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Plan of the course
Monday

1. Nonlinear elasticity.

2. Existence of minimizers and analysis tools.

Wednesday

3. Existence etc contd. and nonlinear elasticity model of 

crystals.

4. Microstructure.

Friday

5. Austenite-martensite interfaces.

6. Complex microstructures. Nucleation of austenite.

Saturday

7. Local minimizers with and without interfacial energy.



Nonlinear elasticity

The central model of solid mechanics.  Rubber, metals (and 
alloys), rock, wood, bone … can all be modelled as elastic 
materials, even though their chemical compositions are 
very different.

For example, metals and alloys are crystalline, with grains 
consisting of regular arrays of atoms. Polymers (such as 
rubber) consist of long chain molecules that are wriggling in 
thermal motion, often joined to each other by chemical 
bonds called crosslinks. Wood and bone have a cellular 
structure …
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A brief history
1678   Hooke's Law

1705   Jacob Bernoulli 

1742   Daniel Bernoulli 

1744   L. Euler  elastica (elastic rod)

1821   Navier, special case of linear elasticity via molecular model      

(Dalton’s atomic theory was 1807)

1822   Cauchy, stress, nonlinear and linear elasticity 

For a long time the nonlinear theory was ignored/forgotten.

1927     A.E.H. Love, Treatise on linear elasticity 

1950's  R. Rivlin, Exact solutions in incompressible nonlinear elasticity 

(rubber) 

1960 -- 80  Nonlinear theory clarified by J.L. Ericksen,   C. Truesdell …

1980 -- Mathematical developments, applications to materials, 

biology … 7



Kinematics

Label the material points of the body by the

positions x ∈ Ω they occupy in the reference

configuration. 8



Deformation gradient

F = Dy(x, t), Fiα =
∂yi
∂xα

.
9



Invertibility

To avoid interpenetration of matter, we re-

quire that for each t, y(·, t) is invertible on Ω,

with sufficiently smooth inverse x(·, t). We also

suppose that y(·, t) is orientation preserving;

hence

J = detF (x, t) > 0 for x ∈ Ω. (1)

By the inverse function theorem, if y(·, t) is C1,

(1) implies that y(·, t) is locally invertible.
10
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Global inverse function theorem for
C1 deformations

Let Ω ⊂ R3 be a bounded domain with

Lipschitz boundary ∂Ω (in particular Ω lies on

one side of ∂Ω locally). Let y ∈ C1(Ω̄;R3) with

detDy(x) > 0 for all x ∈ Ω̄

and y|∂Ω one-to-one. Then y is invertible on

Ω̄.

12

Proof uses degree theory. cf Meisters and Olech,

Duke Math. J. 30 (1963) 63-80.



Notation

M3×3 = {real 3× 3 matrices}
M3×3
+ = {F ∈M3×3 : detF > 0}

SO(3) = {R ∈M3×3 : RTR = 1,detR = 1}
= {rotations}.

If a ∈ R3, b ∈ R3, the tensor product a ⊗ b is

the matrix with the components

(a⊗ b)ij = aibj.

[Thus (a⊗ b)c = (b · c)a if c ∈ R3.]



Square root theorem

Let C be a positive symmetric 3 × 3 matrix.

Then there is a unique positive definite

symmetric 3× 3 matrix U such that

C = U2

(we write U = C1/2).

14



Formula for the square root

Since C is symmetric it has a spectral

decomposition

C =
3�

i=1

λiêi ⊗ êi.

Since C > 0, it follows that λi > 0. Then

U =
3�

i=1

λ
1/2
i êi ⊗ êi

satisfies U2 = C.
15



Polar decomposition theorem

Let F ∈M3×3
+ . Then there exist positive

definite symmetric U, V and R ∈ SO(3) such

that

F = RU = V R.

These representations (right and left

respectively) are unique.

16



Proof. Suppose F = RU. Then U2 = FTF :=

C. Thus if the right representation exists U

must be the square root of C. But if a ∈
R
3 is nonzero, Ca · a = |Fa|2 > 0, since F is

nonsingular. Hence C > 0. So by the square

root theorem, U = C1/2 exists and is unique.

Let R = FU−1. Then

RTR = U−1FTFU−1 = 1

and detR = detF (detU)−1 = +1.

The representation F = V R1 is obtained simi-

larly using B := FFT , and it remains to prove

R = R1. But this follows from F = R1

�
RT
1V R1

�
,

and the uniqueness of the right representation. 17



Strain tensors and singular 
values

For F = Dy, U and V are the right and left

stretch tensors;

C = U2 = FTF and B = V 2 = FFT are the

right and left Cauchy—Green strain (tensors)

respectively.

The strictly positive eigenvalues v1, v2, v3 of U

(or V ) are the principal stretches (= singular

values of F ).
18



Invariants
The characteristic polynomial of C is given by

det(C − λ1) = −λ3+ ICλ
2 − IICλ+ IIIC.

= (v21 − λ)(v22 − λ)(v23 − λ)

Hence

IC = v21 + v22 + v23 = trC

IIC = v21v
2
2 + v22v

2
3 + v23v

2
1

IIIC = (v1v2v3)
2 = detC.

Note that the invariants of B are the same as

those of C. 19



State of strain
Fix x, t. Then

y(x+ z, t) = y(x, t) + F (x, t)z+ o(|z|).

Thus to first order in z the deformation is

given by a rotation followed by a stretching

of amounts vi along mutually orthogonal axes,

or vice versa. Equivalently, since

F = RU = RQDQT = R̃DQT ,

where D = diag (v1, v2, v3), it is given by a ro-

tation, followed by stretching along the coor-

dinate axes, then another rotation.
20



Example: simple shear

y(x) = (x1+ γx2, x2, x3).

F =






cosψ sinψ 0
− sinψ cosψ 0

0 0 1











cosψ sinψ 0

sinψ 1+sin2 ψ
cosψ 0

0 0 1




 ,

tanψ = γ
2. As γ → 0+ the eigenvectors of U

and V tend to 1√
2
(e1+ e2),

1√
2
(e1 − e2), e3. 21

γ = tan θ

θ = angle of shear



Cauchy’s stress hypothesis

There is a vector field

s(y, t, n) (the Cauchy

stress vector) that

gives the force per

unit area exerted across a smooth oriented

surface S on the material on the negative side

of S by the material on the positive side.

22

n
s(y, t, n)

y

y(Ω, t)

S



Resultant surface force on y(E, t) is given by



∂y(E,t)
s(y, t, n) da.

23

s(y, t, n)y

n
Ω

E

y(E, t)



Piola-Kirchhoff stress vector

The Piola—Kirchhoff stress vector sR(x, t,N) is

parallel to the Cauchy stress vector s, but

measures the surface force per unit area in the

reference configuration, acting across the

(deformed) surface y(SR, t) having normal N

in the reference configuration.
24

N

x
SR y(x, t)

n
sR 
 s

y(SR, t)



So the resultant surface force on y(E, t) can

also be expressed as



∂E
sR(x, t,N) dA.

