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Plan of course

Lectures 1-3
Mathematics of crystalline solids

Colloquium + lectures 4-5
Mathematics of liquid crystals



Plan for lectures 1-3

1. Modelling of solid phase transformations via

3.

non
Mat

Inear elasticity.

nematical tools for describing microstructure.

Classical austenite-martensite interfaces.

. Macrotwins,

Nonclassical austenite-martensite interfaces
Nucleation of austenite in martensite

Incorporating interfacial energy.



Macrotwins in NigAl;: Involving two
tetragonal variants (Boullay/Schryvers)




Martensitic microstructures in CuAlNi (Chu/James)
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Themes of lectures

1. Role of compatibility of gradients In
microstructure morphology.

2. Why do we see these particular
microstructures rather than different

ones?



Critique

We use a static theory, whereas this Is
clearly a pattern formation problem, which
should be treated using an appropriate
dynamical model.

Such a model should tell us which
morphological features are predictable
(e.g. via invariant manifolds, attractors .
IN a given experiment, and predlct them.



(a) what are appropriate dynamical equations?

(b) analysis currently intractable for any such
model.

Static theories are not truly predictive:
() Large redundancy in energy minimizers.

(1) The microstructure geometry Is typically
assumed a priori, and shown to be
consistent with the theory (although
Interesting details may be predicted).



Reference configuration Deformed configuration

2 C R™ bounded domain
Lipschitz boundary 052

y . Q2 — R™
Typically, m = n = 2 or 3.



Dy(xz) = (0y;/0x;) € M™*"
M™*" = {real m x n matrices}

Compatibility question

Given F : Q — M™Mxn
when is F' = Dy for some y?



A necessary condition that F € LP(S2; M™*x™)
satisfies F' = Dy for some y € WhP(Q: R™)
IS that
OF;; O0F;
8$k 8$j
In the sense of distributions, i.e.

L/ fﬁja¢' P1 8¢ m::()
Q2 8$k axj

for all ¢ € C5°(£2).

=0

The condition is sufficient if €2 is simply
connected.



Hadamard jump condition

N

Dyfla)=A

y piecewise C

Dy (a) =B

A—B=c®®N



Martensitic Transformations

These Involve a change of shape of the
crystal lattice at a critical temperature.

e.g. cubic to tetragonal

0> 0. 2]
cubic
austenite 0 <0,
three tetragonal variants

of martensite




Energy minimization problem
for single crystal

Minimize Ip(y) = /Q H(Dy(z),0) dx

subject to suitable boundary conditions, for
example

Yo, = Y-

60 = temperature,
v = Y(A,0) = free-energy density of crystal,

defined for A € Mj’;X?’, where

M3*3 ={A € M3*3:det A > 0}.



ypically we assume that

W(A,0) — co as det A — 0+,

so that infinite energy Is required to compress
the body to zero volume.

We can then set 9 (A,0) = oo for det A < 0, so
that ¢ : M3%3 x [01,605] — [0, 00] is continuous.

There is a substantial literature on the ques-
tion of how this condition can be supplemented
so that deformations with finite energy are
invertible maps from Q — R3, so that inter-
penetration of matter does not occur.



Frame-indifference requires

W(RA,0) =14 (A,0) for all R &€ SO(3).

If the material has cubic symmetry then also

W(AQ,0) = (A,0) for all Q € P?*

where P24 is the group of rotations of a cube.



Energy-well structure

K(0) = {A € M*° that minimize ¢)(A, )}

austenite
Assume /

a(9)50(3) 0 > 0

K(0) =3 SOB)UUN,SOB)U;(0:) 6 =0,
U, SO(3)U;(6) 0 < 0,
alf.) =1 \ .

Assuming the austenite has cubic symmetry,
and given the transformation strain Uy say, the
N variants U; are the distinct matrices QU1Q7,
where Q € P24



Cubic to tetragonal (e.g. NigAljc)

) o

U, = diag (92,11, m1)
U2 — dlag (77177727771)
Us = diag (n1,m1,12)




Exchange of
stability

Can assume ming ¥(A, #) = 0 for all 4.

1 Ui(6:)  Uzlfe)  Us(6,)

d < 6.



Why use nonlinear elasticity?

1. Conceptually simpler

2. Large rotations occur in martensitic
transformations. If these are linearized
then phantom stresses are predicted.

The use of nonlinear elasticity to describe martensitic
transformations and their microstructure is due to B/James
(1987), following work of many authors applying nonlinear
elasticity to crystals, especially J.L. Ericksen. There is a

linearized’ version of the theory due to Khachaturyan and
Roitburd.



Rank-one connections between
energy-wells

Given U = Ul > 0 and V = V! > 0, when is there a rank-one
connection between SO(3)U and SO(3)V?

That is , when are there rotations R;, Ry and vectors ¢, NV such that

RiU=RV+c®N

Theorem. Let D = U? —V? have eigenvalues \y < Xy < X3. Then
SOB)U and SO(3)V are rank-one connected if and only if Ao = 0.
There are exactly two solutions provided A1 < Ao = 0 < A3z, and the
corresponding N'’s are orthogonal if and only if tr U? = trV?, i.e.

)\1 — —}kg.



TwIns

In the case of martensitic variants with U = U;, V' = Uj, © # j, we
have U = QV Q! for some rotation @ and so the condition tr U? =
tr V< is automatically satisfied. Rank-one connections correspond
to twins and the corresponding twin normals are always orthogonal.

In this case there is a simpler criterion for the existence of rank-one
connections due to Forclaz, namely that

det(U — V) =0



Weak convergence = convergence of averages

Simple laminate

A—B=c®N

DyU) ~ Dy=XA4 (1 - )\)B
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Formulation of energy minimization
problem in terms of Young measures

For ¢ appropriate for martensite the minimum
of In(y) = Jo v (Vy(x),0)dx subject to suitable
boundary conditions is not in general attained
by ordinary deformations y, but rather by pos-
sibly infinitely fine microstructures generated
by minimizing sequences y(j) of Ip. These can
be described by gradient Young measures.



Gradient Young measures

Fix z, 7, 0.

E’ C men

Volume{z € B(z,s) with DyU)(z) € E}
Volume B(x,d)

vi0(E) =

: _ S |
vy = lim |Iim V;J,;k’ Young measure corresponding

§—0 k— 00 to DyUk).



Gradient Young measure of simple
laminate

V, = A0A + (1 — /\)(SB




Quasiconvexity

An integrand f = f(A) is quasiconvex if

/Q F(D2(z)) dz > /Q F(A) dz = (Volume Q) f(A)

whenever z : Q — R™ is smooth with z(x) =
Ax for all x € 9122.

