a 3D region M (rod, ellipsoid, parallepiped
...) of approximately the same shape and

symmetry. We place M in a standard position

with centroid at the origin, e.g. 1
and define the isotropy /'
groups >

Gy
Gy

{ReO(3): RM = M}
{Re SO(3): RM = M}
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If Gy = G]‘\Z then the molecule is said to be
chiral (as in cholesterics).

RM = RM for R,R € SO(3) iff RTR € G7;.
Hence the orientation of a molecule can be rep-

resented by an element of the space of cosets
SO(3)/G]’\|'4 (cf Mermin 1979).

For M a cylindrical rod _p<—iﬂi_)‘—>p
or ellipsoid of revolution C ———

we can identify SO(3)/G]"\Z with RP2, that is
with lines through the origin parallel to the long
axis, or equivalently with matrices p®p,p € S2.
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Molecular orientations of nematics

Fix x € €2 and a
small 6 > 0.

Might also want to average
-P over a small time interval.



The distribution of orientations of molecules
in B(x,6) can be represented by a probability
measure on IR{PQ, that is by a probability mea-
sure u = uz on the unit sphere S2 satisfying
uw(E) = u(—E) for E C S2.

(In fact nematic and cholesteric liquid crystal
molecules do not have exact head-to-tail sym-
metry and they are typically polarized. So the
assumption u(E) = u(—F) is a statistical one,
that equal numbers have direction p and —p.)
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We want § to be sufficiently small for B(x,d) to
be macroscopically close to a point z, vet large
enough to contain a large number of molecules
and allow a statistical description.

Take the molecule to be a circular cylinder of
length d and radius a, and assume the molecules
to fill a fraction 8 of B(x,6). Then the number
of molecules in B(z,d) is 03763 /ma?d.

Setting 0 = % a =d/4, d = 3nm, this number

. - -6 I |
is 1 billion for 6 ~ 107°m = To00MmM.
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Example:
U = %(66 + d_.) represents a state of perfect

alignment parallel to the unit vector e.

For a continuously distributed measure
du(p) = p(p)dp, where dp is the element of

surface area on S2 and p > 0, g2 p(p)dp = 1,
p(p) = p(—p).
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If the orientation of molecules is equally
distributed in all directions, we say that the
distribution is isotropic, and then u = pu, where

_ 1

for which p(p) = 4.

A natural idea would be to use as an order
parameter the probability measure u = .
However this represents an infinite-dimensional
state variable at each point z, and if we use as
an approximation an order parameter consist-
ing of a finite number of moments of u then

we have instead a finite-dimensional state
variable.
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Because u(FE) = u(—F) the first moment

o Pau(p) =0

T he second moment

M = fszp@@pdu(p)

IS @ symmetric non-negative 3 x 3 matrix
satisfying trM = 1.
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The second moment tensor of the isotropic
distribution i, dii = z-dp, is
~ 1
M= —
47 JS
(since [g2p1padp =0, [s2pfdp = [g2p5dp etc
and trM = 1.)

1
,p®pdp =21

The de Gennes (Q-tensor

Q=M—M=/SQ (p®p—%1)du(p)

thus measures the deviation of M from its
Isotropic value.

28

Note that @ = Q7, trQ =0, Q > —11.



Since @ is symmetric and tr@ = 0,

Q = A1n1 @ ni + Aono @ no + Aznz ® n3s,

where {n;} is an orthonormal basis of eigen-
vectors of () with corresponding eigenvalues
A; = X\ (Q) satisfying A1 + XA> + A3 = 0.

Since @ > —%1, each \; > —% and hence

1 < 2
_§S>\z§3-

Conversely, if each A\; > —% then M is the
second moment tensor for some u, e€.g. for

3 1.1
H = Z ()‘z + 5)5(57% + 5—7%) -
1=1



If Amax(Q) = 5 then for the corresponding

eigenvector emax we have

Memax - emax = /SQ(p ' €max)2dp =1,

and hence
/52 P @ P — emax ® 6max|2d,u = 0,

and soO p = %(5€max + 0—emax) -
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If Amin(Q) = —% then for the corresponding
eigenvector emin we have Qemin * eémin = _%,
and hence

SQ(p ‘ emin)zdﬂ(p) = 0,

and so u is supported on the great circle of 52
perpendicular to emin-

Remark. () = 0 does not imply u = L.
For example we can take

1 3
H— - Z (581 _I_ 5—67;)' 31
6 1=1



If two eigenvalues of () are equal then @ is said
to be uniaxial and has the form

Q=s<n®n—%1>,

where n € S2 and the scalar order parameter
s € [-4,1]. Otherwise Q is biaxial.

In fact it is extremely difficult to find @ that
are not very close to uniaxial with a constant
value of s (typically 0.6-0.7). We will see why
this is to be expected later.
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Note that

Qn-n = %
1
— ((p-n)2—§>
_ >, 1
= (Ccos“ 0 3},

where 0 is the angle between p and n. Hence

3 1
s = —(cos? 6 — =).
2 3
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If Q is uniaxial and s > 0 then Amax(Q) = 3s
and n = nmax(Q), the corresponding eigenvec-
tor of ). For general biaxial ¢ the director is
often identified with nmax(Q).

If @ = s(n®n — 21) is uniaxial then

2
—, det @ = —-.
QP = detQ ="

34



Proposition.

Given Q = Q1 trQ = 0, Q is uniaxial iff

Q|° = 54(det Q).

Proof. The characteristic equation of @ is

det(Q — A1) = det Q — Atrcof Q + OX2 — A3,

But 2trcof @Q = 2()\2)\3+)\3)\1 —|—)\1)\2) = ()\1 +
A2+ 23)2 — (A2 4+ 235+ A3) = —|Q|%. Hence the

characteristic equation is

1
A3 — 5|Q|2/\ —detQ =0,

and the condition that A3 — p)\

equal roots is that p > 0 and 4p3 = 27¢2.

q = 0 has two
35



T hus for nematic and cholesteric liquid crystals
we have various choices for the order

parameter:

the probability density function p (oco-dimensional,
Onsager-type theories)

@ (5-dimensional, Landau - de Gennes theory)

(s,n) (3-dimensional, Ericksen theory)

n (2-dimensional, Oseen-Frank theory)

For smectics we will add an extra order param-
eter, the molecular number density r = r(x),
the number of molecules in B(x,d) divided by
the volume of B(xz,6).

36



2. The Landau — de Gennes, Oseen — Frank and Ericksen theories
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Landau — de Gennes theory

For simplicity we work at a constant temper-
ature 0. Let ©Q be a bounded domain in R3.
At each point x € 2, we have a corresponding
order parameter tensor Q(x). We suppose that
the material is described by a free-energy den-
sity ¥v(Q,VQ,0), so that the total free energy
IS given by

Q) = | $(Q@),VQ(),0) dr.