The change of variables formula

nda = (cofF)N dA.

relates the normal n and area element da in the

deformed configuration to the normal N and

area element dA in the reference configuration.
25



Balance law of linear 
momentum

d

dt




E
ρRv dx =




∂E
sR(x, t,N) dA+




E
ρRb dx,

for all E, where v(x, t) = ẏ(x, t) is the velocity

and b = b(y, t) is the body force density.

Cauchy showed that this implies that sR is

linear in N , i.e.

sR(x, t,N) = TR(x, t)N

where the second order tensor (matrix) TR is

called the Piola-Kirchhoff stress tensor. 26



The Cauchy stress tensor
sR dA = TRN dA

= TR(cofF)
−1nda

= TRJ
−1FTnda

= s da

Hence s(y, t) = T (y, t)n, where the

Cauchy stress tensor T is given by

T = J−1TRF
T .

27

T symmetric if and only balance of angular

momentum holds.



d

dt




E

�
1

2
ρR|yt|2+ ε

�
dx =




E
b · yt dx

+



∂E
tR · yt dA +




E
r dx−




∂E
qR ·N dA, (1)

for all E ⊂ Ω, where ρR = ρR(x) is the density

in the reference configuration, ε is the internal

energy density, b is the body force, tR is the

Piola-Kirchhoff stress vector, qR the reference

heat flux vector and r the heat supply.

Balance of Energy



We assume this holds in the form of the Clausius-

Duhem inequality

d

dt




E
η dx ≥ −




∂E

qR ·N
θ

dS +



E

r

θ
dx (2)

for all E, where η is the entropy and θ the

temperature.

Second Law of Thermodynamics



Thermoelasticity
For a homogeneous thermoelastic material we

assume that TR, qR, ε, η are functions of F, θ,∇θ.

30

Define the Helmholtz free energy by ψ = ε−θη.

Then a classical procedure due to Coleman and

Noll shows that in order for such constitutive

equations to be consistent with the Second

Law, we must have

ψ = ψ(F, θ), η = −Dθψ, TR = DFψ.



The Ballistic Free Energy

Suppose that the the mechanical boundary

conditions are that y = y(x, t) satisfies

y(·, t)|∂Ω1
= ȳ(·) and the condition that the

applied traction on ∂Ω2 = ∂Ω \ ∂Ω1 is zero,

and that the thermal boundary condition is

θ(·, t)|∂Ω3
= θ0, qR ·N |∂Ω\∂Ω3

= 0,

where θ0 > 0 is a constant. Assume that the

heat supply r is zero, and that the body force

is given by b = −gradyh(x, y),



Thus from (1), (2) with E = Ω and the

boundary conditions

d

dt




Ω



1

2
ρR|yt|2+ ε− θ0η+ h

�
dx ≤




∂Ω
tR · yt dS −




∂Ω

�
1− θ0

θ

�
qR ·N dS = 0.

So E = �
Ω

�
1
2ρR|yt|2+ ε− θ0η+ h

�
dx is a

Lyapunov function. (Note that it is not the

Helmholtz free energy ψ(F, θ) = ε(F, θ)−θη(F, θ)
that appears in the expression for E but

ε(F, θ) − θ0η(F, θ), where θ0 is the boundary

temperature.)



Thus it is reasonable to suppose that typically

(yt, y, θ) tends as t→∞ to a (local) minimizer

of E. If the dynamics and boundary conditions

are such that as t → ∞ we have yt → 0 and

θ → θ0, then this is close to saying that y tends

to a local minimizer of

Iθ0(y) =



Ω
[ψ(Dy, θ0) + h(x, y)] dx.

(The calculation given follows work of Duhem,

Ericksen and Coleman & Dill.)



Of course a lot of work would be needed to

justify this (we would need well-posedness of

suitable dynamic equations plus information on

asymptotic compactness of solutions and more;

this is currently out of reach). And what if the

minimum of the energy is not attained?

For some remarks on the case when θ0 depends

on x see J.M. Ball and G. Knowles,

Lyapunov functions for thermoelasticity with

spatially varying boundary temperatures. Arch.

Rat. Mech. Anal., 92:193—204, 1986.



Variational formulation of nonlinear 
elastostatics

The preceding calculation motivates seeking a

deformation y = y(x) minimizing the total free

energy at temperature θ given by

Iθ(y) =



Ω
ψ(Dy(x), θ) dx.

subject to suitable boundary conditions, where

we have assumed for simplicity that the body-

force potential is zero.

We regard θ as a constant parameter (no heat

conduction etc).



Properties of 

Assume

(H1) ψ(·, θ) : M3×3
+ → [0,∞) is C1.

(H2) ψ(F, θ)→∞ as detF → 0+

(H3) (Frame indifference) ψ(QF, θ) = ψ(F, θ)

for all Q ∈ SO(3), F ∈M3×3
+ .

Hence ψ(F, θ) = ψ(RU, θ) = ψ(U, θ) = ψ̃(C, θ).

36

ψ



Frame-indifference implies T 
symmetric

Hence balance of angular momentum is

automatically satisfied.

Proof. Let K be skew. Then

0 =
d

dt
ψ(eKtF, θ)|t=0

= DFψ(e
KtF, θ) ·KeKtF |t=0

= Jtr (TKT )

= JTijKij,

where we used that T = J−1TRFT .

37



Material symmetry
Some materials have a mechanical response

that depends on how they are oriented in the

reference configuration. To make this precise

we ask the question as to which initial linear

deformations H ∈ M3×3
+ do not change ψ?

That is, for which H do we have

ψ(F, θ) = ψ(FH, θ) for all F ∈M3×3
+ ?

These H form a subgroup S of M3×3
+ , the

symmetry group of ψ. For example, if ψ has

cubic symmetry we can take

S = P24 = {rotations of a cube}. 38



Isotropic materials
These are materials for which all rotations are

in the symmetry group, i.e. SO(3) ⊂ S.
Theorem

The following conditions are equivalent:

(i) ψ is isotropic;

(ii) ψ(F, θ) = h(IB, IIB, IIIB, θ) for some h;

(iii) ψ(F, θ) = Φ(v1, v2, v3, θ) for some Φ that

is symmetric with respect to permutations of

v1, v2, v3;

(iv) T (F, θ) = a01+ a1B+ a2B
2, where a0, a1,

a2 are scalar functions of IB, IIB, IIIB and θ

(Rivlin—Ericksen representation)
39



Linear elasticity
This is not a special case of nonlinear elastic-

ity but a linearization of it about a stress free

state, taken to be the reference configuration,

so that TR(1, θ) = DFψ(1, θ) = 0.

40

We write y(x, t) = x + u(x, t) where u(x, t) is

the displacement. Then

F (x, t) = 1+∇u(x, t),

and we seek a theory that applies when ∇u is

small.



The elasticity tensor
Writing F = 1+H and assuming ψ(·, θ) is C2

near 1 we have that

ψ(1 +H, θ) = ψ(1, θ) +
1

2
D2

Fψ(1, θ)(H,H) + o(|H|2)
TR(1 +H, θ) = DFTR(1, θ) ·H + o(|H|).

41

Set C(θ) = DFTR(1, θ) = D2
Fψ(1, θ) (elasticity

tensor). Thus C : M3×3 →M3×3, with

(C(θ)H)ij = cijkl(θ)Hkl

where the elasticities

c(θ)ijkl =
∂2ψ

∂Fij∂Fkl
(1, θ).