The condition does not depend on (2.



Quasiconvexity Is the central convexity
condition of the calculus of variations

Roughly, quasiconvexity is necessary and suffi-
cient for

I(y) = /Qf(Dy) dx

to attain a minimum subject to given boundary
conditions.

T he existence of rank-one connections between
martensitic energy-wells implies that ¥(-,0) is
not rank-one convex, hence not quasiconvex.
So we expect the minimum of Iy not to be
attained in general. The gradients Dy(j) of
minimizing sequences for Iy will not converge,
but generate a microstructure (with a corre-
sponding Young measure).



Theorem. (Kinderlehrer/Pedregal) A family
of probability measures (vz),.cq IS the Young

measure of a sequence of gradients Dy(j) bounded
in L°° if and only if

(i) Uy is a gradient (Dy, the weak limit of DyJ))
(ii) (vg, fY > f(vy) for all quasiconvex f.

Here

. = /men A dug(A)

and

vai f) = [ F(A)dva(A)



Quasiconvexification

If f: M™*" — [0,00] then its quasiconvexifica-
tion is defined to be the function

Ff9¢ = sup{g < f : ¢ finite and quasiconvex}

E C M™X" js quasiconvex if there exists a qua-
siconvex f : M™*" _ [0, 00) with f~1(0) = E.

If K C M™X™ is compact, its quasiconvexifica-
tion is the set

K9¢ =({E > K : E quasiconvex}



P9C(A, 0) is the macroscopic free-energy func-
tion corresponding to .

K(0)Y9¢ is the set of macroscopic deformation
gradients corresponding to zero-energy microstruc-
tures.

There 1s no known characterization of
guasiconvexity.

No local characterization (for example,
Inequalities on f and its derivatives at
an arbitrary matrix A) exists (Kristensen).



Classical austenite-martensite
Interfaces



How does austenite transform to martensite as 6
passes through 6.7

It cannot do this by means of an exact interface
between austenite and martensite, because this

requires the middle eigenvalue of U; to be one,
which in general is not the case (but see studies of

James et al on low hysteresis alloys).

So what does it do?



(Classical) austenite-martensite interface in CuAlNi
(courtesy C-H Chu and R.D. James)




habit Gives formulae of the
e Ve = 01 crystallographic
theory of martensite
(Wechsler, Lieberman,
Read)

81

(1-2)/ 24 habit planes for
i cubic-to-tetragonal
( ) boundary layer
Dy\V/) =

ve = A4+ (1~ A)dp




Rank-one connections for A/M Interface




4&““\\“@

Possible lattice parameters
for classical austenite-martensite
interface .

T



Macrotwins In Nig:Al;e

JB, D. Schryvers, Ph. Boullay
(Antwerp)



Macrotwins in NigAl;: Involving two
tetragonal variants (Boullay/Schryvers)







Macrotwin formation

|10},

o < 90° 0100}, vol U;> vol U,

s ’ (010,

plate Il

(XY 1)y

(xy 1),



Macroscopic deformation gradient in martensitic

plate is
1+b®m B/Schryvers
Different martensitic plates
1 never compatible
mo= (2 X(0 +v7), 1"‘ (vr —0),1) (Bhattacharya)

b = (5x¢(0+ ) %XCH(W ~5),6)

where v =1 for A = A", v = —1 for A = 1— X%, the
microtwin planes have normals (1,%,0) and y =
==

Table 1: Rotations ¢ and @2 that bring Plate II into compatibility with Plate I (k; = x1 = 1 = 1) and
the corresponding macrotwin normals N; and Na. The direction of rotation is that of a right-handed screw

in the direction of the given axis. For the case ko = 2 = 1, xy2 = —1 see the text.
Parameter Values o} ()2
Ko X2 Vg Axis Angle N Axis Angle Ny
-1 1 1 (.70,0,-.71) 1.64° (0,1,0) (.75,0,.66) 1.75° (1,0,0)
-1 -1 1 (0 .99,.16) 7.99° (1,0,0) (0,.99,-.14) 7.99° (0,1,0)
-1 1 -1 (.65,.48,-.59) | 6.76° | (.59,-.81,0) | (.68,.50,.54) 6.91° | (-.81,-.59,0)
-1 -1 -1 (= 8 .65, a‘]) 6.76° | (-.81,-.59,0) | (-.50,.68,-.54) | 6.91° | (.59,-.81,0)
1 1 -1 | (-.54,.54,.64) | 5.87° %(1}1 0) | (-57,.57,-.59) | 6.08° f@(l,-l,ﬂ)
1 -1 -1 (.60,.60,-.52) | 7.37° —2{1,-1,0) (.62,.62,.47) 7.47° v—‘,i(]_,_l_,(])




Nonclassical austenite-
martensite interfaces

JB/ Carsten Carstensen (Berlin),
Konstantinos Koumatos (Oxford),
Hanus Seiner (Prague).



Nonclassical austenite-martensite
Interfaces (B/Carstensen 97)

N\ \ \
\ 7 speculative nonhomogeneous
Z 7 = martensitic microstructure
Y with fractal refinement
/ / / / // - near interface
_ y
- -
7 7
/ | %

=l

= -
N

N

curved nonclassical
interface



Nonclassical interface with double
laminate

A

N

pure phase '\\ \ \\\\\\\\\\\ double laminate
of austenite ,//l///////////// of martensite

/
2
\\\\\\\\\\\\\\\\\\\\\\

\')\\\\\\\\\\\\\\\\\

/
/

planar nonclassical
interface




Nonclassical interface calculation

Dy(x) =F =v
F e (UX, so3)y;

N

(unknown unless N = 2)

)"

Uy, = U

supp v C Uf\il SO(3)U;
F=14+bxm



More on quasiconvexifications

Let K C M™*"™ be compact. Then

K1 = {Fe M™":F =v,v a homogeneous
gradient Young measure with suppv C K}

= {Fe M™": p(F)< max ©(G) for all quasiconvex ¢}
c

@ is polyconvex if p(F) = g(J(F)) for some
convex function g of the list J(F') of all minors
of F'. Thusif m =n =3, ¢ is polyconvex if

o(F) = g(F,cof F,det F')

for some convex g.



(0 polyconvex = ¢ quasiconvex.

KPe = {F e M™X" . o(F) <
I e o )_glg%sO(G)

for all polyconvex o}

K9 Cc KP°



Two martensitic wells
Let K = S0O(3)U; U SO(3)Us,, where
Uy = diag (m1,m2,m3), Uz = diag (12, m1,73),
and the 7; > 0 (orthorhombic to monoclinic).

