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Topics

1. Liquid crystals, phase transitions and order parameters.
2. The Landau – de Gennes, Oseen – Frank and Ericksen

theories.
3. Onsager theory.
4. The description of defects.
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Some themes

• Function spaces as a part of models in physics
• Relation between different levels of 

description (e.g. molecular vs continuum, 
order parameters of different dimensions)

• Lessons from solid mechanics
• Constraints (equality and inequality) on 

unknowns in variational problems
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Modelling

Analysis and predictions
of model 

Comparison with experiment
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1. Liquid crystals, phase transitions and order parameters
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What are liquid crystals?

A multi-billion dollar industry.

An intermediate state of matter between liquids and solids. 

Liquid crystals flow like liquids, but the constituent 
molecules retain orientational order.

HP bistable display
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Molecular structure

Liquid crystals are of many different types, the main 
classes being nematics, cholesterics and smectics

Nematics consist of rod-like molecules.

Length 2-3 nm

Prof. Dr. Wolfgang Muschik
TU Berlin
http://wwwitp.physik.tu-berlin.de/muschik/

Commercial liquid crystal displays use a mixture of several different fluids.
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Depending on the nature of the molecules, the 
interactions between them and the temperature 
the molecules can arrange themselves in 
different phases.

Isotropic fluid – no orientational
or positional order

8



Nematic phase
orientational but
no positional
order

Smectic A
phase

Smectic C
phase

Orientational and some positional order

The molecules have time-varying orientations

due to thermal motion. 9



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/lclinks.html
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Cholesterics

DoITPoMS, Cambridge

If a chiral dopant is added the

molecules can form a cholesteric

phase in which the mean

orientation of the molecules

rotates in a helical fashion.
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Isotropic to nematic phase 
transition

The nematic phase typically forms on cooling

through a critical temperature µc by a phase

transformation from a high temperature isotropic

phase.

µm µc

µ > µc

isotropic

µm < µ < µc

nematic

µ < µm

other LC or

solid phase

MBBA17⁰C 45⁰C
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DoITPoMS, 
Cambridge

MBBA

13



The director
A ¯rst mathematical description of the nematic

phase is to represent the mean orientation of

the molecules by a unit vector n= n(x; t).

n

But note that for most liquid

crystals n is equivalent to ¡n,
so that a better description is

via a line ¯eld in which we

identify the mean orientation

by the line through the origin

parallel to it.
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The twisted nematic display
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Modelling via molecular dynamics
Monte-Carlo simulation using Gay-Berne

potential to model the interaction between

molecules, which are represented by ellipsoids.

http://mw.concord.org

This interaction potential is

an anisotropic version of the

Lennard-Jones potential

between pairs of atoms

or molecules.
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UGB = 4"0"(r̂ij; ûi; ûj)[u(̂rij; ûi; ûj)
12¡u(̂rij; ûi; ûj)6];

where

u(r̂ij; ûi; ûj) =
¾c

rij ¡ ¾(̂rij; ûi; ûj) + ¾c
;

rij = ĵrijj, and where the functions ¾(r̂ij; ûi; ûj)
and "(̂rij; ûi; ûj) measure the contact distance

between the ellipsoids and the attractive well

depth respectively (depending in particular on

the ellipsoid geometry) and "0; ¾c are empirical

parameters.
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Twisted nematic display simulation

M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni, 2009 
(courtesy Claudio Zannoni)

944,784 molecules, including 157,464 fixed in layers near the 
boundaries to prescribe the orientation there.
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Continuum models 

­

To keep things simple consider

only static con¯gurations,

for which the °uid velocity is zero.
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Microscopic state variables
We represent a typical liquid crystal molecule

by a 3D region M (rod, ellipsoid, parallepiped

...) of approximately the same shape and

symmetry. We place M in a standard position

with centroid at the origin, e.g.

and de¯ne the isotropy

groups

GM = fR 2 O(3) : RM =Mg
G+M = fR 2 SO(3) : RM =Mg
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If GM = G+M then the molecule is said to be

chiral (as in cholesterics).

RM = ~RM for R; ~R 2 SO(3) i® ~RTR 2 G+M .

