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Plan of course

Lectures 1-3

Defects in solid crystals, arising from solid
phase transformations.

Lectures 4-6
Defects in liquid crystals



Plan for lectures 1-3

1. Modelling of solid phase transformations via

3.

non
Mat

Inear elasticity.

nematical tools for describing microstructure.

Classical austenite-martensite interfaces.

Macrotwins,
Nonclassical austenite-martensite interfaces

Incorporating interfacial energy.



Macrotwins in NigzAl;s Involving two
tetragonal variants (Boullay/Schryvers)




Martensitic microstructures in CuAINi (Chu/James)




CuZnAl microstructure: Michel Morin (INSA de Lyon)



Themes of lectures

1. Role of compatibility of gradients in
microstructure morphology.

2. Why do we see these particular
microstructures rather than different

ones?



Critigue

We use a static theory, whereas this Is
clearly a pattern formation problem, which
should be treated using an appropriate
dynamical model.

Such a model should tell us which
morphological features are predictable
(e.g. via invariant manifolds, attractors .
IN a given experiment, and predlct them.



(a) what are appropriate dynamical equations?

(b) analysis currently intractable for any such
model.

Static theories are not truly predictive:
(1) Large redundancy in energy minimizers.

(1) The microstructure geometry is typically
assumed a priori, and shown to be
consistent with the theory (although
Interesting details may be predicted).



Reference configuration Deformed configuration

2 C R"™ bounded domain
Lipschitz boundary 052

y: Q2 — R™
Typically, m = n = 2 or 3.



Dy(z) = (9y;/0x;) € M™*"
M™*" = {real m x n matrices}

Compatibility question

Given F : Q — M™Mxn
when is F' = Dy for some y?



A necessary condition that F € LP(2; M™X™)
satisfies FF = Dy for some y € W1P(Q; R™)
IS that

OF;; OFy

O
a$k 8mj

iIn the sense of distributions, i.e.

/ Fij o sz% de =0
Q2 8xk 8xj

for all ¢ € C5°(£2).

T he condition is sufficient if €2 is simply
connected.



Hadamard jump condition

N

Dyfa)=A

y piecewise C

Dy (o) =8

A—B=c® N



Martensitic Transformations

hese involve a change of shape of the
crystal lattice at a critical temperature.

e.g. cubic to tetragonal

0> 0, |
cubic
austenite 0 <0,
three tetragonal variants

of martensite




Energy minimization problem
for single crystal

Minimize I,(y) = /Q b(Dy(z), 0) dx

subject to suitable boundary conditions, for
example

Yoo, = U

0 = temperature,
v = Y(A,0) = free-energy density of crystal,

defined for A € M_?’Fxg’, where

MZ*3 = {A € M>*3:det A > 0}.



Frame-indifference requires

Y(RA,0) = ¢Y(A,0) for all R e SO(3).

If the material has cubic symmetry then also

W(AQ,0) = (A, 0) for all Q € P°4

where P24 is the group of rotations of a cube.



Energy-well structure

K(0)—={Aec ﬁff_ﬂ that minimize (A, 0)}

austenite
Assume /

a(0)SO(3) 0 > 6
K(9) =< SOB)UUNY;SOB)U;(0:) 0 =6,
Uiz1 SO(3)U;(0) 0 < O,

a(f.) =1 \
martensite

Assuming the austenite has cubic symmetry,
and given the transformation strain U4 say, the
N variants U; are the distinct matrices QU1 Q'
where Q € P24,



Cubic to tetragonal (e.g. NigAl3e)

"

U, = diag (n2,m1,71)
Uy = diag (n1,12,11)
Us = diag (n1,01,72)




Exchange of
stability

Can assume min 4 ¢(A, ) = 0 for all 4.

1 U6 Ua(8)  Us(d,)

i< 8.



Why use nonlinear elasticity?

1. Conceptually simpler

2. Large rotations occur in martensitic
transformations. If these are linearized
then phantom stresses are predicted.

The use of nonlinear elasticity to describe martensitic
transformations and their microstructure is due to B/James
(1987), following work of many authors applying nonlinear
elasticity to crystals, especially J.L. Ericksen. There is a

‘linearized’ version of the theory due to Khachaturyan and
Roitburd.



Rank-one connections between
energy-wells

Given U = U" > 0 and V = V! > 0, when is there a rank-one
connection between SO(3)U and SO(3)V?

That is , when are there rotations R;, Ry and vectors ¢, NV such that

RU =RV +c®N

Theorem. Let D = U? —V? have eigenvalues \y < Ao < \3. Then
SOB)U and SO(3)V are rank-one connected if and only if Ao = 0.
There are exactly two solutions provided Ay < Aa = 0 < Az, and the
corresponding N'’s are orthogonal if and only if tr U? = trV?, i.e.

)\1 — —}\3.



Twins

In the case of martensitic variants with U = U;, V' = U,, 1 # 7, we
have U = QVQ? for some rotation @ and so the condition tr U? =
tr V<= is automatically satisfied. Rank-one connections correspond
to twins and the corresponding twin normals are always orthogonal.

In this case there is a simpler criterion for the existence of rank-one
connections due to Forclaz, namely that

det(U — V) =0



Weak convergence = convergence of averages

Simple laminate

A—B=c®N

DyU) ~ Dy =XA+ (1 - )\)B
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Gradient Young measures

Fix z, j, 0.

E C men

Volume{z € B(z,d) with DyU)(z) € E}

I/j’(S FE) =
() Volume B(z, )

: , 0 |
ve = |lIM Iim z/%ka Young measure corresponding

0—0 k—oc to DyUk).



Gradient Young measure of simple
laminate

Vy — )\5A o (1 — )\)(SB




Quasiconvexity

An integrand f = f(A) is quasiconvex if

| f(D(@))da > | f(A)dz = (Volume 2)f(A)

whenever z : Q2 — R is smooth with z(z) =
Az for all x € 0f2.

The condition does not depend on (2.



Quasiconvexity Is the central convexity
condition of the calculus of variations

Roughly, quasiconvexity is necessary and suffi-
cient for

I(y) = | f(Dy)da

to attain a minimum subject to given boundary
conditions.