Symmetries of the elasticity 
tensor

Major symmetries cijkl = cklij
Minor symmetries (frame indifference)

cijkl = cjikl = cijlk

42

Isotropy: linearized stress given by

Ce = 2µe+λ(tr e) 1, where e = 1
2(Du+(Du)T ),

and λ, µ are the Lamé constants.



Exercise

A homogeneous isotropic elastic body in a stress-

free state in the reference configuration is rigidly

rotated through an angle θ, so that the

deformation is y(x) = R(θ)x, where

R(θ) =






cos θ sin θ 0
− sin θ cos θ 0
0 0 1




 .

Show that according to nonlinear elasticity the

body remains stress-free ...



... but that according to linear elasticity the

Cauchy stress has the form

T = −2(1− cos θ)






λ+ µ 0 0
λ+ µ 0

0 0 λ




 .

For a certain mild steel, λ = 102.9GPa, µ =

80.86GPa. Calculate the value of θ for which

the maximum ‘phantom’ stress (=|T11|) reaches
the value 465× 10−3GPa (which would in

tension cause fracture of the material).



Lecture 2

Existence of minimizers and analysis tools



Lp spaces

Let 1 ≤ p ≤ ∞.

Lp(Ω) = {u : Ω→ R : 
u
p <∞},

where


u
p =




(
�
Ω |u(x)|p dx)

1
p if 1 ≤ p <∞

ess supx∈Ω |u(x)| if p =∞

Lp(Ω;Rn) = {u = (u1, . . . , un) : ui ∈ Lp(Ω)}.

u(j) → u in Lp if 
u(j) − u
p → 0.

All mappings, sets assumed measurable, all

integrals Lebesgue integrals.



The Sobolev space W1,p

W1,p = {y : Ω→ R
3 : 
y
1,p <∞}, where


y
1,p =
�
(
�
Ω[|y(x)|p+ |Dy(x)|p] dx)1/p if 1 ≤ p <∞

ess supx∈Ω (|y(x)|+ |Dy(x)|) if p =∞

Dy is interpreted in the weak (or distributional)

sense, so that



Ω

∂yi
∂xα

ϕdx = −



Ω
yi

∂ϕ

∂xα
dx

for all ϕ ∈ C∞0 (Ω).

i.e. y ∈ Lp(Ω;R3),Dy ∈ Lp(Ω;M3×3).



Weak convergence
= convergence of averages

u(j) converges weakly to u (or weak* if p =∞)

in Lp, written u(j) ⇀ u (or u(j)
∗
⇀ u if p = ∞)

if



Ω
u(j)ϕdx→




Ω
uϕdx for all ϕ ∈ Lp′,

where 1
p +

1
p′ = 1.



The importance of weak convergence for

nonlinear PDE comes from the fact that if

1 < p ≤ ∞ then any bounded sequence in Lp

has a weakly convergent subsequence (weak*

if p =∞).

If the bounded sequence is a sequence of

approximating solutions to the PDE (e.g.

coming from some numerical method, or a

minimizing sequence for a variational problem),

then the weak limit is a candidate solution.

But then we need somehow to pass to the limit

in nonlinear terms using weak convergence.



Example: Rademacher functions.

λ0 1

a

b

θ θ(x) =

�
a if 0 < x ≤ λ
b if λ < x ≤ 1

extended periodically to R.

Exercise. Define θ(j)(x) = θ(jx).

(i) Prove that θ(j)
∗
⇀ λa+ (1− λ)b in L∞(0,1)

(ii) Deduce that if f : R→ R is continuous and

such that u(j)
∗
⇀ u in L∞ implies f(u(j))

∗
⇀ f(u)

in L∞ then f is affine, i.e. f(v) = αv + β for

constants α, β.

2−1 x



We say that y(j) ⇀ y in W1,p

if y(j) ⇀ y in Lp and Dy(j) ⇀ Dy in Lp

(⇀ replaced by
∗
⇀ if p =∞).

Question: for what continuous

f : M3×3 → R

does y(j)
∗
⇀ y in W1,∞ imply

f(Dy(j))
∗
⇀ f(Dy) in L∞?





Writing W(F ) = ψ(F, θ) we want to minimize

I(y) =



Ω
W (Dy) dx

in the set of admissible mappings

A = {y ∈W1,1 : detDy(x) > 0 a.e., y|∂Ω1
= ȳ}.

(Note that we have for the time being replaced

the invertibility condition by the local

condition detDy(x) > 0 a.e., which is easier to

handle.)



So far we have assumed that

(H1) W : M3×3
+ → [0,∞) is C1,

(H2) W(F )→∞ as detF → 0+,

so that setting W(F ) = ∞ if detF ≤ 0, we

have that W : M3×3 → [0,∞] is continuous,

and that W is frame-indifferent, i.e.

(H3) W(RF) = W(F ) for all R ∈ SO(3), F ∈M3×3.

(In fact (H3) plays no direct role in the

existence theory.)



Growth condition

1
|F |

y = Fx

lim
|F |→∞

W (F )

|F |3
=∞

says that you can’t get a finite line segment

from an infinitesimal cube with finite energy.



We will use growth conditions a little weaker

than this. Note that if

W(F) ≥ C(1 + |F |3+ε)

for some ε > 0 then any deformation with finite

elastic energy



Ω
W (Dy(x)) dx

and satisfying suitable boundary conditions is

in W1,3+ε and so is continuous by the Sobolev

embedding theorem.



Convexity conditions

The key difficulty is that W is never convex

Reasons

1. Convexity of W is inconsistent with (H2)

because M3×3
+ is not convex.

(Recall that W is convex if

W(λF + (1− λ)G) ≤ λW (F) + (1− λ)W (G)

for all F,G and 0 ≤ λ ≤ 1.)



detF < 0 detF > 0

A = diag (1,1,1)

B = diag (−1,−1,1)

1
2(A+B) = diag (0,0,1)

W (12(A+B)) =∞
> 1

2W (A) + 1
2W (B)

Remark: M3×3
+ is

not simply-connected.



2. If W is convex, then any equilibrium solution

(solution of the EL equations) is an absolute

minimizer of the elastic energy

I(y) =



Ω
W(Dy) dx.

Proof.

I(z) =



Ω
W (Dz) dx ≥




Ω
[W (Dy) +DW (Dy) · (Dz −Dy)] dx = I(y).

This contradicts common experience of nonunique

equilibria, e.g. buckling.



Rank-one matrices and the 
Hadamard jump condition

N

Dy = A, x ·N > k

Dy = B, x ·N < k x ·N = k

y piecewise affine

Let C = A − B. Then Cx = 0 if x · N = 0.

Thus C(z − (z · N)N) = 0 for all z, and so

Cz = (CN ⊗N)z. Hence

A−B = a⊗N
Hadamard

jump condition



x0

N

More generally this holds for y piecewise C1,

with Dy jumping across a C1 surface.

Dy+(x0) = A

Dy−(x0) = B A−B = a⊗N

Exercise: prove this by blowing up around x

using yε(x) = εy(x−x0ε ).
(See later for generalizations

when y not piecewise C1.)



