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Topics

Liquid crystals, phase transitions and order parameters.
The Landau - de Gennes and Oseen - Frank theories.
The singular bulk potential.

The description of defects.



Some themes

Function spaces as a part of models in physics

Relation between different levels of description (e.qg.
molecular vs continuum, order parameters of different

dimensions)
Lessons from solid mechanics

Constraints (equality and inequality) on unknowns in
variational problems



Liquid crystals, phase transitions and order parameters



What are liquid crystals?

An intermediate state of matter between liquids and solids.

Liquid crystals flow like liquids, but the constituent
molecules retain orientational order.

A multi-billion dollar industry.
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Classes of liquid crystals

Liguid crystals are of many different types, three main
classes being nematics, cholesterics and smectics.

Many liquid crystals consist of rod-like molecules.

Oxygen
Length 2-3 nm Nitrogen

Hydrogen

MBBA 5CB

Space-filling models courtesy Claudic Zannoni.



Depending on the nature of the molecules, the interac-
tions between them and the temperature the molecules
can arrange themselves in different phases.

Isotropic fluid
No orientational
or positional order




(a)

Nematic phase Smectic A Smectic C Cholesteric
orientational but phase phase phase

no positional

order

Orientational and some positional order

T he molecules have time-varying orientations due
to thermal motion.



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/Iclinks.html



Isotropic to nematic phase

transition

The nematic phase typically forms on cooling
through a critical temperature 6. by a phase
transformation from a high temperature isotropic

phase.

17°C MBBA 45°C
| |
0., 0
0 <80, 0, <0 <0, 0 >0,
other LC or nematic isotropic

solid phase
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The director

A first mathematical description of the nematic
phase is to represent the mean orientation of
the molecules by a unit vector n = n(x,t).

But note that for most liquid
crystals n is equivalent to —n,
so that a better description is
TII via a line field in which we
v identify the mean orientation
by the line through the origin
parallel to it.
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The twisted nematic display

Folarizer

\

Light not
Light transmitted transmitted
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Modelling via molecular dynamics

Monte-Carlo simulation using Gay-Berne
potential to model the interaction between
molecules, which are represented by ellipsoids.

This interaction potential is
an anisotropic version of the
Lennard-Jones potential
between pairs of atoms

or molecules.

14
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Ugs = 4eoe(T;j, U;, ;) [u(r;;, U;, G;)

where

Oc

ri; — o (T4, 85, 05) 4+ o’

u(t;5, U5, 05) =

ri; = |Ti;|, and where the functions o(t;;, G;, ;)
and e(T;;,4;,4;) measure the contact distance
between the ellipsoids and the attractive well
depth respectively (depending in particular on
the ellipsoid geometry) and eqg, o are empirical
parameters.

—u(T;j, U;, U;)

6]7
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Twisted nematic display simulation

044 784 molecules, including 157,464 fixed in layers near
the boundaries to prescribe the orientation there.

M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni,
2009 (courtesy Claudio Zannoni) 16



Continuum models

Consider a nematic
liquid crystal filling

a container Q C R3,
where (2 is assumed
bounded, open, with Lipschitz boundary.

To keep things simple consider only static
configurations, for which the fluid velocity is

Zelr 0. 17



Microscopic state variables

We represent a typical liquid crystal molecule by
a 3D region M (rod, ellipsoid, parallepiped ...)
of approximately the same shape and symmetry.

We place M in a standard
position with centroid at
the origin, e.qg.

M

and define the isotropy groups

G
Gy

!

/1

{fReO0(3):RM = M}
fR e SO3): RM = M}
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If Gy = Gj\‘/l then the molecule is said to be
chiral (as in cholesterics).

RM = RM for R,R € SO(3) iff RTR ¢ G7,.
Hence the orientation of a molecule can be rep-
resented by an element of the space of cosets
SO(B)/GL (cf Mermin 1979).

For M a cylindrical rod p<—ii _’p

or ellipsoid of revolution — S —

we can identify SO(3)/G{, with RP2, that is with
lines through the origin parallel to the long axis,
or equivalently with matrices p® p,p € S<.

19



Fix x € 2 and a small § > 0. For E symmetric, I.e.
E = —F, let ux(FE) be
the probability that a
molecule drawn at ran-
dom from B(x,6) has
orientation +p € E.

(If 6 = 1um B(x,6) contains
~ 1 billion molecules.)

Can think of ux as a proba-
bility measure on RP2. Al-
ternatively we can extend
ux uniquely to a probability
measure on S?2 that satisfies
pr(FE) = uz(—F) for measur-
Yp» able E C S?2 by defining

1
Might also want to average  ix(F) =ux(EN-E)+ §Mx(E A —E).
over a small time interval. 20



Example:
x = %(69 + 6_e) represents a state of perfect
alignment parallel to the unit vector e.

We will almost always assume that ux is continuously
distributed, so that

dux(p) = p(x, p)dp,

where dp is the element of surface area on S? and

p(x,p) > 0
p(X,p) = p(X,—Pp)
./32 p(x,p)dp =1

21




If the orientation of molecules is equally distributed in all
directions, we say that the distribution is isotropic, and then
p = po, Where
1

po(x,p) = a4
A natural idea would be to use as an order parameter the
probability density p = p(x,p). However this represents
an infinite-dimensional state variable at each point x,
and if we use as an approximation an order parameter
consisting of a finite number of moments of p then we
have instead a finite-dimensional state variable.

Because p(x,p) = p(x,—p) the first moment

/52 p p(x,p) dp = 0. 2



The second moment tensor
M(x) = /SQ P ®pp(x,p)dp
satisfies M(x) = M(x)?, tr M(x) = 1. Also M(x) > 0 since

M(x)e-e = [ (p-e)?(x,p)dp = 0

with equality iff p(x,p) = 0 whenever p-e = 0, contradicting
Js2 p(x,p) dp = 1.

The second moment tensor of the isotropic distribution
po(X,p) = 7=, is

1 1
0= 4r J2P O PP =3

(since fsgplpgdp = 0, fSQp%dp = fSQp%dp etc and
tI’MO:]..)



The de Gennes Q-tensor

Qe =M@x) - Mo = [, (p@p 1) p(xp)dp

thus measures the deviation of M(x) from its
iIsotropic value.

Note that Q(x) = Q(x)7, trQ(x) =0, Q(x) > —31.

Let
E={Qe M¥>3:Q=Q",trQ =0}

24



Since Q = Q(x) € &,

Q = X1e;1 ®e1 + Aoex ®en + Aze3z @ ez,

where {e;} is an orthonormal basis of eigenvectors

of Q with corresponding eigenvalues \; = X\;(Q) sat-
Isfying A1 + Ao + A3 = 0.

We can order the eigenvalues as

Amin(Q) < Amid(Q) < Amax(Q),

and since Q > —%1 we have that

5 < Amin(Q) € Amig(Q) € Amax(Q) < 2. ()



Conversely, if (*) holds then Q is the normalized second
moment tensor for some p. Such a p can be constructed
by approximating the singular measure

3 1

p= Z; (Az' + 5) %(5@&- +d_e;)-

For each eigenvector e; define

qb,f(p)z{() iflp-el<1l—e¢ .

2 iflp-el>1—¢

Ame

1
where 0 <e <1 /3 so that the

six spherical caps {p € S2: +p-e; > 1 — ¢} are disjoint.
Then set

o(P) = (- @1(1 - ; N+ (1-2) -9 sim.