We write ¢ = ¥(Q,D,60), where D is a third
order tensor. 38



Frame-indifference

We consider two observers, one using the Carte-
sian coordinates x = (x1,x2,z3) and the sec-
ond using translated and rotated coordinates
z=x+ R(x —x), where R € SO(3), and we
require that

Y(Q(2), V:Q7(2),0) = ¢¥(Q(Z), V2Q(), ),

where Q*(x) is the value of (Q measured by the
second observer.
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T hen

Q™ ()

1
[0 ®a—S1duz(R"q)
1
o tp @ Fp — 21)duz(p)

1 T
R Sz(p®p—§1)du:z(p)R -

Hence Q*(z) = RQ(Z)R!.

40



T herefore

0Q)7.

: 8,
1]/ — o —
2, (x) = 8zk(Rille($)ij)
O ox
6a?p( lelm jm) 8zk
8le
= R;R;, R :
UL vymitkp 833]9

Thus, for every R € SO(3),

v(Q", D, 0) = ¢¥(Q, D,0),
where Q* = RQR", D};; = Ry RjmRipDimp.

(/
Such ¢ are called hemitropic. 4



Material symmetry

The requirement that

when z =+ R(x — %), where R=1—-2eQe,
le|] = 1, is a reflection is a condition of ma-
terial symmetry satisfied by nematics, but not
cholesterics, whose molecules have a chiral na-
ture.

42



Since any R € O(3) can be written as RR,
where R € SO(3) and R is a reflection, for a
nematic

v(Q", D™, 0) = ¢(Q, D, 0)
where Q* = RQR", D};; = RyRjmRypDimp and

[/

R € O(3). Such v are called isotropic.
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Bulk and elastic energies
We can decompose ¢ as

Yp(Q,0) +¢vp(Q,VQ,0)
bulk + elastic,

so that vp(Q,0) = ¢(Q,0,0).

By frame-indifference we have that

v(RQRL,0) = v5(Q,0) for all R e SO(3).

Hence v p(Q,0) depends only on the invariants
of @, and one of these, tr@Q, is zero. Hence
vp(Q,0) = Yp(|Q|%, det @, 0) for some function

YR.

44



The domain of y

For what @, D should ¥ (Q, D,0) be defined?
Let E={Q € M3%3:Q =Q',trQ =0}

D ={D = (Dj;x) : Dijr, = Dji, Dy; = 0}
We suppose that ¥ (-,0) : domy — R, where

domy = {(Q. D) € € x DA(Q) >~}

But in order to differentiate ¢ easily with re-
spect to its arguments, it is convenient to ex-
tend ¥(-,0) to all of M3%3x(3rd order ten-

sors). To do this first set ¥ (Q,D,0) = oo if
(Q,D) € £ x D with some ;(Q) < —%.



Then note that
1 1
PA = 5(A + AT — 5(tr Al

is the orthogonal projection of M3%3 onto &.
So for any Q, D we can set

V(Q,D,0) = ¢(PQ, PD,0),
where (PD);;; = 5(Djji + Djir) — 3Dubij-

Thus we can assume that ¢ satisfies

o _ Oy Y — 0
0Qi; 0Qj 0Qy |

oY OY oY

OD;ir, 0Dy 0Dy




Q-tensor description of the isotropic
to nematic phase transformation

Following de Gennes, Schophol & Sluckin PRL
59(1987), Mottram & Newton, Introduction
to Q-tensor theory arXiv:1409.3542, we con-

sider the special quartic bulk energy

¥p(Q,8) = a(8)tr Q2 — 2gl’tr QP+ St

where b > 0,¢ > 0,a = (6 — 6*),a > O.
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Then

3. b3 . 3,
¢B=a2/\i—g2/\i+52/\i-
1=1 =1 1=1

¥p attains a minimum subject to ¥2_; A; = 0.
A calculation shows that the critical points
have two A; equal, so that A\{ = Ao = A\, A3 =
—2\ say, and that

Aa + b\ 4+ 3eX?) = 0.

Hence A =0 or A = A4, and

—b /b2 — 12ac
At = Oc ' )




For such a critical point we have that

v = 4adr? + 4bA\3 4+ 9ca?,

which is negative when

Aa + 4bX\ + 9eM? = a + b\ < 0.

A short calculation then shows that a+b\A_ < O

b2

If and only If a < 57

49



Hence we find that there is a phase trans-
formation from an isotropic fluid to a uniax-
lal nematic phase at the critical temperature
On = 0F H 2271)&20. If & > 06N then the unique
minimizer of ¥p is Q = 0.

If 6 < Ong then the minimizers are

1
Q = smin(n ®n — gl) for n &€ 52,

1a/BH2_
b \/bQC 12ac > 0.

50



Form of the elastic energy.

Usually it is assumed that v (Q, VQ, 8) is quadratic
In V. Examples of isotropic functions quadratic
in V@ are:

I = Qi jQik ky 12 = Qir ;Qijk
I3 = Qi kQij iy 1a = QuiQij 19k

51



Note that
I —Ip = (QjQir k) ,j — (QijQik i) k

IS @ null Lagrangian.

An example of a hemitropic, but not isotropic,

function is
Is = €;;1kQuQj1 k-

For the elastic energy we take
4 Or 5

¢E(Q7VQ79) - Z L; IZ)

where the L; = Li(e) are material
constants, with Lg = 0 for nematics.
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To summarize, we assume that for nematics
and cholesterics

4 Or 5

Y(Q,VQ,0) =vp(Q,0)+ > LI,
i=1

where ¢5(Q,0) = ¢¥p(|Q|% detQ,0), and
L; = L;(8), with L = 0 for nematics.
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The constrained theory

For small L; it is reasonable to consider a
constrained theory in which we require ) to be
uniaxial with a constant scalar order parameter
s = s(0) > 0, so that

Q(x) = s (n(:c) R n(x) — %1) . n(z) € S°.

(For rigorous work studying whether and when this is
justified see Majumdar & Zarnescu, Nguyen & Zarnescu,
Bauman, Phillips & Park, Canevari.)

Then the bulk energy just depends on 6, so we
only have to consider the elastic energy

1/(Q) = |_¥p(Q.VQ.6) dx.
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Oseen-Frank energy

Formally calculating v¥g in terms of n,Vn we
obtain the Oseen-Frank energy functional

Iy(n) = /Q[Kl(olivn)2 4 Ko(n - curlntqp)? + Ka|n x curln|?

+(Kp + Kg)(tr(Vn)? — (divn)?)] dz,

where

K1 = L1s? 4+ Lps? 4+ 2L3s% — 5L4s3,
Kp = 2L3s% — 21453,

K3 = L15° 4+ Lps? 4+ 2L3s° 4+ 5L4s°,

L s?
Kir= L 2 — 2D N
4 257, 40 2K- and

qgo = O for nematics, qg #= O for cholesterics.
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Boundary conditions

(a) Constrained LdG/Oseen-Frank theory.