T he existence of rank-one connections between
martensitic energy-wells implies that (-,0) is
not rank-one convex, hence not quasiconvex.
So we expect the minimum of Iy not to be
attained in general. The gradients Dy(j) of
minimizing sequences for Iy will not converge,
but generate a microstructure (with a corre-
sponding Young measure).



Theorem. (Kinderlehrer/Pedregal) A family
of probability measures (vg),.cq iS the Young
measure of a sequence of gradients Dy(j) bounded
in L°° if and only if

(i) Uz is a gradient (Dy, the weak limit of Dy(J))
(ii) {vg, f)Y > f(vg) for all quasiconvex f.

Here

and

Voi £y = [ F(A) dva(A)



Quasiconvexification

If f: M™*" — [0,00) then its quasiconvexifica-
tion is defined to be the function

Ff9¢ = sup{g < f: g quasiconvex}

E C M™X" is quasiconvex if there exists a qua-
siconvex f : M™*X" _ [0,00) with f~1(0) = E.

If K C M™*" is compact, its quasiconvexifica-
tion is the set

K9 = (\{E > K : E quasiconvex}



YY9¢(A, Q) is the macroscopic free-energy func-
tion corresponding to .

K(0)9¢ is the set of macroscopic deformation

gradients corresponding to zero-energy microstruc-
tures.

There i1s no known characterization of
guasiconvexity.

No local characterization (for example,
Inequalities on f and its derivatives at
an arbitrary matrix A) exists (Kristensen).



How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface
between austenite and martensite, because this

requires the middle eigenvalue of U, to be one,
which in general is not the case (but see studies of

James et al on low hysteresis alloys).

So what does it do?



(Classical) austenite-martensite interface in CuAINi
(courtesy C-H Chu and R.D. James)




habit Gives formulae of the
e crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for
cubic-to-tetragonal

boundary layer

ve =4 + (1~ 2)dp



Rank-one connections for A/M Interface
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Nonclassical austenite-
martensite interfaces

JB/ Carsten Carstensen (Berlin),
Konstantinos Koumatos (Oxford),
Hanus Seiner (Prague).



Nonclassical austenite-martensite
Interfaces (B/Carstensen 97)

Qx\
speculative nonhomogeneous
\Q\‘h martensitic microstructure
with fractal refinement
7 near interface
e ﬁ/
/'4

e

curved nonclassical
interface



Nonclassical interface with double
laminate

N
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planar nonclassical
interface




Nonclassical interface calculation

Dy(x) =F =v
F e (UX,50(3)U,
N

(unknown unless N = 2)

)"

V, = U

supp v C Ufll SO(3)U;
F=14b&®m



More on quasiconvexifications

Let K C M™M*"™ be compact. Then

K9 = {Fe M™™:F =p,vahomogeneous
gradient Young measure with suppr C K}

= {FeM™":p(F)< max ©(G) for all quasiconvex ¢}
c

@ is polyconvex if o(F) = g(J(F)) for some
convex function g of the list J(F) of all minors
of F'. Thus if m =n =3, ¢ is polyconvex if

o(F) = g(F,cof F,det I')

for some convex g.



© polyconvex = ¢ quasiconvex.

KPS = {F € M™% . o(F) <
1F € el )_glg;gsO(G)

for all polyconvex ¢}

K% C K7



Two martensitic wells
Let K = SO(3)U; U SO(3)Uy, where
Uy = diag (m1,m2,m3), Uz = diag (12, m1,73),
and the 7; > 0 (orthorhombic to monoclinic).

Theorem (Ball & James 92) K¢ consists of the matrices
F € M3*° such that

a ¢ 0
FI'r=| ¢ b 0 |,
0 O 77§

where a > 0,b > 0,a + b+ |2c| < n? +n35, ab— c® = nini.



he proof is by calculating KP¢ and showing
by construction that any F € KP¢ belongs to

K1e.

For a nonclassical interface we need that for
some a, b, ¢ satisfying these inequalities the mid-
dle eigenvalue of FL'F is one, and we thus get
(Ball & Carstensen 97) such an interface pro-

vided

ot <m<lorl<nyt<n ifnz<i,

m<nit<lorl<mn<ny! ifng>1.



More wells — necessary
conditions

K =|]So@3)U;

1=1

The martensitic variants U, all have the same singular
values (= eigenvalues) 0 < Nmin < Nmid < Mmax-

Let F' € KP¢ have singular values

0 < Umin(F) S Umid(F) S UmaX(F)-



KP® = {F € M™"

- p(F) < max p(G)

for all polyconvex ¢}

First choose ¢(G) = -

- det(G). Then

det I' = Umin(F)Umid(F)UmaX(F) — TlminT/midT/max -

Next choose ¢(G) = Omax(G) = max,; =1 |Gz|,
which is convex, hence polyconvex. Thus

O-maX(F) § Thmax -



Finally choose ¢(G) = omax(cof G), which is a
convex function
of cof (G) and hence polyconvex. Then

omid(F)omax(F) < nmidNMmax
But FF =14 b®m implies omig(F) = 1.
Combining these inequalities we get that

—1
Mmin < Mmig S 7Imax-



For cubic to tetragonal we have that

Uy = diag (n2,m1,m1), Up = diag (n1,m2,m1), U3 = diag (n1,n1,12),

and the necessary conditions become
-1 :
m <ny - <noif np <o,

-1 :
m2 <mny- <n1if n1 > no.

But these turn out to be exactly the conditions given by the
two-well theorem to construct a rank-one connection from

(SO(3)Uy USO(3)Us3)%¢ to the identity!

Hence the conditions are sufficient also.