26



Note that )\%’“n(Q) — )\rzmd(Q) = (Amid(Q) — Amin(Q))Amax(Q)

and so

)\rznid(Q) < ArQnin(Q)-

Hence |Q|% < 2

3
The limiting cases Amax(Q) = 3, m,n(Q) —3 corre-
spond to singular measures. If Amax(Q) = then for the

corresponding eigenvector emax we have

Memax - €max = /SQ(p ' emax)2 d,u(p) =1,

and hence
/52 PRP—emax® emax|2 du(p) = 0O,

and so p = %(5emax + 0—emax)- 7



If Amin(Q) = —3 then for the corresponding eigenvector

_ 1
emin We have Qemin - emin = —3, and hence

SQ(p ' emin)zdﬂ(P) = 0,

and so u is supported on the great circle of G2 perpen-

If two eigenvalues of Q are equal, say A\1 = A» = ),
A3 = —2\, then Q is said to be wuniaxial and has the form

1
=s({n@®n — —1) :
Q=s(nen-
where n = ez and the scalar order parameter
s = —3X € (—3,1). Otherwise Q is biaxial.

In fact it is extremely difficult to find Q that are not very
close to uniaxial with a constant value of s (typically
0.6-0.7). We will see why this is to be expected later. ’8
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Proposition. The tensor Q € £ is uniaxial with scalar order
parameter s if and only if

g2 23

2 _
, detQ = —-.
Q=" detQ=""

Proof. Necessity:

1 1
2 2

— n®dn——1):(n n———l)
Q| S <:<® 3 ) ( & 3

1 2. 22
2
— 1 — =)= —
s ( +3 3) 3
while by the formula det(14+a®b) =1+ a-b we get

3 2 3
detQ = —;—7(1 _3) = "

27



Sufficiency: The eigenvalues \; of Q satisfy

M+ A+ A3 = 0,

252

MHA+AS =
253

AMAoAy = ——,
11\2A13 57

from which it follows that

1 52
A1A2 F+ A2A3 + A3A1 = —50\% + A3+ 23) = 3

Thus the characteristic equation for Q is

2 3 2
> >
A3—S—A—i=(/\+3> (A——S)zo.
3 o7 3 3
2s

Letting n be the eigenvector corresponding to the eigenvalue 3

we obtain Q = s <n ®@n — %1) as required.

Corollary. Necessary and sufficient conditions for Q € £€ to
be uniaxial with scalar order parameter s € (—%, 1) are that

2
QI° = 54(det Q)?, detQ € __(~3,1). 30



Thus for nematic liquid crystals we have various choices
for the order parameter:

the probability density function p (oco-dimensional,
Onsager-type theories)

Q (5-dimensional, Landau - de Gennes theory)

(s,n) (3-dimensional, Ericksen theory)

n (2-dimensional, Oseen-Frank theory)

31



The Landau - de Gennes and Oseen-Frank theories

32



Landau - de Gennes theory

For simplicity we work at a constant temperature
0, and assume that there are no electromagnetic
fields. At each point x € €2, we have a corre-
sponding order parameter tensor Q(x).

We suppose that the material is described by a free-
energy density ¥ (Q,VQ,0), so that the total free
energy is given by

16(Q) = [ #(Q(), VQ(x),0) dx.

We write v = ¥ (Q,D,0), where D is a third order

tensor.
33



Frame-indifference

We consider two observers, one using the Cartesian coordinates
x = (x1,x2,23) and the second using translated and rotated co-
ordinates z = X + R(x — X), where R € SO(3), and we require
that

P(Q(X), V2Q¥(X),0) = ¥(Q(X), VxQ(X),0),

where Q*(xX) is the value of Q measured by the second observer.

Then Q*(X) /52 (q ®q-— %1) p(X,R'q) dq

1 _
/SQ (Rp ® Rp — §1> p(X,p) dp

_ 1 _ T
= R o (p®p—§1> p(X,p)dpR

= RQ()R'. :



T herefore

Qs _ 9 _
2, (x) = a—Zk(Rille(X)ij)
8 _ ail?p —
— a—%(Rille(X)ij)ﬁ—%(X)
0Q1m , —
— RilemRkp ax;n(x)-

Thus, for every R € SO(3),

»(Q%, D%, 0) = ¢(Q,D,0),
where Q* = RQR', D5 = Ry RjmRipDimp.

1
Such ¢ are called hemitropic.



Material symmetry

The requirement that

P(Q7(X), V2Q™(X),0) = ¥(Q(X), VxQ(X), 6)

when z=X+ R(x—X), where R=1—-2e®e, |e| =1, is
a reflection is a condition of material symmetry satisfied
by nematics, but not cholesterics, whose molecules have
a chiral nature.

Since any R € O(3) can be written as RR, where
R € SO(3) and R is a reflection, for a nematic

»(Q*, D%, 0) = v(Q,D,0)
where Q* = RQR', D}, = Ry RjmRipDimy and

7

R € O(3). Such v are called isotropic.



Bulk and elastic energies

We can decompose @ as

¢B(Q7 9) _I_ ¢E(Q7 an 9)
bulk 4+ elastic,

so that %DB(QaH) — @D(Q,O,@)

By frame-indifference ¥ g(-,0) is isotropic, i.e.

D(RQRL,0) = v5(Q,0) for all R € SO(3).

Isotropic functions of Q have a standard representation
in terms of the invariants of Q. -



Lemma. A function f(Q) of a real, symmetric, 3x3
tensor Q is isotropic, that is

f(RQR') = £(Q) for all R € SO(3),

if and only if f(Q) = g(trQ,tr Q2,tr Q3) for some
function g, and if f is a polynomial so is g.

Proof. Suppose f is isotropic. Choosing R to diagonalize
Q we see that

f(Q) = f(diag (A1, A2,23)) := h(A1, A2, A3)

for a function h of the eigenvalues \; of Q, and choosing
R so as to permute these eigenvalues we deduce that A

is symmetric with respect to permutations of the \;.
38



Since the eigenvalues are the roots of the characteristic equation

A3 — (tr QN2 + (trcof Q)\ — detQ = 0,

where cof Q denotes the cofactor matrix of QQ, and since the
coefficients determine the roots up to an arbitrary permutation,
it follows that h is a function of these coefficients, namely

trQ A1+ Ao+ Az,
tr cof Q = Ao+ >\2)\3 -+ )\3>\1,
detQ = A1A2A3,

and hence, on account of the formulae
1
trcofQ = 5 ((tr Q)% —tr Qz) ,

detQ = trQ3— gterr Q% + %(t" Q)°>,

f is a function of tr Q, tr Q2,tr Q3. The converse is obvious since

each of trQ,tr Q2,tr Q3 is isotropic.
39



If f is a polynomial, then so is h, and by the fundamental
theorem of symmetric polynomials h is a polynomial in
its coefficients, so that g is a polynomial.

Corollary. The bulk energy 1 p satisfies the frame-
indifference condition if and only if

¥5(Q,0) = g(tr Q%,tr Q>,6)
for some function ¢g. If, for a given temperature 6,

¥5(Q,0) is a polynomial in Q then g(tr Q2,tr Q3,0)
is a polynomial in tr Q2, tr Q3.

Proof. Apply the lemma to the function

05(Q.0) = ¥p(Q - S (trQ)1,0)

which is isotropic. *



Note that tr Q* = 5(trQ2)? for Q € £. Hence the most
general frame-indifferent ¢g that is a quartic polynomial
in Q is a linear combination of 1,trQ2,trQ3 and trQ*
with coefficients depending on 0.

Following de Gennes, Schophol & Sluckin PRL 59(1987),
Mottram & Newton, Introduction to Q-tensor theory
arXiv:1409.3542, we consider the special quartic bulk en-

ergy
2b
vp(Q,0) = a(8)trQ? — S tr Q3 + ctr Q%
where b > 0,¢ > 0,a = a(6 — 0%),a > 0.

(So we dropped the constant term, which doesn’t affect minimizers
of ¥, as well as the dependence of b,c on 6. In fact, later we give
reasons for assuming b,c are proportional to 6, but this will only

affect the value of the critical temperature 6y calculated below.)
41



p attains a minimum subject to Y7 _; \; = 0.

A calculation shows that the critical points have two
A; equal, so that Ay = Ao = A\, A3 = —2A say, and that
Aa + b + 6¢)?) = 0.

— b/ b2—24ac
12¢ .

