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Macrotwins in NigzAl;s Involving two
tetragonal variants (Boullay/Schryvers)




Martensitic microstructures in CuAINi (Chu/James)




CuZnAl microstructure: Michel Morin (INSA de Lyon)



Plan of the course

Monday

1. Nonlinear elasticity.

2. Existence of minimizers and analysis tools.
Wednesday

3. Existence etc contd. and nonlinear elasticity model of
crystals.

4. Microstructure.

Friday

5. Austenite-martensite interfaces.

6. Complex microstructures. Nucleation of austenite.
Saturday

7. Local minimizers with and without interfacial energy.



Nonlinear elasticity

The central model of solid mechanics. Rubber, metals (and
alloys), rock, wood, bone ... can all be modelled as elastic
materials, even though their chemical compositions are
very different.

For example, metals and alloys are crystalline, with grains
consisting of regular arrays of atoms. Polymers (such as
rubber) consist of long chain molecules that are wriggling in
thermal motion, often joined to each other by chemical
bonds called crosslinks. Wood and bone have a cellular
structure ...



1678
1705
1742
1744
1821

1822

A brief history

Hooke's Law

Jacob Bernoulli

Daniel Bernoulli

L. Euler elastica (elastic rod)

Navier, special case of linear elasticity via molecular model
(Dalton’s atomic theory was 1807)

Cauchy, stress, nonlinear and linear elasticity

For a long time the nonlinear theory was ignored/forgotten.

1927 A.E.H. Love, Treatise on linear elasticity

1950's R. Rivlin, Exact solutions in incompressible nonlinear elasticity
(rubber)

1960 -- 80 Nonlinear theory clarified by J.L. Ericksen, C. Truesdell ...
1980 -- Mathematical developments, applications to materials,

biology ...
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Kinematics

y

Reference configuration Deformed configuration

Q ¢ R3 bounded domain with
(Lipschitz) boundary 0X2.

Label the material points of the body by the
positions x € €2 they occupy Iin the reference

configuration. °



Reference configuration Deformed configuration

Typical motion described by a sufficiently smooth
map y : Q2 x [t1,t2] = R>, y = y(x,1).

Deformation gradient
F = Dy(z,t), Fjo = 54

T axa.



Invertibility

To avoid interpenetration of matter, we re-
quire that for each ¢, y(-,t) is invertible on €2,
with sufficiently smooth inverse z(-,t). We also
suppose that y(-,t) is orientation preserving;
hence

J=detF(z,t) >0 for xz € Q2. (1)

By the inverse function theorem, if y(-,t) is C1,
(1) implies that y(-,t) is locally invertible.
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Examples.

. )
P e ||F }

- -
A

ot o
o

locally invertible but not globally invertible

Y
f"ﬁ!_ﬂ_._:r oA _W\

y(-,t) invertible on {2 "
not on ()



Global inverse function theorem for
C! deformations

Let Q c R3 be a bounded domain with
Lipschitz boundary 92 (in particular €2 lies on
one side of 8 locally). Let y € C1(&; R3) with

det Dy(z) > 0O for all z € Q

and y|go one-to-one. Then y is invertible on
Q.

Proof uses degree theory. cf Meisters and Olech,
Duke Math. J. 30 (1963) 63-80.
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Notation

<
w
X
w
|

{real 3 x 3 matrices}
M3%3 = {Fe M33 :detF >0}

SO(3) = {ReM>>3 :R'R=1,detR=1}
{rotations}.

If a € R3 b e R3 the tensor product a ® b is
the matrix with the components

(a ® b)Z] — azb]
[Thus (a®b)e= (b-c)a if c € R3]



Sguare root theorem

Let C' be a positive symmetric 3 x 3 matrix.
Then there is a unique positive definite
symmetric 3 x 3 matrix U such that

C =U?

(we write U = C1/2).
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Formula for the square root

Since C' is symmetric it has a spectral
decomposition

3
C = Z Ae; R e;.
i=1
Since C' > 0, it follows that A\; > 0. Then

3
1=1

satisfies U2 = C. 9



Polar decomposition theorem

Let I € Mj’_xg’. Then there exist positive

definite symmetric U, V and R € SO(3) such
that

F'=RU=VR.

These representations (right and left
respectively) are unique.
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Proof. Suppose F = RU. Then U? = F1F :=
C. Thus if the right representation exists U
must be the square root of . But if a €
R3 is nonzero, Ca-a = |Fal? > 0, since F is
nonsingular. Hence C' > 0. So by the square
root theorem, U = C1/2 exists and is unique.
Let R=FU~1. Then

RIR=U"1Flry-1l1=1

and det R = det F(detU)~ 1 = +1.

The representation FF= V R is obtained simi-
larly using B := FF1 and it remains to prove
R = Ry. But this follows from F = Ry (RIVRy),
and the uniqueness of the right representation. i,



Strain tensors and singular

values
For FF = Dy, U and V are the right and left
stretch tensors,;
C =U2=FI'F and B=V?2 = FFT are the
right and left Cauchy—Green strain (tensors)
respectively.

T he strictly positive eigenvalues vq, vo, vz of U
(or V') are the principal stretches (= singular
values of F).
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Invariants

The characteristic polynomial of C is given by

det(C — A1) = A3+ 1T-20° —IIA+ 111,
= (v — N3 — A)(v5 — A)
Hence
I = v%—l—v%—l—v% = trC
Il = v%v% v%v% v%v%
I[IIy = (vivovg)? = detC.

Note that the invariants of B are the same as
those of C. 19



State of strain
FiXx z, t. Then

y(xz + 2,t) = y(z,t) + F(z,t)z + o(|z]).

Thus to first order in z the deformation is
given by a rotation followed by a stretching
of amounts v; along mutually orthogonal axes,
or vice versa. Equivalently, since

F = RU = RQDQ' = RDQ?,

where D = diag (v1,vo,v3), it is given by a ro-
tation, followed by stretching along the COOr-
dinate axes, then another rotation.



Example: simple shear

y(z) = (z1 + vz2, 2, 73). // i
i)

v =tané T i/
6 = angle of shear |

(cosw Sin 1 O) (cosy  siny 0 )
F = '

—siny cosy O
O O 1

tany = 4. As v — 04 the eigenvectors of U
and V tend to \/Li(el -+ 62),%(61 — 62),63. 21
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Cauchy’s stress hypothesis

/s(ytn) T
There is a vector field | AL
s(y,t,n) (the Cauchy \ %/% |
stress vector) that / S /
gives the force per e
unit area exerted across a smooth oriented
surface S on the material on the negative side

of § by the material on the positive side.
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Resultant surface force on y(FE,t) is given by

/<3‘y(E,t) s(y,t,n) da.
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Piola-Kirchhoff stress vector

= g

TN R Rl
m.\l g, / I:I ;‘ / :

(Spt) |
w\SR F/ ;/ y(a: t)y( R>t) |

u:' o

'.\\-“_ '

The Piola—Kirchhoff stress vector sp(x,t, N) is
parallel to the Cauchy stress vector s, but
measures the surface force per unit area in the
reference configuration, acting across the

(deformed) surface y(Sp,t) having normal N
In the reference configuration.



So the resultant surface force on y(FE,t) can
also be expressed as

£ N)dA.
/aE sp(z )

The change of variables formula

nda = (Cof F)N dA.

relates the normal n and area element da Iin the
deformed configuration to the normal N and
area element dA in the reference configuratiozns.



Balance law of linear
momentum

d
il d :/ +. N)dA / bda,
dt/EpRv x 8ESR(£E )dA+ [ prbdx

for all E, where v(x,t) = y(x,t) is the velocity
and b = b(y,t) is the body force density.

Cauchy showed that this implies that sp is
linear in N, I.e.

sp(x,t, N) = Tgr(z,t)N

where the second order tensor (matrix) Tp is
called the Piola-Kirchhoff stress tensor. 26



The Cauchy stress tensor
spdA TrN dA
Tr(cof F) 'nda
TRJ_lFTn da

sda

Hence s(y,t) = T'(y,t)n, where the
Cauchy stress tensor T is given by

T =J lTpF'.