Theorem (Ball & James 92) K9¢ consists of the matrices
F € M*? such that

a ¢ 0
FIFr=| ¢ b 0 |,
0O O 7732,

where a > 0,b > 0,a + b+ |2¢| < nf + 135, ab— c® = nins.



The proof is by calculating K?P¢ and showing
by construction that any F € KP¢ belongs to
Kac.

For a nonclassical interface we need that for
some a, b, ¢ satisfying these inequalities the mid-
dle eigenvalue of FL'F is one, and we thus get
(Ball & Carstensen 97) such an interface pro-
vided

ot <m<lorl<ny,t<m ifnz<i,

m<nit<lorl<m<ny' ifnz>1.



More wells — necessary
conditions

K =| | SOB3)U;

1=1

The martensitic variants U; all have the same singular
values (= eigenvalues) 0 < 7min < Mmid < Mmax-

Let F' € KP¢ have singular values

0 < Jmin(F) S Jmid(F) S Jmax(F)-



KP¢={F € M™"" : o(F) < max p(G)

First choose o(G)

- GeK

for all polyconvex ¢}

- det(G) . Then

det ' = Umin(F)Umid(F)UmaX(F) = Tlmin’lmidT)max -

Next choose ¢(G) = omax(G) = max ;=1 |G|,
which is convex, hence polyconvex. Thus

UmaX(F) S Tlmax -



Finally choose o(G) = omax(cofG), which is a
convex function
of cof (G) and hence polyconvex. Then

omid (F)omax(F) < Nmighmax

But FF =14 b®m implies oqnig(F) = 1.

Combining these inequalities we get that

—1
Mmin < Mmig < Nmax.



For cubic to tetragonal we have that

Uy = diag (n2,m1,11), Uz = diag (n1,m2,1m1),
Uz = diag (n1,n1,m2),

and the necessary conditions become
—1 :
m <ny - < n2 it ny <o,
—1 :
n2<ny - <m if np > no.

But these turn out to be exactly the conditions
given by the two-well theorem to construct a
rank-one connection from

(SO(3)U1 USO(3)U»)4¢ to the identity!

Hence the conditions are sufficient also.



Values of deformation parameters allowing classical and
nonclassical austenite-martensite interfaces

N, 47

classical and nonclassical
interfaces possible

only nonclassical
interfaces possible




Interface normals
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AUSTENITE.

Optical
micrograph
(H. Seiner) of
non-classical
interface
between
austenite and
a martensitic
microstructure

The arrows
indicate the

orientations of
twinning
planes of
Type-Il and
compound
twinning
systems
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Twin crossing gradients



Cubic-to-orthornombic energy wells

6
K(0:) = SOB3)U | ] SOB3)U,

1=1
(o e 0\ (epoae o) (epo en
— sl orzH 0|, Ua=| 1 O%’Y ol|, U3= 0 B O
0 0 8 \ 0 0 8) \ 57 0 °f7
(aty o 259 (B 0 0 ) (B 0 0
— 0 5 0 ? U5= 0 a‘2|"Y &—2;’}’ : U6: 0 a‘é"}’ ’Y_;'_a
\ 3% 0 °F7 ) \ 0 5% 5 ) \ 0 & T

o = 1.06372, B = 0.91542, v = 1.02368




Let Uaq, Uy and Upg,Up be two distinct pairs
of martensitic variants able to form compound
twins (e.g. Us,Us and Us,Ug). Then the com-
patibility equations for the parallelogram mi-
crostructure are :

RapUp—Ug = bap®ngp
RypUp —Uy = byp @nyp
RapUp —Us = bpgar ®@nga
RppUp —Up = bgp @npp

RapRpp = RaaRyp-



Let O < A <1 denote the relative volume frac-
tion of the Type-II twins (the same by the par-
allelogram geometry), and set

Map (1=XMUg +AR2BUB
MAIB/ — (1 — )\)UA/ + )\RA/BIUB/

Let O < A < 1 be the relative volume frac-

tion of the compound twins. Then the overall
macroscopic deformation gradient is

M = (1 — /\)MAB —|— /\RAA’MA’B"

For compatibility with the austenite we need

)\mid(MTM) =1



Possible volume fractions

ag + ax (A2 = A)

A -\ = .
al T a3(A2 — /\)

1.0
0.8 —
0.6 —
0.4 —

0.2r

1 1 1 ] 1 1 1 ] ! 1 1 ] 1 1 1 ] 1 1 1 ]
0.0 0.2 0.4 0.6 0.8 1.0



Possible nonclassical interface
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Curved interface between crossing twins and austenite resulting from the inhomogeneity
of compound twinning. (Optical microscopy,H. Seiner)



Construction of curved Interface

This Is possible at zero stress provided 1 is
rank-one connected to a relative interior point
of the set K = U;Y_,SO(3)U; of the martensitic
wells, where relative is taken with respect to
theset D = {A:det A =detU;}. Such relative
Interior points are known to exist in the cubic-
to-tetragonal case due to a result by Dolzmann
and Kirchheim.



Nucleation of austenite iIn mechanically
stabilized martensite by localized
heating

JB, Konstantinos Koumatos
Hanus Seiner



Mechanically stabilized
martensite

The shape-recovery process in shape-memory
alloys (SMAs) concerns the thermally driven
transition from the low temperature phase
(martensite) into the high-temperature phase
(austenite). For many SMASs, the critical tem-
perature for initiation of the shape-recovery
process depends strongly on the microstruc-
ture of the martensite.



In particular, if the martensite is mechanically
treated so that it is more difficult for it to make
a compatible interface with the austenite, the
critical temperature is shifted significantly up-
wards. This effect is called the mechanical
stabilization of martensite and occurs for both
single crystals and polycrystalline SMAS.

It is natural to seek an explanation for this
effect in terms of local minimizers y of

Ii(y) = [ ¥ (Vy(),0) da



Experimental observations

Specimen: single crystal of CuAINi prepared by
the Bridgeman method in the form of a pris-
matic bar of dimensions 12x3x3mm3 in the
austenite with edges approximately along the
principal cubic directions.

By unidirectional compression along its longest
edge, the specimen was transformed into a sin-
gle variant of mechanically stabilized 2H marten-
site. Due to the mechanical stabilization effect
the reverse transition did not occur during un-
loading.



T he martensite-to-austenite transition temper-
atures determined by DSC were Ag = —6°C
and Ap = 22°C. The critical temperature Tq
for the transition from the stabilized marten-
Ssite induced by homogeneous heating for this
specimen was ~60°C. This was estimated from
optical observations of the transition with one
of the specimen faces laid on and thermally
contacted with a gradually heated Peltier cell,
using a heat conducting gel.