Hence A=0 or A = AL =

For A = A+ we have that ¢¥5 = 6a)\?2 + 4bX\3 + 18c)\?,
which is negative when

6a + 4b\ 4+ 18cA?2 = 3a + b\ < O.



A short calculation then shows that 3a 4+ bMA_ <O

2
if and only if a < 2.

Hence we find that there is a phase transformation
from an isotropic fluid to a uniaxial nematic phase at
the critical temperature Oy = 6™ 4 2?20. If 6 > 0Ny then
the unique minimizer of ¥g is Q = 0.

If 8 < Ong then the minimizers are

1
Q = smin <n®n—§1) for n € S2,

2
where sqyin = b+\/b4c_24ac > 0.

43



Form of the elastic energy

Usually it is assumed that v5(Q, VQ, 0) is quadratic in VQ.
Examples of isotropic functions quadratic in VQ are the
invariants I, = I,(Q, VQ) given by:

I = QijkQijks 12 = QijjQik k
I3 = Qik jQij ks 1a = QuiQij 1Qij k

The first three linearly independent invariants Iy, o, I3
span the possible isotropic quadratic functions of VQ.
The invariant I4 is one of 6 possible linearly independent
cubic terms that are quadratic in VQ (see e.g. L. Longa,
D. Monselesan, H. Trebin, An extension of the Landau-
Ginzburg-de Gennes theory for liquid crystals. Liq. Cryst.
2, 769-796 (1987).) 44



Note that

I — I3 = (Q4jQik k) ,; — (QijQik ;) k
IS a null Lagrangian, that is its integral over €2 depends only
on the boundary values Q|s0.

An example of a hemitropic, but not isotropic, function is

Is = €,k Qi1 k-

For the elastic energy we take
40r5

vp(QYQ0) =2 Y Li(Q,VQ)
1=1

where the L, = L;(0) are material constants, with

Ls = 0 for nematics. 45



To summarize, we assume that for nematics and
cholesterics the free energy is given by

1,(Q) = [ %(Q,VQ,0)dsx,

where
140r5

»(Q,VQ,0) =¢p(Q,0) + 5 > Li;(Q,VQ),
i=1

where lDB(Qa@) — g(trQ27trQ370)r and L; = LZ(Q)r
with Lg = 0 for nematics.

46



T he constrained theory

For small L; it is reasonable to consider a constrained
theory in which we require Q to be uniaxial with a
constant scalar order parameter s = s(#) > 0, so that

1
Q=S<n®n—§1>, nc S2.

Then the bulk energy just depends on 6, so we only
have to consider the elastic energy

Ip(Q) = /Q Yvp(Q,VQ,0) dx.

47



Remarks. 1. The L; are not dimensionless, soO
care has to be taken in interpreting what it means
for them to be small (see Gartland 2015). Roughly
speaking L; small corresponds to a large body Iimit.

2. For studies concerning when and how the
constrained theory is valid in the Ilimit L, — O
see Majumdar & Zarnescu, Nguyen & Zarnescu,
Bauman, Phillips & Park, Canevari ...)

48



Formally calculating ¥g in terms of n, Vn we obtain
the Oseen-Frank energy functional

Iy(n) = é/Q[Kl(div n)? 4+ Ko(n - curln+qp)? + K3|n x curln|?
+ (K2 4 K4)(tr(Vn)” — (divn)?)] dx,

where

2
K{ = 2L1s° 4 Lys® + Lzs® — gL433,

2
Ko = 2L1s° — gL453,
4
K3 = 2L1s° 4 Lys® + L3s® + 5L433,
K4 = L3s°,
L L552
qO - 2K2 )

and gp = 0 for nematics, ggp # 0 for cholesterics.

49



Boundary conditions

(a) Constrained LdG/Oseen-Frank theory.

(i) Strong anchoring

n(x) = +tn(x), x € 912.

Special cases:

1. (Homeotropic) n(x) = v(x),
v(x) = unit outward normal

2. (Planar) n(x) - v(x) = 0.

50



(ii) Conical anchoring:

In(x) - v(x)| = a(x) € [0,1], x € 922,

where v(x) is the unit outward normal.

Special cases:

1. a(x) = 1 homeotropic .

2. a(x) = 0 planar degenerate (or tangent), director par-
allel to boundary but preferred direction not prescribed.

(iii) Weak anchoring. No boundary condition is ex-
plicitly imposed, but a surface energy term is added,
of the form

/(99 w(x,n)dS

where w(x,n) = w(x, —n). >



For example, corresponding to strong anchoring we can
choose

w(x,n) = —K(n(x) - i(x))?,

formally recovering the strong anchoring condition in the
limit K — oco. The case n(x) = v(x) is the Rapini-Papoular
anchoring eneragy.

(b) Landau - de Gennes
(i) Strong anchoring:

Q(x) = Q(x), x € 9.
(ii) Weak anchoring: add surface energy term

/(SQw(X’ Q) dS. -



But is the derivation of the Oseen-Frank theory
from Landau - de Gennes correct? The constrained
Landau - de Gennes theory is invariant to changing
n to —n, but is Oseen-Frank?

The issue here is whether a line field can be oriented,
i.e. turned into a vector field by assigning an orienta-
tion at each point. If we don't care about the regularity
of the vector field this can always be done by choosing
an arbitrary orientation at each point.

53



For s a nonzero constant and n € S? let

1
P(n):s<n®n—§1>,
and set

Q= {Q e M3%3:Q = P(n) for some nESQ}.

Thus P:S2 — Q. The operator P provides us with
a way of ‘unorienting’ an S2-valued vector field.

Given Q € WlP(Q, Q) we say Q is orientable if we
can write
Q(x) = P(n(x)),

where n € W1P(Q, S2). In topological language this
means that Q has a lifting to W1P(, S?).



Relating the Q and n descriptions

Proposition(JB/Zarnescu 2011)

Let Q = s(n@n—%l), s a nonzero constant, |n| = 1
a.e., belong to WlP(Q:&) for some p, 1 < p < co. If
n iIs continuous along almost every line parallel to the
coordinate axes, then n € WIP(Q, S2) (in particular n is

orientable), and

nj k= Qij k1.

55



Theorem. An orientable Q has exactly two orientations.

Proof

Suppose that n and n both generate Q and belong
to WHi(Q,52), where 72(z) = 1 a.e.. Let C C R
be a cube with sides parallel to the coordinate axes.
Let x5,x3 be such that the line z1 — (x1,x9,23)
intersects C. Let L(xp,x3) denote the intersection.
For a.e. such x5, x3 we have that n(x) and 7(x)n(x)
are absolutely continuous in 1 on L(xz>,x3). Hence
n(x) - 7(x)n(x) = 7(x) is continuous in x1, so that
7(x) is constant on L(zo, z3).

56



Let ¢ € C5°(C). Then by Fubini’'s theorem

dx = / dx = 0,
| readx= [ (re)

so that the weak derivative 71 exists in C' and is
zero. Similarly the weak derivatives T2,T3 €xist in
C and are zero. Thus Vr =0 in €' and hence 7 is
constant in C'. Since €2 is connected, 7 is constant
in €2, and thus =1 or = -1 in 2.

57



A smooth nonorientable
simply-connected region.

line field

iIN a Nnon
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Theorem (JB/Zarnescu 2011) If Q is simply-
connected and Q e WLP, p > 2, then Q is orientable.

(There is a related topologically more general
lifting result of Bethuel and Chiron 2007.)

Since the natural energy space for the Oseen-Frank
energy is W12(Q;S2) it follows that in a simply-
connected region the constrained Landau - de Gennes
and Oseen-Frank theories are equivalent.

59



Ingredients of proof

e Lifting possible if Q is smooth and 2 is simply-
connected

e Pakzad-Riviére theorem (2003) implies that if 92
IS smooth, then there is a sequence of smooth
Q) : Q — RP2 converging weakly to Q in W12

e \We can approximate a simply-connected domain
with boundary of class Y by ones that are simply-
connected with smooth boundary. (This can be
avoided using an argument of Bedford (2015).)

e Orientability is preserved under weak convergence

60



Non-equivalence of Oseen-Frank and constrained
LdG in non simply-connected domain
(modification of a 2D example
in JB/Zarnescu (2011))

Qs = {x=(z1,22,23) : (x1,22) € My, |x3]| < 1}

Boundary conditions on 9€25: On the curved
outer boundary the line-field is tangent to
the boundary and lies in the (x1,x5) plane.