(i) Strong anchoring

n(z) = +n(x), z € 0X2.

Special cases:

1. (Homeotropic) n(x) = v(x),
v(x) = unit outward normal

2. (Planar) n(x) -v(x) = 0.
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(ii) Conical anchoring:

n(z) - v(z)| = a(z) € [0,1], z € 052,

where v(x) is the unit outward normal.

Special cases:

1. a(x) = 1 homeotropic .

2. o(x) = 0 planar degenerate (or tangent),
director parallel to boundary but preferred
direction not prescribed.

(iii) No anchoring: no condition on n on 0X2.
This is natural mathematically but seems dif-
ficult to realize in practice. V!



(iv) Weak anchoring. No boundary condition
IS explicitly imposed, but a surface energy term
IS added, of the form

,n)dS
/aQw(az n)
where w(z,n) = w(x, —n).

For example, corresponding to strong
anchoring we can choose

w(z,n) = K(1 - (n(z) - i(x))?),

formally recovering the strong anchoring
condition in the Iimit K — oo. 58



(b) Landau - de Gennes
(i) Strong anchoring:

Q(z) = Q(z), ¢ € 0%2.
(ii) Weak anchoring: add surface energy term

/[KZ w(x, Q) dS.
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—ricksen theory

Similarly, if we use the uniaxial ansatz

Q@) = s(2) (n(2) ® n(x) - ;1)

we get the Ericksen theory, for which the or-
der parameter is the pair (s,n), |n| = 1, with
corresponding energy

Ip(s,n) = /Q W(s,Vs,n,Vn) dx.
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But is the derivation of the Oseen-Frank the-
ory from Landau - de Gennes correct? The
constrained Landau - de Gennes theory is In-
variant to changing n to —n, but is Oseen-
Frank?

The issue here is whether a line field can be
oriented, i.e. turned into a vector field by as-
signing an orientation at each point. If we
don’'t care about the reqgularity of the vector
field this can always be done by choosing an
arbitrary orientation at each point.
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For s a nonzero constant and n € S2 let

1
M(n) =s(n®n—§1) :
and set

Q= {Q€M3X3 . Q = MN(n) for some n € 82}.

Thus N : S2 — Q. The operator M provides us
with a way of ‘unorienting’ an S2-valued vector
field.
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Given Q € WhP(Q, Q) we say Q is orientable if
we can write
Q(zx) = MN(n(x)),

where n € WP(Q,S2). That is Q has a lifting
to WIP(Q, S2).

63



Relating the Q and n descriptions

Proposition (JB/Zarnescu 2011)

Let Q = s(n®@n — %1), s a nonzero constant,
n| =1 a.e., belong to Wlap(Q;]R{PQ) for some
p, 1 <p<oo. If nis continuous along almost
every line parallel to the coordinate axes, then

n € WHP(Q,S2) (in particular n is orientable),
and

ni kg = Qijkm;-
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Theorem.(JB/Zarnescu 2011) An orientable
() has exactly two orientations.

Proof

Suppose that n and ™ both generate ¢ and
belong to WhH1(Q,S52), where 72(z) = 1 a.e..
Let ¢ C €2 be a cube with sides parallel to
the coordinate axes. Let zo,x3 be such that
the line 1 — (x1,x2,x3) intersects C. Let
L(x>,x3) denote the intersection. For a.e. such
x>, x3 We have that n(x) and 7(xz)n(x) are ab-
solutely continuous in z1 on L(xo,x3). Hence
n(xz) - 7(x)n(x) = v(x) is continuous in x1, SO
that 7(z) is constant on L(x»s, xr3).
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Let o € C5°(C). Then by Fubini's theorem

T da:=/ T dr = 0,
| reade = [ ()

so that the weak derivative 71 exists in C' and
IS zero. Similarly the weak derivatives 75,73
exist in ¢ and are zero. Thus V=0 in C and

hence 7 is constant in C. Since €2 is connected,
7 IS constant in €2, and thus =1 or = —1
in €2.
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A smooth nonorientable line field

iIn @ non simply connected region.
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Theorem (JB/Zarnescu 2011) If Q2 is
simply-connected and Q € Wip, p > 2,
then () is orientable.

(There is a related topologically more gen-
eral lifting result of Bethuel and Chiron 2007.
Some details of the proof are given in the 2015
Oxford thesis of C. Hopper.)

Thus in a simply-connected region the uniaxial de
Gennes and Oseen-Frank theories are equivalent.
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Ingredients of proof

e Lifting possible if ) is smooth and €2 is sim-
ply connected.

e Pakzad-Riviere theorem (2003) implies that
if 02 is smooth, then there is a sequence of
smooth QU) : © — RP2 converging weakly to
Q in wli2,

e We can approximate a simply-connected do-
main with boundary of class €9 by ones that
are simply-connected with smooth boundary.

In JB/Zarnescu (2014) it is shown that a bounded

domain with boundary of class CO can always
be approximated from the inside and out by
diffeomorphic domains with smooth boundary.
(This step can be avoided using an argument
of Bedford (2015).)

e Orientability is preserved under weak conver-
gence.
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Non-equivalence of Oseen-Frank and constrained LdG in
non simply-connected 2D domain (JB/Zarnescu 2011)

Tangent boundary conditions
on outer boundary. No (free)

boundary conditions on inner
circles.

1(Q) = /QNQFdw

I(n) = 25° /Q Vn|2da

70
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For M large enough the
minimum energy
configuration is
unoriented, even though
there is a minimizer
among oriented maps.
(In fact this is true
whatever M is.)

If the boundary
conditions correspond to
the Q-field shown, then
there is no orientable Q
that satisfies them.
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Existence in Landau — de Gennes theory

Let E={Q e M3*3:Q =Q!,trQ = 0}.

Theorem (Davis & Gartland 1998)
et Q C R3 be a bounded domain with smooth

boundary 02. Let ¢pg(-,0) be continuous and
bounded below, L4, = L = 0 and

3 1
L3 >0,—L3z < Ly <2L3, —gL3 — 1—0L2 < L7.

Let Q : 02 — £ be smooth. Then

3
Q) = [ W5(Q.0)+ Y Lli(VQ)] da
i=1
attains a minimum on

A={Q e WH(€) : Qlan = Q.
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Proof

By the direct method of the calculus of vari-
ations. Let Q(j) be a minimizing sequence in
A. the inequalities on the L; imply that

3
N L (VQ) > p|VQJ?
i—1

for all @ (in particular 2, I;(VQ) is convex in
V(). By the Poincaré inequality we have that

QU) is bounded in W12
so that for a subsequence (not relabelled)
Q) ~ Q* in wl?

for some Q* € A.
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We may also assume, by the compactness of
the embedding of W12 in L2, that QU) — Q
a.e. in 2. But

1(Q*) < liminf 1(QW))
]—00

by Fatou’s lemma and the convexity in VQ.
Hence Q™ is a minimizer.