Values of deformation parameters allowing classical and
nonclassical austenite-martensite interfaces

M, 47

777 classical and nonclassical
% interfaces possible

only nonclassical
interfaces possible

{417 =2




Interface normals
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AUSTENITE

Optical
micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure
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Twin crossing gradients



Cubic-to-orthorhombic energy wells

6
K(6:) = SO(3)U | ] SO(3)U;
1=1

at+y a—vy 0 at+vy Y-« 0 a—+ 0 o=v
2 % 2 ‘2F 2 2
Up = [ &2 &0 o |, U= | 15 &2 o |, Us=| O B O
2 2 2 2 — a+
0 0 8 0 0 8 o1 g oA
aty g 21z« B 0 0 B 0 0
2 2 o+ o— o+ —
Up = | 0 B8 0 |, Us=|0 22 &2 | Ug=|0 22 2
=% 0 aty 0 &7 Oéi’)’ 0 1=« a—zi—fy
2 2 2 2 2 2

o = 1.06372, 3= 0.91542, v = 1.02368



Let Uy, Uy and Upg,Upgr be two distinct pairs
of martensitic variants able to form compound
twins (e.g. Us,Us and Us,Ug). Then the com-
patibility equations for the parallelogram mi-
crostructure are :

RapUp—Ug = bap®nap
RpypUp —Uy = byp @nyp
RppUpyr—Us = byp @nya
RppUp —Up = bpp ®npp

RapRppr = RaaRap.



Let O < A <1 denote the relative volume frac-
tion of the Type-II twins (the same by the par-
allelogram geometry), and set

(1 =XN)Ug+ AR4BUp
(1 — )\)UA/ + ARy pUpr

M A B
My 5

Let O < A < 1 be the relative volume frac-

tion of the compound twins. Then the overall
macroscopic deformation gradient is

M = (1 — /\)MAB —I— /\RAA’MA’B"

For compatibility with the austenite we need

Amid (M M) =1



Possible volume fractions

)\2_)\: agp __a’2(/\2_/\>
a1+ a3z(A2 —N)

1.0
0.8 —
0.6 —
0.4 —

0.2

1 1 1 ] 1 1 1 ] 1 1 1 ] 1 1 1 ] 1 1 1 ]
0.0 0.2 04 0.6 0.8 1.0



Possible nonclassical interface
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AUSTENITE

Curved interface between crossing twins and austenite resulting from the inhomogeneity
of compound twinning. (Optical microscopy,H. Seiner)



Macrotwins In NigsAl;e

JB/ D. Schryvers, Ph. Boullay
(Antwerp)



Macrotwins in NigzAl;s Involving two
tetragonal variants (Boullay/Schryvers)




Crossings and steps




Macrotwin formation

|©10),
o < 90° (100);.4 vol U;> vol U,
e (001,
Y Ve T 10
(X = 1)52 ' :__:T;:-::::Zl'"ll" \(
plate | _—
—_— \\
b (100)
C:‘:- x> 90° o
. m'm?

plate Il

(-x=y 1),

(xy 1),



Macroscopic deformation gradient in martensitic

plate is
1+bQm B/Schryvers
Different martensitic plates
1 never compatible
e = ( x(0 +vr), Y i(vr —0),1) (Bhattacharya)

b = (§_x€(5 +vr), 59{.0&-‘-(”’? —0),P)

where v = 1for A = A", v = —1for A= 1— A", the .y with Plate I (k1 = x1 = 11 = 1) and
microtwin planes have normals (1,%,0) and y =  rotation is that of a right-handed screw
- see the text.
] I
rarameter values /1 (J2
Ko Y2 /9 Axis Angle Ny Axis Angle Ny
N 1 1 (70,0,-.71) | 1.64° (0,1,0) (775,0,.66) | 1.75° (1,0,0)
1 -] 1 (0,.99,.16) | 7.99° (1,0,0) (0,.99,-.14) | 7.99° (0,1,0)
-1 1 1| (65,48,-59) | 6.76° | (.59,-.81,0) | (.68,.50,.54) | 6.91° | (-.81,-.59,0)
1 1 1| (-.48,.65, aq) 6.76° | (-.81,-.59,0) | (-.50,.68,-.54) | 6.91° | (.59,-.81,0)
1 1 -1 | (-.54,.54,.64) | 5.87° L{U,_],U} (-57,57,-.59) | 6.08° | —5(1,-1,0)
1 ¥ 1| (60,60,-52) | 7.37° | J=(1,1,0) | (.62,62,47) | 747 | 25(1,1,0)




Adding Interfacial energy to
the nonlinear elasticity model.

The nonlinear elasticity model for martensitic
transformations is based on a total free-energy
functional

Ii(y) = [ ¥(Dy,0)da.

In general the minimum of Iy is not attained,
and minimizing sequences y(j) generate an in-
finitely fine microstructure, some of whose fea-
tures can be described by a gradient Young
measure (Vz)zcQ-



Thisis good because it provides an explanation
of why very fine microstructures are observed,
but bad

(a) because real microstructures are not in-
finitely fine, and have characteristic length-
scales,

(b) because the minimum is not attained.

These issues can be addressed by adding to the free-energy
functional a term representing interfacial energy, resulting

from the different atomic environment at twin boundaries
and /or lattice curvature.

The natural way to try to understand what
form the interfacial energy should take is via
passage from an atomistic to a continuum model,

but there is some confusion as to how this
should be done.



Some interfaces are atomistically sharp
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Manolikas, van Tendeloo,
Amelinckx



Diffuse interface in perovskite (courtesy Ekhard Salje)



Second gradient model for diffuse interfaces
JB/Elaine Crooks (Swansea)

How does interfacial energy affect the predictions of
the elasticity model of the austenite-martensite transition?

d < 0,

a(0)1 U1(8) U200) Us(0)



Use simple second gradient model of interfacial energy (cf
Barsch & Krumhansl, Salje ...), for which energy minimum is
always attained.

Fix 0 < 6., write ¥(A) =1 (A,0), and define

1) = [ (w(Dy) +?D?yP) da

where |D2y‘2 = Y;,a8Y%i,a8" € > O,

It is not clear how to justify this model on the basis of
atomistic considerations (the ‘wrong sign’ problem — see,
for example, Blanc, LeBris, Lions).

12



Suppose that
Di(a(0)1,0) = 0,

D*y(a(0)1,0)(G, G) > ,u|G]2 for all G = G*,

some p > 0. Then y(z) = cis a

local minimizer of
/wD%

But y(x) = a(f)x + ¢ is not a local minimizer of Iy
in WHP(Q; R?) for 1 < p < oo because nucleating
an austenite-martensite interface reduces the energy.

in W0 (Q; R3).