Localized heating experiment

The specimen was freely laid on a slightly pre-
stressed, free-standing polyethylene (PE) foil
to ensure minimal mechanical constraints, then
locally heated by touching its surface with an
ohmically heated tip of a soldering iron with
temperature electronically controlled to be 200°C,
i.e. significantly above the Ag and T~ temper-
atures.






When touched at a corner, nucleation of austen-
Iite occured there immediately. When touched

at an edge or face, nucleation did not oc-

cur at the site of the localized heating, but

at some corner, after a time delay (sufficient

for heat conduction to make the temperature

there > Tc).












In terms of Young measures the total free en-
ergy takes the form

L) = | [ | ¥(A,0)dvn(4)de

We fix 6 to be the temperature of the probe.
Then it is reasonable to assume that

ming Y (A,0) = —6 < 0 and that

W(A. ) = —6 if Ae S0(3) (austenite),
7T 00 if AeUS, SO(3)U; (martensite).



Here the U, are the six orthorhombic variants
given by

aty a—vy 0 aty Y-« 0 a+vy 0 &=
2 i 2 i 2 2
Up = | &2 22 0|, o= 52 &2 0 |, Us=| O 6 O |,
- -
0

2 2

2
0 0 Y 2 0 o
1 0 50 5o o 5o o
Uy = 0 B 0 |, Us=| 0 o2 ag L Us=| 0 o2 ’?E:" ,
1—a g oty 0 &=y aty 0 1o aty
2 2 2 2 2 2




Proposed explanation. Nucleation is geometri-
cally impossible in the interior, on faces and at
edges, but not at a corner. We express this by
proving in a simplified model that if Us denotes
the initial pure variant of martensite then at Ug
the free-energy function is quasiconvex (in the
interior), quasiconvex at the boundary faces
(cf Ball & Marsden 1981) and quasiconvex at
the edges, but not at a corner.

To make the problem more tractable we as-
sume that ¥(A,0) ;= W(A) is infinite outside
the austenite and martensite energy wells.



Then I = Iy becomes

I(v) = /Q%,W) do = /Q /M3X3W(A) dve(A) d.

where

(-5 A€ S0(3)
W(A) =<{ 0 Ae s, 8013)U; ,
\ +o00 otherwise

and 0 > 0.
So W(A) < co on

6
K =S0(3)u | ] so3)U,
=1



Nucleation impossible In the interior

Vy :6Us

=

S:suppv, K

Theorem I(v) > I(dy,)
(quasiconvexity at Us)



Nucleation impossible at faces or edges

- Yx=0y,
e

¥=0y S:supp v, cK

==--1 S:suppv,cK

Similarly in these cases we have

Theorem I(v) > I1(4g,)
(quasiconvexity at the boundary and
edges at Us)




Nucleation possible at a corner

\ VX =6US \

T
ve=6r  Ye=(1=1) 6y + A dqr,

I(I/) < I((SUS)
I not quasiconvex at a corner.



Remarks

1. We are able to prove quasiconvexity at faces
with most, but not all, normals. What would
happen for a specimen that was a ball?

2. We have shown that a /ocalized nucle-
ation can only occur at a corner, but one could
hope to show using methods of Grabovsky &
Mengesha (2009) that any v sufficiently close
to dy, with I(v) < I(dy,) must involve nucle-
ation at a corner.
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Suppose y € WL (Q: R™),

i.e y Lipschitz.

Can we define Dy1(a), Dy~ (a),
and if so how are they related?

Blow up. For x € B(0,1) let
zs(x) = 6 Ly(a + 6z).
Then Dzs(x) = Dy(a + 0x).

Let ; — O to get gradient
Young measure vg, x € B(0,1).

DyT(a) = ({E closed :suppv, C E a.e. z € Bi}



Theorem 1 (B/Carstensen). There exists
beR"” withb® N € DyT(a)¢ — Dy~ (a)°.

Theorem 2 (B/Carstensen).
Let m =n = 2. Then there exists b € R? with
b N € DyT(a)P€ — Dy—(a)PC.

Proof of Theorem 2 uses quasiregular maps,
which are useful also in constructing nonpoly-
convex quasiconvex functions. False in higher
dimensions (Iwaniec, Verhota, Vogel 2002)
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Application to bicrystal microstructure

K(0) = SO(3)U; USO(3)Us 6 < 6,
Grain 1
supp vy C K(6)

Grain 2
supprvy C K(0)Ra

Rae3z = es

Always possible to have zero-energy
microstructure with Dy = vy = (n212)1/31



In general one cannot have a pure variant of
martensite in both grains, and if the interface
between grains is suitably curved have a pure
variant in either grain. This is some Kind of jus-
tification as to why we typically see microstruc-

ture in grains.
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Adding interfacial energy to the
nonlinear elasticity model



The nonlinear elasticity model for martensitic
transformations is based on a total free-energy
functional

I(y) = [ ¥ (Dy.0)da.

In general the minimum of Iy is not attained,
and minimizing sequences y{J) generate an in-
finitely fine microstructure, some of whose fea-
tures can be described by a gradient Young
measure (Vz),cO-



his iIs good because it provides an explanation
of why very fine microstructures are observed,
but bad

(a) because real microstructures are not in-
finitely fine, and have characteristic length-
scales,

(b) because the minimum is not attained.



These issues can be addressed by adding to
the free-energy functional a term representing
interfacial energy, resulting from the different

atomic environment at twin boundaries and/or
lattice curvature.

The natural way to try to understand what
form the interfacial energy should take is via
passage from an atomistic to a continuum model,

but there is some confusion as to how this
should be done.



Some interfaces are atomistically sharp
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Diffuse interface in perovskite (courtesy Ekhard Salje)




Second gradient model for diffuse Interfaces
JB/Elaine Crooks (Swansea)

How does interfacial energy affect the predic-
tions of the elasticity model of the austenite-
martensite transition?

d < 0,

a(0)1 U1(0) U200) Usz(0)



Use simple second gradient model of interfacial
energy (cf Barsch & Krumhansl, Salje ), for
which energy minimum is always attained.

Fix 0 < 0., write v(A) = (A, 0), and define

1) = [ (¥(Dy) +?D?yP) da

where ‘D29|2 = Yi,apY%,a8 € >0,

It is not clear how to justify this model on the
basis of atomistic considerations (the wrong
sign problem — see, for example, Blanc, LeBris,
Lions).



Hypotheses

No boundary conditions (i.e. boundary trac-
tion free), so result will apply to all boundary
conditions.