On the two flat parts of 0€25 the line-field
also lies in the (x1,x2) plane.

20

On the inner two curved parts C5 of
the boundary there is weak anchoring

of Rapini-Papoular type.

61



The one-constant Landau - de Gennes energy

1(Q) = %Ll /95 IVQ|2dx — %K /05(1(1 . v)2dS

attains a minimum in W12(Qs: Q) subject to the
boundary conditions on the outer boundary 9925 \ Cs.

The corresponding Oseen-Frank energy
1
I(n) = 520, | |Vn|2dx — —K/ (n-v)2dS
25 2 C's

also attains a minimum subject to the boundary
conditions n-egz = 0 on 0925 \ C.
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For 6 large enough the minimum energy configuration is unori-
ented, even though there is a minimizer among oriented maps.

20

For details see JB, Liquid crystals and their defects,

. 63
CIME lecture notes, Springer 2017.



=xistence in Landau - de Gennes theory

Theorem (Davis & Gartland 1998)
Let ©Q C R3 be a bounded domain with smooth

boundary 0L2. Let vyg(-,0) be continuous and
bounded below, Lo, = L = 0 and

3 1
L3 >0,—-L3z < Ly <2L3, —gL3 — 1—OL2 < L.

Let Q: 00 — £ be smooth. Then

1 3

Ihy(Q) = | [vp(Q,0)+= > L;I;(VQ)]d

g Jolvs 22.; :
attains a minimum on

A={Q e W?(2: &) : Qlso = Q1. "



Proof. By the direct method of the calculus of variations.
Let Q(j) be a minimizing sequence in A. The inequalities
on the L; imply that

3
N L (VQ) > uVQ?
i—1

for all Q (in particular 3 _; L;I;(VQ) is convex in VQ).
By the Poincaré inequality we have that

QY) is bounded in W12
so that for a subsequence (not relabelled)

for some Q* € A.

65



We may also assume, by the compactness of the
embedding of W12 in L2, that QU — Q a.e. in Q.
But
1(Q*) < liminf 1(QWY))
]—00
by Fatou’'s lemma and the convexity in VQ. Hence
Q* is a minimizer.

In the quartic case we can use elliptic regularity
(Davis & Gartland) to show that any minimizer Q*
IS smooth.

66



But what if L4 # 07

Proposition (JB/Majumdar) For any boundary
conditions, if L, #= 0 then

;4
Ip(Q) = /Q <¢B(Q,9) + 5 > Lz'Ii(VQ)) dx
i=1

IS unbounded below.
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Proof. Choose any Q satisfying the boundary conditions,
and multiply it by a smooth function ¢(x) which equals
one in a neighbourhood of 92 and is zero in some ball
B Ccc 2, which we can take to be B(0,1). We will alter

Q in B so that

4
Q= (%(Q,m + Lz-fz) dx
1=1

is unbounded below subject to Q|5 = 0.
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Choose
X 1

Q(x) = h(r) | — & 1|, h(1) =0,
x| x| 37
where r = |x|. Then
2 4
v 2 — _h/2 _h2’
vQPP = h7 +

and

4 3
I = QriQij kQij1 = §h(h/2 — T—2h2)-
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Hence

J(Q) < 4 /01 re [wB(Q) + C (%h’Q + izh2> +

-
4 /2 3 2
where (' is a constant.

Provided h is bounded, all the terms are bounded except

1,2 4
4 / r2 (—C + —L4h> B2 dr.
o \3 "9
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Choose

h(r):{ho(Q—I—sinkr) 0<r<3i

2ho(2+sinfE)(1—-7) E<r<1

The integrand is then bounded on (%,1) and we

need to look at
1

5 5 /2 4
A /O % 2 (50 5L4ho(2 sin kr)) h3k? cos? kr dr,

which tends to —oo as k£ — oo if Lghg is sufficiently
negative.
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Analogy with nonlinear elasticity

y

Minimize

1) = | %(Vy(x) dx
subject to suitable boundary conditions,
e.gd. Yoo, =¥



To prevent interpenetration of matter we require
that y is invertible, and in particular that

detVy(x) >0 a.e. x € Q.

To ensure this can assume that

W(A) - o0 as detA — 04 .

But then it is a difficult open problem to prove that
a minimizer y* satisfies

detVy™(x) > e > 0 for a.e. x € Q.



Correspondingly, it is natural to suppose that

$5(Q,0) — 00 a5 Amin(Q) — —= + .

3

Such a suggestion was made by Ericksen in the
context of his model of nhematic liquid crystals.

We show how such an ¥y can be constructed on
the basis of a microscopic model, the interpretation
being that perfectly aligned states have entropy —oo.

T his will also allow us to get existence of a minimizer
when L4 # O.



The singular bulk potential (JB/Majumdar)
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The Maier-Saupe theory

In the Maier-Saupe model the bulk free-energy at
temperature 6 > 0 of a homogeneous nematic liquid
crystal has the form

Ig(p) = U(p) — On(p),
where p = p(p) and the entropy is given by

1(p) = —kp [, p(p) In p(p) dp,

and kg is Boltzmann’'s constant.

(Here and below we define tiInt =0 for t =0.)
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Consider an interaction potential U(p) of the form

U(p) = [, |, K. a)p(P)p(a) dp da.

We assume that K is frame-indifferent, so that

K(Rp,Rq) = K(p,q) for all R € SO(3),
which holds iff

K(p,q) =k(p-q)

for some k:[-1,1] — R.
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In the Maier-Saupe theory k is given by

k(p'q)=%(%—(p-q)2>,

where k > 0 is independent of 6.

Denoting by

Q) = [, (pep—31) po)dp

the corresponding Q-tensor, we have that

Q)* = /SQ /52 (p P — %l) - (q ®q-— %l) p(p)p(q) dpdq

= [, Jo (- @2~ 3) p(@)o(a) dp da

Hence

Ig(p) = kb | , p(P)In p(P) dp — KIQ(P)
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Theorem (Fatkullin & Slastikov 2005, Liu, Zhang
& Zhang 2005)

For the Maier-Saupe potential all critical points of
Ip(p) can be explicitly determined and are uniaxial.
The isotropic state p = ﬁ IS a critical point for
all 6. At the largest bifurcation point 6. there is a
transcritical bifurcation, so that p is stable for 8 > 6.,

and unstable for 6 < 0.

Using equivariant bifurcation theory and an analysis
involving spherical harmonics, Vollmer (2015) has
established a similar bifurcation picture for a class
of potentials k including the Onsager potential

k(p-q) = ky/1— (p-q)2.
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Given Q € £ with Apin(Q) > —3 define

Yp(Q,0) = {p:Qi(r;LQ}U(p)—Hn(p)

— knb inf In pdp — k|Ql%.
B9 a)=qy Js2 M PP HIQ

(cf. Katriel, Kventsel, Luckhurst & Sluckin (1986))

Thus we just need to understand how to minimize

E(p) = [, p(p)In p(p) dp
subject to Q(p) = Q.
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Given Q € & with A\qin(Q) > —1/3 we seek to minimize

E(p) = [ ,p(p)In p(p) dp

on

Aq={peL*(s?):p>0, [ p(p)dp =1,Q(p) = Q, E(p) < o}.

Remark: We do not impose the condition p(p) = p(—p),
since it turns out that the minimizer in AQ satisfies this
automatically.

Theorem. E attains a minimum at a unique pqg € Aq.