Hence the orientation of a molecule can be rep-

resented by an element of the space of cosets

SO(3)=G+M (cf Mermin 1979).

For M a cylindrical rod

or ellipsoid of revolution

we can identify SO(3)=G+M with RP2, that is
with lines through the origin parallel to the long

axis, or equivalently with matrices p­p; p 2 S2.

p¡p
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x

Ω

Molecular orientations of nematics

Fix x 2 ­ and a
small ± > 0.

Might also want to average

over a small time interval.

x

B(x; ±)
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Example:

¹ = 1
2(±e + ±¡e) represents a state of perfect

alignment parallel to the unit vector e.



A natural idea would be to use as an order

parameter the probability measure ¹= ¹x.

However this represents an in¯nite-dimensional

state variable at each point x, and if we use as

an approximation an order parameter consist-

ing of a ¯nite number of moments of ¹ then

we have instead a ¯nite-dimensional state

variable.
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Because ¹(E) = ¹(¡E) the ¯rst momentZ
S2

p d¹(p) = 0:
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Since Q is symmetric and trQ= 0,

Q= ¸1n1 ­ n1+ ¸2n2 ­ n2+ ¸3n3 ­ n3;

where fnig is an orthonormal basis of eigen-
vectors of Q with corresponding eigenvalues

¸i = ¸i(Q) satisfying ¸1+ ¸2+ ¸3 = 0:

Since Q ¸ ¡131, each ¸i ¸ ¡13 and hence
¡13 · ¸i · 23:
Conversely, if each ¸i ¸ ¡13 then M is the

second moment tensor for some ¹, e.g. for

¹ =
3X

i=1

(¸i+
1

3
)
1

2
(±ni+ ±¡ni): 29



If ¸max(Q) =
2
3 then for the corresponding

eigenvector emax we have

Memax ¢ emax =
Z
S2
(p ¢ emax)2dp= 1;

and henceZ
S2
jp­ p¡ emax ­ emaxj2d¹= 0;

and so ¹= 1
2(±emax+ ±¡emax).
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If ¸min(Q) = ¡13 then for the corresponding
eigenvector emin we have Qemin ¢ emin = ¡13,
and hence Z

S2
(p ¢ emin)2d¹(p) = 0;

and so ¹ is supported on the great circle of S2

perpendicular to emin.
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In fact it is extremely di±cult to ¯nd Q that

are not very close to uniaxial with a constant

value of s (typically 0.6-0.7). We will see why

this is to be expected later.
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Note that

Qn ¢ n =
2s

3

= h(p ¢ n)2 ¡ 1
3
i

= hcos2 µ ¡ 1
3
i;

where µ is the angle between p and n. Hence

s=
3

2
hcos2 µ ¡ 1

3
i:
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If Q= s(n­ n¡ 131) is uniaxial then

jQj2 = 2s
2

3
; detQ=

2s3

27
:

If Q is uniaxial and s > 0 then ¸max(Q) =
2
3s

and n= nmax(Q), the corresponding eigenvec-

tor of Q. For general biaxial Q the director is

often identi¯ed with nmax(Q).
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Proof. The characteristic equation of Q is

det(Q¡ ¸1) = detQ¡ ¸tr cof Q+0¸2 ¡ ¸3:

But 2tr cof Q = 2(¸2¸3+¸3¸1+¸1¸2) = (¸1+

¸2+ ¸3)
2¡ (¸21+ ¸22+ ¸23) = ¡jQj2. Hence the

characteristic equation is

¸3 ¡ 1
2
jQj2¸¡ detQ = 0;

and the condition that ¸3¡ p¸+ q = 0 has two

equal roots is that p ¸ 0 and 4p3 = 27q2.

Proposition.

Given Q= QT ; trQ= 0, Q is uniaxial i®

jQj6 = 54(detQ)2:
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the probability density function ½ (1-dimensional,
Onsager-type theories)

Q (5-dimensional, Landau - de Gennes theory)

(s; n) (3-dimensional, Ericksen theory)

n (2-dimensional, Oseen-Frank theory)
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2. The Landau – de Gennes, Oseen – Frank and Ericksen theories



Landau – de Gennes theory

38

For simplicity we work at a constant temper-

ature µ. Let ­ be a bounded domain in R3.
At each point x 2 ­, we have a corresponding
order parameter tensor Q(x). We suppose that

the material is described by a free-energy den-

sity Ã(Q;rQ; µ), so that the total free energy

is given by

Iµ(Q) =
Z
­
Ã(Q(x);rQ(x); µ) dx:

We write Ã = Ã(Q;D; µ), where D is a third

order tensor.