Assume 1) € CQ(MEID’_X‘O’),

Y(A) = oo for det A <0,

Y(A) — oo as det A — 0+,

Y(RA) = ¢ (A) for all R € SO(3),

1 bounded below, £ > 0.

Dy(al) =0
D2y (al)(G,G) > u|G|? for all G = G7,
for some u > 0. Here a = a(0).




Suppose that
Dy(a(0)1,0) =0,

D (a(6)1,0)(G, G) > 1|G|? for all G = G7,
some (> 0. Then y(x) = a(f)x + cis a

local minimizer of
wa%

But y(x) = a(f)x + c is not a local minimizer of Iy
in WHP(Q;R?) for 1 < p < oo because nucleating
an austenite-martensite interface reduces the energy.

in WhH(Q; R?).



Theorem. 5(z) = aRz+a, R € SO(3),a € R3,
is a local minimizer of I in L1($2; R3).
More precisely,

[W-1@ > o [ (1VDyT Dy — a1l + [D%yP?) da

for some o > 0 if ||y — aRx — al|1 is sufficiently
small.

Remark.

fQ |\/DyTDy — al|?dzx

> ¢ inf — aRx — a3+ ||Dy — R||3) .
2co inf (s 15+ 1Dy — R3)

by Friesecke, James, Miller Rigidity Theorem



ldea of proof

Reduce to problem of local minimizers for

V) = |_((U) +mp?2|DUI?) da.
studied by Taheri (2002), using
IDAUCA)| <p
for all A, where U(A) = VAT A.




Smoothing of twin boundaries

Seek solution to equilibrium equations for

1) = | ;(W(Dy) +e2|D%y[?) da

such that

Dy— Aasx- N — —
Dy — B as x- N — 400,

where A, B= A+ a® N are twins.




Lemma

Let Dy(z) = F(x-N), where F € WUl (R; M3%3)
and

F(e-N)— A B

as x - N — +oo. Then there exist a constant
vector a € R3 and a function » : R — R3 such
that

u(s) = 0,a as s — —o0, 00,
and for all z € R3

F(r-N)=A4u(xz-N)® N.
In particular

B=A4+a® N.



The ansatz
Dy(z) = A+ u(x-N)® N.
leads to the 1D integral
Flu) = [ IWA+u(s) @ N) + e/ (s)[?] ds
= [ W (u(s)) + 21/ ()) ds.

For cubic — tetragonal or orthorhombic (under
a nondegeneracy assumption) we have

W(0) =W(a) =0, W(u) >0 for u # 0, a,

and so by energy minimization (Alikakos &
Fusco 2008) we get a solution.



Remarks

1. The solution generates a solution to the full
3D equilibrium equations. However if we use
Instead the ansatz

Dy(z) = A4+ v(x-N)a® N

with v a scalar, then the corresponding solution
does not in general generate a solution to the
3D equations.

2. The solution is not in general unique even
within the class given by the ansatz, but more
work needs to be done in this direction.



Sharp interface models

A natural idea iIs to minimize an energy such
as

I(y) = [ W(Dy)de + kH*(Spy),

where k > 0 and S5p,, denotes the jump set of
Dy.

However this is not a sensible model, because

if we have a sharp interface and approximate y

by a smooth deformation, then the interfacial
energy disappears and the elastic energy hardly
changes. Thus a minimizer can never have a
sharp interface.



A model allowing smooth and sharp interfaces
JB/ Carlos Mora-Corral (Madrid)

If we combine the smooth and sharp interface
models we get a model that is well posed and
iIn fact allows both kind of interface. In the
simplest case we minimize

I(y) = [ (W(Dy) +29%y?) do + kH*(Sp)
In the set
A={y e WP : Dy € GSBV,y|pq, = ¥}

Here V2y denotes the weak approximate dif-
ferential of Duy.



GSBV

The space GSBV was introduced by Ambro-
sio & de Giorgi. BV is the space of maps y
of bounded variation i.e. whose distributional
derivative Dy is a bounded measure. The space
SBV consists of those y € BV such that the
measure Dy has no Cantor part. GSBV con-
sists of those y such that for every ¢ € C1(R3)
with V¢ of compact support, o(y) € SBV.



More generally we can suppose the energy is
given by

I(y) = | W(Dy,V2)da+



One-dimensional case
Minimize
1
lex(@) = [ (W) +|V2y) da + wHO(S))
N

Ay = {yeWh(0,1) 1 y(0) = 0,y(1) = A,
y € SBV(0,1),y' >0 a.e.}

Assume W (1) =W (2) =0,W(p) >0 if
p7#=0,1. Let

E = inf [
E,K,A yeA, e,e(Y)
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More realistic 1D model
Minimize
1
Lew@) = [ (WYY dot [ w(l) d

N

Ay = {y e Wl’l(o, 1) :y(0) =0,y(1) = X,
y' € SBV(0,1),y >0 a.e.}



We assume that 1) is continuous, even, of class C*! on (0, c0),
nondecreasing on (0, 00), and such that

tim Y = oo (a+) < v(a) + w0

Typically ¥(0) = 0 with ¥ concave on (0, 00). For example

B(t) = RIt|®, or ¥(t) = rlt|log(1 + %x

where o € (0,1).



Theorem
Let W : (0,00) — [0,00) be C! and satisfy lim,_,o+ W () = oo and suppose that
there exist r1, 7o with 0 < 71 < ra such that —oco < sup(q ., W' =inf},, ) W' <
oo for ¢ € {1,2}. Let A € (r1,72).

Then there exists a minimiser of the functional I, , in Ay. Moreover, if y is
a minimizer then u = y’ satisfies:
(i) u € [r1, 73] a.e.
(ii) Sy is finite.
(iii) Vu is continuous and in SBV/,

W'(u) — 26°V3u = c

for some constant ¢ € R, Vu(0) = Vu(1) = 0 and 2e*Vu(z) = ¢/ ([u](2)) for all
2 €8y, c= fol W'(u) dz and

W (u) — e*(Vu)? — cu = d,

for some constant d € R..



Remarks

1. We cannot prove that there is at most one jump in v’.
2. The solution can be smooth or have a jump, but in
general there are no piecewise affine solutions.
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Liquid crystals

A multi-billion
dollar industry.

An intermediate
state of matter
between liquids
and solids.

Liquid crystals flow like liquids, but the
constituent molecules retain orientational order.



Classes of liguid crystals

Liquid crystals are of many different types, three main
classes being nematics, cholesterics and smectics.

Many liguid crystals consist of rod-like molecules.