Hypotheses

No boundary conditions (i.e. boundary traction free), so
result will apply to all boundary conditions.

Assume ) € CQ(M_:I)’_X3),

W(A) = oo for det A <O,

W(A) — oo as det A — 0+,
Y(RA) =y (A) for all R € SO(3),
1 bounded below, € > 0.

Dy(al) =0
D?y(al)(G,G) > u|G|? for all G = G7,
for some u > 0. Here a = a(0).



Theorem. y(x) = aRx

a, R € SO(3),a € R3,

is a local minimizer of I in L1($2; R3).

More precisely,

IW)-1@) >0 [

2

(\\/DyTDy — 041|2 -+ \Dzy\2> dx

for some o > 0 if ||y — aRx — al|1 is sufficiently

small.

Remark.

/Q |\/DyTDy — al|?dx

>co_ inf_ (lly—aRz—a|3+ ||Dy— R|3).

ReSO(3),aeR3

by Friesecke, James, Miuller Rigidity Theorem



ldea of proof

Reduce to problem of local minimizers for

1) = [_(@(U) +mp?e?|DU?) da,
studied by Taheri (2002), using
IDAUCA)| < p
for all A, where U(A) = VAT A.




Smoothing of twin boundaries

Seek solution to equilibrium equations for

1) = | ;(W(Dy) +<*|D?y[?) da

such that

Dy— Aasx-N — —o0

Dy — B as x- N — 400,

where A, B= A+ a® N are twins.




Lemma

Let Dy(z) = F(z-N), where F € W2 (R; M3%3)
and

F(z-N)— A,B

as - N —- +o00. Then there exist a constant
vector a € R3 and a function v : R — R3 such
that

u(s) — 0,a as s - —oo, 0o,
and for all z € R3

F(r-N)=A4u(x-N)® N.
In particular

B=A4a® N.



T he ansatz
Dy(z) = A+ u(z- N)® N.
leads to the 1D integral
Flu) = /R[W(A 4 u(s) @ N) 4+ 2|u/(5)[2] ds

. T 211 2
= /R[W<u<s>>+e 4/ (s)[2] ds.

For cubic — tetragonal or orthorhombic (and
probably in general) we have

~ ~

W(0) =W(a) =0, W(u) >0 for u#0,aq,

and so by energy minimization (Alikakos & Fusco
to appear) we get a solution.



Remarks
1. The solution generates a solution to the full 3D equilibrium
equations. However if we use instead the ansatz

Dy(x) =v(x-N)a® N

with v a scalar, then the corresponding solution does not in general
generate a solution to the 3D equations.

2. The solution is not in general unique even within the class given by the
ansatz, but more work needs to be done in this direction.



Sharp interface models

A natural idea is to minimize an energy such
as

I(y) = | W(Dy)dz + kH?(Spy),

where k > 0 and SDy denotes the jump set of
Dy.

However this is not a sensible model, because if we have a
sharp interface and approximate y by a smooth deformation,
then the interfacial energy disappears and the elastic energy
hardly changes. Thus a minimizer can never have a sharp
Interface.



A model allowing smooth and sharp interfaces
JB/ Carlos Mora-Corral (Bilbao)

If we combine the smooth and sharp interface
models we get a model that is well posed and
in fact allows both kind of interface. In the
simplest case we minimize

1) = | (W(Dy) +2|V2yP) dz + rH2(Sp,)
in the set
A={y e wip Dy € GSBV,ylpa, = Y}

Here V2y denotes the weak approximate dif-
ferential of Duy.



GSBV

The space GSBV was introduced by Ambro-
sio & de Giorgi. BV is the space of maps y
of bounded variation i.e. whose distributional
derivative Dy is a bounded measure. The space
SBV consists of those y € BV such that the
measure Dy has no Cantor part. GSBV con-
sists of those y such that for every ¢ € C1(R3)
with V¢ of compact support, »(y) € SBV.



More generally we can suppose the energy is
given by

I(y) = /Q W (D, VQy) dz +

/SD 7(Dy+(aj>, Dy (x),v(x)) dH2(33>.



One-dimensional case
Minimize
1
len() = [ (W) +2V?y?) do + wHO(S))
N

Ay = {ye€ Wl’l(O, 1) :y(0) =0,y(1) = A,
y' € SBV(0,1),y >0 a.e.}

Assume W (1) =W (2) = 0,W(p) > 0 if
p#0,1. Let

R )
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More realistic 1D model
Minimize
1
Lew@) = [ (WH+SIV2yP) det [ w(ly]) dHC

N

Ay = {yewb(0,1):y(0) = 0,y(1) = A,
y € SBV(0,1),y >0 a.e.}



We assume that 1) is continuous, even, of class C! on (0, 00),
nondecreasing on (0, 00), and such that

im 29— oo, w(a+b) < $(a) + $(b).

t—0 1

Typically ¥(0) = 0 with ¢ concave on (0, c0). For example

h(t) = K|t]", or ¢(t) = k[t|log(1 + )

where a € (0, 1).



Theorem
Let W : (0,00) — [0,00) be C! and satisfy lim,_,y+ W (t) = co and suppose that
there exist r1,r9 with 0 < r; < r9 such that —oo < SUP (0, ;] W' = Infy,, o) W' <
oo for ¢ € {1,2}. Let A € (r1,72).

Then there exists a minimiser of the functional I, , in Ay. Moreover, if y is
a minimizer then u = vy satisfies:
(i) u € [r1,r2] a.e.
(ii) S, is finite.
(iii) Vu is continuous and in SBV/,

W'(u) — 2e*V?u = ¢

for some constant ¢ € R, Vu(0) = Vu(1) = 0 and 2e2Vu(z) = ¢'([u](z)) for all
z2 €8, c= fol W' (u) dr and

W (u) — e*(Vu)? — cu = d,

for some constant d € R..



Remarks

1. We cannot prove that there is at most one jump in v’.
2. The solution can be smooth or have a jump, but in
general there are no piecewise afline solutions.



Defects in liquid crystals

(




Overview

We consider various theories of static configurations of nematic

liquid crystals (de Gennes, Oseen-Frank, Onsager / Maier-
Saupe), and relations between them.