In the quartic case we can use elliptic regularity
(Davis & Gartland) to show that any minimizer
Q* is smooth.
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But what if Ly # 07

Proposition (JB/Majumdar) For any bound-
ary conditions, if Lo #= O then

4
Q) = | [5(Q,0)+ Y Lili]de
1=1

IS unbounded below.
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Analogy with nonlinear elasticity

y

Minimize

I(y) = [, W(Dy(a)) da
subject to suitable boundary conditions,
e.d. Yo, = Y-



To prevent interpenetration of matter we
required that vy iIs invertible, and in particular
that

det Dy(x) > 0 a.e. x € Q2.

To help ensure this we assumed that

W(A) - o as det A — 0+



Correspondingly, it is natural to suppose that

1
Yp(Q,0) — oo as Apin(Q) — .

3

Such a suggestion was made by Ericksen in the
context of his model of nematic liquid crystals.

We show how such an ¥ can be constructed
on the basis of a microscopic model, the

Interpretation being that perfectly aligned states
have entropy —oo.

This will also allow us to get existence of a
minimizer when L4 # 0.



3. Onsager theory (JB/Majumdar).
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In the Onsager model the probability measure
L 1s assumed to be continuous with density p =
po(p), and the bulk free-energy at temperature
6 > 0 has the form

Iy(p) = U(p) — On(p),

where the entropy Is given by

n(p) = —kp /52 p(p) In p(p) dp,

where kg is Boltzmann's constant.
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We suppose that U is given by

Up) = [, [, K@, @)p(P)p(a) dpda.

We assume that K is frame-indifferent, so that

K(Rp,Rq) = K(p,q) for all R € SO(3),
which holds iff

K(p,q) = k(p-q)
for some k:[-1,1] — R.
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Two important examples of the potential k are:

() k(p- @) = k(3 — (p- 9)?) (Maier-Saupe)

(i) k(p-q) = H:\/l — (p- q)? (Onsager),

where k > 0 is a coupling constant.

We will assume that « is independent of 6. If
x depends on 6 (due to steric effects) then the
analysis Is similar.

83



Denoting by

Q) = [ e - 6@ dp

the corresponding Q-tensor, we have that
1 1
2
= —=1)- ——1 dpd
QR = [, [,eepr—21)- (99— Dp(m)p(@)dpda

1
= [ o[- 2 = S1e@)p(a) dp da.
Hence for the Maier-Saupe potential
U(p) = —k|Q(p)|? and

Io(p) = kb | , p(p) In p(p) dp — KIQ(p)I>
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Theorem (Fatkullin & Slastikov 2005, Liu,
Zhang & Zhang 2005)

For the Maier-Saupe potential all critical points
of p can be explicitly determined and are uni-
axial. The isotropic state p = % Is a critical
point for all 8. At the largest bifurcation point
6. there is a transcritical bifurcation to a uni-
axial state, so that p is stable for 6 > 6., and

unstable for 0 < 0..

Using equivariant bifurcation theory and an anal-

VSis involving spherical harmonics, Michaela Vollmer
(2015) has established a similar bifurcation pic-

ture for a class of potentials k£ including the

Onsager potential (see also related work of
Wachsmuth 2006). 5



For the Maler-Saupe potential, given Q we
define (here and below we follow JB/Majumdar

2012)

,0) = inf U — 0
Yp(Q,0) o —o) (p) — O0n(p)
— krf  inf In pdp — 2.
i {p:Q(p)=Q}/52p pap — Q|

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.
R. and Sluckin, T. J.(1986))

Thus we just need to understand how
to minimize

1(p) = [, p(p) Inp(p) dp

subject to Q(p) = Q.
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Given Q with Q = Q' ,trQ = 0 and satisfying
Ai(Q) > —1/3 we seek to minimize

I(p) = [g2 p(p) In p(p) dp ON

Ag={pecLi(5%):p> 0,/52 p(p)dp = 1,Q(p) = Q}.

Remark: We do not impose the condition
p(p) = p(—p), since it turns out that the
minimizer in AQ satisfies this automatically.
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Lemma. AQ IS nonempty.

Sketch of proof. We can suppose that
QQ = diag (A1, A2, A3). The singular measure

13 1
M(p) — Ez;l ()\’L + g) (581' + 5—6@')

satisfies [¢o (p@p— %1) du(p) = @Q and can be
approximated by an Ll function p satisfying

QR(p) = Q.
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Theorem. [ attains a minimum at a unigue
PO € AQ.

Proof. Let p(j) be a minimizing sequence for

I in AQ. By the de la Vallée Poussin criterion

and the superlinear growth of plnp, we may
assume that pU) — pg in L1(S?) for some pp,

and pg > 0, Q(pg) = Q.

Since plnp is convex,

I(pg) < liminf, o I(p\4)),

SO that pg Is @ minimizer, which Is unique since
plnp is strictly convex.
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The Euler-Lagrange equation for |

Theorem. Let Q = diag (A1, A2, A3). Then

exp(p1p? + pop3 + 13p3)
Z (1, uo, 43)

pQ(p) =

Y

where

Z(p1, p2, H3) = /SQ

The p; (unique up to adding a constant to
each) solve the equations

olnZ
O

2 2 2
exp(u1pT + pops + uzp3) dp.

1
:)\Z—I-g, 1= 1,2,3
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To show that pg satisfies the corresponding
Euler-Lagrange equation, the u; appearing as
Lagrange multipliers, is a bit tricky because
of the possibility that PO IS hot bounded away
from zero. A quicker proof is to use a ‘dual’
variational principle for u = (u1, uo, u3) (cf Mead
& Papanicolaou 1984), from which the exis-
tence of a minimizer pg also follows.
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Let f(Q) = I(pg) = infpeAQ I(p), so that

vB(Q,0) = 0kpf(Q) — k|Q|>.

Hence the bulk free energy has the form

3
Yp(Q,0) = kpb (Z pi (A
i—1

1 3
=) —In Z(;Q) kY A2,
3 =1
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T heorem
f is strictly convex in ) and

lim f(Q) = oo.
Amin(Q)%—%‘F

Proof
The strict convexity of f follows from that

of plnp. Suppose that Apmin(QY)) — —1 but
£(QU)) remains bounded. Then

. . . 1 . .
QWM 421eD2 = /S P @) (peP)%dp — 0,

where el) is the eigenvector of QW) corre-
sponding to Amin(QU)). &



But we can assume that POG) — P in L'(S?),

where [¢2 p(p) dp = 1 and that ell) — ¢, le| = 1.
Passing to the Iimit we deduce that

2 _
[ 2p®)(p-€)?dp=o0.