81



Proof. We already showed that AQ iIs nonempty. Let
p(j) be a minimizing sequence for E in AQ. By the de
la Vallée Poussin criterion and the superlinear growth of
pInp, we may assume that p) — pq in L1(S?) for some

pq. and pq > 0, Q(pqg) = Q.
Since plnp is convex,

I(pq) < liminf I(p\)),
]—>00
SO that pq Is a minimizer, which is unique since plnp Is

strictly convex.

In fact pQ can be given semi-explicitly as a Gaussian
on the sphere.
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Theorem. Let Q € & with A\in(Q) > —% have

spectral decomposition Q = Zf’zl e, ®e;. Thenin
the basis e, ep,e3 the unique minimizer pg of E(p)
in AQ is given by

exp (n1p? + pop3 + 13p3)
Z (p1, 1o, 13)
where p = (p1,p2,p3), 1 = (K1, 2, 143),

Z(w) = |

S
IS the partition function, and

v'uan([l:) — 7,

with v = (v1,72,73) and v; = X\; + 3. The p; are
unique up to an additive constant.

Y

rq (P) =

_ €XPp (mp% + pops + u3p§) dp



To show that PQ satisfies the corresponding Euler-
Lagrange equation, the u; appearing as Lagrange
multipliers, is a bit tricky because of the possibility
that PQ IS not bounded away from zero. A quicker
proof is via the following ‘dual’ variational principle
(cf Mead & Papanicolaou 1984, Borwein & Lewis
1991), from which the existence of a minimizer rQ
also follows.

Theorem. pu maximizes

H(v) =~-v—InZ(v)

over v € R3, and

min E(p) = max H(v),
AQ veR3

so that E(pq) = H(p).
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Note that if m = (1,1,1) then for any 7 € R

3
H(V—l—Tm) — ’y-V—|—T—|I’1/52€XD<Z’U7;piQ—|—T>dp
1=1
= ~v-v—InZ(v) = H(v),

so that it is sufficient to consider H(v) for v € m~,
where

m-={veR3:v-m=0}

Lemma. H(n) is a strictly concave function on m=+
with H(n) — —oo as |n| — oo, and hence attains a

unigue maximum on m-.
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Proof. If a,v € mT with a # 0 then a calculation
shows that

921n Z(v)
aiaj —
81;@-8@]-
1 > > 2 i
27(v)?2 /52 /52 21 (Pi = 4)
1=

3
exp (Z v (pf + qu)> dp dq > O,
k=1

so that H(v) is strictly concave.
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To prove that H(v) - —o0 as |v| — oo it suffices to
prove that exp(—H(v)) — oco. But

3
(—H(V)) = vi(pf — i>>d
exp /Szexp (Z; p; — P

and

3

N ui(p? — ) = v1(2p3 + p3 — 271 — 72)
1=1

+v2(2p3 + p§ — 272 — 71)-
The result follows by examining the sets of p € 52

where the two quantities in brackets are positive and

negative. o



Given a maximizer p of H we have that V,H(u) = 0, that is

VuZ(p) _
Z ()

expressing the fact that

exp (X7 q wir)
Z ()

pq(p) =

satisfies Q(pq) = Q.

Now let p € AQ, p 7 pq- Then by the strict convexity of
plnp we have that

E(p) = /SQ/HH pdp

3

> /52 (PQ'“PQ-I- (p = rqQ) (1 + Y wipy — In Z(H))) dp
i=1

= I(pQ)

so that pq is the unique global minimizer.



Let f(Q) = E(pq) = infpeAQ E(p), so that

vp(Q,0) = kpdf(Q) — x|Q|%.

Hence the bulk free energy has the form

3 3
Yvp(Q,0) = kpb (Z i (N + %) —In Z(u)> — kY A2
i=1 i—=1

Theorem. f is strictly convex in Q and

lim f(Q) = co.
Amin(Q)%—%‘F
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Proof. The strict convexity of f follows from that of
pInp. Suppose that Amin(QYW) — —% but £(QU)) remains
bounded. Then

. . : 1 : .
QWeld) . el 5|e(‘7)|2 =/ Q) (P)(P- el)2dp = 0,
where e(?) is the eigenvector of Qw corresponding to

Amin(Q(j))-

But we can assume that po() — p in L*(S%), where
Jg2p(P)dp = 1 and that ell) 5 e, |le| = 1. Passing to
the limit we deduce that

[ P(P)(P-€)2dp =0

But this means that p(p) = 0 except when p-e = 0,
contradicting [qo p(p)dp = 1.
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T he blow-up iIs logarithmic.

T heorem

1 1 1
5 " <(27T)3€’Ymin(Q>> < fQ<ln <7min(Q)> 7

1 /3 2 vV /(Q 1 !
>\ ™" <W€7min(Q>> = VHQI= Y (Q) <2W3€7min(Q>>
where ’Ymin(Q) — Amin(Q> T %

The proof uses our initial construction of a function
p € AqQ to get the upper bound, and the dual varia-
tional principle to get the lower bound.
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Other predictions

1. All stationary points uniaxial and phase transition
predicted from isotropic to uniaxial nematic phase just
as in the quartic model.

2. Minimizers p* of U(p) — 6n(p) correspond to minimiz-
ers over Q of ¥p(Q,0). As already mentioned, these p*
were calculated and shown to be uniaxial by Fatkullin and
Slastikov (2005), and by Liu, Zhang & Zhang (2005).

3. Existence when L4 # 0 under suitable inequalities on
the L;, using the estimates

1 2
—§|VQ|2 < QrrQij Qi k < §|VQ|2-
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4. Near Q = 0 we have (see also Katriel et al) the expansion

. 15_ K Q_E 3 3825 2
@?PB(Q ,0) = In47r—|—<4 )trQ trQ ( Q)

0k 784

280125 > 3 14728 5 51246 3\ 2
— t t tr

15002 I’Q FQ T 6000 ( Q ) 600 < Q ) T

In particular the expansion gives that the coefficients b, c

in the quartic form should be proportional to 6 and satisfy
14

17 =~ .82, while experimental values reported in the
terature are for MBBA 1.19, and for 5CB 0.82.

b —
C
li
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Given appropriate boundary conditions, do minimizers of

1/(Q) = |_[¥5(Q.0) + ¥5(Q, VQ,0)] dx
1

have eigenvalues which are bounded away from —3 I.e.
for some € > 0

_é_|_5 < Amin(Q(x)) < Amax(Q(x)) < %—e for a.e. x € Q27

If not, this would mean that a minimizer of I would have
an unbounded integrand. Surely this is inconsistent with
being a minimizer ....

One might think that for a minimizer to have the inte-
grand infinite somewhere is some kind of contradiction,
but in fact this is a common phenomenon in the calculus
of variations, even in one dimension.

94



Example. (JB & Mizel)
Minimize
I(u) = /_11[(5134 — u6)2u£8 + 6u£] dx
subject to
u(—=1) = -1, u(l) =1,
with 0 <e <eg~-001.
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Result of finite-element minimization, minimiz-
ing I(up) for a piecewise affine approximation
up, tO uw on a mesh of size h, when h is very

small. The method converges and produces

two curves u~.
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1 08 06 04 02 02 A4 06 08 1

However the real minimizer is «*, which has a
singularity

2
u*(x) ~ |z|3signz as = ~ O.
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Theorem. Let Q minimize

1/(Q) = | [¥5(Q,0) + K(0)|VQP) dx,

subject to Q(x) = Qqp(x) for x € 92, where K(6) > 0
and Qo(-) is sufficiently smooth with Amin(Qo(z)) > —3.
Then

1
Amin(Q(x)) > 3 + ¢,

for some € > 0 and Q is a smooth solution of the corre-
sponding Euler-Lagrange equation.

Proof. Project using the nearest point projection onto
the convex set

K ={Q: f(Q) < M;}

for large M. It can be shown that this reduces both terms
in the integral.



Open problem. Prove this for the case of three or more
elastic constants. The above method does not work.
Tthere are partial results in 2D of Bauman & Phillips
(2016), and a related partial regularity result in 3D of
Evans, Kneuss & Tran (2016).
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Developments

1. Jamie Taylor (2016) has generalized the construction
of the singular potential to a broad class of moment
problems, with various applications.