Rank-one convexity
W is rank-one convex if the map

t �→W(F + ta⊗N) is convex for each

F ∈M3×3 and a ∈ R3, N ∈ R3.

Equivalently,

W(λF + (1− λ)G) ≤ λW (F ) + (1− λ)W(G)

if F,G ∈M3×3 with F −G = a⊗N and

λ ∈ (0,1).

(Same definition for Mm×n.)



Rank-one convexity is consistent with (H2) be-

cause det(F+ta⊗N) is linear in t, so that M3×3
+

is rank-one convex

(i.e. if F,G ∈ M3×3
+ with F − G = a ⊗ N then

λF + (1− λ)G ∈M3×3
+ .)

Rank-one cone

Λ = {a⊗N : a,N ∈ R3}F



If W ∈ C2(M3×3
+ ) then W is rank-one convex

iff

d2

dt2
W(F + ta⊗N)|t=0 ≥ 0,

for all F ∈M3×3
+ , a,N ∈ R3, or equivalently

D2W(F)(a⊗N, a⊗N) =
∂2W(F)

∂Fiα∂Fjβ
aiNαajNβ ≥ 0,

(Legendre-Hadamard condition).



Quasiconvexity (C.B. Morrey,1952)
Let W : Mm×n → [0,∞] be continuous. W is

said to be quasiconvex at F ∈ Mm×n if the

inequality



Ω
W (F +Dϕ(x)) dx ≥




Ω
W(F ) dx

holds for any ϕ ∈W
1,∞
0 (Ω;Rm), and is

quasiconvex if it is quasiconvex at every

F ∈Mm×n.
Here Ω ⊂ Rn is any bounded open set

with Lipschitz boundary, and W
1,∞
0 (Ω;Rm)

is the set of those y ∈W1,∞(Ω;Rm) which are

zero on ∂Ω (in the sense of trace).

definition

independent

of Ω

Could replace

by C∞0 (Ω;Rm)



Setting m = n = 3 we see that W is

quasiconvex if for any F ∈M3×3 the pure

displacement problem to minimize

I(y) =



Ω
W (Dy(x)) dx

subject to the linear boundary condition

y(x) = Fx, x ∈ ∂Ω,

has y(x) = Fx as a minimizer.



Another form of the definition that is

equivalent for finite continuous W is that



Q
W(Dy) dx ≥ (measQ)W (F )

for any y ∈W1,∞ such that Dy is the restriction

to a cube Q (e.g. Q = (0,1)n) of a Q-periodic

map on Rn with 1
measQ

�
QDy dx = F .

One can even replace periodicity with almost

periodicity (see J.M. Ball, J.C. Currie, and P.J.

Olver, J. Functional Anal., 41:135—174, 1981).



Theorem

If W is continuous and quasiconvex then W is

rank-one convex.

Proof

We prove that

W(F ) ≤ λW (F−(1−λ)a⊗N)+(1−λ)W(F+λa⊗N)

for any F ∈Mm×n, a ∈ Rm, N ∈ Rn, λ ∈ (0,1).

Without loss of generality we suppose that

N = e1. We follow an argument of Morrey.



λ−(1− λ)

ρ

−ρ

x1

xj

Dϕ = λa⊗ e1 −(1− λ)a⊗ e1

−ρ−1λ(1− λ)a⊗ ej

ρ−1λ(1− λ)a⊗ ej
D1

+D1-

Dj
+

Dj
-

The values of Dϕ are shown.

Let D = (−(1− λ), λ)× (−ρ, ρ)n−1 and let D±j
be the pyramid that is the convex hull of the

origin and the face of D with normal ±ej.

Let ϕ ∈W
1,∞
0 (D;Rm) be affine in each

D±j with ϕ(0) = λ(1− λ)a.



By quasiconvexity

(2ρ)n−1W (F ) ≤ (2ρ)n−1λ
n

W (F − (1− λ)a⊗ e1)

+
(2ρ)n−1(1− λ)

n
W (F + λa⊗ e1)

+
n�

j=2

(2ρ)n−1

2n
[W (F + ρ−1λ(1− λ)a⊗ ej)

+W (F − ρ−1λ(1− λ)a⊗ ej)]

SupposeW(F ) <∞. Then dividing by (2ρ)n−1,
letting ρ → ∞ and using the continuity of W ,

we obtain

W (F) ≤ λW (F − (1− λ)a⊗ e1) + (1− λ)W (F + λa⊗ e1)

as required.



Now suppose that W (F − (1 − λ)a ⊗ e1) and

W (F +λa⊗e1) are finite. Then g(τ) = W (F +

τa⊗ e1) lies below the chord joining the points

(−(1− λ), g(−(1− λ))), (λ, g(λ)) whenever

g(τ) < ∞, and since g is continuous it follows

that g(0) = W (F ) <∞.

λ−(1− λ)

g



Corollary

If m = 1 or n = 1 then a continuous W :

Mm×n → [0,∞] is quasiconvex iff it is convex.

Proof.

If m = 1 or n = 1 then rank-one convexity is

the same as convexity. If W is convex (for any

dimensions) then W is quasiconvex by Jensen’s

inequality:

1

measΩ




Ω
W (F +Dϕ) dx

≥W

�
1

measΩ




Ω
(F +Dϕ) dx

�
= W (F ).



Theorem (van Hove)

Let W (F ) = cijklFijFkl be quadratic. Then

W is rank-one convex ⇔ W is quasiconvex.

Proof.

Let W be rank-one convex. Since for any

ϕ ∈W
1,∞
0




Ω
[W (F +Dϕ)−W (F )] dx =




Ω
cijklϕi,jϕk,l dx

we just need to show that the RHS is ≥ 0.

Extend ϕ by zero to the whole of Rn and take

Fourier transforms.



By the Plancherel formula



Ω
cijklϕi,jϕk,l dx =




Rn
cijklϕi,jϕk,l dx

= 4π2



Rn
Re [cijklϕ̂iξj ¯̂ϕkξl] dξ

≥ 0

as required.



Null Lagrangians

When does equality hold in the quasiconvexity

condition? That is, for what L is



Ω
L(F +Dϕ(x)) dx =




Ω
L(F) dx

for all ϕ ∈W
1,∞
0 (Ω;Rm)? We call such L

quasiaffine.



Theorem (Landers, Morrey, Reshetnyak ...)

If L : M3×3 → R is continuous then the

following are equivalent:

(i) L is quasiaffine.

(ii) L is a (smooth) null Lagrangian, i.e. the

Euler-Lagrange equations DivDFL(Du) = 0

hold for all smooth u.

(iii) L(F) = const.+C ·F +D · cofF + edetF .

(iv) u �→ L(Du) is sequentially weakly

continuous from W1,p → L1 for sufficiently

large p (p > 3 will do).



Polyconvexity
Definition

W is polyconvex if there exists a convex

function g : M3×3×M3×3×R→ (−∞,∞] such

that

W (F ) = g(F, cof F,detF ) for all F ∈M3×3.