But this means that p(p) = 0 except when
p-e =0, contradicting [¢2 p(p)dp = 1.
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Asymptotics
Theorem

C1— NOmin(@+3) < F(@) < C-INCmin(@)+5)

for constants C'1, Co.

The proof uses our initial construction of a
function p € Ap to get the upper bound, and

the dual variational principle to get the lower
bound.
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Other predictions

1. All stationary points uniaxial and phase
transition predicted from isotropic to uniaxial
nematic phase just as in the quartic model.

2. Minimizers p* of U(p) — 0n(p) correspond to

minimizers over @ of ¥g(Q@,0). As already
mentioned, these p* were calculated and shown

to be uniaxial by Fatkullin and Slastikov (2005),
and by Liu, Zhang & Zhang (2005).

3. Existence when L4 #= 0 under suitable
inequalities on the L;, because

1 96
In = QuQ;;1Qii k. > —3IVQ|?.



4. Near Q = 0 we have (see also Katriel et al)
the expansion

L 5(Q,0) = Indr + (15 & ) tr Q2

Ok 4 20kp
225 3 , 225 N
tr | tr
5 Q%+ 7o (tr@?)? +

The ratio of the coefficients of the last two
terms gives g — 2, while experimental values
reported in the literature are for MBBA 1.19,

and for 5CB 0.82.
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Given appropriate boundary conditions, do
minimizers of

10(Q) = |_[¥5(Q.0) +¥p(Q. VQ.0)] da

have eigenvalues which are bounded away from

—%, i.e. for some € > 0

_%4_5 < Amin(Q(z)) < Amax(Q(x)) < %—e for a.e. z € €27

If not, this would mean that a minimizer of I
would have an unbounded integrand. Surely
this is inconsistent with being a minimizer ....
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Similar nonlinear elasticity problem: Do mini-
mizers for suitable boundary conditions of

I(y) = /Q W (Dy) da

with W(A) — oo as det A — 0+ satisfy

detDy(z) > e >0 a.e. x € Q

for some € > Q7

This seems to be very difficult.
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One might think that for a minimizer to have
the integrand infinite somewhere is some kind
of contradiction, but in fact this is a common
phenomenon in the calculus of variations, even
IN one dimension.

Example (B & Mizel)
Minimize
1
I(u) = /_1[(.584 — u6)2u§8 + eu%] dx
subject to

w(=1) = -1, u(1) =1,

with 0 < € < g ~ -001.



Result of finite-element minimization, minimiz-
ing I(up) for a piecewise affine approximation
up, TO uw on a mesh of size h, when h is very

small. The method converges and produces

two curves u~.
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However the real minimizer is «™, which has a
singularity

2
uw*(x) ~ |z|3signx as = ~ 0.
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Theorem (JB/Majumdar) Let Q minimize

1(Q) = [ [5(Q,0) + K(©®)|VQP] da.

subject to Q(x) = Qop(xz) for x € 0L2, where
K (@) > 0 and Qq(-) is sufficiently smooth with

Amin(Qo(z)) > _%- Then

1
Amin(Q(x)) > ~3 + €,

for some £ > 0 and ) is a smooth solution of
the corresponding Euler-Lagrange equation.
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Proof: Project using the nearest point projec-
tion onto the convex set

K ={Q: f(Q) < M}

for large M. It can be shown that this reduces
both terms in the integral.

Open problem. Prove this for the case of
three or more elastic constants. The above
method does not work. In the three elastic
constant case Evans, Kneuss & Tran prove
partial regularity, but not Apin(Q(x)) > —%—I—s.
See also recent results in 2D of Bauman &
Phillips.



Developments.

1. Jamie Taylor (2015) has generalized the
construction of the singular potential to a broad
class of moment problems, with various appli-
cations.

2. For studies of dynamics using the singular
potential see

E. Feireisl, E. Rocca, G. Schimperna and A.
Zarnescu 2013, 2014, M. Wilkinson 2015
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4. The description of defects
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Summary of LC models

For simplicity we drop the explicit dependence
on the temperature 6.

Landau - de Gennes

4 0r 5
i@ = [ (8@ + Y L) da
i=1
where ¥ (Q) has one of the forms discussed,
I = Q4 Qik ks 12 = Qik iQij k>
I3 = Qi kQijk> 1a = QrQi; 1Qij k;
Is = ;kQuQ 1 ks

and the L; are constants with Lg = 0 for
nematics.
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Uniaxial ansatz Q = s(n ®n — %1) for constant

s > 0 leads to the
The work of Lamy (2014)

shows/suggests that few

Oseen-Frank energy equilibrium solutions of
LdG are uniaxial (whereas

Iop(n) = /Q W(n,Vn) dzx, most are nearly uniaxial).

where

W (n,Vn) = K1(divn)? + Ka(n - curln+qg)? + Kz|n x curln|?
+(K2 4 K4)(tr(Vn)? — (divn)?),
and the K; and gg are constants with gg = 0
for nematics.

If s = s(x) we get the Ericksen energy
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Natural function spaces.

Landau - de Gennes: Q € W12(Q,&), where
E={Q e M33:Q=0Q"!,trQ =0}

Oseen-Frank: n € W12(Q, 52). Indeed if
qo = 0 then under the Ericksen inequalities

2K1 > Ko+ Ky, Ky > |Ky4|, K3>0
we have that

C'|Vn|? < W(n,Vn) < C|Vnl|?.

Ericksen: (s,n) € WhH2(Q,R) x Wh2(Q,S2).



Defects

Roughly these can be thought of as regions of
sharp change in the director or line field.

Schlieren texture of a nematic film
with surface point defects (boojums).
Oleg Lavrentovich (Kent State)

Zhang/Kumar 2007

Carbon nano-tubes as liquid crystals
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Point defects

The Euler-Lagrange equation for : ”

Iop = /Q W(n,Vn)dz

has solutions representing point defects, e.q.

n(x) = L (radial hedgehogq)

|z
- 14 neWhP for1<p<3
Viz) = |z (I-n®mn) finite energy for

Vi(z)|? = ﬁ quadratic models

f& r2 Pdr < oo for 1 < p < 3.
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Ifgqgo=0, K1 =Ko=K3=K, K4=0 (the one
constant approximation) then n is the unique
minimizer of Iop = K [o |Vn|?dx subject to its
own boundary conditions (Brezis, Coron, Lieb
1986). In this case any minimizer is smooth
except for a finite number of point defects
(Schoen & Uhlenbeck 1982) at points x(7) such
that

x — x(7)
z — x(2)|
for some R(7) € SO(3).

n(x) ~ £R(7)

as x — x(7),
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Much less is known about point defects in the
Oseen-Frank theory for the general case of un-
equal elastic constants. For example it is not
known if a minimizer can have infinitely many
point defects.

Helein (1987) proved that n is not a minimizer
if 8(K1 — K») > K3, this condition being sharp
(Cohen & Taylor (1990)).