2. For studies of dynamics using the singular potential see
E. Feireisl, E. Rocca, and G. Schimperna, Annali di Matem-
atica Pura ed Applicata (2013)

M. Wilkinson, Arch. Rat. Mech. Anal. (2015)
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T he description of defects
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Defects

Roughly these can be thought of as regions of
sharp change in the director or line field.

Schlieren texture of a nematic film
with surface point defects (boojums).
Oleg Lavrentovich (Kent State)

Zhang/Kumar 2007

Carbon nano-tubes as liquid crystals
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Oseen-Frank free energy

(drop explicit dependence on 6)
I(n) = /Q Wi(n,Vn)dx, n=n(x)eS?

splay twist bend
2W (n, Vn) = K1(divn)? + Ko(n - curln)? 4+ K3|n A curln|?

+ (Ko + K4)(tr(Vn)? — (divn)?).
saddle-splay null Lagrangian

/Q(tr (Vn)? — (divn)?) dx depends only on n|yo

Ericksen (1966) inequalities. W (n,Vn) > 0 for all n if and only if
K120, Kr 20, K3>0, K > |Ka|, 2K1 > Kz + Ky.
We will always assume the strict form

K1 >0, Ko >0, K3>0, Ky > |Kyl|, 2K1 > Ko + Ky,

which are necessary and sufficient for W(n, Vn) > u|Vn|? for some x> 0.



Energy minimization problem: find n that minimizes

I(n) = o W(n, Vn)dx subject to suitable boundary
conditions, for example n|po = n, where n is given.

Important identities

(n-curln)? 4 |n A curln|? = |curln|?

'Vn|? = (divn)?+(n-curln)?+|nAcurln|*+(tr (Vn)?—(divn)?).

So if K1 = Ko = K3,K4 = 0 (the one constant
approximation) then

K
I(n) =—1/ Vn|2dx,
2 JQ

which is the energy functional for harmonic maps.



If n is a minimizer and m : © — R3 is any smooth mapping
with III‘@Q — 0O, then

n(x) + em(x)
In(x) + em(x)|
satisfies n:-(x)| = 1 and n:|yo = n.

n:-(x) =

Hence formally we have that £71(n:)|.=¢ = O.

Noting that %]szo = (1 — n(x) ® n(x))m(x), we obtain the
weak form of the Euler-Lagrange equation, that for all such
m

21%%
A (87“ V(1 - n(x) ® n(x))m(x)) (WEL)

_|_%_If1/ (1 —-—n(x)® n(x))m(x)) dx = Q0.
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Hence, integrating by parts and using the arbitrariness of m,

we formally obtain the Euler-Lagrange equation
ow oW

(1 -n&n) (divﬁ—g> —0, (EL)

a system of second order nonlinear PDE to be solved subject
to the pointwise constraint |n| = 1.

This can be written in the equivalent form

oW oW = A\(xX)n,
oVn On

where \(x) is a Lagrange multiplier.

div

In the one-constant case (EL) becomes

An ]Vn\zn =0, I.e. T 43 (njjknjk)nz =0 (’L =1.2, 3)
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How can we solve these equations?
Are there some exact solutions?

The question of what (smooth) n(x) can be solutions of
(EL) for all K1, K>, K3, K4, sO called universal solutions,

was addressed by Marris (1978,1979), following Ericksen
(1967).

Marris showed that these consist of

(i) constant vector fields, or those orthogonal to families
of concentric spheres or cylinders,
(ii) pure twists, such as

n(x) = (cos uzx3z,sin uzz, 0),

(iii) planar fields that form concentric or coaxial circles.
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An example from family (i) is the hedgehog

n(x) = =

n

x|

which represents a point defect.

Of course n is not even continuous at 0, but for x =0 it
IS smooth and we have
Vi(x) =i(1— X X), VAGOR = 2,
x| x| [x] x|2
so that formally calculating its energy over the ball
B(0,1) = {|x| < 1} we find that

/' W (@, Vi) dx < C Vii|2dx = 4xC / —dr < 0.
JB(0.1) /B(0,1)

More precisely, n belongs to the Sobolev space
HY (82 ={n:Q — 52 /Q IVn|? dx < oo},

where Vn is the weak or distributional derivative.



T heorem (Brezis, Coron & Lieb (1986), Lin (1987), Helein (1987), Ou (1992))
If K1 < Ko then @i is the unique minimizer of I(n) in H1(2; S2) subject
to its own boundary conditions.

Proof that nn is a minimizer. (JB/Virga)
Claim: if Ki < K5 then

K1(divn)? + Ko(n - curln)? + Ks|n A curln|?
+2K1[tr (Vn)? — (divn)?] > 0.

Proof of claim: Ky, Ko, K3, K4 = 2K — K> satisfy the
Ericksen inequalities.

Hence, ignoring the saddle-splay term
1
I(n) = Q/Q (Kl(div n)? + K>(n-curln)? + K3|n A curl n\2) dx
: 2 2
> Ky fQ ((divn)? — tr (Vn)?) dx
— Ky /Q ((divi)? — tr (VA)?) dx = I(R).

since by direct computation (divi)? = 2tr (Vi)?, curlf = 0. 109



Results of Hélein 1987, Cohen & Taylor 1990, Kinderlehrer
& Ou 1992 give that the second variation §27(ii) > 0 if and

only if
1
Ko — Kq 2 —§K3,

and can be negative if K, — K1 < —3K3, when # is not a
minimizer.

Numerical calculations of Alouges & Ghidaglia 1997 suggested
that n need not be a minimizer if Ko — Kq1 > —%Kg, but some of
their examples had K1 = K5, when we Know n is a minimizer.

The same results on the second variation can be obtained
(JB/Virga) within the class of twisted hedgehogs of the form
n = R(|x|)n(x) with R(|x|)es = e3, and our analysis suggests

that perhaps i is a minimizer for Ko — K1 > —%K& 110



Pure twist solutions.
Q = (0,11) x (0,I2) x (0,d)

= A |
N a

“‘*&1’10

31
Boundary conditions:

n‘xlzo — nl:r:l:lla n‘$2:O — n|:132:l2:
n’:L'3=O — g, n‘az3=d — 1y,
ng-es3 = ng-e3z =0.

If n € H1(; S?) satisfies these boundary conditions then

/Q (tr (Vn)? - (divn)?) dx = 0.
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Theorem. Assume nyg #*= £ng. Suppose Ko < min(Kq, K3).
Then there is a unique minimizer n* € H1(2: S2) satisfying the
boundary conditions, and n* is a pure twist of the form

n*(x) = (cos(\ + px3),sin(A + px3),0)

for constants A\, pu.

Proof. Let n* = n*(x3) be the unique minimizer of F(n) = fg|n’(:c3)|2da:3
subject to n(0) = ng,n(d) = ny, which has the given form. Then

2I(n) = /Q[Kl(div n)2 4+ Ko(n - curln)? 4+ Ksn A curln|?] dx
— /Q[(K1 — K5)(divn)? + Ko|Vn|2 4+ (K5 — K5)|n A curln|?] dx

> /KQ vn|2dx
<2

> /K n |2dx—/11/l2K /d
= Jo 21113 o Jo 2 0
> [ Kaln’y(as)|Pdx = 21(n%),

since divn®* = 0 and n™ A curln™ = 0. 112

n3(xy,rp,w3) |2d$3) drydry




Numerical result Patrick Farrell (Oxford) (see also Adler,
Emerson, Farrell & Maclachlan (2016)) using his ‘deflation’

algorithm for finding stationary points.

SO

In the computations d = 1,/1 = 1, and only solutions
independent of x> are sought.

For the one-constant case only the pure twist solution is found.
But for a case with K1 = K3 =1, Ko = 2.8 he finds 74 solutions,
the one with least energy being a tilt-twist configuration depending
only on xs.