T symmetric if and only balance of angular
momentum holds.
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Balance of Energy

d r /1 .
2 (= dr = /b- d
dt/E (20R|yt| +s) T L0 yede
to . dA / d — 'NdA, (1
o LRt Lrdr— [ 4R (1)

for all E C 2, where pp = pr(x) is the density
in the reference configuration, ¢ is the internal
energy density, b is the body force, tp is the
Piola-Kirchhoff stress vector, qr the reference
heat flux vector and r the heat supply.




Second Law of Thermodynamics

We assume this holds in the form of the Clausius-
Duhem inequality

d qr - N T
Y[ nd >—/ ds /—d >
dt/E" N Y t g (2

for all E, where n is the entropy and 6 the
temperature.




Thermoelasticity

For a homogeneous thermoelastic material we
assume that T'g, qpr, €, n are functions of F, 0, V6.

Define the Helmholtz free energy by 1 = €—0n.
Then a classical procedure due to Coleman and
Noll shows that in order for such constitutive
equations to be consistent with the Second
Law, we must have

¢ — w(Fae)a T — —DGTPa TR — DF¢
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The Ballistic Free Energy

Suppose that the the mechanical boundary
conditions are that yv = y(x,t) satisfies

y(-, 1), = y(-) and the condition that the
applied traction on 092, = 022 \ 0271 is zero,
and that the thermal boundary condition is

0(-,t) o0, = 00, ar - Nlo\oo; = O,

where 6 > 0 is a constant. Assume that the
heat supply r is zero, and that the body force
is given by b = —grad,h(z,y),



hus from (1), (2) with £ = and the
boundary conditions

d [ 71
— — — 0 hi d <
dt/Q lsz\yt\ + e — 0gn + ] r <

0o
rowas— [ (1-%) g Nas = o
/mR " [ (1-)an

So £ = Jq |3pRlyt|? +¢—0on+h| dz is a
Lyapunov function. (Note that it is not the
Helmholtz free energy ¢(F,0) = e(F,0)—0n(F,0)
that appears in the expression for £ but
e(F,0) — Ogn(F,0), where 0 is the boundary
temperature.)



Thus it is reasonable to suppose that typically
(y;,y,0) tends as t — oo to a (local) minimizer
of £. If the dynamics and boundary conditions
are such that as t -+ oo we have y — 0 and
6 — 0p, then this is close to saying that y tends
to a local minimizer of

loo(y) = |_[¥(Dy, 00) + h(,y)] do.

(The calculation given follows work of Duhem,
Ericksen and Coleman & Dill.)



Of course a lot of work would be needed to
justify this (we would need well-posedness of
suitable dynamic equations plus information on
asymptotic compactness of solutions and more;
this is currently out of reach). And what if the
minimum of the energy is not attained?

For some remarks on the case when 6y depends
on x see J.M. Ball and G. Knowles,

LLyapunov functions for thermoelasticity with
spatially varying boundary temperatures. Arch.
Rat. Mech. Anal., 92:193—-204, 1986.



Variational formulation of nonlinear
elastostatics

The preceding calculation motivates seeking a
deformation y = y(x) minimizing the total free
energy at temperature 6 given by

Ii(y) = [ ¥(Dy(x),0) da.

subject to suitable boundary conditions, where
we have assumed for simplicity that the body-
force potential is zero.

We regard 6 as a constant parameter (no heat
conduction etc).



Properties of ¢

Assume

(H1) %(-,0) : M3*3 — [0,00) is CL.

(H2) ¥ (F,0) — oo as det FF — 0+

(H3) (Frame indifference) ¥ (QF,0) = (F,0)
for all Q € SO(3), F € M3*>.

Hence 4 (F,0) = % (RU,0) = (U,0) = (C,0).
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Frame-indifference implies T
symmetric

Hence balance of angular momentum is
automatically satisfied.
Proof. Let K be skew. Then

d . Kt
0 = 2 F 0)|,—
dt¢(€ )|t=0

Dpip(e"'F,0) - Ke"'F|;—g
Jtr (TK1)

J1; K5,

where we used that T = J1TRpF7T.
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Material symmetry

Some materials have a mechanical response
that depends on how they are oriented in the
reference configuration. To make this precise
we ask the question as to which initial linear
deformations H & Mim do not change 7
That is, for which H do we have

Y(F,0) = ¢(FH,0) for all F € M7"7

These H form a subgroup S of MiX3, the
symmetry group of . For example, if 1 has
cubic symmetry we can take

S = P?* = {rotations of a cube}.

38



Isotropic materials

These are materials for which all rotations are
in the symmetry group, i.e. SO(3) C S.

T heorem

T he following conditions are equivalent:

(i) v is isotropic;

(ii) v(F,0) = h(Ig,IIg,I1Ig,0) for some h;

(iii) Y (F,0) = P(vq,vo,v3,0) for some P that

IS symmetric with respect to permutations of
v1, V2,03,

(iv) T(F,0) = agl + a1 B + a»B?, where ag, a1,
ap are scalar functions of Ig, Ilg, IIIg and 0
(Rivlin—Ericksen representation)



Linear elasticity

This is not a special case of nonlinear elastic-
ity but a linearization of it about a stress free
state, taken to be the reference configuration,
so that T»(1,0) = Dpy(1,0) = 0.

We write y(z,t) = x + u(x,t) where u(x,t) is
the displacement. Then

F(x,t) =14+ Vu(z,t),

and we seek a theory that applies when Vu is
small. 40



The elasticity tensor

Writing F = 1 + H and assuming (-, 0) is C?
near 1 we have that

Y(L+H,0) = $(1,6) + - DFw(1,0)(H, H) + o(|HI?)
Tp(l+ H,0) = DpTr(1,0)- H + o(|H|).

Set C(9) = DpTr(1,0) = D2+(1,0) (elasticity
tensor). Thus C : M3%3 — M3%3  with
(C(O)H)ij = c;51(0) Hy,
where the elasticities
021
OF;;0Fy,

(1,0). a1

c(0) ik =



Symmetries of the elasticity
tensor

Major symmetries c;;x = Cglij
Minor symmetries (frame indifference)

Cijkl = Cjikl = Cijlk

Isotropy: linearized stress given by
Ce =2ue+ A(tre) 1, where e = %(Du—l— (Du)?1),
and A\, u are the Lamé constants.

42



EXxercise
A homogeneous isotropic elastic body in a stress-

free state in the reference configuration is rigidly
rotated through an angle 6, so that the
deformation is y(x) = R(0)x, where

cosf sinfd O
R(@) = | —sin® cosh O
0 0 1
Show that according to nonlinear elasticity the
body remains stress-free ...



but that according to linear elasticity the
Cauchy stress has the form

A+ 0 0
T = —2(1 — cos?) A4+ u O
0 0 A
For a certain mild steel, A\ = 102.9GPa, u =
80.86GPa. Calculate the value of 6 for which
the maximum ‘phantom’ stress (=|7171]|) reaches
the value 465 x 1073GPa (which would in
tension cause fracture of the material).



Lecture 2

Existence of minimizers and analysis tools



LP spaces

All mappings, sets assumed measurable, all
integrals Lebesgue integrals.

Let 1 <p < 0.

LP(Q) ={u: Q2 —=>R: |ullp < oo},

1
lull, = { Ugqlu(@)[Pdz)r if 1 <p <oo
esssupgcq [u(z)| if p= oo

LP(2;R™) = {u = (uq,...,un) : u; € LP(2)}.

wl@) — win LP if ||ul9) — ul|, — 0.



The Sobolev space W'
Wip={y:Q—=R3:|y|l1, < oo}, where

1wl :{ olly(@) P + [Dy(2)[P] dz)}/P if 1< p < o
P esssupgeq ([y(@)| + |Dy(2)]) if p= oo

i.e. ye LP(2:R3), Dy € LP(QQ; M3%3).

Dy is interpreted in the weak (or distributional)
sense, so that

Oy;
Q2 awa

for all ¢ € C3°(£2).

da:——/ —d,x
2 Qyz

8:13@



Weak convergence

— convergence of averages

u{7) converges weakly to u (or weak* if p = co)
in LP, written «U) — 4 (or ul9) X 4 if p = o0)
if

(Dod —>/ dz for all v € LV
/Qu @ dx o updr © ,

1 1
where = = =1.
p—l—p,



The importance of weak convergence for
nonlinear PDE comes from the fact that if
1 < p < oo then any bounded sequence in LP

has a weakly convergent subsequence (weak*
if p = 00).