Why is one-constant approximation easier?
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Remark: for Oseen-Frank the Euler-Lagrange

equation is

0 oW oW
87?/@'

where the Lagrange multiplier A(x) is given by

o oW oW
AMzx) = 5 — —— | ny.

= 2K|Vn|?
for the one-constant approximation,
but INn general depends on second

derivatives of n.  Ap.p = —|Vn|2
for n € 52 14

8513j 8ni,j




Description of defects in the Landau — de
Gennes theory

Since weak solutions in Landau - de Gennes
are smooth, modulo difficulties with the eigen-
value constraints, defects are not represented
by singularities in ). Rather they can be seen
as singularities in the eigenvectors of (), which
can occur when eigenvalues coincide. (cf de
Gennes, Biscari ...)
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T he situation might be different for free-energy
densities ¥ (Q,VQ) which are convex but not
quadratic in V. For such integrands there is
a counterexample of Sverdk & Yan which has
a singular minimizer of the form

T T 1
Q(z) = |z| (E®m_§1) .
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Point defects in the Ericksen and Landau - de
Gennes theories

Since weak solutions in Landau - de Gennes
are smooth, point defects are not represented
by point singularities in ). In both the Lan-
dau - de Gennes and Ericksen theories there
are solutions to the Euler-Lagrange equations
representing melting hedgehogs, of the form

x x 1
Q) = s(lel) (0 2~ 21).

where s(0) = 0.
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FOor the quartic bulk energy ¥ and the one
constant elastic energy such a solution is shown
by Ignat, Nguyen, Slastikov & Zarnescu (2014)
to be a local minimizer for Q = R3 subject to
the condition at infinity

1
Q(x) — Smin ( iy _1) as |z| — oo,
z| |z 3
2
where smin = b+\/b20_12ac > 0, for tempera-

tures close to the nematic initiation tempera-
ture.

However for lower temperatures the melting
hedgehog is not a minimizer (Gartland & Mkad-
dem (1999)) and numerical evidence suggests
a biaxial torus structure for the defect without
melting. Majumdar, Pisante & Henao (2015)
show the existence biaxiality near defects in the
low temperature limit.
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Line defects

-~ — — 2 2
n(x) = (37;—1, 5%2, 0) r= \/azl T5
VA =3

n, Q—s(n@)n—— )EW1’p<:>1<p<2
infinite energy for Oseen-Frank and constrained
Landau-de Gennes quadratic models w



Index one half defects

Zhang/Kumar 2007
Carbon nano-tubes
as liquid crystals
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HRIN

The index one half singularities are non-orientable

Q ¢ W2 since otherwise orientable
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Can one change @ (while remaining uniaxial)
In @ core around the defect in such a way that

the energy becomes finite?

Yes for the cylindrical hedgehog by ‘escape into
the third dimension’.

J No for the index 3 defects because

then @ would be nonorientable and

in W12 contradicting the orientability
\\ result for simply-connected domains.
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Lessons from solid mechanics

For nonlinear elasticity, with free-energy func-
tional

I(y) = | W(Dy(x))da,

minimizers can have singularities, and the pre-
dictions of the model depend on the function

space.
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e.g. cavitation: given A > 0 the minimizer of h(éA)
I :f Dy|? + h(det Dy)]d
W) = [0y [IPYI" + h(det Dy)ldz 4K area Sy

among smooth y subject to y(z) = A\x for
x| = 1 is y*(z) = Az.

But among radial deformations y(z) = rﬁg‘i')m
in W12 the minimizer for large enough \ sat- ‘

isfies »(0) > 0.

(Lavrentiev phenomenon)

But is W12 the largest such function space?

No, because the body could develop frac’

surfaces across which y is discontinuous.
Francfort-Marigo theory of fracture.

y € SBV (special functions of bounded
variation), jump set S,



AsS we have seen, there can also be planar dis-
continuities in Dy representing phase boud—
aries. ?

o

NiMn, / Baele, van Tenderloo,
Ameljhckx

Macrotwins in NigsAlzs
single crystal (D. Schryvers) Sharp, and

diffuse
interfaces
And there are models similar to Landau - de

Gennes allowing both sharp and diffuse
interfaces, e.q.

I(y) = fQ [v(Dy) + 6|D2y|2] dx 4 karea Spy. Perovskite. Salje.

125
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The important conclusion to draw for liquid
crystals is that the function space is part of
the model. (Proof. Change the function space
and the predictions change.)

Indeed the Lavrentiev phenomenon (the
infimum of the total free energy is different in
different function spaces is different) occurs in
the Oseen-Frank theory. In fact we have that
for the unit ball B

. = oo if X =C1
inf f K|Vnl|?d oo |
neX,nlgp=z /B | n' a:{ <o ifX=Wwll2

(Hardt & Lin 1986 give an example with smooth
degree zero boundary data for which both
infima are finite but that in W12 is lower.) e



Director modeling of line defects with
finite energy

That these defects have infinite energy arises
from the quadratic growth in Vn of W(n, Vn),
which results in turn from the quadratic de-
pendence of ¥ (Q,VQ) on VQ.

One option is to live with this and study the
appearance of line defects with infinite energy
as the elastic coefficients in the Landau - de
Gennes theory tend to zero, as done in the
interesting recent work of Canevari (2015).
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Alternatively one can take the view that there
is no reason to suppose that W(n, Vn) is quadratic
for large |Vn| (such as near defects).

So a possible remedy would be to assume that
W(n,Vn) has subquadratic growth, i.e.

W(n,Vn) < C(|Vnl[’ + 1),

where 1 < p < 2, which would make line defects
have finite energy.
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For example, we can let

Wa(n,Vn) = pgoz ((1 + aW(n, Vn))% — 1) ,

where o« > 0 is small. Then Wu(n,Vn) —
Wi(n,Vn) as a — 0. Also, assuming the Erick-
sen inequalities, W, satisfies the growth con-
ditions

ChL(IVn|P — 1) < Wa(n, Vn) < Co|Vnl?,

for positive constants Cg, C/,. Setting

Ian(n) = /Q Wa(n,Vn)d,

we obtain that Io(n) < oo as desired. Also
Wa(n,-) is convex.
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Boundary conditions:

If Q c R3 has smooth boundary and a
sufficiently smooth unit vector field N is given
on the boundary 9€2, then it is known (Hardt
& Lin 1987) that there is a unit vector field
n € WH2(Q: 52) with n = N on 9%.

However, if, for example, 2 = (0,1)3 is a cube
and N is the inward normal to the boundary,
then (Bedford) there is no such n. Thus the
Oseen-Frank theory does not apply to homeotropic
boundary conditions on a cube, although a
theory with subquadratic growth would be OK.
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But the index % singularities cannot be

modelled this way because they are not
orientable.

As we have seen the same ‘_//

issue arises for smooth
line fields in non

simply-connected regions.

Y

This can be handled by
allowing n to jump to
—mn ACross suitable
surfaces.