Red arrows point towards you, blue arrows away.
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A routine use of the direct method of the calculus of variations gives:

Theorem. If i € H1(2; S2) then there exists n* that minimizes I(n)
over all n € H1(Q; 52) with n|po = 01, and n* satisfies (WEL).

Much deeper are results of Schoen & Uhlenbeck (1982),
Brezis, Coron & Lieb (1986).

Theorem. In the one-constant case n* is smooth except for
a finite number of point defects located at points x(i) € €2,
and

x — x(7)
[x — x(7)|

n*(x) ~ +R(7) as x — x(17),

for some R(i) € SO(3).

The best result for general Frank constants is:

Theorem (Hardt, Lin & Kinderlehrer (1986)) Any minimizer
n c Hl(Q; 82) is analytic outside a closed set S whose Hausdorff
dimension is less than one.
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Remarks on weak solutions.

1. In the one-constant case finite energy solutions of (WEL)
can be everywhere discontinuous (Riviere (1995)).

2. Minimizers also satisfy the identity

ow

Wop:, —n, .—— dx =20

/Q ( ky nz,,k,ani’j) Pk.j (T)

for all ¢ € C§°(€2; R3), obtained by considering variations

of the form n(z(x)) that rearrange the values of n.

3. Smooth solutions of (EL) satisfy (1), but in general
solutions of (WEL) do not.

4. In the one-constant case, solutions of (WEL) satisfying ()
are smooth outside a closed set E of zero 1D Hausdorff measure
(Evans 1991), thus smoother than general solutions of (WEL).

5. Solutions of (WEL) satisfying (7) are weak equilibrium solutions to

the Ericksen-Leslie dynamic equations, but the converse is not clea1r1.7



Line defects

A(x) = (2,22,0) r = /22 + 3

7"7747

Vi(x)[? = 5

r

o~

ﬁ,st(ﬁ@@ﬁ—%l) cWlP e 1<p<?
infinite energy for Oseen-Frank and constrained
Landau-de Gennes quadratic models 118



Index one half defects

! Zhang/Kumar 2007
| Carbon nano-tubes
¥ as liquid crystals
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The index one half singularities are non-orientable

Q=s (n @n — %1) ¢ W12 since otherwise orientable

In each sector Q is orientable -/<<

but Q ¢ Wh2,



Can one change Q (while remaining uniaxial) in a
core around the defect in such a way that the energy
becomes finite?

Yes for the cylindrical hedgehog by ‘escape into the
third dimension’.

J No for the index % defects because

then Q would be nonorientable and in
w12 contradicting the orientability

\\ result for simply-connected domains.
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Director modeling of line defects with finite energy

That these defects have infinite energy arises from the
quadratic growth in Vn of W(n, Vn).

But there is no reason to suppose that W(n,Vn) is
quadratic for large |Vn| (such as near defects).

So a possible remedy would be to assume that W(n, Vn)
has subquadratic growth, i.e.

W(n,Vn) < C(|Vn|’ 4 1),

where 1 < p < 2, which would make line defects have

finite energy.
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For example, we can let
2
Wa(n,Vn) = — ((1 + aW (n, Vn))% — 1) :
joJe
where o > 0 is small. Then Wg(n,Vn) — W(n, Vn)
as a — 0. Also, assuming the Ericksen inequalities,

W satisfies the growth conditions
Co(|VnlP — 1) < Wa(n, Vn) < Ca|Vnl?,
for positive constants Ca,q;. Setting
In(n) = /Q Wa(n, Vn) dx,

we obtain that Io(1l) < co as desired. Also Wu(n, )
IS convex.

123



Boundary conditions:

If Q c R3 has smooth boundary and a sufficiently
smooth unit vector field N is given on the boundary
02, then it is known (Hardt & Lin 1987) that there
is a unit vector field n € W12(Q; S?) with n = N on
o2.

However, if, for example, €2 = (0,1)3 is a cube and N is
the inward normal to the boundary, then (Bedford) there
iIS no such n. Thus the Oseen-Frank theory does not
apply to homeotropic boundary conditions on a cube,
although a theory with subquadratic growth would be
OK.
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For a subquadratic W the index-

% singularities have finite energy in —//
the constrained LdG theory. How- - \

ever there still remains the issue of
non-orientability (see later).

Canevari (2017) studies the behaviour as K — 0+ of
minimizers Qg of the one-constant LdG energy

(@ = [ (v5(Q +51vQ?) dx
with quartic ¥ under the logarithmic scaling
Ik(Qg) < CK|In K],
which allows the appearance of line defects in the limit.

He shows that these consist of straight line segments.
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(For colloids, where curved disclinations are seen, there
are other small geometric parameters. See the study of
Saturn rings by Alama, Bronsard & Lamy (2016).)

Canevari & Majumdar (2018) also study defects in
a subquadratic theory.
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Description of defects in the full Landau - de
Gennes theory

Since weak solutions in Landau - de Gennes are smooth,
modulo difficulties with the eigenvalue constraints, de-
fects are not represented by singularities in Q. Rather
they can be seen as singularities in the eigenvectors of
Q, which can occur when eigenvalues coincide. (cf de
Gennes, Biscari ...)

T he situation might be different for free-energy densities
Y (Q, VQ) which are convex but not quadratic in VQ. For
such integrands there is a counterexample of Sverak &
Yan which has a singular minimizer of the form

X X 1
Q(x) = |x| <m ® m — §1> - 127



Point defects in the Ericksen and Landau - de
Gennes theories

Since weak solutions in Landau - de Gennes are smooth,
point defects are not represented by point singularities in
Q. In both the Landau - de Gennes and Ericksen theo-
ries there are solutions to the Euler-Lagrange equations
representing melting hedgehogs, of the form

Q) = s(x]) (i o5 _ 11) |

X
x|~ Ix] 3

where s(0) = 0.
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For the quartic bulk energy 5 and the one constant
elastic energy such a solution is shown by Ignat,
Nguyen, Slastikov & Zarnescu (2014) to be a local
minimizer for Q = R3 of

(Q) = [ [65(Q) + 5K|VQ[ dx

subject to the condition at infinity

1
Q(x) = Smin ( . ® i _1> as |x| — oo,
x| x| 3
b+ Vb2—24ac

where smin = 7c > 0, for temperatures
close to the nematic initiation temperature.

However for lower temperatures the melting hedge-
hog is not a minimizer (Gartland & Mkaddem
(1999)) and numerical evidence suggests a biaxial
torus structure for the defect without melting.
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Ericksen theory. Here we can model point and line defects
by finite energy configurations in which n is discontinuous
and s = 0 at the defect (melting core). In this case there
IS N0 need to change the growth rate at infinity.

For example, if we consider the special case when

Q) = [ [w5(Q) + S KIVQP] dx,

then the uniaxial ansatz

Q) = () (G0 ©n(x) - 21)

gives the functional
1
In(s,n) = [ 1282Vl + SK(Vs?) + vp(s)] dx
where 1,(s) = ( 3 ; 27>

Then n can have a singularity at a point or curve which has
finite energy because s can tend to zero sufficiently fast as

130
the point or curve is approached to make Igx(s,n) finite.



The Lavrentiev phenomenon

(Lavrentiev 1926)

Minimizers of the same energy in different function spaces can
be different, and give different values for the minimum energy.

Consequence: the function space is part of the model.

Example from solid mechanics: ball of rubber subjected

to outward radial boundary displacement, modelled using
nonlinear elasticity.

Function space Smooth maps H1 SBV

Uniform Cavitation Fractu re .,

dilatation (point defects) (Surface defects)



The Lavrentiev phenomenon in ligquid crystals.

One example is due to Hardt & Lin (1986) for the one-
constant case. They show that there is a smooth map
n: B — S2 such that for some a > 0

min In)+a<TI(m)
ne H1(B;S?)n|pp=n

for all continuous m € H1(B; S?).