.
Length 2-3 nm cate—(O)--en—~{O)—o—c

Methoxybenzilidene Butylanaline (“MBBA™)

ll}fs

— - CH
CroHzr> \ 2N iO CH%.UHNCHOHCHEF “CoHs
© MCH : \
0O

Chiral Carbon
p-decyloxybenzylidene p'-amino 2-methylbutylcinnamate ("DOBAMBC")



Depending on the nature of the molecules, the
Interactions between them and the temperature
the molecules can arrange themselves in
different phases.

Isotropic fluid — no orientational
or positional order




Nematic phase Smectic A Smectic C

orientational but phase phase
no positional
order Orientational and some positional order

The molecules have time-varying orientations
due to thermal motion.



Electron micrograph
of nematic phase

http://www.netwalk.com/~laserlab/Iclinks.html



Cholesterics

If a chiral dopant is added the  (C\NRW.
molecules can form a cholesteric ’lj._._J,‘

phase in which the mean 7 7
orientation of the molecules #?A""-:
rotates in a helical fashion. "

DolTPoMS, Cambridge



Isotropic to nematic phase
transition

The nematic phase typically forms on cooling
through a critical temperature 6. by a phase

transformation from a high temperature isotropic
phase.

Om Oc

0 < 0m 0 < 0 < 0, 0 > 6.
other LC or nematic ISsotropic

solid phase



DolTPOMS,
Cambridge




The twisted nematic display

Wikipedia



The director

A first mathematical description of the nematic
phase is to represent the mean orientation of
the molecules by a unit vector n = n(x,1t).

But note that for most liquid
crystals n is equivalent to —n,
so that a better description is
Tn via a line field in which we
v identify the mean orientation
by the line through the origin
parallel to it.




Such lines through the form the real projective
plane RP?, and can be identified with 3 x 3
symmetric matrices of the form n®n, where n
IS a unit vector, so that n belongs to the unit
sphere S2. Here



Defects

Roughly these can be thought of as (point or
line) discontinuities in the director or line field.

Schlieren texture of a nematic film
with surface point defects (boojums).
Oleg Lavrentovich (Kent State)

Zhang/Kumar 2007
Carbon nano-tubes as liquid crystals



Modelling via molecular dynamics

Twisted nematic display molecular simulation
M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni
(courtesy Claudio Zannoni)



Continuum models

Consider a nematic
liquid crystal filling
a container Q c R3,

To keep things simple consider
only static configurations,
for which the fluid velocity is zero.



Molecular orientations

FiX g and a
small 6 > 0.

P

Line through origin parallel to p
is an element of RPZ.

Can identify with the pair {p, —p}
of antipodal unit vectors or the

-P matrix p @ p, (p ® p)ij = Pip;.



The distribution of orientations of molecules
in B(xg,d) can be represented by a probability

density function p > O, [s2p(p)dp = 1 on the
unit sphere S2 satisfying p(p) = p(—p).

he first moment
/Szpp(p) dp = 0.
T he second moment

M = [g2p®pp(p) dp

IS @ symmetric non-negative 3 x 3 matrix
satisfying trM = 1.



The de Gennes (Q-tensor

Q = M — My

measures the deviation of M from its isotropic
value Mg = %1, corresponding to the probabil-

ity density function p(p) = 4=

Note that Q = QT, trQ =0, 2 > \(Q) > —

W)\
Wl



If two eigenvalues of Q are equal then @ is said
to be wuniaxial and has the form

1

where ﬁ c S2 and the scalar order parameter
s € [-5,1].

In practice () is observed to be very nearly
uniaxial except possibly very near defects, with
a constant value of s (typical values being in
the range 0.6 — 0.8).



Landau — de Gennes free energy

At each point x we have a Q—tensor Q(x).

We suppose that @ is obtained by minimizing
the (free) energy

Q) = [ ¥(Q.VQ.0) da.

subject to suitable boundary conditions.



For simplicity we consider the special case when

¥(Q,VQ,0) = a(O)tr @ —Q—btrQ3—I— StrQ* +¢vQP

"»bB(Q-)Q) g TPE(VQ)

where 6 is the temperature, b > 0,¢c > 0,a(8) =
a(f@ —0%),a >0, >0 and

3 050\ 2
|VQ|2 — Z ( Q’LJ) ,
i g k=1 \ 9Tk

so that we have to minimize

L) = [ [45(Q.0) + vp(VQ)] da.




If

2b2

27 oc

then the unique minimizer of ¥pg is Q = O.
If 6 < 0Ny then the minimizers are

(9>(9|\|I:(9>I< |

1
Q = smin(n®n — 51) for n € 82,

12—
where spyin = 2 \/bzc 12ac - 0.

Thus this model predicts that there is a phase
transformation from an isotropic fluid to a
uniaxial nematic phase at the critical
temperature Oy.



Possible defects in constrained theory

1
Q=s(n®n—-=1)
3
Hedgeh () =
edgehog n(x) = —
genog z

Vn(x) = ‘?1|(1 —n@n)
Vn(@)|? =%

f(} r—2r2dr < oo

Finite energy



Disclinations

n(z) = (£, %2 0) frz\/ac%-l—a:%

:r?rr-)

Vn(z)]? = %

infinite energy



Index one half singularities

These are nonorientable and of infinite energy.



Mathematical challenges

1. Give a rigorous derivation of a continuum
model from a molecular one. What forms should
the bulk and elastic energies have, iIs it reason-
able to use second moments, boundary condi-

tions ...?7)

2. What is the best way to describe defects?
(For example, are there useful asymptotics as
e — 0 in the Landau - de Gennes theory?)



The eigenvalue constraints

Question: how are the eigenvalue constraints

1

2
3 <A(Q) < 3

maintained in the theory?

B/Majumdar



Nonlinear elasticity

y

Minimize

I(y) = [ W(Vy(a)) da

subject to suitable boundary conditions,
e.d. ylpo, = Y-



To prevent interpenetration of matter we
require that y Is invertible, and iIn particular

that
detVy(x) >0 a.e. z € Q2.

To ensure this we assume that

W(A) — o0 as detA — 0



Correspondingly, it is natural to suppose that

1

Yp(Q,0) — 0o as Apin(@) — 3 .

Such a suggestion was made by Ericksen in the
context of his model of nhematic liquid crystals.

We show how such an ¥ can be constructed
on the basis of a microscopic model.



The Onsager model

In the Onsager model the probability measure
w1 1s assumed to be continuous with density p =

po(p), and the bulk free-energy at temperature
6 > 0 has the form

Ig(p) = U(p) — On(p),

where the entropy iIs given by

1(p) = — |, P(P) 1N p(p) dp.



With the Maier-Saupe molecular interaction,
the internal energy Is given by

Ulp) = r [, [,I&— @ 0)p@)p(e) dpda

where x > 0 Is a coupling constant.