Frame-indifference
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Thus, for every R 2 SO(3),

Ã(Q¤;D¤; µ) = Ã(Q;D; µ);

where Q¤ = RQRT , D¤ijk = RilRjmRkpDlmp.

Such Ã are called hemitropic. 41



Material symmetry
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Since any R 2 O(3) can be written as R̂~R,

where ~R 2 SO(3) and R̂ is a re°ection, for a

nematic

Ã(Q¤; D¤; µ) = Ã(Q;D; µ)

where Q¤ = RQRT ; D¤ijk = RilRjmRkpDlmp and

R 2 O(3). Such Ã are called isotropic.
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Bulk and elastic energies

44



The domain of 





Following de Gennes, Schophol & Sluckin PRL

59(1987), Mottram & Newton, Introduction

to Q-tensor theory arXiv:1409.3542, we con-

sider the special quartic bulk energy

ÃB(Q; µ) = a(µ)trQ2 ¡ 2b
3
trQ3+

c

2
trQ4;

where b > 0; c > 0; a= ®(µ ¡ µ¤); ® > 0:

47

Q-tensor description of the isotropic
to nematic phase transformation



Then

ÃB = a
3X

i=1

¸2i ¡
2b

3

3X
i=1

¸3i +
c

2

3X
i=1

¸4i :

ÃB attains a minimum subject to
P3

i=1 ¸i = 0.

A calculation shows that the critical points

have two ¸i equal, so that ¸1 = ¸2 = ¸; ¸3 =

¡2¸ say, and that
¸(a+ b¸+3c¸2) = 0:

Hence ¸ = 0 or ¸ = ¸§, and

¸§ =
¡b§

q
b2 ¡ 12ac
6c

: 48



For such a critical point we have that

ÃB = 4a¸
2+4b¸3+9c¸4;

which is negative when

4a+4b¸+9c¸2 = a+ b¸ < 0:

A short calculation then shows that a+b¸¡ < 0

if and only if a < 2b2

27c.
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Hence we ¯nd that there is a phase trans-

formation from an isotropic °uid to a uniax-

ial nematic phase at the critical temperature

µNI = µ¤ + 2b2

27®c. If µ > µNI then the unique

minimizer of ÃB is Q= 0.

If µ < µNI then the minimizers are

Q = smin(n­ n¡ 1
3
1) for n 2 S2;

where smin =
b+
p
b2¡12ac
2c > 0.
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Form of the elastic energy.



For the elastic energy we take

ÃE(Q;rQ; µ) =
4 or 5X
i=1

LiIi;

where the Li = Li(µ) are material

constants, with L5 = 0 for nematics.

An example of a hemitropic, but not isotropic,

function is

I5 = "ijkQilQjl;k:
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The constrained theory
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Oseen-Frank energy
Formally calculating ÃE in terms of n;rn we

obtain the Oseen-Frank energy functional

55



Boundary conditions

(a) Constrained LdG/Oseen-Frank theory.

(i) Strong anchoring

n(x) = §¹n(x); x 2 @­:

Special cases:

1. (Homeotropic) ¹n(x) = º(x),

º(x) = unit outward normal

2. (Planar) ¹n(x) ¢ º(x) = 0.
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Special cases:

1. ®(x) = 1 homeotropic .

2. ®(x) = 0 planar degenerate (or tangent),

director parallel to boundary but preferred

direction not prescribed.

(ii) Conical anchoring:

jn(x) ¢ º(x)j= ®(x) 2 [0;1]; x 2 @­;

where º(x) is the unit outward normal.

(iii) No anchoring: no condition on n on @­.