Another example is if we allow the director n to be discontinuous
across surfaces (planar defects). In this case one should pay an
energetic penalty for a jump in n, so that we have an augmented
functional defined for n € SBV

I(n) =/QW(n, Vn) dx—l—/s f(ng.n_,v)dA.
’ T \ normal to Sn

jump set of n limits of n on

either side of Sp 132



One possible application is to recover orientability
by allowing n to jump to —n across suitable surfaces
with zero energy cost.
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Theorem (Bedford). Let Q = s(n@n—%l) C
Wi2(Q; M3%3), where s # 0 is constant. Then
there exists a unit vector field m € SBV such that
mm=n®n, and m4 = —m_ across any jump.

This applies to the second situation above but
not to index % defects, for which an extension to

wlpr 1 < p< 2 would be required.
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Planar defects (JB/Bedford)

Consider further a free-energy functional for
nematic liquid crystals of free-discontinuity type

I(n):/QW(n,Vn)dx—l— < f(n_|_,n_,1/)d7-t2,

for n € SBV(S, S?), where v is the normal to
the jump set Sy.
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Properties of f

Suppose that f: 52 x S2 x S2 — [0,00) is continuous and
frame-indifferent, i.e.

f(Rn+,Rﬂ_,RV) =f(n_|_,n_,1/) (1)

for all R € SO(3),ny,n_,v € S2, and that f is invariant
to reversing the signs of ny ,n_, reflecting the statistical
head-to-tail symmetry of the molecules, so that

f(—ny,n_,v) = f(ng, —n_,v) = f(ny,n_,v). (2)

Also would like that f(n,n,v) = 0, though sometimes it

IS easier to consider the case when min f > 0. e



Theorem. A necessary and sufficient condition that a
continuous f : S2 x S2 x 52 — [0, 00) satisfies (1) and (2)
IS that

f(l’l_|_, n_, V) —
g((ng-n_)? (ng )%, (0 v)% (ngp-n)(ng - v)(n- - v))

for a continuous function g : D — [0,c0), where

D = {(a,5,7,9) : a, 8,7 € [0,1],6° = aBy, a+p+y—25 < 1}.

(c.f. Smith 1971)
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Order reconstruction

Qs = (0,17) x (0,l») x (0,9
Barbero & Barberi (1983) 3= (0:11) x(0,12) > (0.9)
n = tej r3 = 0

Ambrosio & Virga (1991) 1
Palffy-Muhoray, Gartland
& Kelly (1994) / n=4e—

Lamy (2015) 3 =10

(a) Analysis using Landau - de Gennes

Boundary conditions:

Q(z1,22,0) = QO Q(x1,22,8) = Q)

for a.e. (x1,x22) € (0,11) x (0,15), where

Q@ =51 (e1®er —31), QW) :i=s3(es®esz—11),
QQ periodic in 1,2 and s1 > 0, s» > 0.
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Suppose that ¥(Q,VQ) = ¢vp(Q) + ¢¥r(VQ) with
wp of standard form and

bE(VQ) > a|VQ)?

for some a > 0.

Rescale, defining

P(z1,22,23) = Q(z1, 22, 623),
so that I(Q) = 6 1E(P), where
B (P) = [ 16265(P) + ¥i(3P 1,0P 5, P 3)) da

and D = (O,ll) X (O,lz) X (O, 1).

139



Theorem. Let P° be a minimizer of E°. Then as § — 0
P’ - P, P — P 3, 6P — 0, 6P% — 0 in L*(D; 9),
where
P(x) = (1 -23)Q% +23Q",
and S ={Q e M3%3:Q=Q7",trQ = 0}.

So for sufficiently small §, Q is given approximately by

Q(x) = (1 — 6 123)QY) 4 57 123QY),

for which the director (the eigenvector of QQ corresponding
to the largest eigenvalue)

e; If0<z3< 21

n(x) = _ $11+$2
(%) { ez If -5 <w3<4.
has a discontinuity on the plane z3 = —L 4. 140
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Molecular dynamics simulation of 5CB thin film.
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There is an exchange of eigenvalues at z ~ 6.81nm, with a jump

in the director n.

The graph of the largest eigenvalue Amax(Q(z)) has the same quali-
tative form as that in Pizzirusoo et al but the values are less, because
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(b) Analysis using director model

Consider for simplicity the functional
I(n) = /Q K|Vndx +k [ (1- (ny -n_)2)2dH>
) n

where K > 0, k>0 and 0 < r < 1, with boundary conditions
n(a:l,xQ,O) = e, n(a:l,:cg,é) = e3 and 1 =10l =1 (handled
technically by extending n outside Q25).

Theorem. For any 0 > 0 there exists at least one minimizer
n € SBV(Ss : S2) of I subject to the boundary conditions.

A candidate for a minimizer of I is the bending solution
for the Oseen-Frank theory

n(x) = (cos W—%,O,sin 3 :
20 20
with I(a) = K1, 142



However, for o sufficiently small n is not a minimizer,
and minimizers have the form

€1, r3< T

where 0 < 7 < 9.

Indeed I(n*) = éc so that I(n*) < I(n)
provided § < &7
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Other possible candidates for physical planar defects.

1. Nematic elastomers

The energy functional for nematic elas-
tomers proposed by Bladon, Terentjeyv,
Warner (1993) is given by

7 _
I(Y7 n) — / ~ (VY(VY)T . La’}i o 3) dCU, Stripe domains in nematic elastomer

Kundler & Finkelmann
Where Mathematical theory due to De Simone &
Dolzmann

2 1
Lon=a3n®@n—+a¢ 6(1 —n®n)

and u > 0,a > 0 are material parameters.

The material is assumed incompressible, so that y
IS subjected to the constraint detVy = 1. 144



By minimizing the integrand over n € S2 we obtain
the purely elastic energy

)= [[W(Vy)dx, (1)

where

W(A) =4 (a7503(A) + a3 (03(A) + 13(A))

and v1(A) > v>(A) > v3(A) > 0 denote the singular
values of A, that is the eigenvalues of VATA.

As discussed by De Simone & Dolzmann (2002) the free-
energy function (1) is not quasiconvex, and admits minimiz-
ers in which Vy jumps across planar interfaces, so that the
minimizing n of the integrand also jumps. Of course the
functional ignores Frank elasticity, i.e. terms in Vn, but the
experimental observations might suggest that even with such
terms allowing jumps in n may be a useful approximation.
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8CB smectic thin films
Zappone, Lacaze et al, 201C

AFM image
Michel, Lacazc
et al, 2004




Models of smectics

| M

Smectic A Smectic C

1. Assuming constant layer thickness.
e.g. Leslie, Stewart, Nakagama (1993)

Minimize
I(n,m) = /sz(n, m, Vn, Vm) dx
subject to |n| = jm| =1, curlm = 0.

For smectic A set m = n.

A M
bt



2. Models allowing variable layer thickness,
dislocations ...

These models typically introduce
the molecular number density p(x)
as a new macroscopic variable,
with the smectic layers being

seen as density waves.

C. Zhang, A. M. Grubb, A. J. Seed, P.
Sampson, A. Jakli, O. D. Lavrentovich,
2015

de Gennes (1972), Chen & Lubensky (1976)
Han, Luo, Wang & Zhang (2014)
Pevnyi, Selinger & Sluckin (2014) ...

Question: how to understand the macroscopic variable
p(x) varying over a molecular length-scale.



Smectic A thin films (Canevari, Stroffolini, JB)
Minimi:

where ¢



Really this needs to be formulated as a free-boundary prob-
lem for a fixed volume of fluid, but as a beginning suppose
we are on the fixed domain €2 with the same boundary con-
ditions as for the order reconstruction problem, i.e.

n(z1,0) =eq1, n(x1,9) = eo, n periodic in xz7.

Theorem. For any 7 € (0,6) the map

n*(x) = {

IS @ minimizer for I subject to the boundary conditions.

€y, o >T
e1, o < T

The proof uses the auxiliary problem of minimizing
1
I,(n) = 5/9 (1vn|2 + k[curin|?) dx + H'(Sn)

in the IImit £k — oc.