If the bounded sequence is a sequence of
approximating solutions to the PDE (e.q.
coming from some numerical method, or a
minimizing sequence for a variational problem),
then the weak limit is a candidate solution.

But then we need somehow to pass to the limit
IN nonlinear terms using weak convergence.



Example: Rademacher functions.

_[aifo<z<A
0 e(x)_{b ifA<z<1

extended periodically to R.

a— - B

1 0 A1 2 L

Exercise. Define 0U)(z) = 0(jz).

(i) Prove that () X Xa + (1 — A\)b in L>®(0,1)
(ii) Deduce that if f : R — R is continuous and
such that () X 4 in L% implies f(uU)) X f(w)
in L°° then f is affine, i.e. f(v) = av + B for
constants «, (.



We say that y() — g in Wlp
It y(j) — g in LP and Dy(j> — Dy in LP
(— replaced by = if p = 00).

Question: for what continuous
f:M3%3 5 R

does yU) X 4 in W imply
f(Dy)) = f(Dy) in L7



Reference configuration Deformed configuration

Q c R3 bounded domain with Lipschitz
boundary 02, 0€21 C 0S2 relatively open,
7 : 01 — R3.



Writing W(F') = ¢ (F,0) we want to minimize

I(y) = /Q W (Dy) dz

IN the set of admissible mappings

A={y € whl: det Dy(xz) >0 a.e., ylpo, = ¥}

(Note that we have for the time being replaced
the invertibility condition by the local
condition det Dy(xz) > 0 a.e., which is easier to
handle.)



So far we have assumed that
(H1) W : M3 —[0,00) is CT,

(H2) W(F) — oo as det FF — 0+,

so that setting W(F) = oo if detF < 0, we
have that W : M3%3 — [0,00] is continuous,
and that W is frame-indifferent, i.e.

(H3) W(RF) =W(F) for all Re SO(3),F € M3*3.

(In fact (H3) plays no direct role in the
existence theory.)



Growth condition

’ y = Fx
e
7]
W(F
M ( ) — O
Flsoo |F|3

says that you can’'t get a finite line segment
from an infinitesimal cube with finite energy.



We will use growth conditions a little weaker
than this. Note that if

W(F) > C(1+ |F]3T¢)

for some £ > 0 then any deformation with finite
elastic energy

/Q W (Dy(z)) da

and satisfying suitable boundary conditions is
in W1:3t¢€ and so is continuous by the Sobolev
embedding theorem.



Convexity conditions

The key difficulty is that W is never convex

(Recall that W is convex if

WOAF + (1 -2M)G) <AW(F) + (1 - )W(G)
for all F,G and 0 < A <1.)

Reasons
1. Convexity of W is inconsistent with (H2)

because Mf’rxg’ is not convex.



Remark: M_3|_><3 is

A =diag(1,1,1) not simply-connected.

W(5(A+ B)) = oo
> W (A) + W (B)

(A + B) = diag (0,0,1)

detF' >0

B =diag(-1,-1,1)



2. If W is convex, then any equilibrium solution
(solution of the EL equations) is an absolute
minimizer of the elastic energy

I(y) = /Q W (Dy) dz.

Proof.
I(z) = /Q W(Dz)dx >

/Q[Wwy) + DW (Dy) - (Dz — Dy)] dz = I(y).

T his contradicts common experience of nonunique
equilibria, e.g. buckling.



Rank-one matrices and the

Hadamard jump condition

y piecewise affine N

Dy=A, x-N >k

Dy=DB, z-N <k x-N =k

Let C = A—-—B. Then Cx =0 if x- N = 0.
Thus C(z — (- N)N) = 0 for all z, and so
Cz= (CN ® N)z. Hence

A—B=a®N

Hadamard
jump condition




More generally this holds for y piecewise Cl,
with Dy jumping across a C1 surface.

Y

7

Dy (zg) = B

N

DyT(zg) = A

/

‘/‘7m0

A—B=aQ N

Exercise: prove this by blowing up around =«
using ye(x) = ey(=22).

(See later for generalizations
when y not piecewise C1.)



Rank-one convexity

W is rank-one convex if the map
t— W(F 4+ ta® N) is convex for each
F e M3%3 and a € R3, N € R3.

(Same definition for M™*™ )

Equivalently,

WAF + (1 -2)G) < AW(F) 4 (1 - HW(G)

if F,G € M3%3 with F— G =a® N and
A€ (0,1).



Rank-one cone

a AN={a® N :a,N € R3}

Rank-one convexity is consistent with (H2) be-
cause det(F+ta®N) is linear in ¢, so that M3*3

IS rank-one convex

(i.e. if F,G € M3*> with F—G =a® N then

AF + (1 - NG e MZ*2)




If W e C2(M3*3) then W is rank-one convex
i

d2
@W(F +ta ® N)|t=0 > O,

for all F € M_3|_X3,a,N c R3, or equivalently

O2W (F)
8Fm8Fj5

(Legendre-Hadamard condition).

D?°W(F)(a®N,a®N) =

aiNaCLjNﬂ Z O,



Quasiconvexity (C.B. Morrey,1952)

Let W : M™*" — [0,00] be continuous. W is
said to be quasiconvex at F & M™*" if the
inequality

/Q W (F + Do(z)) dz > /Q W(F)dz gefinition
. D independent
holds for any ¢ € W3 (S, R™), and is  of @

quasiconvex if it iIs quasiconvex at every

s Could replace
Here €2 C R"™ is any bounded open set _

with Lipschitz boundary, and @y~ (€2; R™)
is the set of those y € W1 (Q; R™ywhich are

zero on 0X2 (in the sense of trace).




Setting m = n = 3 we see that W is
quasiconvex if for any F € M3%3 the pure
displacement problem to minimize

I(y) = [ W(Dy(a))da
subject to the linear boundary condition
y(x) = Fx, ¢ € 012,

has y(x) = F'x as a minimizer.



Another form of the definition that is
equivalent for finite continuous W is that

/Q W(Dy)dx > (meas Q)W (F)

for any y € W1 such that Dy is the restriction
to a cube Q (e.g. Q@ = (0,1)") of a Q-periodic
map on R™ with me%SQfQ Dydx = F'.

One can even replace periodicity with almost
periodicity (see J.M. Ball, J.C. Currie, and P.J.
Olver, J. Functional Anal., 41:135—-174, 1981).



T heorem
If W is continuous and quasiconvex then W is
rank-one convex.

Proof
We prove that

W(F) < AW (F—(1-X)a®N)+(1-XA)W (F+Xa®@N)
forany FF e M™Mm*" g c R N e R*" A€ (0,1).

Without loss of generality we suppose that
N = e1. We follow an argument of Morrey.



Let D= (—(1 —=X),)\) x (—p,p)" ! and let D;E

be the pyramid that is the convex hul

| of the

origin and the face of D with normal -

:6j.

Let ¢ € WOl’OO(D;Rm) be affine in each

D with ©(0) = A(1 — A)a.

The values of Dy are shown.



By quasiconvexity

n—1
o w(r) < P Awr (1 - Nawe)

: (2p)"1(1 - N)

n

W(F 4+ Xa®eq)

n n—1
+ > (20) (W (F + p~1A(1 —Aa®ej)
j=2 ="

+W(F —p A1 - Na®e))]

Suppose W (F) < co. Then dividing by (2p)71,
letting p —+ oo and using the continuity of W,
we obtain

WEF))XAMWEFE-(1-Na®er)) +(1-—XNW(F+XAaReq)

as required.



Now suppose that W(F — (1 — MN)a ® e7) and
W(F+ X a®eq) are finite. Then g(7) = W(F +
Ta®eq) lies below the chord joining the points
(=(1 = A),9(=(1—=A))), (A, g(A)) whenever
g(T) < 0o, and since g is continuous it follows
that ¢(0) = W(F) < .

+ 9

< |/

—(1—=X) A\




Corollary
If m = 1 or n = 1 then a continuous W :

M™X" — [0, 00] is quasiconvex iff it is convex.