Denoting by

Q) = [ ®p— 1o dp

the corresponding )-tensor, a short calculation
shows that

U(p) = —~rlQ(p)|*.



Hence

19(p) =0 [, p(®) In p(p) dp — rIQ(p)

Given Q we define

,0) = inf I
vp(Q0) = it Iy(p)

6  inf N pdp — 2
{p:Q(p)=Q}/52p pap = KIG

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.
R. and Sluckin, T. J.(1986))



T heorem

0 1
¢B(Q79) Z COo — 5 In()‘mlﬂ(Q) _I_ 5)7

so that ¥g(Q,0) — co as Aqnin(Q) — % .

Remarks
1. The blow-up corresponds to a perfectly

alighed state having entropy —oo.

2. All critical points of ¥p are uniaxial. Phase
transition predicted from isotropic to uniaxial
nematic phase just as in the quartic model.



Given appropriate boundary conditions, do min-
Imizers of

Q) = |_[¥5(Q) +¥p(Q, VQ)] da

have eigenvalues which are bounded away from

—%, i.e. for some § > 0

1 2
3 Fo < Amin(Q(x)) < 3~ § for a.e. z € Q7

If not, this would mean that a minimizer of I
would have an unbounded integrand. Surely
this is inconsistent with being a minimizer ....



Example (B & Mizel)
Minimize
I(u) = /_11[(;174 — u6)2u58 + eug] dx
subject to
u(—1) = -1, u(l) =1,
with 0 < e < eg~ -001.



Result of finite-element minimization, minimiz-
ing I(uy) for a piecewise affine approximation
up, TO v on a mesh of size A, when h is very
small. The method converges and produces

two curves uT.



/w
A 08 06 4 02 D/'E*f-fl 06 08 1
i)

e

However the real minimizer is y*, which has a
singularity

2
y*(x) ~ |z|3signx as = ~ 0.



T heorem
Let Q minimize

Q) = |_[¥5(Q) +:IVQI?] da,

subject to Q(x) = Qqo(x) for x € 92, where
e > 0 and Qq(-) is sufficiently smooth with

Amin(Qo(z)) > —3. Then

1

Amin(Q(x)) > 3 0,

for some 6 > 0 and is a smooth solution of the
corresponding Euler-Lagrange equation.




Nonlinear elasticity problem: Do minimizers for
suitable boundary conditions of

I(y) = [ W(Vy)de
with W(A) — oo as det A — 0+ satisfy

detVy(x) >e >0 a.e. x € 2

for some ¢ > 07

This seems to be very difficult.



Recall the definition of the ()-tensor for
nematics, namely

1
Q=] ,(P®P- gl)p(p) dp,

and that Q = QT,trQ =0, -3 < N(Q) < 3.



If @ = s(n®mn — 1) is uniaxial then
QR =%, detQ =22

Proposition.
Given Q = Q!, trQ = 0, Q is uniaxial if and
only if

Q|° = 54(detQ)?.



Proof. The characteristic equation of @ is

det(Q — A1) = det Q — Atrcof Q + 0A2 — \3.

But 2trcof Q) = 2()\2)\3 A3 >\1>\2) = ()\1
A2+ A3)? — (A2 4+ A3 4+ A3) = —|Q|%. Hence the
characteristic equation is

1
A3 — §|Q|2>\ — det@ =0,

and the condition that A3 —pA+¢ = 0 has two
equal roots is that p > 0 and 4p3 = 2742



Energetics

Consider a liquid crystal material filling a con-
tainer Q c R3. We suppose that the material
IS incompressible, homogeneous (same mate-

rial at every point) and that the temperature
IS constant.



At each point x € {2 we have a correspond-
ing order parameter tensor Q(x). We suppose
that the material is described by a free-energy

density ¥ (Q, V(Q), so that the total free energy
IS given by

Q) = [ ¥(Q), VQ()) da.

We write ¥ = 9 (Q, D), where D is a third order
tensor.



The domain of

For what @, D should ¥(Q, D) be defined?
Let E={Q e M33: Q=T trQ =0}

D ={D = (Dj;r) : Dijr = D), Dg; = 0}
We suppose that ¥ : domy — R, where

dom = {(Q, D) € £ x D M(Q) > 2}

But in order to differentiate ¢ easily with re-
spect to Its arguments, it is convenient to ex-
tend v to all of M3%3x(3rd order tensors). To
do this first set ¥ (Q,D) = oo if (Q,D) € £ XD
with some );(Q) < —3.



Then note that
1 1
PA = 5(A + AT — §(tr A)l

is the orthogonal projection of M3%3 onto E&.
So for any @, D we can set

»(Q, D) = ¢(PQ, PD),
where (PD);;r = 5(D;jr + Djir) — 3Dukdi;-
Thus we can assume that ¢ satisfies for (Q, D) €
domy

oy o O — 0
0Qi; 0Qj; 0Q ’
oy oY oy
0D, ODjix 0Dy




Frame-indifference

Fix x € €2, Consider two observers, one using
the Cartesian coordinates x = (x1,x>,2x3) and
the second using translated and rotated coor-
dinates z = 4+ R(x — x), where R € SO(3).
We require that both observers see the same
free-energy density, that is

Y(Q™(2), V.Q¥ (%)) = ¢(Q(Z), V2Q(T)),

where Q*(x) is the value of Q measured by the
second observer.



[ a—Dduz(RTo)
/SQ(Rp ® Rp — %1)611%(17)

1 T
R/SQ(p @p— JDduz(p) ™.

Q™ ()



Hence Q*(z) = RQ(z)R!, and so

o 5 ]
5 (@) = 5 (RiuQun(®) Rjn)
o ox
8;z;p( i1Qim ]m) 9z,
ac2lm

= R;RjmRyy, D1,
Thus, for every R € SO(3),

v(Q", D¥) = ¢¥(Q, D),
where Q* = RQR", D};; = RjRjmRipDimp.

1
Such ) are called hemitropic.



Material symmetry

The requirement that

Y(Q™(2), V@ (2)) = ¥(Q(T), V2Q(T))

when z =+ R(x —Z), where R= —1+2e®e,
le] = 1, is a reflection is a condition of ma-
terial symmetry satisfied by nematics, but not
cholesterics, whose molecules have a chiral na-
ture.



Since any R € O(3) can be written as RR,
where R € SO(3) and R is a reflection, for a
nematic

Y(Q%, D*) = ¢ (Q, D)
where Q* = RQR", D};; = RjRjmRypDimy and

(/

R € O(3). Such % are called isotropic.