Liquid crystals can be of different types. Nematics are the
simplest (others are cholesterics, smectics ...) and consist
of rod-like molecules which are ordered so that they have
a locally preferred orientation. Liquid crystals are the
basis of a multi-billion dollar display technology industry.

The mathematics of liquid crystals involves modelling,
variational methods, PDE, algebra, topology, probabillity ...



Plan

. Introduction to liquid crystals. The de
Gennes and Oseen-Frank energies.

. Relations between the theories.
Orientability of the director field.

. The Onsager/Maler-Saupe theory and
eigenvalue constraints.



Smeclic A (a) Smectic C (b) Mematic (&) Cholesteric {(d)

4§
. 1
Example of a Nematic: B ¥ Y oy g
Pozoxyanisole (PAA) S —0~() - N=N-(~0-CH,
Terminal Core Terminal
Sroup Group

http://www.laynetworks.com/Molecular-Orientation-in-Liquid-Crystal-Phases.htm



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/Iclinks.html



Review of Q-tensor theory

Consider a nematic liquid crystal filling a con-
tainer Q c R3, where Q is connected with Lip-
schitz boundary 0f2.

The topology of the
container can play a role.




Molecular orientations

P

Line through origin parallel to p
is an element of RP2.

Can identify with the pair {p, —p}
of antipodal unit vectors or the

- p matrix p @ p, (p ® p)ij = pip;-



The distribution of orientations of molecules
in B(xp,0) can be represented by a probabil-
ity measure on RP2 that is by a probability
measure u on the unit sphere S2 satisfying
uw(E) = u(—E) for E C S2.

For a continuously distributed measure

du(p) = p(p)dp, where dp is the element of
surface area on S2 and p > 0, [¢2 p(p)dp = 1,
p(p) = p(—p).

The first moment [q2pdu(p) = 0.

The second moment

M = /Szp®pdu(p)

IS @ symmetric non-negative 3 x 3 matrix
satisfying trM = 1.



Let e € S?. Then

e Me = /Sz(e-p)Qdu(p)
= (cos®0),

where 6 is the angle between p and e.

If the orientation of molecules is equally distributed
in all directions, we say that the distribution is isotropic,

and then u = pg, where

1
dpo(p) = EdS.



The corresponding second moment tensor is

1

1
0 47'('_/S2p®p 3

(since sz p1p2dS = 0, fs2 p7dS = sz p5 dS etc
and tr MO = 1)

The de Gennes (Q-tensor
Q@ =M — My

measures the deviation of M from its isotropic
value.



Note that

3
- _ T _ 1
satisfies Q = Q*, trQ =0, @ > —31.

Q= » <p®p— 11) dp(p)

Remark. Q = 0 does not imply u = ug.

For example we can take
3

p= o3 (0 0 e,)

1=1



Since () is symmetric and tr () = 0,
Q — )\1721 QN1 + )\277,2 X Mo + )\37?,3 X N3,

where {n;} is an orthonormal basis of eigenvectors
of () with corresponding eigenvalues A1, Ay, A3 with

)\1—|—)\2—|—)\3:O.

. 1 1 2
Since Q Z §1, —3 S )\z S 3"

Conversely, if —% <)\ < % then M 1is the second moment
.g. for

tensor for some

Iué 1 1



If the eigenvalues A; of () are distinct then () is said to
be biarial, and if two \; are equal uniazial.

In the uniaxial case we can suppose A\ = Ay = —3%

37
A3 = 23—8, and setting n3 = n we get

S 28
Q=——-(1-n®n)+—nxn.
3 3
Thus !
Q:S(TL@TL—gl),
Where—%gsgl



Note that

2s
@neon = = 1

— ] 2 -

((p-n) 13>
2

— (COSs“ 60 — —),

( 2)
where 0 is the angle between p and n. Hence
3 1
s = —{(cos® 80 — =).
2 3



s=— & [,m)2dup) =0

(all molecules perpendicular to n).
s=0 <& Q=0
(which occurs when u is isotropic).
— 2 —
s=1 & [, (p-n)?du(p) =1

1
& p= 5(571 +d-n)
(perfect ordering parallel to n).



If @ = s(n®n — 1) is uniaxial then |Q[? =
252 _ 2483
27 detQ =35

Proposition.
Given Q = Q1, trQ = 0, Q is uniaxial if and
only if

Q|% = 54(det Q)2



Proof. The characteristic equation of @ is

det(Q — A1) = det Q — Atrcof Q + 0A2 — \3.

But 2trcof QQ = 2()\2)\3+)\3)\1 —|—)\1)\2) = ()\1 +
A2+ A3)2 — (A2 4+ 235+ A3) = —|Q|?. Hence the
characteristic equation is

1
A3 — 5yc2|2/\ — det@Q =0,

and the condition that A3 —p\+4 ¢ = 0 has two
equal roots is that p > 0 and 4p3 = 27¢2.



Energetics

Consider a liquid crystal material filling a con-
tainer Q c R3. We suppose that the material
is incompressible, homogeneous (same mate-
rial at every point) and that the temperature
IS constant.

At each point x € {2 we have a corresponding
measure u; and order parameter tensor Q(x).
We suppose that the material is described by a
free-energy density ¥ (Q, VQ), so that the total
free energy is given by

Q) = [ ¥(Q(), VQ(x)) da.

We write v = ¢¥(Q, D), where D is a third order
tensor.



The domain of ¢

For what @, D should ¥ (Q, D) be defined?
Let £E={Q e M3*3:Q =01, trQ =0}

D ={D = (Djj) : Dijx = Djjk, Dgri = O}.
We suppose that ¥ : domy — R, where

dom = {(Q, D) € £ x D, (@) > —3},

But in order to differentiate ¢ easily with re-
spect to its arguments, it is convenient to ex-
tend ¢ to all of M3%3x(3rd order tensors). To
do this first set v (Q,D) = « if (Q,D) € € x D
with some X;(Q) < —3.