Proof.

If m=1orn=1 then rank-one convexity is
the same as convexity. If W is convex (for any
dimensions) then W is quasiconvex by Jensen'’s
iInequality:

W(F + Do) dx

1
meas 2 /Q

1
> W (
mMeas

. /Q(F + Do) da:) — W(F).



Theorem (van Hove)
Let W(F) = c¢;11FijF; be quadratic. Then

W is rank-one convex < W IS gquasiconvex.

Proof.
Let W be rank-one convex. Since for any

1,00
p € WJ

| W(F + D) = W(P)]de = [

we just need to show that the RHS is > 0.

CijklPi,j Pk 1 AT

Extend ¢ by zero to the whole of R"™ and take
Fourier transforms.



By the Plancherel formula

/Q CijklPi,j Pk, AT

as required.

>

/Rn CijklPi,j Pk, AT

4772/n Re [cjx1$:€Préil d§
O



Null Lagrangians

When does equality hold in the quasiconvexity
condition? That is, for what L is

/Q L(F 4+ Do(z)) do = /Q L(F) dx

for all ¢ € W(}’OO(Q;Rm)? We call such L
quasiaffine.



Theorem (Landers, Morrey, Reshetnyak ...)
If L: M3%3 s R is continuous then the

following are equivalent:

(i) L is quasiaffine.
(ii) L is a (smooth) null Lagrangian, i.e. the
Euler-Lagrange equations DivDgpL(Du) = O
hold for all smooth w.
(iii) L(F) =const.4+C-F+ D -cof F+edet F.

(iv) u— L(Du) is sequentially weakly
continuous from W1lP — L1 for sufficiently

large p (p > 3 will do).



Polyconvexity

Definition
W is polyconvex if there exists a convex
function ¢ : M3%3 x M3%3 x R — (—o0, 00] such

that
W (F) = g(F,cof F,det F) for all F € M3%3.



Lecture 3

Existence etc contd. and nonlinear elasticity model of
crystals



T heorem

Let W be polyconvex, with g lower

semicontinuous. Then W IS quasiconvex.

Proof. Writing J(F') = (F,cof F,det F') and

1
dz = /ﬁ dz,
][Qf v meas 2 Qf g

][Q W(F 4+ Dp(x)) dz =

Jensen
>

£ 9Q(F

(fa0
g(J(F))
W(F).

Dp(x))) dx

Do) d:z:)



Remark
There are quadratic rank-one convex W that

are not polyconvex. Such W cannot be written
in the form

N [
W(F) =QF)+ 3 oy JV(F),
=1

where () > 0 is quadratic and the Jél) are 2 x 2
minors (Terpstra, D. Serre).



Examples and counterexamples

We have shown that
4= W = det 4 Zhang
W convex = W polyconvex = W quasiconvex
= W rank-one convex.
4 Sverak
The reverse implications are all false.
So is there a tractable characterization of

quasiconvexity? This is the main road-block
of the subject.



Theorem (Kristensen 1999)

There is no local condition equivalent to
quasiconvexity (for example, no condition
involving W and any number of its derivatives

at an arbitrary matrix F).

his might lead one to think that it is not
possible to characterize quasiconvexity. On the
other hand Kristensen also proved

Theorem (Kristensen)
Polyconvexity is not a local condition.



For example, one might contemplate a

characterization of the type
W quasiconvex < W is the supremum of a
family of special quasiconvex functions

(including null Lagrangians).



Quasiconvexity is essentially both necessary and
sufficient for the existence of minimizers (for
the sufficiency under suitable growth
conditions on W).

However, as well as being a practically
unverifiable condition, the existence theorems
based on quasiconvexity (still) do not really
apply to elasticity because they assume that
W is everywhere finite, whereas this is

contradicted by (H2).



Existence based on
polyconvexity

We will show that it is possible to prove the
existence of minimizers for mixed boundary value
problems if we assume W is polyconvex and
satisfies (H2) and appropriate growth
conditions. Furthermore the hypotheses are
satisfied by various commonly used models of
natural rubber and other materials.



Theorem (Miiller, Qi &Yan 1994, following JB 1977)
Suppose that W satisfies (H1), (H2) and

(H4) W(F) > co(|F|? + |cof F|3/2) —¢; for all

F € M3%3, where ¢g > 0,

(H5) W is polyconvex, i.e. W(F) = g(F,cof F,det F")
for all F € M3%3 for g continuous and convex.
Assume that there exists some y In

A= {y e WHH(QR?) : ylsn, = ¥}

with I(y) < oo, where H2(821) > 0 and
y : 021 — R3. Then there exists a global min-
imizer y* of I in A.



The theorem applies to the Ogden materials:

N
=) a; (v + 05 4 ,013%' —3)
1=1

M
+ > Bi((vov3)% 4 (v3v1)% + (vivp)% — 3)
i=1

h(vivov3)

where «;, 8;, p;, q; are constants and h is convex,
h() — oo as § — 04, h%‘” > 00 aS § — 00,
under appropriate conditions on the constants.




Sketch of proof
Let’'s make the slightly stronger hypothesis that

g(F,H,5) > co(|[FIP + |HIP +15|9) — c1,

for all F € M3%3, where p > 2, %+% = 1,
co>0and g > 1.

Let [ = infyeAI(y) < oo and let y(j) be a
minimizing sequence for I in A, so that

lim I(yU)) =1.

J]—>00



Then we may assume that for all 3

+1>  1(yY)

+| det Dy(j)|q] — cl) dx.

Lemma

T here exists a constant d > O such that

/ z|Pdx < d (/ | DzPdx +
Q2 Q2

for all z € WhP(Q2; R3).

> /Q (coll Dy P + |cof Dy (D P

/ zdA
ol




By the Lemma v{) is bounded in W1? and so
we may assume y{) — * in WlP for some y*.

But also we have that cof Dy(7) is bounded in
LY and that det Dy(9) is bounded in LY. So

we may assume that cof Dy(¥) —~ H in L? and
that det Dy() — § in LY.

By the results on the weak continuity of minors
we deduce that H = cof Dy* and 6 = det Dy*.



| et U(J) — (Dy(j)’cof Dy(j>,det DyU)),
u = (Dy™*, cof Dy*,det Dy*)). Then

w9 o in LY(Q: R19).

But ¢ is convex, and so (e.g. using Mazur's
theorem),
I(y*) = / g(uw)dz < liminf g(u(j>)da:
7—00

= lim I(yU)) = 1.

J]—>00

But yW|sn, =7 = y*lag, in L1(8921;R3) and
so y* € A and y* is a minimizer.



Invertibility

We cheated and replaced the physical
requirement that y be invertible
(non-interpenetration of matter) with
the local condition det Dy(x) > O.

For pure displacement boundary-value prob-
lems, i.e. ylsgo = ylgo, there are extensions
of the global inverse function theorem for C1
maps to mapping belonging to Sobolev spaces
(JB 1981, Sverak 1988)



For mixed boundary-value problems P.G. Ciar-
let and J. NeCas (1985) proposed minimizing

I(y) = /Q W (Dy) da

subject to the boundary condition ylsn, = ¥
and the global constraint

/Q det Dy(z) dz < volume (y(£2)).

They showed that IF a minimizer y* is
sufficiently smooth then this constraint corre-
sponds to smooth self-contact.



They then proved the existence of minimizers
satisfying the constraint for mixed boundary
conditions under the growth condition

W(F) 2 co(|F|" + [cof F|? + (det F) %) — ¢,

with p > 3,q > o 1,5 > 0. (The point is to
show that the constraint is weakly closed.)



Martensitic phase
transformations



These involve a change of shape of the crystal
lattice of some alloy at a critical temperature.

e.g. cubic to tetragonal

9 > QC . 5 9 < 0@
cubic

: of martensite
austenite

three tetragonal variants

cubic to X 0 < 0Oc

orthorhombic Six orthorhombic variants
(e.g. CuAlNi) of martensite
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Macrotwins in NigAl;: involving two
tetragonal variants (Boullay/Schryvers)



Martensitic microstructures in CuAINi (Chu/James)




Energy minimization problem
for single crystal

Minimize I,(y) = /Q b(Dy(z),0) da

subject to suitable boundary conditions, for
example

Yoo, = U

0 = temperature,
v = YP(A,0) = free-energy density of crystal,

defined for A € Mf’I_X:S, where

MP*3 = {A € M3*3 : det A > 0}.