Lecture 3

Existence etc contd. and nonlinear elasticity model of 
crystals



Theorem

Let W be polyconvex, with g lower

semicontinuous. Then W is quasiconvex.

Proof. Writing J(F ) = (F, cof F,detF ) and

−



Ω
f dx =

1

measΩ




Ω
f dx,

−



Ω
W(F +Dϕ(x)) dx = −




Ω
g(J(F +Dϕ(x))) dx

Jensen
≥ g

�
−



Ω
J(F +Dϕ) dx

�

= g(J(F ))

= W(F ).



Remark

There are quadratic rank-one convex W that

are not polyconvex. Such W cannot be written

in the form

W(F ) = Q(F ) +
N�

l=1

αlJ
(l)
2 (F),

where Q ≥ 0 is quadratic and the J
(l)
2 are 2×2

minors (Terpstra, D. Serre).



Examples and counterexamples
We have shown that

W convex ⇒ W polyconvex ⇒ W quasiconvex

⇒ W rank-one convex.

The reverse implications are all false.

�⇐ W = det �⇐ Zhang

�⇐ Šverák

So is there a tractable characterization of

quasiconvexity? This is the main road-block

of the subject.



Theorem (Kristensen 1999)

There is no local condition equivalent to

quasiconvexity (for example, no condition

involving W and any number of its derivatives

at an arbitrary matrix F).

This might lead one to think that it is not

possible to characterize quasiconvexity. On the

other hand Kristensen also proved

Theorem (Kristensen)

Polyconvexity is not a local condition.



For example, one might contemplate a

characterization of the type

W quasiconvex ⇔ W is the supremum of a

family of special quasiconvex functions

(including null Lagrangians).



Quasiconvexity is essentially both necessary and

sufficient for the existence of minimizers (for

the sufficiency under suitable growth

conditions on W).

However, as well as being a practically

unverifiable condition, the existence theorems

based on quasiconvexity (still) do not really

apply to elasticity because they assume that

W is everywhere finite, whereas this is

contradicted by (H2).



Existence based on 
polyconvexity

We will show that it is possible to prove the

existence of minimizers for mixed boundary value

problems if we assume W is polyconvex and

satisfies (H2) and appropriate growth

conditions. Furthermore the hypotheses are

satisfied by various commonly used models of

natural rubber and other materials.



Theorem (Müller, Qi &Yan 1994, following JB 1977)

Suppose that W satisfies (H1), (H2) and

(H4) W(F) ≥ c0(|F |2+ |cof F |3/2)− c1 for all

F ∈M3×3, where c0 > 0,

(H5)W is polyconvex, i.e. W(F) = g(F, cof F,detF)

for all F ∈M3×3 for g continuous and convex.

Assume that there exists some y in

A = {y ∈W1,1(Ω;R3) : y|∂Ω1
= ȳ}

with I(y) <∞, where H2(∂Ω1) > 0 and

ȳ : ∂Ω1 → R
3. Then there exists a global min-

imizer y∗ of I in A.



The theorem applies to the Ogden materials:

Φ =
N�

i=1

αi(v
pi
1 + v

pi
2 + v

pi
3 − 3)

+
M�

i=1

βi((v2v3)
qi + (v3v1)

qi + (v1v2)
qi − 3)

+h(v1v2v3)

where αi, βi, pi, qi are constants and h is convex,

h(δ) → ∞ as δ → 0+, h(δ)
δ → ∞ as δ → ∞,

under appropriate conditions on the constants.



Sketch of proof

Let’s make the slightly stronger hypothesis that

g(F,H, δ) ≥ c0(|F |p+ |H|p′+ |δ|q)− c1,

for all F ∈ M3×3, where p ≥ 2, 1
p +

1
p′ = 1,

c0 > 0 and q > 1.

Let l = infy∈A I(y) <∞ and let y(j) be a

minimizing sequence for I in A, so that

lim
j→∞

I(y(j)) = l.



Then we may assume that for all j

l+1 ≥ I(y(j))

≥



Ω

�
c0[|Dy(j)|p+ |cofDy(j)|p′

+|detDy(j)|q]− c1
�
dx.

Lemma

There exists a constant d > 0 such that




Ω
|z|pdx ≤ d

�


Ω
|Dz|pdx+

�����




∂Ω1

z dA

�����

p�

for all z ∈W1,p(Ω;R3).



By the Lemma y(j) is bounded in W1,p and so

we may assume y(j) ⇀ y∗ in W1,p for some y∗.

But also we have that cof Dy(j) is bounded in

Lp′ and that detDy(j) is bounded in Lq. So

we may assume that cof Dy(j) ⇀ H in Lp′ and

that detDy(j) ⇀ δ in Lq.

By the results on the weak continuity of minors

we deduce that H = cof Dy∗ and δ = detDy∗.



Let u(j) = (Dy(j), cofDy(j),detDy(j)),

u = (Dy∗, cof Dy∗,detDy∗)). Then

u(j) ⇀ u in L1(Ω;R19).

But g is convex, and so (e.g. using Mazur’s

theorem),

I(y∗) =



Ω
g(u) dx ≤ lim inf

j→∞




Ω
g(u(j)) dx

= lim
j→∞

I(y(j)) = l.

But y(j)|∂Ω1
= ȳ ⇀ y∗|∂Ω1

in L1(∂Ω1;R
3) and

so y∗ ∈ A and y∗ is a minimizer.



Invertibility
We cheated and replaced the physical

requirement that y be invertible

(non-interpenetration of matter) with

the local condition detDy(x) > 0.

For pure displacement boundary-value prob-

lems, i.e. y|∂Ω = ȳ|∂Ω, there are extensions

of the global inverse function theorem for C1

maps to mapping belonging to Sobolev spaces

(JB 1981, Šverák 1988)



For mixed boundary-value problems P.G. Ciar-

let and J. Nečas (1985) proposed minimizing

I(y) =



Ω
W(Dy) dx

subject to the boundary condition y|∂Ω1
= ȳ

and the global constraint



Ω
detDy(x) dx ≤ volume (y(Ω)),

They showed that IF a minimizer y∗ is
sufficiently smooth then this constraint corre-

sponds to smooth self-contact.



They then proved the existence of minimizers

satisfying the constraint for mixed boundary

conditions under the growth condition

W (F) ≥ c0(|F |p + |cofF |q + (detF )−s)− c1,

with p > 3, q ≥ p
p−1, s > 0. (The point is to

show that the constraint is weakly closed.)



Martensitic phase 
transformations



These involve a change of shape of the crystal 
lattice of some alloy at a critical temperature.

e.g. cubic to tetragonal

θ > θc

cubic

austenite

θ < θc

three tetragonal variants

of martensite

cubic to 
orthorhombic
(e.g. CuAlNi)

θ < θc

six orthorhombic variants

of martensite



Atomistically sharp interfaces for 
cubic to tetragonal transformation 
in NiMn   

Baele, van Tenderloo, Amelinckx



Macrotwins in Ni65Al35 involving two 
tetragonal variants (Boullay/Schryvers)



Martensitic microstructures in CuAlNi (Chu/James)



Energy minimization problem
for single crystal



Energy-well structure

austenite

martensite

K(θ) = {A ∈M3×3
+ that minimize ψ(A, θ)}

Assume



For cubic to tetragonal N = 3 and

U1 = diag (η2, η1, η1), U2 = diag (η1, η2, η1),

U3 = diag (η1, η1, η2).