Theorem (Bedford). Let Q = s (n Qn — %1) c

W2(Q; M3%3), where s # 0 is constant. Then
there exists a unit vector field m € SBV such
that m®@ m = n®n, and m4 = —m-_ across
any jump.

T his applies to the second situation above but
not to index % defects, for which an extension
to WlP 1 < p< 2, would be required.
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Ericksen theory. Here we can model point and
line defects by finite energy configurations in
which n is discontinuous and s = 0 at the de-
fect (melting core). In this case there is no
need to change the growth rate at infinity.

For example, if we consider the special case
when

IL4(@) = [ ¥s(Q) + KIVQP?] da.

then the uniaxial ansatz

Q@) = s(=) (n() @n(=) - 51)

gives the functional

Ip(s,n) = [ [wp(s) + K(|Vs[? + 22| Vnf?)] da,

—_ 2 3 133
where ¥, (s) = (25, 25).



Then n can have a singularity at a point or
curve which has finite energy because s can
tend to zero sufficiently fast as the point or
curve is approached to make Ig(s,n) finite.
However for non simply-connected domains or
index % defects there is the same orientability
problem as in the Oseen-Frank theory, which
can be ‘cured’ by allowing jumps from n to —n

across surfaces.
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Theorem [Bedford]Let Q € W12(Q: M3%3) pe
uniaxial with s € C(Q2). Then s € W12(Q) and
there exists a vector field

m € SBVioc(2\ {s = 0}; %)

such thatm®@m=n®n .

There is also the possibility of ‘genuine’ planar
defects in this theory (see later).
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Planar defects (JB/Bedford)

Let's explore whether it might be reasonable
to consider a free-energy functional for ne-
matic and cholesteric liquid crystals of free-
discontinuity type

I(n) = /Q W(n,Vn)dz fgnf(n+,n_, V) dH?,

for n € SBV(£,S?), where v is the normal to
the jump set S,,. Here W(n,Vn) is assumed to
have the Oseen-Frank form or be modified so
as to have subquadratic growth as suggested
previously.
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Admissible interfacial energies

Suppose that f: 52 x S2 x §2 — [0,00) is
continuous and frame-indifferent, i.e.

f(Rny,Rn_,Rv) = f(ng,n—,v) (1)

for all R € SO(3),ny,n_,v € S?, and that f
IS invariant to reversing the signs of ny,n_,
reflecting the statistical head-to-tail symmetry
of nematic and cholesteric molecules, so that

f(—n_|_,n_,l/) — f(n—l—a —n—, V) — f(n—l—an—a V)'
(2)



Theorem. A necessary and sufficient condi-
tion that a continuous f : S?x 82 x 52 — [0, 00)
satisfies (1) and (2) is that

f(n—l—an—7’/> —
g((ng-n)% (ng - )%, (n— - v)%, (g -n)(ng - v)(n_-v))

for a continuous function g : D — [0,00), where

D = {(&, 8,7,0) : @, 8,7 € [0,1],8% = afBy, a+L+7—25 < 1}.

An equivalent representation is in terms of the
matrices My =ny @ny, M- =n_Q®n_, N =
v ® v, namely

f(ng,n_,v) = g(My-M_, My -N,M_-N,tr (M M_N)).

In fact the theorem, though without the char-
acterization of the domain of g, follows from a
representation theorem (Smith 1971) for isotropic
functions of symmetric matrices.
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Possible candidates for planar defects.

1. Nematic elastomers

The energy functional for nematic elastomers
proposed by Bladon, Terentjev, Warner (1993)
is given by

1(y,n) = [ (Dy(Dy)" - L3} - 3) da,

Q2
Stripe domains in nematic elastomer
where Kundler & Finkelmann
2 1 Mathematical theory due to De Simone &
Lon=a3n®@®n+a 6(1 —n®n) Dolzmann

and p > 0,a > 0 are material parameters.

T he material is assumed incompressible, so that
y IS subjected to the constraint det Dy = 1.
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By minimizing the integrand over n € S2 we
obtain the purely elastic energy

I(y) = | W(Dy)de, (1)
where

W(A) =

N =

(a7 303(A) + a3 (:3(4) + v3(A)))

and v1(A) > v»(A) > v3(A) > 0 denote the
singular values of A, that is the eigenvalues of

VAT A,
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As discussed by De Simone & Dolzmann (2002)
the free-energy function (1) is not quasicon-
vex, and admits minimizers in which Vy jumps
across planar interfaces, so that the minimizing
n Of the integrand also jumps. Of course the
functional ignores Frank elasticity, i.e. terms in
Vn, but the experimental observations might
suggest that even with such terms allowing
jumps in n may be a useful approximation.
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Order reconstruction
Qs = (0,11) x (0,1) x (0,5)
n = teq 513‘3:5

Barbero & Barberi (1983) 1
Palffy-Muhoray, Gartland
& Kelly (1994) /S n=zteg —

Lamy (2015) r3 =0

(a) Analysis using Landau - de Gennes

Boundary conditions:
Q(z1,22,0) = Q®, Q(21,2,6) = QW),
for a.e. (x1,x22) € (0,17) x (0,1»), where

QO =5 (61 ey — %1) QW =) (63 ez — %1) )
and @ periodic in x1,x>.
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Assume that L, = 0 with the Longa inequali-
ties

3 1
L3 >0, —L3 < Lo <2L3, —gL3 — 1—0L2 < L+,

which imply that
Y(VQ) > a|VQ|?

for some a > 0.

Rescale, defining

P($19$27$3) — Q($1,$2,5£€3),
so that I;43(Q) = 6 1E°(P), where

E(P) = [ 16265(P) + ¥p(3P1,6P2, P3)l da
and D = (0,11) x (0,15) x (0,1). e



Theorem. Let P° be a minimizer of E°. Then
as o —0

P° — P, P — P3, 6P§ — 0, 6P% — 0 in L?(D; S),

where

P(z) = (1 — 23)Q'9 + 23QY,
and S ={Q € M3*3:Q =QT,trQ = 0}.

So for sufficiently small §, ) is given approxi-
mately by

Q(z) = (1 — 6 123)Q0) 4 5 1z3QL),

for which the director (the eigenvector of @
corresponding to the largest eigenvalue)

Y

e1 IfO<:B3<

€3

s —1—32

n(x) = {
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has a discontinuity on the plane r3 = 811825.
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A. Pizzirusso, R. Berardi, L. Muccioli, M. Riccia, and C. Zannoni. Predicting
surface anchoring: molecular organization across a thin film of 5CB

liquid crystal on silicon. Chem. Sci., 3:573-579, 2012.
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(b) Analysis using director model

Consider for simplicity the functional
I(n) :/Q K’|Vn|2d:c—|—k’/8 (1—(nyn_)?)2) dH>,
) n

where k' > 0and 0 < r < 1, with boundary con-
ditions n(x1,x2,0) = +eq, n(x1,z2,6) = *e3
and [{ =l = 1.