Energy-well structure
K(0) = {A € M3*3 that minimize (A4, 0)}

_|_
ASSU me / austenite
a(0)SO(3) 6 > 0,
K(0) =<¢ SOB)UUiL,SOB)U;(8:) 6 =0,
U1 SO3)U(0) 0 < 6,

alf.) =1 \

martensite



The U;(0) are the distinct matrices QU1 (0)Q"

for Q € P?4 = cubic group.

For cubic to tetragonal N = 3 and

Uy = diag (n2,m1,m1), U = diag (n1,n2,n1),
Uz = diag (n1,n1,12)-

For cubic to orthornombic N = 6 and
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Lecture 4

Microstructure



By the Hadamard jump condition, interfaces
correspond to pairs of matrices A, B with

A—B=a® N,

where N is the interface normal. At minimum
energy A, B € K(0).

From the form of K(6), we need to know what
the rank-one connections are between two given
energy wells SO(3)U, SO(3)V.

A—B=a®@N #0

SO(3)U A—| B SO(3)V



Theorem
Let U=ULT >0, Vv=VT>0. Then SO(3)U,
SO(3)V are rank-one connected iff

U°-V?2=c(M®N+NQM) (%)

for unit vectors M, N and some c #= O.
If M #= +N there are exactly two rank-one
connections between V and SO(3) U given by

RU=V4+a®N, RU=V4+ax M,
for suitable R, R € SO(3), a,a € R3.



Proof. Note first that

det(V+a® N) = detV.-det(l+V la®N)
detV-(14+V~1la-N).
Hence if 1 4+ V—1a- N > 0, then by the polar

decomposition theorem RU =V +a ® N for
some R € SO(3) if and only if

U2 = (V+N®a)(V+axN)
V24 Va@N+N@Va+ |[a|°N@N

1 1
= V24 (Va+a’N) @ N + N @ (Va+ Z|a*N).

If a # O then Va+ 3[a|?N # 0, since otherwise

1
Va -V la+ §|a|2V_1a - N =0,

l.e. 2—|—V_1a-N — 0. This proves the necessity
of (*).



Conversely, suppose (x) holds. We need to
find a # O such that Va + 3[a]?N = cM and
14+V—1la.-N > 0. So we need to find ¢t such

that

a = cr ts

nere ]cr—l—ts|2—|—2t —=0and 14+ (cr+ts)-s > 0,
here we have written r =V 1M s=V~1N.
ne quadratic for ¢ has the form

2

— 2

t2|s|2 + 2t(L +cr-s) +c?r|° =0
which has roots

(1 4er-s) £ \/(1 +cr - s)2 — c?|r|?s|?
B |52 |

t




Since detU? = detV2det(l+c(r®s+sxr)),
det(14+c(r®@s+s®r)) = (14cr-s)2—c?|r|?|s|?
IS positive and the roots are real. In order to
satisfy 1 4 cr - s + t|s|2 > 0 we must take the
+ sign, giving a unique a, and thus unique R
such that RU =V +a® N.

Similarly we get a unique @ and R such that
RU=V+ax M.

To complete the proof it suffices to check the
following

Lemma
Ifc(MIN+NQIM)=/(PRQ+ QR P) for
unit vectors P, and some constant ¢/, then
either PRIQ =M QN or PRQ =+N Q M.



Corollaries.
1. There are no rank-one connections between

matrices A, B belonging to the same energy

well.
Proof. In this case U = V, contradicting ¢ # 0.

2. If U;,U; are distinct martensitic variants
then SO(3)U; and SO(3)U; are rank-one

connected if and only if det(U? _sz) = 0, and
the possible interface normals are orthogonal.
Variants separated by such interfaces are called

twins.

Proof. Clearly det(U7 —U?) =0 is
necessary, since the matrix on the RHS of (*)
Is of rank at most 2.



Conversely suppose that det(U7 — U?) = 0.
Then U? — sz has the spectral decomposition

U7 —U7 =Xe®e+ peé®é,

and since U; = RU;R! for some R € P2% it
follows that tr (U? — U].Q) — 0. Hence u = —\
and

U7 —U? MeRe—eRe)
\ e—I—é@e—é e—e e—+e
V2 V2 P V2 )’

as required.



Remark: Another equivalent condition due to
~orclaz is that det(U; —U;) = 0. This is
because of the surprising identity (not valid in
nigher dimensions)

det(U7 —U7) = (A1+X2) (ha+A3) (Az+A1) det(Ui—Uj).

3. There is no rank-one connection between
pairs of matrices A € SO(3) and B € SO(3)U;
unless U; has middle eigenvalue 1.

Proof. If there is a rank-one connection then
1 is an eigenvalue since det(U? — 1) = 0.



Choosing e with M-e > 0, N-e > 0 and M-e > O,
N-e < 0, we see that 1 is the middle eigenvalue.
Conversely, if 1 is the middle eigenvalue

A2 — )2
3 5 L ((ce1 + Be3) ® (—aey + Be3s)

+ (—ae1 + Be3) @ (aeq + Bez)),

where a = 1-A7 B = A1
=\ o2 T\ eoe
>\3_>\1’ )‘3_>\1

U? — 1=

(2




Layering twins

Simple laminate

A—B=c®N

DyU) —~ Dy=XA+ (1 - )\)B



Some general considerations

The microstructures arising from martensitic
transformations are driven by compatibility of
gradients. The product phases have to fit
together geometrically, generating a
microgeometry that is partly captured by
gradient Young measures (see below).

In trying to understand why we see some
microstructures and not others, we will use
methods based on energy minimization.
However, the formation of microstructure is
obviously a pattern formation problem, which
really should be treated using an appropriate
dynamical model.



Such a model should tell us which morpholog-
ical features are predictable (e.g. via invariant
manifolds, attractors ) in a given experiment,
and predict them.

However it is not clear what are appropriate
dynamical equations, and both theoretical and
numerical analysis currently intractable for any
such model.

Unfortunately static theories are not truly
predictive:

(i) Large redundancy in energy minimizers.
(ii) The microstructure geometry is typically
assumed a priori, and shown to be consistent
with the theory (although interesting details
may be predicted).



The free-energy function ¥(-,0) is not quasi-
convex. This is because the existence of twins
implies that ¥ (-,0) is not rank-one convex.

l-/

So we expect the minimum of the energy in
general not to be attained, with minimizing
segquences y(j) IN general generating infinitely
fine microstructures.



Gradient Young measures
Given a sequence of gradients
Dy(j), fix 5,x,0. :
Let E C M3%3, where
M3%3 = {3 x 3 matrices}

vol {z € B(x,9) : D(j)(z) E} .
vol B(x,6)

Vx,j,é(E) —

vp(E) = lim Iim v, ;5(F)

d—0 73—

IS the gradient Young measure generated by
Dy{9).



Gradient Young measure of simple
laminate

Ve — )\5A ' (1 — )\)(53




Theorem. (Kinderlehrer/Pedregal) A family
of probability measures (vz),.cq IS the Young

measure of a sequence of gradients Dy(j) bounded
in L°° if and only if

(i) Uy is a gradient (Dy, the weak limit of Dy())
(ii) {vg, f) > f(vg) for all quasiconvex f.

Here

and

voi fy = [ F(A) dva(A)



Quasiconvexification

Of functions:
W9¢ = sup{g quasiconvex : g < W}.

Of sets:
A subset E ¢ M3X3 if E = ¢—1(0) for some
non-negative quasiconvex function g.

Let K ¢ M3%3 be compact,
e.g. K =U:iL;S03)U;9).



g
||

quasiconvexification of K

({E : K C E, E quasiconvex}

{v : vgradient Young measure ,
suppr C K}

Fe M33: g(F) < ma A
{F € g()_AG;ég()

for all quasiconvex g}.

YY9C(F,0) is the macroscopic free-energy
function corresponding to .

K (0)Y9¢ is the set of macroscopic deformation
gradients corresponding to zero-energy
microstructures.