Then note that
1 1
PA = 5(A + A1) — 5(tr Al

is the orthogonal projection of M3%3 onto &.
So for any @, D we can set

v(Q, D) =y (PQ, PD),
where (PD);;, = 3(D;ix + Djir) — 3Dyidij-
Thus we can assume that ¢ satisfies

op _ o0y Y — 0
0Qi;  0Qj; 0Qy |

oYy O oY
0D, 0Djir 0Dk




Frame-indifference

Fix x € €2, Consider two observers, one using
the Cartesian coordinates ¢ = (x1,xo,x3) and
the second using translated and rotated coor-
dinates z = 4+ R(x — ), where R € SO(3).
We require that both observers see the same
free-energy density, that is

where Q*(x) is the value of Q measured by the
second observer.



@ = [ (a®q— Dduz(RTg)
[ (Rp® Rp— -1)duz(p)

1 T
R/SQ(p QP — gl)dua-;(p)R -



Hence Q*(z) = RQ(Z)R!, and so

o0*.
~(z)

8zk

0 _
a—%(Rille(w)ij)

o, Ox
—(Rz’lleij)—p

Oxp
anm
Oxp '

8zk

R Rjm Ry

Thus, for every R € SO(3),

v(Q", D*) = ¢(Q, D),
where Q* = RQR", D} = RiyRjmRipDimp.

(2

Such 1 are called hemitropic.



Material symmetry

The requirement that

Y(Q™(2), V.Q"(2)) = ¥(Q(Z), V2Q(T))

when z =z + R(x— ), where R = —1+2e®e,
le] = 1, is a reflection is a condition of ma-
terial symmetry satisfied by nematics, but not
cholesterics, whose molecules have a chiral na-
ture.



Since any R € O(3) can be written as RR,
where R € SO(3) and R is a reflection, for a
nematic

Y(Q*, D) = ¢¥(Q, D)
where Q* = RQR", D};; = RyRjmRypDim,, and

1

R € O(3). Such % are called isotropic.



Bulk and elastic energies

We can decompose ¢ as

Y(Q, D) ¥(Q,0) + (¥(Q, D) — ¥(Q,0))

Yvp(Q) +vE(Q, D)
bulk 4 elastic

Thus, putting D = 0,
Ye(RQRY) = ¢5(Q) for all R € SO(3),

which holds if and only if ¥ is a function of the
principal invariants of (), that is, since tr() = 0,

Y5(Q) = ¥p(IQI" det Q).



Following de Gennes, Schophol & Sluckin PRL
59(1987), Mottram & Newton, Introduction
to Q-tensor theory, we consider the example

¥5(Q,0) = a(0)tr Q% — 2—btrQ3 +StrQf,

where 6 is the temperature, b > O,c > 0,0 =
a(f —0%),a > 0.



T hen

QPB:CLZ)\Z' —§Z>\i ‘|‘5Z>\Z

¥p attains a minimum subject to ¥3_; A; = 0.
A calculation shows that the critical points
have two A; equal. Thus A{ = Ay = A\, A3 =
—2)X say, where A=0 or A = A4, and

—b + \/b2 — 12ac
bc .




Hence we find that there is a phase trans-
formation from an isotropic fluid to a uniax-
lal nematic phase at the critical temperature
On = 07 2271’&26. If & > O\ then the unique
minimizer of ¥ is Q = 0.

If 0 < 0Ny then the minimizers are

1
Q=smn(n®n — 51) for n & 52,

2_
b \/b2c 12ac >~ 0.




—xamples of isotropic functions quadratic
in V@

I = Qi Qik ks I2=Qik; Qijk
I3 = Q;; kQijk> 1a = QrpQ;; 1Q:; k

Note that
I —Ip = (QiiQik k) ,j — (QijQik i) k

IS a null Lagrangian.

An example of a hemitropic, but not isotropic, function is

Is = € Qi Q1K



For the elastic energy we take

4
VE(Q,VQ) = ) | Ll
=1

where the L; are material constants.



The constrained theory

If the L, are small (in comparison to the steep-
ness of the potential well about the minimum
of ¢p), it is reasonable to consider the con-
strained theory in which (@ is required to be
uniaxial with a constant scalar order parame-
ter s > 0, so that

Q:s(n@)n—%l).

In this theory the bulk energy is constant and
SO we only have to consider the elastic energy

Q) = [, vp(Q,VQ)da



Oseen-Frank energy

Formally calculating ¢ In terms of n, Vn

we obtain the Oseen-Frank energy
functional

I(n):/Q[Kl(dIVn)Q Ko(n - curln)? 4+ Ksln x curln|?
(K2 + Ka)(tr(Vn)® — (divn)?)] d,

where

K1 = 2L15% 4 Lps? + L3s? — 51453,
Kp = 2L15° — 2L4s°,

K3 = 2L15% + Lps? + L3s? + £L4s°,
K4 = L382.




Function Spaces
(part of the mathematical model)

Unconstrained theory.

We are interested in equilibrium configurations
of finite energy

1@ = [ [¥B(Q) +v5(Q Q)] da.

We use the Sobolev space W1P(Q; M3%3). Since
usually we assume

4
ve(Q,VQ) = ) L,
i=1

I = Q45,iQik k> 12 = Qik jQij ks
I3 = Qi kQij ks 14 = QuiQij1Qij k>
we typically take p = 2.



Constrained theory.

For 1 < p < oo the Sobolev space WIP(Q, RP?)
is the set of Q = s(n®n — %1) with weak
derivative VQ satisfying [o |[VQ(x)|Pdx < oo.

Thus for the Landau - de Gennes energy den-
sity, the space of ) with finite elastic energy is
wl2(Q RP?).



Schlieren texture of a nematic film with surface point defects (boojums).
Oleg Lavrentovich (Kent State)




Possible defects in constrained theory

st(n@)n—%l)

T
Hedgehog n(zr) = H

Vn(z) = (1 —n®n)
QneWlP 1<p<3
2|2 Finite energy



Disclinations

n(z) = (&,22 0) r = \/:U%—I—a:%

7“’7“’

Vn(z)|]? = %

Ir

nQeWlPas1<p<?
Infinite energy for quadratic models






Existence of minimizers in the
constrained theory

Immediate in W12(Q, RP?), for a variety of
boundary conditions, under suitable inequali-
ties on the L;, since v is then convex in V@
and coercive and the uniaxiality contraint is
weakly closed.