The Ui(θ) are the distinct matrices QU1(θ)Q
T

for Q ∈ P24 = cubic group.

For cubic to orthorhombic N = 6 and



Lecture 4

Microstructure



From the form of K(θ), we need to know what

the rank-one connections are between two given

energy wells SO(3)U , SO(3)V .

SO(3)U SO(3)VA
B

A−B = a⊗N �= 0



Theorem

Let U = UT > 0, V = V T > 0. Then SO(3)U,

SO(3)V are rank-one connected iff

U2 − V 2 = c(M ⊗N +N ⊗M) (∗)

for unit vectors M , N and some c �= 0.

If M �= ±N there are exactly two rank-one

connections between V and SO(3)U given by

RU = V + a⊗N, R̃U = V + ã⊗M,

for suitable R, R̃ ∈ SO(3), a, ã ∈ R3.



Proof. Note first that

det(V + a⊗N) = detV · det(1 + V −1a⊗N)

= detV · (1 + V −1a ·N).

Hence if 1 + V −1a · N > 0, then by the polar

decomposition theorem RU = V + a ⊗ N for

some R ∈ SO(3) if and only if

U2 = (V +N ⊗ a)(V + a⊗N)

= V 2+ V a⊗N +N ⊗ V a+ |a|2N ⊗N

= V 2+ (V a+
1

2
|a|2N)⊗N +N ⊗ (V a+

1

2
|a|2N).

If a �= 0 then V a+ 1
2|a|2N �= 0, since otherwise

V a · V −1a+ 1

2
|a|2V −1a ·N = 0,

i.e. 2+V −1a·N = 0. This proves the necessity

of (*).



Conversely, suppose (∗) holds. We need to

find a �= 0 such that V a + 1
2|a|2N = cM and

1 + V −1a · N > 0. So we need to find t such

that

a = cr+ ts

where |cr+ts|2+2t = 0 and 1+(cr+ts) ·s > 0,

where we have written r = V −1M, s = V −1N .

The quadratic for t has the form

t2|s|2+2t(1 + cr · s) + c2|r|2 = 0

which has roots

t =
−(1 + cr · s)±

�
(1 + cr · s)2 − c2|r|2|s|2

|s|2
.



Since detU2 = detV 2 det(1+ c(r ⊗ s+ s⊗ r)),

det(1+c(r⊗s+s⊗r)) = (1+cr ·s)2−c2|r|2|s|2
is positive and the roots are real. In order to

satisfy 1 + cr · s+ t|s|2 > 0 we must take the

+ sign, giving a unique a, and thus unique R

such that RU = V + a⊗N .

Similarly we get a unique ã and R̃ such that

R̃U = V + ã⊗M .

To complete the proof it suffices to check the

following

Lemma

If c(M ⊗ N +N ⊗M) = c′(P ⊗ Q+ Q ⊗ P ) for

unit vectors P,Q and some constant c′, then
either P ⊗Q = ±M ⊗N or P ⊗Q = ±N ⊗M.



Corollaries.

1. There are no rank-one connections between

matrices A,B belonging to the same energy

well.

Proof. In this case U = V , contradicting c �= 0.

2. If Ui, Uj are distinct martensitic variants

then SO(3)Ui and SO(3)Uj are rank-one

connected if and only if det(U2
i −U2

j ) = 0, and

the possible interface normals are orthogonal.

Variants separated by such interfaces are called

twins.

Proof. Clearly det(U2
i − U2

j ) = 0 is

necessary, since the matrix on the RHS of (*)

is of rank at most 2.



Conversely suppose that det(U2
i − U2

j ) = 0.

Then U2
i − U2

j has the spectral decomposition

U2
i − U2

j = λe⊗ e+ µê⊗ ê,

and since Uj = RUiR
T for some R ∈ P24 it

follows that tr (U2
i − U2

j ) = 0. Hence µ = −λ
and

U2
i − U2

j = λ(e⊗ e− ê⊗ ê)

= λ

�
e+ ê√

2
⊗ e− ê√

2
+

e− ê√
2
⊗ e+ ê√

2

�

,

as required.



3. There is no rank-one connection between

pairs of matrices A ∈ SO(3) and B ∈ SO(3)Ui

unless Ui has middle eigenvalue 1.

Remark: Another equivalent condition due to

Forclaz is that det(Ui − Uj) = 0. This is

because of the surprising identity (not valid in

higher dimensions)

det(U2
i −U2

j ) = (λ1+λ2)(λ2+λ3)(λ3+λ1) det(Ui−Uj).

Proof. If there is a rank-one connection then

1 is an eigenvalue since det(U2
i − 1) = 0.



Choosing e with M ·e > 0, N ·e > 0 and M ·e > 0,

N ·e < 0, we see that 1 is the middle eigenvalue.

Conversely, if 1 is the middle eigenvalue

U2
i − 1 =

λ23 − λ21
2

((αe1+ βe3)⊗ (−αe1+ βe3)

+(−αe1+ βe3)⊗ (αe1+ βe3)) ,

where α =

�
1−λ21
λ23−λ21

, β =

�
λ23−1
λ23−λ21

.



Simple laminate

Layering twins



Some general considerations 
The microstructures arising from martensitic

transformations are driven by compatibility of

gradients. The product phases have to fit

together geometrically, generating a

microgeometry that is partly captured by

gradient Young measures (see below).

In trying to understand why we see some

microstructures and not others, we will use

methods based on energy minimization.

However, the formation of microstructure is

obviously a pattern formation problem, which

really should be treated using an appropriate

dynamical model.



Such a model should tell us which morpholog-

ical features are predictable (e.g. via invariant

manifolds, attractors ) in a given experiment,

and predict them.

However it is not clear what are appropriate

dynamical equations, and both theoretical and

numerical analysis currently intractable for any

such model.

Unfortunately static theories are not truly

predictive:

(i) Large redundancy in energy minimizers.

(ii) The microstructure geometry is typically

assumed a priori, and shown to be consistent

with the theory (although interesting details

may be predicted).



The free-energy function ψ(·, θ) is not quasi-

convex. This is because the existence of twins

implies that ψ(·, θ) is not rank-one convex.

So we expect the minimum of the energy in

general not to be attained, with minimizing

sequences y(j) in general generating infinitely

fine microstructures.



Gradient Young measures
Given a sequence of gradients

Dy(j), fix j, x, δ.

Let E ⊂M3×3, where
M3×3 = {3× 3 matrices}

νx,j,δ(E) =
vol {z ∈ B(x, δ) : Dy(j)(z) ∈ E}

vol B(x, δ)

νx(E) = lim
δ→0

lim
j→∞

νx,j,δ(E)

is the gradient Young measure generated by

Dy(j).



Gradient Young measure of simple 
laminate





Quasiconvexification

Let K ⊂M3×3 be compact,

e.g. K =
�N
i=1 SO(3)Ui(θ).

Of functions:

Wqc = sup{g quasiconvex : g ≤W}.