Lecture 5

Austenite-martensite interfaces



How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface
between austenite and martensite, because this

requires the middle eigenvalue of U, to be one,
which in general is not the case (but see studies of

James et al on low hysteresis alloys).

So what does it do?



(Classical) austenite-martensite interface in CuAINI
(courtesy C-H Chu and R.D. James)




habit Gives formulae of the
e crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

24 habit planes for
cubic-to-tetragonal

boundary layer

ve =4 + (1~ 2)dp



Rank-one connections for A/M interface




Zzﬂ\?ﬁ\\?\&\\\"@

Possible lattice parameters
for classical austenite-martensite
Interface .

V2
1- V1 /=2
v¥2+ ?,/ B
] ///jl
1/V2 1 l‘ﬁ 7y




Macrotwins in NigzAl;s Involving two
tetragonal variants (Boullay/Schryvers)




Crossings and steps




Macrotwin formation

|010);,
W a0 i ODIWT
2

Similar effects and analysis
m in g-titanium: T. Inamura,

M. Ii, N. Kamioka,

’
’
|

plate | '
— /

(xy 1),

M. Tahara, H. Hosoda,
. j S. Miyazaki ICOMAT 2014




Macroscopic deformation gradient in martensitic
plate is

1+0®m
1
m o= ( x(0 + vT), 1{ (v —9),1)
b = (EXG(é g HT)? EXCH(UT - 6)* ﬁ)

where v =1for A = A*, v = —1for A= 1—\*, the
microtwin planes have normals (1,%,0) and y =
]

Table 1: Rotations ¢7 and 2 that bring Plate II into compatibility with Plate I (&;
The direction of rotation is that of a right-handed screw

the corresponding macrotwin normals N; and Nos.

B/Schryvers 2003

Different martensitic plates

never compatible
(Bhattacharya)

= x1 =

= 1) and

in the direction of the given axis. For the case Ko = v = 1,2 = —1 see the text.
Parameter Values o} (Jo
Ko X2 Vo Axis Angle Ny Axis Angle [y
-1 1 ] (.70,0,-.71) 1.64° (0,1,0) (.75,0,.66) [ (1,0,0)
-1 -1 ] (0,.99,.16) 7.99° (1,0,0) (0,.99,-.14 7.99° (0,1,0)
-1 1 -1 (.65,.48,-.59) | 6.76° (.59,-.81,0) (.68,.50,.54) 6.91° | (-.81,-.59,0)
-1 -1 -1 (= 48 .65, a‘)) 6.76° | (-.81,-.59,0) | (-.50,.68,-.54) | 6.91° .59,-.81,0)
1 1 -1 | (-.54,.54,.64) | 5.87° ﬁ(m 0) | (-57,57,-.59) | 6.08° | —5(1,-1,0)
1 -1 -1 (.60,.60,-.52) | 7.37° —2(1,-1,0) (.62,.62,.47) 7.47° \%(J.,]_,O)




Nonclassical austenite-martensite

Interfaces (B/Carstensen 97)

e

N speculative nonhomogeneous
martensitic microstructure
with fractal refinement
near interface

curved nonclassical
interface



Nonclassical interface with double
laminate

AN

\

\\
pure phase ', double laminate
of austenite / of martensite

[ANNARARANNRNNRNNNNNY

\AHIA

/




Nonclassical interface calculation

Dy(x) =F =v
Fe (UX, so(3)y;

N

(unknown unless N = 2)

)"

V, = U

supp v C Uiil SO(3)U;
F=14+bxXm



Two martensitic wells
Let K = SO(3)U; U SO(3)Us, where

Ul — dlag (77177727773)9 U2 — dlag (7727 T, 773)7

and the 7; > 0 (orthorhombic to monoclinic).

Theorem (Ball & James 92) K9¢ consists of the matrices
F € MJ*° such that

a ¢ (0
FIFr=1{( ¢ b 0 |,
0 O 7732)

where a > 0,b > 0,a + b+ |2¢c| < nf +n3, ab— c* = nin3.



he proof is by calculating KP¢ and showing
by construction that any F € KP¢ belongs to

K1e.

For a nonclassical interface we need that for
some a, b, ¢ satisfying these inequalities the mid-
dle eigenvalue of FL'F is one, and we thus get
(Ball & Carstensen 97) such an interface pro-

vided

ot <m<lorl<nyt<n ifnz<i,

m<nit<lorl<mn<ny! ifng>1.



More wells — necessary
conditions

K =|]So@3)U;

1=1

The martensitic variants U; all have the same singular
values (= eigenvalues) 0 < Nmin < Pmid < Pmax-

Let F' € KP¢ have singular values

0 < O-min(F) g Umid(F) g UmaX(F)-



KP¢ ={F € M™ " : p(F) < max p(G)

First choose ¢(G)

- GeK

for all polyconvex o}

- det(G). Then

det I' = Umin(F)Umid(F)UmaX(F) — TlminT/midT/max -

Next choose ¢(G) = omax(G) = max|, = |G|,
which is convex, hence polyconvex. Thus

Umax(F) é Nmax -



Finally choose o(G) = omax(cofG), which is a

convex function
of cof (G) and hence polyconvex. Then

Umid(F)UmaX(F) < NmidMmax

But FF =14 b® m implies omig(F) = 1.

Combining these inequalities we get that

—1
Mmin < Mmig S 7Imax-



For cubic to tetragonal we have that

Uy = diag (n2,m1,11), Uz = diag (n1,7m2,11),
Uz = diag (n1,m1,12),

and the necessary conditions become
—1 :
n <mny- <mpif n1 < no,
—1 :
e <ny - <m if gy >no.

But these turn out to be exactly the conditions
given by the two-well theorem to construct a
rank-one connection from

(SO(3)U1 USO(3)U»)%¢ to the identity!

Hence the conditions are sufficient also.



Values of deformation parameters allowing classical and
nonclassical austenite-martensite interfaces

M, 47

77/ classical and nonclassical
% interfaces possible

only nonclassical
interfaces possible

{417 =2




Interface normals
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AUSTENITE

Optical
micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure

The arrows
indicate the
orientations of
twinning
planes of

{ Type-ll and

compound
twinning
systems
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Twin crossing gradients



Analysis: JB, K. Koumatos, H. Seiner 2010

Let Up, Uy and Upg,Upr be two distinct pairs
of martensitic variants able to form compound
twins (e.g. Us,Us and Us,Ug). Then the com-
patibility equations for the parallelogram mi-
crostructure are

RapUp—Uyg = bap®mnapB
RpypUp —Uy = byp @nyp
RapUp —Us = bpar ®@nga
RppUp —Up = bpp Qngp

RapRpp = BRayBRap.



Let O < A < 1 denote the relative volume frac-
tion of the Type-II twins (the same by the par-
allelogram geometry), and set

MaB (1 -XNUsg+ ARypUp
MAIB/ — (].—A)UAI—I—)\RAIBIUBI

Let O < A < 1 be the relative volume frac-

tion of the compound twins. Then the overall
macroscopic deformation gradient is

M = (1 — /\)MAB —|— /\RAA’MA’B"

For compatibility with the austenite we need

Amig(MT M) =1



Possible volume fractions

ag + ar(A? — N)

A — A= .
a1 + az3(A2 — A)

1.0




Possible nonclassical interface
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Curved interface between crossing twins and austenite resulting from the inhomogeneity
of compound twinning. (Optical microscopy,H. Seiner)



Construction of curved Interface

This Is possible at zero stress provided 1 is
rank-one connected to a relative interior point
of the set K = UY_;SO(3)U; of the martensitic
wells, where relative is taken with respect to
theset D ={A :det A =detU;}. Such relative
iInterior points are known to exist in the cubic-
to-tetragonal case due to a result by Dolzmann
and Kirchheim.

JB, K. Koumatos 2014



Lecture 6

Complex microstructures. Nucleation of austenite.



Zn,:Au,,Cu, ultra low hysteresis alloy

Yintao Song, Xian Chen, Vivekanand Dabade,
Thomas W. Shield, Richard D James, Nature, 502, 85—-88 (03 October 2013)



CuZnAl microstructure: Michel Morin (INSA de Lyon)



Suppose y € Wh(Q; R™),

l.e y Lipschitz.