The equilibrium equations (JB/Majumdar)

Let (Q be a minimizer of

Q) = | ¥p(Q,VQ)da

subject to Q € K = {s(n®n — %1) ' n € S2}.
Considering a variation

Qa:s([n—l—sa/\n]@[n—l—ea/\n] —ll),

In 4+ ea A nl|? 3

with a smooth and of compact support, we get
the weak form of the equilibrium equations

ZQ = QZ,

0 0 :
where Z;; = %Z — 3?%81})@?1@ (v symmetrized).




Can we orient the director? (JB/Zarnescu)

We say that Q = Q(x) is orientable if we can
write

Q@) = s(n(x) @ n(@) - 1),

where n € WHP(Q, S?).

This means that for each £ we can make a
choice of the unit vector n(z) = +7(x) € 52 so
that n(-) has some reasonable regularity, suf-
ficient to have a well-defined gradient Vn (in
topological jargon such a choice is called a
lifting) .



Relating the Q and n descriptions

Proposition

Let Q = s(n®n — %1), s a nonzero constant,
in| =1 a.e., belong to WbhP(Q: RP2) for some
p, 1 <p<oo. If nis continuous along almost
every line parallel to the coordinate axes, then

n € WHP(Q,S?) (in particular n is orientable),
and

" ke = Qij kM-



Theorem 1
An orientable ) has exactly two orientations.

Proof

Suppose that n and ™ both generate ) and
belong to Wh1(Q,S52), where 72(z) = 1 a.e..
For a.e. xo,x3, both n(x) and 7(x)n(x) are
absolutely continuous in 1. Hence

T(z)n(z) -n(z) = 7(x)

Is continuous in xz1. Hence 71 exists and is
zero. Similarly 75,73 exist and are zero. Thus
re Wb and Vr =0 a.e. in Q. Hence r =1
a.e. orr=—1 a.e..




A smooth nonorientable director field
In @ non simply connected region.




The index one half singularities are non-orientable

=




T heorem 2

If Q2 is simply-connected and Q € Wl»p,
p > 2, then @ is orientable.

(See also a recent topologically more general lifting result
of Bethuel and Chiron for maps u:Q—N.)

Thus In a simply-connected region the uniaxial de
Gennes and Oseen-Frank theories are equivalent.

/ Another consequence is that it Is

Impossible to modify this Q-tensor
field in a core around the singular

line so that it has finite Landau-de
\ Gennes energy.




Ingredients of Proof of Theorem 2

Lifting possible if Q Is smooth and Q simply-
connected

Pakzad-Riviere theorem (2003) implies that if 0Q
Is smooth, then there Is a sequence of smooth
QU converging weakly to Q in W12

We can approximate a simply-connected

domain with boundary of class C by ones that
are simply-connected with smooth boundary

The Proposition implies that orientabllity is
preserved under weak convergence



2D examples and results
for non simply-connected regions

For a 2D domain with smooth boundary and a
finite number of holes, Q € W12 is orientable
if and only if () is orientable on 0.



Tangent boundary conditions
on outer boundary. No (free)

boundary conditions on inner
circles.

Q) = |_IVQPde

I(n) = 252 /Q Vn|2da



o

€



For M large enough
the minimum energy
configuration Is
unoriented, even
though there is a
minimizer among
oriented maps.

If the boundary
conditions
correspond to the
Q-field shown, then
there is no
orientable Q that
satisfies them.




Existence for full Q-tensor theory

We have to minimize

Q) = [ [ws(Q) +¥p(Q,VQ)) da
subject to suitable boundary conditions.

Suppose we take ¥p : £ - R to be continuous,
E={Q € M3%3:Q = QI ,trQ = 0}, (e.g. of
the quartic form considered previously) and

4
vE(Q,VQ) = ) L
1=1

which is the simplest form that reduces to Oseen-
Frank in the constrained case. Then ...



Proposition. For any boundary conditions, if
Ls #= 0 then

4
I@Q = | [Ws(Q)+ 3 Lillda
1=1

IS unbounded below.



Proof. Choose any (@ satisfying the boundary
conditions, and multiply it by a smooth func-
tion ¢(x) which equals one in a neighbourhood
of 0€2 and is zero in some ball B C €2, which
we can take to be B(0,1). We will alter @ in

B so that

4
HQ) = [ Wwp(@) + Y Lil)da
1=1

is unbounded below subject to Q|sp = 0.



Choose

Qlz) =0(r) | —® 11, 6(1) =0,

where r = |z|. Then

2
2 __ 12 2

and

4 3
I = QriQij kQij 1 = 59(9/2 — 7292)'



Hence

J(Q) < 4n /01 {QpB(Q) +C (39’2 + —92) +

4 12 3 2
L4§9 <9 ——29 )] d’r,

T
where (' is a constant.

Provided 0 is bounded, all the terms are bounded
except

1 2 4
A / 2(—0 “L 9) 0"2 dr.
7'('0’)“ 3 —|—94 r



Choose

[ 0(2 + sin kr) 0<r<2

0(r) = i 290(2—|—sin§)(1 —7) %< r <1

The integrand is then bounded on (%,1) and

we need to look at

1
5 5 (2 4
A /02 2 (30 | 9L490(2 + sin kr)) 03k? cos? kr dr,

which tends to —oo if Lafg iIs sufficiently neg-
ative.



The Onsager model
(Joint work with Apala Majumdar)

In the Onsager model the probability measure
L 1S assumed to be continuous with density p =

p(p), and the bulk free-energy at temperature
6 > 0 has the form

Ig(p) = U(p) — 0n(p),

where the entropy is given by

1(p) = — | ,p(®) I p(p) dp



With the Maier-Saupe molecular interaction,
the internal energy is given by

Up) = [, [ 1= @ ?p®)e(a) dpdg

where « > 0 is a coupling constant.