Of sets:

A subset E ⊂ M3×3 if E = g−1(0) for some

non-negative quasiconvex function g.



Kqc = quasiconvexificationofK

=
�
{E : K ⊂ E, E quasiconvex}

= {ν̄ : ν gradient Young measure ,

supp ν ⊂ K}
= {F ∈M3×3 : g(F ) ≤ max

A∈K
g(A)

for all quasiconvex g}.



Austenite-martensite interfaces

Lecture 5



How does austenite transform to martensite as θ
passes through θc?

It cannot do this by means of an exact interface 
between austenite and martensite, because this 
requires the middle eigenvalue of Ui to be one, 
which in general is not the case (but see studies of 
James et al on low hysteresis alloys).

So what does it do?



(Classical) austenite-martensite interface in CuAlNi
(courtesy C-H Chu and R.D. James)



Gives formulae of  the 
crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for 
cubic-to-tetragonal



Rank-one connections for A/M interface



Possible lattice parameters
for classical austenite-martensite
interface .



Macrotwins in Ni65Al35 involving two 
tetragonal variants (Boullay/Schryvers)



Crossings and steps



Macrotwin formation

Similar effects and analysis

in β-titanium: T. Inamura,

M. Ii, N. Kamioka,

M. Tahara, H. Hosoda,

S. Miyazaki ICOMAT 2014



B/Schryvers 2003

Different martensitic plates 
never compatible 
(Bhattacharya)



Nonclassical austenite-martensite
interfaces (B/Carstensen 97)



Nonclassical interface with double 
laminate



Nonclassical interface calculation

νx = δ1

νx = ν
supp ν ⊂

�
N

i=1
SO(3)Ui



Two martensitic wells



For a nonclassical interface we need that for

some a, b, c satisfying these inequalities the mid-

dle eigenvalue of FTF is one, and we thus get

(Ball & Carstensen 97) such an interface pro-

vided

η−12 ≤ η1 ≤ 1 or 1 ≤ η−12 ≤ η1 if η3 < 1,

η2 ≤ η−11 ≤ 1 or 1 ≤ η2 ≤ η−11 if η3 > 1.

The proof is by calculating Kpc and showing

by construction that any F ∈ Kpc belongs to

Kqc.



More wells – necessary 
conditions

K =
N�

i=1

SO(3)Ui



First choose ϕ(G) = ± det(G). Then

detF = σmin(F )σmid(F )σmax(F ) = ηminηmidηmax.



Finally choose ϕ(G) = σmax(cofG), which is a

convex function

of cof (G) and hence polyconvex. Then

σmid(F )σmax(F ) ≤ ηmidηmax

Combining these inequalities we get that

ηmin ≤ η−1mid ≤ ηmax.



For cubic to tetragonal we have that

U1 = diag (η2, η1, η1), U2 = diag (η1, η2, η1),

U3 = diag (η1, η1, η2),

and the necessary conditions become

η1 ≤ η−11 ≤ η2 if η1 ≤ η2,

η2 ≤ η−11 ≤ η1 if η1 ≥ η2.

But these turn out to be exactly the conditions

given by the two-well theorem to construct a

rank-one connection from

(SO(3)U1 ∪ SO(3)U2)
qc to the identity!

Hence the conditions are sufficient also.



Values of deformation parameters allowing classical and 
nonclassical austenite-martensite interfaces



Interface normals



Experimental 
procedure
(H. Seiner)



Optical 
micrograph 
(H. Seiner) of 
non-classical 
interface 
between 
austenite and 
a martensitic 
microstructure
. 
The arrows 
indicate the 
orientations of 
twinning 
planes of 
Type-II and 
compound 
twinning 
systems





Twin crossing gradients



Analysis: JB, K. Koumatos, H. Seiner 2010





Possible volume fractions



Possible nonclassical interface 
normals



Curved interface between crossing twins and austenite resulting from the inhomogeneity 
of compound twinning. (Optical microscopy,H. Seiner)



Construction of curved interface

This is possible at zero stress provided 1 is

rank-one connected to a relative interior point

of the set K = ∪Ni=1SO(3)Ui of the martensitic

wells, where relative is taken with respect to

the set D = {A : detA = detUi}. Such relative

interior points are known to exist in the cubic-

to-tetragonal case due to a result by Dolzmann

and Kirchheim.

JB, K. Koumatos 2014
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Complex microstructures. Nucleation of austenite.



Zn45Au30Cu2 ultra low hysteresis alloy
Yintao Song, Xian Chen, Vivekanand Dabade, 
Thomas W. Shield, Richard D James, Nature, 502, 85–88 (03 October 2013)



CuZnAl  microstructure:  Michel Morin (INSA de Lyon)
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Proof of Theorem 2 uses quasiregular maps,

which are useful also in constructing nonpoly-

convex quasiconvex functions. False in higher

dimensions (Iwaniec, Verhota, Vogel 2002)



Application to polycrystals



Question: Is it true that whatever the orien-

tation of the planar interface between the two

grains there must be a nontrivial microstruc-

ture in both grains?

Results 1. Whatever the orientation there al-

ways exists a zero-energy microstructure which

has a pure phase (i.e. νx = δA) in one of the

grains.

Microstructure in polycrystalline

BaTiO3 (G. Arlt).



Result 2. Suppose that α = π/4. Then it is im-

possible to have a zero-energy microstructure

with a pure phase in one of the grains if the

interface contains a normal (cos θ, sin θ) ∈ D1

and another normal (cos θ′, sin θ′) ∈ D2, where

D1 = (
π

8
,
3π

8
)∪(5π

8
,
7π

8
)∪(9π

8
,
11π

8
)∪(13π

8
,
15π

8
)

D2 = (
−π
8

,
π

8
)∪(3π

8
,
5π

8
)∪(7π

8
,
9π

8
)∪(11π

8
,
13π

8
)



Proofs use:

1. A reduction to the case m = n = 2 using

the plane strain result for the two-well problem

(JB/James).

2. The characterization of the quasiconvex

hull of two wells (JB/James), which equals

their polyconvex hull.

3. Use of the generalized Hadamard jump con-

dition to show that there has to be a rank-one

connection b⊗N between the polyconvex hulls

for each grain.

4. Long and detailed calculations.



Nucleation of 
austenite in martensite

JB, Konstantinos Koumatos, Hanus Seiner
2012, 2013



Experimental observations
Specimen: single crystal of CuAlNi prepared by

the Bridgeman method in the form of a

prismatic bar of dimensions 12×3×3mm3 in

the austenite with edges approximately along

the principal cubic directions.

By unidirectional compression along its longest

edge, the specimen was transformed into a

single variant of mechanically stabilized

martensite. Due to the mechanical stabiliza-

tion effect the reverse transition did not occur

during unloading.



The martensite-to-austenite transition temper-

atures were AS = −6◦C and AF = 22◦C. The

critical temperature TC for the transition from

the stabilized martensite induced by homoge-

neous heating for this specimen was ∼60◦C.
This was estimated from optical observations

of the transition with one of the specimen faces

laid on and thermally contacted with a gradu-

ally heated Peltier cell, using a heat conducting

gel.