Can we define Dyt (a), Dy~ (a),
and if so how are they related?

Blow up. For x € B(0,1) let
zs(x) = 6 1y(a + 6z).
Then Dzs(x) = Dy(a + éx).

Let 5j — 0 to get gradient
Young measure vy, x € B(0,1).

Dy:l:(a) — ﬂ{E closed :supprvy C E a.e. x & Bi}



Theorem 1 (B/Carstensen). There exists
be R"™ with b® N € DyT(a)¢ — Dy~ (a)°.

Theorem 2 (B/Carstensen).
Let m =n = 2. Then there exists b € R? with
b N € DyT(a)PC — Dy (a)PC.

Proof of Theorem 2 uses quasiregular maps,
which are useful also in constructing nonpoly-
convex quasiconvex functions. False in higher
dimensions (Iwaniec, Verhota, Vogel 2002)
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Application to polycrystals
K(0) =S0O(3)U; USO(3)Us

Grain 1
supp vy C K(0)

Grain 2
supp vz C K(0)Ra

Ra€3 — €3

Always possible to have zero-energy
microstructure with Dy = i, = (n3n2)1/31



Question: Is it true that whatever the orien-
tation of the planar interface between the two
grains there must be a nontrivial microstruc-

ture in both grains? B o \\\-: VAN
A\\\\\\\\\\# 2
SO\ ~&\\\ % 0

Microstructure in polycrystalline }. ,,«.\\\\\\\“ o 3

BaTiO3 (G. Arlt). »{'- LN T
NSNS NN ",/’7;’, .

J;;‘ .:.,»,_ NN 7 L

e

RIS o S O
Results 1. Whatever the orientation there al-
Ways exists a zero-energy microstructure which
has a pure phase (i.e. vz = §4) in one of the
grains.




Result 2. Suppose that a = n/4. Then itisim-
possible to have a zero-energy microstructure
with a pure phase in one of the grains if the
interface contains a normal (cosé@,sinf) € D4
and another normal (cos®’,sin@") € D>, where

T 37 570 Or 117 137 1bn

D:, U 3 U ’ U 9

=G, U U = DU, =)
—T T 37 b (7 97 117 137

D> = : U : U : U :

> = (L DHUE SHUuE SHu =0



Proofs use:

1. A reduction to the case m = n = 2 using
the plane strain result for the two-well problem
(JB/James).

2. he characterization of the quasiconvex
hull of two wells (JB/James), which equals
their polyconvex hull.

3. Use of the generalized Hadamard jump con-
dition to show that there has to be a rank-one
connection b® N between the polyconvex hulls
for each grain.

4. Long and detailed calculations.




Nucleation of
austenite In martensite

JB, Konstantinos Koumatos, Hanus Seiner
2012, 2013



Experimental observations

Specimen: single crystal of CuAINi prepared by
the Bridgeman method in the form of a
prismatic bar of dimensions 12x3x3mm?3 in
the austenite with edges approximately along
the principal cubic directions.

By unidirectional compression along its longest
edge, the specimen was transformed into a
single variant of mechanically stabilized
martensite. Due to the mechanical stabiliza-
tion effect the reverse transition did not occur
during unloading.



T he martensite-to-austenite transition temper-
atures were Ag = —6°C and Ap = 22°C. The
critical temperature T~ for the transition from
the stabilized martensite induced by homoge-
neous heating for this specimen was ~60°C.
This was estimated from optical observations
of the transition with one of the specimen faces
laid on and thermally contacted with a gradu-
ally heated Peltier cell, using a heat conducting

gel.



Localized heating experiment

The specimen was freely laid on a slightly pre-
stressed, free-standing polyethylene (PE) foil
to ensure minimal mechanical constraints, then
locally heated by touching its surface with an
ohmically heated tip of a (digital) soldering
iron with temperature electronically controlled
to be 200°C, i.e. significantly above the Ag
and T~ temperatures.



11.00mmn

Single crystal of CuAINi. Pure variant of martensite. Heated by tip of MQ iron.




When touched at a corner, nucleation of austen-
Iite occured there immediately. When touched

at an edge or face, nucleation did not oc-

cur at the site of the localized heating, but

at some corner, after a time delay (sufficient

for heat conduction to make the temperature

there large enough).












Proposed explanation. Nucleation Is geomet-
rically impossible in the interior, on faces and
at edges, but not at a corner. We express this
by proving in a simplified model that if Us de-
notes the initial pure variant of martensite then
at Us the free-energy function is quasiconvex
(in the interior), quasiconvex at the boundary
faces, and quasiconvex at the edges, but not
at a corner.

To make the problem more tractable we as-
sume that ¥ (A,0) ;= W(A) is infinite outside
the austenite and martensite energy wells.



Idealized model

I(v) = /Q(Va;,W> do = /Q /M3X3W(A) dve(A) d.

where

(-5 A eSO(3)
W(A)=<{ 0 AelUs;S03); ,
\ +o00 otherwise

and 0 > 0.
So W(A) < co on

6
K =S0(3)U | ] S0(3)U;
1=1



Nucleation impossible in the interior

Vi =6U5

2

S:suppv, K

Theorem I(v) > I(dg,)
(quasiconvexity at Us)



Nucleation impossible at faces or edges

- V=0 U,
e

Vv, =0 U,

S: supp v, CK|

== S:suppy, CK

Similarly in these cases we have

Theorem 1(v) > I(dy,)
(quasiconvexity at the boundary and
edges at Us)



Nucleation possible at a corner

Vx :6{}5

I(l/) < I(5US)
I not quasiconvex at such a corner.



Remarks

1. We are able to prove quasiconvexity at faces
with most, but not all, normals. What would
happen for a specimen that was a ball?

1.0 0.5 1.0
11111111111111111 L,"L 1
T,
Possible face normals for which we B i
can prove guasiconvexity, using A L
deformation parameters for Seiner’s : y =
specimen. ;/— _
1.0 —
0 A
1.0 \:, - 1.0




2. We have shown that a /ocalized nucle-
ation can only occur at a corner, but one could
hope to show using methods of Grabovsky &
Mengesha (2009) that any v sufficiently close
to 4y, with I(v) < I(éy,) must involve nucle-
ation at a corner.



Mechanical stabilization

Above Ag = —6°C the energy of the
austenite is less than that of the martensite.
So why doesn’t the transition from the
stabilized martensite to austenite by
homogeneous heating take place at a much
lower temperature than T, ~ 60°C? In other
words, what is the explanation for the
mechanical stabilization effect?



One piece of evidence is that under
homogeneous heating the nucleation still takes
place at a corner, suggesting the relevance of
the quasiconvexity calculations.

While a general explanation is lacking, a
relevant consideration is the following: if we
nucleate a small volume V of austenite from
a single laminate of martensite (idealizing the
thermally induced martensite) by introducing
an austenite-martensite interface at a corner,
we reduce the energy by oV plus a term pro-
portional to V, representing the energy of the
interfaces between twins in the laminate which
are no longer there in the austenite.



Lecture 7/

Local minimizers with and without interfacial energy



Incompatibility-induced hysteresis

JB/James 2014

Example.
Consider the integral W(A) _W(B>$ A

I(y) = [ W(Dy)d,

where W : M3%3 5 R and W has two
local minimizers at A, B with rank(A—-B) > 1
and W(A) — W(B) > 0 sufficiently small.




Claim. Under suitable growth hypotheses on
W, y(x) = Az + ¢ is a local minimizer of I in
L1(Q:R3), i.e. there exists £ > 0 such that

I(y) 2 I(y) if Jqly —yldz <e.

Idea: since A and B are incompatible, if we
nucleate a region in which Dy(x) ~ B there
must be a transition layer in which the increase
of energy is greater than the decrease of energy
In the nucleus.

transition
layer

Dy(z) = A Dy~ B




Definition. Let Kq,..., Ky be nonempty, dis-
joint, compact subsets of M™*"_  Then the
{K;} are incompatible if whenever (vz),cq iS a
gradient Young measure with

N

supp vz C | J K; a.e. €
i=1
then
supp v, C K a.e. x € <2
for some r.