Denoting by

1
= ——1 d
Qlp) = | ,(p®p—31)p(p)dp
the corresponding ()-tensor, we have that
1 1
2
= —=1)- ——1 dpd
Q(p)] /52 LP®P—31) - (a®q—Z1)p(p)p(g)dpdg

[ |10 0 = 21p()o(a) dpda



Hence U(p) = —k|Q(p)|? and

I9(p) = 0 [, p(p) In p(p) dp — KIQ(p) .

aiven Q we define

Yp(Q,0)

0

iNnf I
(otm=gy 10

inf
{p:Q(p)=Q}

/Szplﬂ pdp — k|Q|?



et
I(p) = [, p(p) Inp(p) dp

Given Q with Q = Q1. trQ = 0 and satisfying
A(Q) > —1/3 we seek to minimize J on the
set of admissible p

Ag={p€ L (S?) :p>0, Szpdp =1,Q(p) = Q}.



[Lemma. AQ IS nonempty.

(Remark: this is not true if we allow some
N = —1/3.)

Proof. A singular measure u satisfying the con-
straints is

13 1
=1

and a p € AQ can be obtained by approximating
this.



For € > O sufficiently small and 1 = 1,2,3 let

(0 iflpel<l—c

p-e|l=>1—c¢

T hen

1 € | g2 c
PP = T 8}(1_8>2[@ -1, (p)

WOrks.




Theorem. J attains a minimum at a unique
PQ € AQ.

Proof. By the direct method, using the facts
that plnp iIs strictly convex and grows super-
linearly in p, while AQ IS sequentially weakly
closed in L1(52).

Let f(Q) = J(pg) = inprAQ J(p), so that

vB(Q,0) = 0f(Q) — |Q|*.



T heorem
f is strictly convex in ) and

lim f(Q) = oo.
mln(Q)—>_—

Proof
The strict convexity of f follows from that

of pinp. Suppose that Apmin(QY) — —% but
£(QU)) remains bounded. Then

. . . 1 /. .
QWD) 412 = /S  pot (@) (pe))2dp — 0,

where e() is the eigenvector of QW) corre-
sponding to Amin(QW)).



But we can assume that POG) — P in L1(S?),

where [¢o o(p)dp =1 and that eld) e, le] = 1.

Passing to the limit we deduce that

2 —
[ PP+ e)?dp =0

But this means that p(p) = 0 except when
p-e =0, contradicting [c2 p(p)dp = 1.




The Euler-Lagrange equation for J

Theorem. Let Q = diag (A1, A2, A3). Then

exp(p1p? + pops + u3p3)
Z (1, 1o, 43)

pQ(p) =

Y

where

Z(p1, p2, p3) = /52

The u; solve the equations
olnZz

Ot
and are unique up to adding a constant to each

i

2 2 2
exp(p1p1 + nops + u3p3) dp.

1
:>‘2+§7 1= 172737



Proof. We need to show that pg satisfies the
—uler-Lagrange equation. There is a small
difficulty due to the constraint p > 0. For

T >0 let S = {p € S?:pglp) > 7}, and let
2z € L>®(S?) be zero outside S; and such that

1
X p——=1 dp = 0O, dp = O.
ST(p P2 )z(p) dp st(p) p
Then ps 1= pg + ez € Ag for all € > 0 suffi-
ciently small. Hence

d%J(ps)\s_o = /T[l + Inpglz(p) dp = 0.



So by Hahn-Banach

3
1
1+1Inpg= > Cijlpip; 3] - C
1,j=1

for constants C;;(7), C(7). Since Sr increases
as 7 decreases the constants are independent
of 7, and hence

3
po(p) = Aexp ( > Cz’jpipj) if po(p) > 0.
1,J=1



Suppose for contradiction that

E={pe S?:pg(p) =0}

is such that H2(E) > 0. There exists z €
L>®(S?) such that

1
(r&@p—31)=(p) dp = 0, (r0>0) 2(p) dp = 4r

(this is possible since 1 = Zgjzl(Dz‘j(pz‘pj —

[{PQ>O}

%52-3-) is impossible for constants D;;). Define
for € > O sufficiently small

,05:,0Q E —EZ.



Then ps € Ag, since [o2(p ® p — %1) dp = O.
Hence, since pg Is the unique minimizer,

/Ee Ine + /{pQ>O}[(pQ +e—¢ez)In(pg +¢€ —€z2)
—PQ In pQ] dp > O.

This is impossible since the second integral is
of order «.

Hence we have proved that

3
po(») = Aexp( Y Cijpip;),a.e. p €S2
,j=1



Lemma. Let RIQR = Q for some R € O(3).
Then po(Rp) = po(p) for all p € S2.

Proof.
1
—~1)po(Rp) d
(P ®P—21)pg(Fp) dp

1
= RY'q® RTq— 21 d
[ (Ra® R"q = 1)pq(a) da
= R'QR=¢,

and pg Is unique.




Applying the lemma with Re; = —e;, Re; = e;
for j #% i, we deduce that for Q = diag (A1, A2, A3),

exp(p1p? + Hops + p3p3)
Z (1, 12, 43)

pQ(p) =

Y

where

Z (1, 2, 43) =/

o exp(p1p? + pops + uzp3) dp,

as claimed.



Finally

olnZ 1 5 3 5
= / / = ex D<) d
1

and the uniqueness of the u; up to adding a
constant to each follows from the unigueness

of PQ-




Hence the bulk free energy has the form

3 3
vp(Q,0) =0 ) pi(\; A 21))) 0InZ —k Y N2,
i=1 -

1=1




Consequences

1. Logarithmic divergence of ¥ as
min \;(Q) — %

2. All critical points of ¥ are uniaxial.

3. Phase transition predicted from isotropic to
uniaxial nematic phase just as in the quartic
model.



4. Minimizers p* of Iy(p) correspond to
minimizers over @ of ¥v(Q,0). These p*were
calculated and shown to be uniaxial by Fatkullin
and Slastikov (2005).



5. Using a maximum principle we can show
that minimizers of

Q) = |_[5(Q) + K|VQI? dx,

subject to Q(x) = Qp(x) for x € 0L2, where
K > 0 and Qq(-) is sufficiently smooth with

Amin(Qo(x)) > —3, satisfy

1
Amin(Q(x)) > 3 £,

for some ¢ > 0.

(Compare nonlinear elasticity, for which the
energy is I(y) = [o W(Vy(x)) dx, with
W(A) — oo for det A — 0+4.)




Voir http://www.maths.ox.ac.uk/~ball
sous teaching pour les diapositives



The end