This is natural mathematically but seems dif-

¯cult to realize in practice.
57



(iv) Weak anchoring. No boundary condition

is explicitly imposed, but a surface energy term

is added, of the formZ
@­

w(x; n) dS

where w(x; n) = w(x;¡n).
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(b) Landau - de Gennes

(i) Strong anchoring:

Q(x) = ¹Q(x); x 2 @­:

(ii) Weak anchoring: add surface energy termZ
@­

w(x;Q) dS:
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61

But is the derivation of the Oseen-Frank the-

ory from Landau - de Gennes correct? The

constrained Landau - de Gennes theory is in-

variant to changing n to ¡n, but is Oseen-
Frank?

The issue here is whether a line ¯eld can be

oriented, i.e. turned into a vector ¯eld by as-

signing an orientation at each point. If we

don't care about the regularity of the vector

¯eld this can always be done by choosing an

arbitrary orientation at each point.
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Relating the Q and n descriptions
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A smooth nonorientable line field 
in a non simply connected region.
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Thus in a simply-connected region the uniaxial de 
Gennes and Oseen-Frank theories are equivalent.
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Ingredients of proof

69



Tangent boundary conditions 
on outer boundary. No (free) 
boundary conditions on inner 
circles.

70

Non-equivalence of Oseen-Frank and constrained LdG in 
non simply-connected 2D domain (JB/Zarnescu 2011)
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For M large enough the 
minimum energy 
configuration is 
unoriented, even though 
there is a minimizer 
among oriented maps.
(In fact this is true 
whatever M is.)

If the boundary 
conditions correspond to 
the Q-field shown, then 
there is no orientable Q 
that satisfies them.
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Existence in Landau – de Gennes theory
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Proof

By the direct method of the calculus of vari-

ations. Let Q(j) be a minimizing sequence in

A. the inequalities on the Li imply that

3X
i=1

LiIi(rQ) ¸ ¹jrQj2

for all Q (in particular
P3

i=1 Ii(rQ) is convex in

rQ). By the Poincar¶e inequality we have that

Q(j) is bounded in W1;2

so that for a subsequence (not relabelled)

Q(j) * Q¤ in W1;2

for some Q¤ 2 A.
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We may also assume, by the compactness of

the embedding of W1;2 in L2, that Q(j) ! Q

a.e. in ­. But

I(Q¤) · lim inf
j!1 I(Q(j))

by Fatou's lemma and the convexity in rQ.

Hence Q¤ is a minimizer.

In the quartic case we can use elliptic regularity

(Davis & Gartland) to show that any minimizer

Q¤ is smooth.
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Proposition (JB/Majumdar) For any bound-

ary conditions, if L4 6= 0 then

Iµ(Q) =
Z
­
[ÃB(Q; µ) +

4X
i=1

LiIi] dx

is unbounded below.

But what if L4 6= 0?
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Analogy with nonlinear elasticity



To help ensure this we assumed that

W (A)!1 as detA! 0+



Correspondingly, it is natural to suppose that

ÃB(Q; µ)!1 as ¸min(Q)!¡1
3
+ :

Such a suggestion was made by Ericksen in the

context of his model of nematic liquid crystals.

We show how such an ÃB can be constructed

on the basis of a microscopic model, the

interpretation being that perfectly aligned states

have entropy ¡1.
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3. Onsager theory (JB/Majumdar).



In the Onsager model the probability measure

¹ is assumed to be continuous with density ½=

½(p), and the bulk free-energy at temperature

µ > 0 has the form

Iµ(½) = U(½)¡ µ´(½);

where the entropy is given by

´(½) = ¡kB
Z
S2

½(p) ln ½(p) dp;

where kB is Boltzmann's constant.
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We suppose that U is given by

U(½) =
Z
S2

Z
S2

K(p; q)½(p)½(q) dp dq:

We assume that K is frame-indi®erent, so that

K(Rp;Rq) = K(p; q) for all R 2 SO(3);

which holds i®

K(p; q) = k(p ¢ q)
for some k : [¡1;1]! R:
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We will assume that · is independent of µ. If

· depends on µ (due to steric e®ects) then the

analysis is similar.
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Denoting by

Q(½) =
Z
S2
(p­ p¡ 1

3
1)½(p) dp

the corresponding Q-tensor, we have that

jQ(½)j2 =
Z
S2

Z
S2
(p­ p¡ 1

3
1) ¢ (q ­ q ¡ 1

3
1)½(p)½(q)dp dq

=

Z
S2

Z
S2
[(p ¢ q)2 ¡ 1

3
]½(p)½(q) dp dq:
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Thus we just need to understand how

to minimize

I(½) =
Z
S2

½(p) ln ½(p) dp

subject to Q(½) = Q.
86

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.