Otherwise, the {K;} are compatible.
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Example 1

K1 = {Al}, o Ky = {AN}, A; € MMXT

A necessary condition for the sets Ky,..., Ky
to be incompatible is that

rank (4; — A;) > 1, for all i # j.
T his is sufficient iff N < 3.

B/James

Sverak
Counterexample of
Tartar/Scheffer.

22 =2
|
AWN
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Contrast with case of exact gradients.
If N <4 then

N

Dy(x) € U {Az} d.e.
1=1

implies

Dy(x) = A, a.e. for some r

(Chlebik/Kirchheim) but this is false for N > 5
(Kirchheim /Preiss).

185



Example 2
Let m = n,

Kl — SO(n)Ul, . .,KN — SO(n)UN
U; = Ul > 0 distinct.

A necessary condition for the sets Kq,... Ky to
be incompatible is that there are no rank-one
connections between the K;.

Sufficient if n = 2 (Sverak) and for

n = 3, N = 2 for certain classes of Uy, U>
(Matos, Kohn/Lods,
Dolzmann/Kirchheim /Mdiller /Sverak). .



However the

Conjecture (Kinderlehrer)
K1, K> are incompatible iff K1, K> not rank-one
connected.

IS unresolved.
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A function f: M™*" — RU {400} is

quasiconvex if there exists a nondecreasing se-

quence fU) : M™mXn _ R of quasiconvex func-

tions with
f(A)::j[gLfQ”(A)fbraH.Aezﬂimx”.

T heorem

Kq,..., Ky are incompatible iff

(i) the sets K!° are gradient incompatible

(ii) for each ¢ = 1,..., N the functions

o; . M™M*™ — [0, oo] defined by

f

1 if Ac KJ©
$i(A) =170 if AUz K
. +oo otherwise

are guasiconvex. 188



Transition layer estimate:
Suppose Kq, K> C M™*™ incompatible,
2 C R™ a bounded Lipschitz domain.
Let 1 < p < oco. Then there exist constants
Eo(Kl,Kg,p, Q) > 0, ”yO(Kl,Kg,p,Q) > 0 such
that if 0 < e <eq, y € WHP(Q; R™) then
p
[+ Dyl da
> vo MIN{L™(21 (y)), L"(22.(y))},

where
Q; (y) ={z € Q2 : Dy(z) € Ne(K;)}

Te(y) ={x € Q2 : Dy(x) & Ne(K1) U Ne(K2) Jaso



Hence one can prove a metastability theorem
for microstructures with a pair of incompatible
sets K1, K> replacing the matrices A, B.

Applications:
1. Biaxial experiments on CuAINi of Chu &James.
2. Pure dilatational transformations with en-
ergy wells SO(3) and kSO(3) with k£ > 0.
3. Terephthalic acid. Huge transformation
strain

0.970 0.038 -0.121

U= 0.038 0.835 —-0.017
—0.121 —-0.017 1.298



Interfacial energy



Some interfaces are atomistically sharp
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Diffuse interface in perovskite (courtesy Ekhard Salje)



No Interfacial energy

Suppose that
Dy(a(0)1,0) = 0,

D*y(a(0)1,0)(G, G’) > 1|G)? for all G = G7,
some f > 0. Then y(z) = a(f)r +cis a

local minimizer ot
wa%

But () = a(f)x + ¢ is not a local minimizer of Iy
in WhP(Q;R?) for 1 < p < oo because nucleating
an austenite-martensite interface reduces the energy.

in WhH>°(Q; R?).



Second gradient model for diffuse interfaces
JB/Elaine Crooks (Swansea)

How does interfacial energy affect the predic-
tions of the elasticity model of the austenite-
martensite transition?

d < 0.

a(0)1 U1(0) U200) Us(9)



Use simple second gradient model of interfacial
energy (cf Barsch & Krumhansl, Salje ), for
which energy minimum is always attained.

Fix 0 < 6., write v(A) = ¥ (A,0), and define

1) = | (¢(Dy) +<2|D?P) da

where |D?y|? = y; ogYi.a8 € > 0,

It is not clear how to justify this model on the
basis of atomistic considerations (the wrong
sign problem — see, for example, Blanc, LeBris,
Lions).



Hypotheses

No boundary conditions (i.e. boundary trac-
tion free), so result will apply to all boundary
conditions.

Assume 1) € OQ(ME’FX?’),

W(A) = oo for det A <0,

W(A) — oo as det A — 0+,

Y(RA) = ¢¥(A) for all R € SO(3),

1 bounded below, € > 0.

Dy(al) =0
D2y (al)(G,G) > u|G|? for all G = G7,
for some u > 0. Here a = «(6).




Theorem. y(z) = aRx

a, R € SO(3),a € R3,

is a local minimizer of T in L1(2; R3).

More precisely,

I)-1@) > |

2

(\\/DyTDy — a1|2 -+ ]DQy]2> dx

for some o > 0 if ||y — aRx — al|1 is sufficiently

small.

Remark.

/Q |\/DyTDy — al|?dx

>co_ inf_ (lly—aRz—a|3+ ||Dy— R|3).

ReSO(3),aeR3

by Friesecke, James, Muller Rigidity Theorem



ldea of proof

Reduce to problem of local minimizers for

V) = [ (@) +mp?e2|DUJ?) da.
studied by Taheri (2002), using

IDAU(A)| < p
for all A, where U(A) =V AT A.




Smoothing of twin boundaries

Seek solution to equilibrium equations for

() = [ ,(W(Dy) +2|D?y|?) dz

such that

Dy— Aasx-N — —o0

Dy — B as x- N — 400,

where A, B= A+ a® N are twins.




Lemma

Let Dy(z) = F(z-N), where F € W2 (R; M3%3)
and

F(z-N)— A,B

as - N —- +o00. Then there exist a constant
vector a € R3 and a function v : R — R3 such
that

u(s) — 0,a as s - —oo, 00,
and for all z € R3

F(r-N)=A4u(x-N)® N.
In particular

B=A4a® N.



The ansatz

Dy(x) = A4+ u(xz-N)® N.

leads to the 1D integral

Flu) = /R[W(A u(s) ® N)

2|u(s)|%] ds

. 7 2011 2
= [ W (u(s)) + 2l ()] ds.

For cubic — tetragonal or orthorhombic (under
a nondegeneracy assumption) we have

W(0) =W(a) =0, W(u) >0 for v # 0, a,

and so by energy minimization (Alikakos &

Fusco 2008) we get a solution.



Remarks

1. The solution generates a solution to the full
3D equilibrium equations. However if we use

instead the ansatz

Dy(x) = A

v(z - N)a® N

with v a scalar, then the corresponding solution
does not in general generate a solution to the

3D equations.

2. The solution is not in general unique even
within the class given by the ansatz, but more
work needs to be done in this direction.



Sharp interface models

A natural idea is to minimize an energy such
as

I(y) = [, W(Dy)de + kH*(Spy),

where k > 0 and SDy denotes the jump set of
Dy.

However this is not a sensible model, because

if we have a sharp interface and approximate y

by a smooth deformation, then the interfacial
energy disappears and the elastic energy hardly
changes. Thus a minimizer can never have a
sharp interface.



A model allowing smooth and sharp interfaces
JB/ Carlos Mora-Corral (Madrid)

If we combine the smooth and sharp interface
models we get a model that is well posed and
in fact allows both kind of interface. In the
simplest case we minimize

1) = | (W(Dy) + V7Y% do + ~H(Sp,)
in the set
A={y e WP : Dy e GSBV,yloq, = ¥}

Here V2y denotes the weak approximate dif-
ferential of Dy.



More generally we can suppose the energy is
given by

I(y) = /Q W (Dy, V2y) dx +

/SD ’Y(Dy_I_(a;'), Dy_(aj)7 V(.’l?)) dHQ(,CC)



One-dimensional case
Minimize
1
Lo n(y) = /O (W (') + £2|V2y[2) dz 4 wHO(S )
N

Ay = {yewb(0,1): y(0) =0,y(1) = A,
y' € SBV(0,1),y >0 a.e.}

Assume W (1) =W (2) =0, W(p) > 0 if
p#=0,1. Let

E = inf [
E,K, A yeA, 8,%(y)
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