The specimen was freely laid on a slightly pre-

stressed, free-standing polyethylene (PE) foil

to ensure minimal mechanical constraints, then

locally heated by touching its surface with an

ohmically heated tip of a (digital) soldering

iron with temperature electronically controlled

to be 200◦C, i.e. significantly above the AS

and TC temperatures.

Localized heating experiment



Single crystal of CuAlNi. Pure variant of martensite. Heated by tip of soldering iron. 



When touched at a corner, nucleation of austen-

ite occured there immediately. When touched

at an edge or face, nucleation did not oc-

cur at the site of the localized heating, but

at some corner, after a time delay (sufficient

for heat conduction to make the temperature

there large enough).









Proposed explanation. Nucleation is geomet-

rically impossible in the interior, on faces and

at edges, but not at a corner. We express this

by proving in a simplified model that if Us de-

notes the initial pure variant of martensite then

at Us the free-energy function is quasiconvex

(in the interior), quasiconvex at the boundary

faces, and quasiconvex at the edges, but not

at a corner.

To make the problem more tractable we as-

sume that ψ(A, θ) := W (A) is infinite outside

the austenite and martensite energy wells.



Idealized model

I(ν) =



Ω
!νx,W " dx =




Ω




M3×3
W (A) dνx(A) dx,

where

W(A) =






−δ A ∈ SO(3)

0 A ∈ �6i=1 SO(3)Ui
+∞ otherwise

,

and δ > 0.

So W (A) <∞ on

K = SO(3) ∪
6�

i=1

SO(3)Ui



Theorem I(ν) ≥ I(δUs)

(quasiconvexity at Us)

Nucleation impossible in the interior



Similarly in these cases we have

Theorem I(ν) ≥ I(δUs)

(quasiconvexity at the boundary and

edges at Us)

Nucleation impossible at faces or edges



Nucleation possible at a corner

I(ν) < I(δUs)

I not quasiconvex at such a corner.



Remarks

1. We are able to prove quasiconvexity at faces

with most, but not all, normals. What would

happen for a specimen that was a ball?

Possible face normals for which we
can prove quasiconvexity, using
deformation parameters for Seiner’s
specimen.



2. We have shown that a localized nucle-

ation can only occur at a corner, but one could

hope to show using methods of Grabovsky &

Mengesha (2009) that any ν sufficiently close

to δUs with I(ν) < I(δUs) must involve nucle-

ation at a corner.



Mechanical stabilization
Above AS = −6◦C the energy of the

austenite is less than that of the martensite.

So why doesn’t the transition from the

stabilized martensite to austenite by

homogeneous heating take place at a much

lower temperature than Tc ∼ 60◦C? In other

words, what is the explanation for the

mechanical stabilization effect?



One piece of evidence is that under

homogeneous heating the nucleation still takes

place at a corner, suggesting the relevance of

the quasiconvexity calculations.

While a general explanation is lacking, a

relevant consideration is the following: if we

nucleate a small volume V of austenite from

a single laminate of martensite (idealizing the

thermally induced martensite) by introducing

an austenite-martensite interface at a corner,

we reduce the energy by δV plus a term pro-

portional to V , representing the energy of the

interfaces between twins in the laminate which

are no longer there in the austenite.



Lecture 7

Local minimizers with and without interfacial energy



Incompatibility-induced hysteresis

JB/James 2014

Example.

Consider the integral

I(y) =



Ω
W(Dy) dx,

where W : M3×3 → R and W has two

local minimizers at A,B with rank (A−B) > 1

and W (A)−W (B) > 0 sufficiently small.

A
B

W(A)−W(B)



Claim. Under suitable growth hypotheses on

W , ȳ(x) = Ax+ c is a local minimizer of I in

L1(Ω;R3), i.e. there exists ε > 0 such that

I(y) ≥ I(ȳ) if
�
Ω |y − ȳ| dx < ε.

Idea: since A and B are incompatible, if we

nucleate a region in which Dy(x) ∼ B there

must be a transition layer in which the increase

of energy is greater than the decrease of energy

in the nucleus.

Dy ∼ B

transition

layer

Dy(x) = A
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However the

is unresolved.



188



189

Transition layer estimate:

Suppose K1, K2 ⊂Mm×n incompatible,

Ω ⊂ Rn a bounded Lipschitz domain.

Let 1 < p < ∞. Then there exist constants

ε0(K1,K2, p,Ω) > 0, γ0(K1,K2, p,Ω) > 0 such

that if 0 ≤ ε ≤ ε0, y ∈W1,p(Ω;Rm) then



Tε(y)
[1 + |Dy|p] dx

≥ γ0min{Ln(Ω1,ε(y)),Ln(Ω2,ǫ(y))},

where

Ωi,ε(y) = {x ∈ Ω : Dy(x) ∈ Nε(Ki)}

Tε(y) = {x ∈ Ω : Dy(x) �∈ Nε(K1) ∪Nε(K2)}



Hence one can prove a metastability theorem

for microstructures with a pair of incompatible

sets K1,K2 replacing the matrices A,B.

Applications:

1. Biaxial experiments on CuAlNi of Chu &James.

2. Pure dilatational transformations with en-

ergy wells SO(3) and kSO(3) with k > 0.

3. Terephthalic acid. Huge transformation

strain

U =






0.970 0.038 −0.121
0.038 0.835 −0.017
−0.121 −0.017 1.298








Interfacial energy



NiMn   Baele, van Tenderloo, Amelinckx

Some interfaces are atomistically sharp

while others are diffuse …



Diffuse (smooth) 
interfaces in 
Pb3V2O8

Manolikas, van Tendeloo, 
Amelinckx 



Diffuse interface in perovskite (courtesy Ekhard Salje)



No interfacial energy



Second gradient model for diffuse interfaces
JB/Elaine Crooks (Swansea) 

How does interfacial energy affect the predic-

tions of the elasticity model of the austenite-

martensite transition?



Use simple second gradient model of interfacial

energy (cf Barsch & Krumhansl, Salje ), for

which energy minimum is always attained.

It is not clear how to justify this model on the

basis of atomistic considerations (the wrong

sign problem — see, for example, Blanc, LeBris,

Lions).



Hypotheses
No boundary conditions (i.e. boundary trac-

tion free), so result will apply to all boundary

conditions.



by Friesecke, James, Müller Rigidity Theorem



Idea of proof

Reduce to problem of local minimizers for



Smoothing of twin boundaries



Lemma

Let Dy(x) = F (x·N), where F ∈W
1,1
loc (R;M

3×3)
and

F (x ·N)→ A,B

as x · N → ±∞. Then there exist a constant

vector a ∈ R3 and a function u : R → R3 such

that

u(s)→ 0, a as s→ −∞,∞,

and for all x ∈ R3

F (x ·N) = A+ u(x ·N)⊗N.

In particular

B = A+ a⊗N.







Sharp interface models

However this is not a sensible model, because

if we have a sharp interface and approximate y

by a smooth deformation, then the interfacial

energy disappears and the elastic energy hardly

changes. Thus a minimizer can never have a

sharp interface.



A model allowing smooth and sharp interfaces
JB/ Carlos Mora-Corral (Madrid)





One-dimensional case