Formally this can be obtained from the Landau
- de Gennes functional

1@ = [ KIVQPdz+k [ Q4 —Q-["dn?
Qs So
by making the uniaxial ansatz

Q) = s (n(@) @ n(2) — 1),

where |n(z)| = 1 and s € (0,1) is constant,
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with K/ = 2Ks?, k' = 225"k.



Some care is needed when interpreting the bound-
ary conditions and periodicity, since it Is possi-
ble that @ might jump at the boundary 025 of
(25. This is handled by minimizing I(Q)) among

Q € SBVig(R? x (—1,8 4+ 1); M3%3) satisfying

1
Q(x1,x2,23) = S (el X e1 — 51) for —1 < x3 <0,

1
Q(x1,z0,23) = s (63 ® e3 — 51) for 6 < x3z < d+1,

and Q(z1 + l1,x2,23) = Q(z1,72 + l2,23) =
Q(Il,ajz,a}g) for all (I1,$2,$3) - RQ X (—1,5+
1). With this interpretation SQ can be partly
on 895.
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Candidates for minimizers of I are the two
smooth () given by

1 L3 + gjn 743
Qi( ) . 3—|—cos 5 O2 +Sin = \
xr) = — O —35 0 ,
2\ +sinms O3 1 — cos ™3
\ Esin7g 3 5> )

which are the minimizers of [ |VQ|?dz among
uniaxial Q € W12(Q;; M3%3) satisfying the bound-
ary conditions, and which correspond to the
two Oseen-Frank solutions in which the line
field rotates anticlockwise (resp. clockwise) in
the (x1,x3) plane from horizontal to vertical.
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Theorem. For any 0 > 0 there exists at least
one minimizer Q € SBV (25 : M3*3) of I sub-
Jject to the boundary conditions.

Conjecture. There is a small 6o > O such that
if 6 > 89 then QT are the only minimizers, while
if 0 < 6 < dg then any minimizer QQ has a single
Jump with jump set Sg = {z : 3 = ~v(9)},
where 0 < v(9) < 4.
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That QT are not minimisers for & sufficiently
small is easily seen. In fact, |[VQ*| = & for

2
some C > 0, so that I(Q*) = Ks2%~. But if

N (s el®el—ll if0<w3<%
Q(z) = 1 5
S e3®e3——1 if 5 <z3<9

then 1(Q) = ks"22, so that I(Q) < I(QF) if
ST_Q% < 27302
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Related problems for cholesterics

Bedford (2014, 2015) considers related prob-
lems for cholesterics, for example to minimize

I(n) = /Q[\anz + 2tn -V An 4+ t2|n|?] dz
for Q = (0,17) x(0,1l5) x(0,6), where t > 0 and

n(xq1,22,0) = eq1, n(xq1,29,0) = e3, n periodic in xq1, x>.

He proves that there is an explicit unique global
minimizer n* = n*(x3) among n depending only
on x3, and there exists 7 > 0 such that n* is
the unique global minimizer in W12 among all

admissible n for t € [0, 7].



Similarly, for the boundary conditions

n(x1,x2,0) = e3,n(xq1,x2,0) = e3,n periodic in xq1, x>,

Bedford proves that n = e3 is for some 7 > 0
the unique minimizer in W12 for t € [0,7], a
strong local minimizer if t € [0,7) and not a
weak local minimizer if t > .

Cholesteric fingering (courtesy f%{ W 0?7_ T
Hewlett-Packard) formed £1}|
between two plates with @

) —~

homeotropic boundary

conditions. In the lower half 74 ISR TN f 4 ‘:&_
of the figure the bottom e
surface is a grating, and the
effective boundary condition is
planar.




In an attempt to understand the mechanism
for the origin of such patterns via energy min-
imization, Bedford motivated the study of the
variational problem of minimizing

I(n) = /Q[\vn\2+2m-w\n+t2|n\2] dz+KH2(Sy)

over n € SBV(2; {0} U S?) satisfying
n(z1,r2,0) = e1,n(x1,72,d) = ez and
n periodic in x1,xo.

He proves that there exist 7 > 0 and K such
that the unique minimizer for t € [0,7] and K >
K is n* = n*(x3), but that if t is sufficiently
large then the minimizer cannot be a function
of 3 alone. The latter statement involves a
construction using a packing of double-twist
cylinders involving jumps in n.



3. Smectic thin films

AFM image
8CB smectic thin films Michel Lacaze
Zappone, Lacaze et al, 2010 '

et al, 2004
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Models of smectics

de Gennes approach: model using a complex
order parameter W(z) = ~(z)e®)  in terms of
which the molecular density r(x) is given by

r(z) = ro+o(z) = ro+ReW(z) = ro+v(x) cos ¢(x),

where rg > 0 is a constant average density.
Thus o(x) describes the fluctuations in the
density due to the smectic layers, and V¢ gives
the normals to the layers.

(We could define r(x) as the number of molecules
in B(x,d) divided by the volume of B(x,d), tak-
ing some care over molecules that overlap the
boundary.)
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Various free-energy densities for smectics have
been proposed (Chen & Lubensky, Kleman &
Parodi, Leslie, Stewart & Nakagawa, Mcmil-
lan, Zhang ...). We will restrict attention to
smectic A liquid crystals, for which it is often
assumed that r(x) is constant, with the free-
energy density being expressed in terms of n
and ¢. For example, the free-energy functional
proposed by Kleman & Parodi is given by

[(,0) = [ (W, Vn) + 5B(n = V) (n— V6)) de.

where B = BJ_l —+ (BH — BJ_)TL ® n and BJ_,B”
are positive material constants.
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E (1994) argued that a good approximation is
given by

| (1 (diva)? + By(|V9| - 1)2) da,
together with the constraint
Vo
n—=-—
Vol

that rigidly enforces that the director points
parallel to the normal.

Existence of a minimizer for the Kleman & Par-
odi model is easy, but for the reduced one un-
Clear.
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Modified Pevnyi, Selinger & Sluckin model (2014)

2

2
1Q0) = [ (wE(Q, VQ)+B|D%r + - (3Q +s1)o

" dH2

+k . ‘Q-|- — Q-
Q
Q(x) = s (n(ac) R n(x) — %1)

Then under suitable hypotheses on ¥ and f
one can prove the existence of a minimizing

pair Q,o in

A:={Q €SBV (Q,R¥3) 0 € W2 (Q,R) :

Q=8(n®’n—%1)a In| =1, QlaQ=@}
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159



X-Axis

Computation (A. Léon Baldelli 2015) of
minimizer for functional

2|V — )2+ 2 Vs]?) + a4 2 — 1)2
/Q(s VAl +9((1 = )7 +e7Vs]9) + 5AVe =7 4772(|n| 1))dx,
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