R. and Sluckin, T. J.(1986))
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The Euler-Lagrange equation for I

Theorem. Let Q = diag (¸1; ¸2; ¸3). Then

½Q(p) =
exp(¹1p

2
1+ ¹2p

2
2+ ¹3p

2
3)

Z(¹1; ¹2; ¹3)
;

where

Z(¹1; ¹2; ¹3) =
Z
S2
exp(¹1p

2
1+ ¹2p

2
2+ ¹3p

2
3) dp:

The ¹i (unique up to adding a constant to

each) solve the equations

@ lnZ

@¹i
= ¸i+

1

3
; i = 1;2;3:
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Asymptotics
Theorem

C1¡
1

2
ln(¸min(Q)+

1

3
) · f(Q) · C2¡ln(¸min(Q)+

1

3
)

for constants C1; C2.

The proof uses our initial construction of a

function ½ 2 AQ to get the upper bound, and

the dual variational principle to get the lower

bound.
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Other predictions
1. All stationary points uniaxial and phase

transition predicted from isotropic to uniaxial

nematic phase just as in the quartic model.

3. Existence when L4 6= 0 under suitable
inequalities on the Li, because

I4 = QlkQij;lQij;k ¸ ¡13jrQj2. 96



The ratio of the coe±cients of the last two

terms gives b
c = 2, while experimental values

reported in the literature are for MBBA 1.19,

and for 5CB 0.82.
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If not, this would mean that a minimizer of I

would have an unbounded integrand. Surely

this is inconsistent with being a minimizer ....
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This seems to be very di±cult.
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One might think that for a minimizer to have

the integrand in¯nite somewhere is some kind

of contradiction, but in fact this is a common

phenomenon in the calculus of variations, even

in one dimension.
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Developments.
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4. The description of defects



Summary of LC models
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Defects

Schlieren texture of a nematic film 
with surface point defects (boojums). 
Oleg Lavrentovich (Kent State)

Zhang/Kumar 2007
Carbon nano-tubes as liquid crystals
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Point defects
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Description of defects in the Landau – de 
Gennes theory
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Line defects
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Index one half defects

Zhang/Kumar 2007
Carbon nano-tubes
as liquid crystals
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The index one half singularities are non-orientable
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Lessons from solid mechanics
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But is W1;2 the largest such function space?
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NiMn,   Baele, van Tenderloo, 
Amelinckx
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Director modeling of line defects with 
finite energy
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Planar defects (JB/Bedford)
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Admissible interfacial energies
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Suppose that f : S2 £ S2 £ S2! [0;1) is
continuous and frame-indi®erent, i.e.

f(Rn+; Rn¡; Rº) = f(n+; n¡; º) (1)

for all R 2 SO(3); n+; n¡; º 2 S2, and that f

is invariant to reversing the signs of n+; n¡,
re°ecting the statistical head-to-tail symmetry

of nematic and cholesteric molecules, so that

f(¡n+; n¡; º) = f(n+;¡n¡; º) = f(n+; n¡; º):
(2)
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Theorem. A necessary and su±cient condi-

tion that a continuous f : S2£S2£S2 ! [0;1)
satis¯es (1) and (2) is that

f(n+; n¡; º) =
g((n+ ¢ n¡)2; (n+ ¢ º)2; (n¡ ¢ º)2; (n+ ¢ n¡)(n+ ¢ º)(n¡ ¢ º))

for a continuous function g : D! [0;1), where
D = f(®; ¯; °; ±) : ®; ¯; ° 2 [0;1]; ±2 = ®¯°; ®+¯+°¡2± · 1g:
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A. Pizzirusso, R. Berardi, L. Muccioli, M. Riccia, and C. Zannoni. Predicting
surface anchoring: molecular organization across a thin film of 5CB
liquid crystal on silicon. Chem. Sci., 3:573–579, 2012.
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Related problems for cholesterics
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