Bulk and elastic energies

We can decompose ¢ as

»(Q, D) ¥(Q,0) + (¥(Q, D) —¥(Q,0))

Yvp(Q) + vE(Q, D)
bulk 4+ elastic

Thus, putting D = 0,

Vv(RQRY) = ¢5(Q) for all R e SO(3),

which holds if and only if ¢y is a function of the
principal invariants of (Q, that is, since trQ = 0O,

v(Q) = ¥p(|Q|?%, det Q).



=xamples of isotropic functions quadratic
in VQ

I1 = Qi iQik ks 12 = Qikj Qijk
I3 = Qi kQijks 1a = Q@i 1Qij k
Note that
I — I = (QiQik k) ,j — (QijQik.i) k

IS a null Lagrangian.

An example of a hemitropic, but not isotropic
function is

Is = €;;kQul 1 k-



For the elastic energy we take

A
1=1

where the L, are material constants.



The constrained theory

If the L; are small , it is reasonable to consider
the constrained theory in which @ is required
to be uniaxial with a constant scalar order pa-
rameter s > 0, so that

Q:s(n®n—%1).

(For recent rigorous work justifying this see
Majumdar & Zarnescu, Nguyen & Zarnescu.)
In this theory the bulk energy Is constant and
so we only have to consider the elastic energy

1@ = |_¥p(Q.VQ)da



Oseen-Frank energy

Formally calculating ¥ in terms of n,Vn we
obtain the Oseen-Frank energy functional

I(n) = /Q[Kl(diVn)2 + Ko(n - curln)? + Ksln x curln|?
+ (K2 4+ Ka)(tr(Vn)? — (divn)?)] dz,

where

K1 = 2L152 4 Lps? + L3s? — 5L4s°,
Ko =2L1s° — 2L4s3,

K3 = 2L15° 4+ Lps? 4+ L3s? 4+ 5L4s°,
K4 = L3s?.



Function Spaces
(part of the mathematical model)

Unconstrained theory.

We are interested in equilibrium configurations
of finite energy

1@Q) = [, [ws(@) +v5(Q, VQ)] do.

We use the Sobolev space W1P(Q; M3%3). Since
usually we assume

4
vp(Q,VQ) = > LI
i=1

I = Qi Qik ks 12 = Qik ;jQij k>
I3 = Qi kQij k> 1a = Qurij Qi ks
we typically take p = 2.



Constrained theory.

For 1 < p < oo the Sobolev space WIP(Q, RP?)
is the set of @ = s(n®n — 31) with weak
derivative V(@ satisfying [o |[VQ(x)|Pdx < oco.

Thus for the Landau - de Gennes energy den-
sity, the space of Q with finite elastic energy is
wi2(Q, RP?).



Existence of minimizers in the
constrained theory

Immediate in W12(Q,RP?), for a variety of
boundary conditions, under suitable inequali-
ties on the L;, since g is then convex in VQ
and coercive and the uniaxiality contraint is
weakly closed.



The equilibrium equations (JB/Majumdar)

Let Q be a minimizer of

1@ = | ¥p(Q VQ)de

subjectto Q € K = {s(n®n — %1) . n € 52},
Considering a variation

Qe::S(Dz+wau&n]®[n—ksaA7ﬂ__11)’

In 4+ ea A nl|? 3

with a smooth and of compact support, we get
the weak form of the equilibrium equations

ZQ = QZ,

0 9, :
where Z;; = 885 — 32kag£k (v symmetrized).




Can we orient the director? (JB/Zarnescu)

We say that Q = Q(x) is orientable if we can
write

Q) = s(n(x) ® () — 1),

where n € W1lP(Q,S2).

This means that for each x we can make a
choice of the unit vector n(z) = +7(z) € 52 so
that n(-) has some reasonable regularity, suf-
ficient to have a well-defined gradient Vn (in
topological jargon such a choice is called a
lifting).



Relating the Q and n descriptions

Proposition

Let Q = s(n®n — %1), s a nonzero constant,
in| =1 a.e., belong to WhP(Q; RP?) for some
p, 1 <p<oo. If nis continuous along almost
every line parallel to the coordinate axes, then

n € WLP(Q,S52) (in particular n is orientable),
and

ni k= Qij kM-



Theorem 1
An orientable ) has exactly two orientations.

Proof
Suppose that n and ™ both generate ) and

belong to Wh1(Q,S?), where 72(z) = 1 a.e..
For a.e. xo,x3, both n(x) and 7(x)n(x) are
absolutely continuous in 1. Hence

T(z)n(z) - n(z) = 7(z)

IS continuous in 9. Hence the weak partial
derivative 71 exists and is zero. Similarly 75,73
exist and are zero. Thus Vr = 0 a.e. in €.
Hence r =1 a.e. or = —1 a.e..



A smooth nonorientable director field
In a non simply connected region.




The index one half singularities are non-orientable




T heorem 2

If Q is simply-connected and Q € W1l»p,
p > 2, then @ is orientable.

(See also a recent topologically more general lifting result
of Bethuel and Chiron for maps u:QQ—N.)

Thus in a simply-connected region the uniaxial de
Gennes and Oseen-Frank theories are equivalent.

/ Another consequence Is that it is

Impossible to modify this Q-tensor
field in a core around the singular

line so that it has finite Landau-de
\ Gennes energy.




Ingredients of Proof of Theorem 2

Lifting possible if Q Is smooth and Q2 simply-
connected

Pakzad-Riviere theorem (2003) implies that if 62
IS smooth, then there Is a sequence of smooth
QU converging weakly to Q in W12

We can approximate a simply-connected

domain with boundary of class C by ones that
are simply-connected with smooth boundary

The Proposition implies that orientability Is
preserved under weak convergence



2D examples and results

for non simply-connected regions
Let Q C R?, w; C R2,4 =1,...,n be bounded,
open and simply connected, with C! boundary,
such that &; C 2, &w;N&w; # 0 for i # j, and set
G =Q\U, .




1
QQ — {Q: S(?’L@?’L—gl) . n = (nl,’TLQ,O)}

Given Q € W12(G:; Q5) define the auxiliary
complex-valued map

1 2
2 :
3 | SQlQ

2
A(Q) = §Q11

Then A(Q) = Z(n)?,
nere Z(n) = n1 + ino.

A:Q>— ST

2



Let C = {C(s) : 0 <s <1} beasmooth Jordan
curve in R? ~ C.

If Z:C — S! is smooth then the degree of Z
IS the integer

1 Zs
deg (Z,C) = /—d.
(2.0 =55 o 7%

Writing Z(s) = 9(s) we have that

deg (Z,C) = 1 1i05ds _9Q) - 9(0).

2m JO 27T




1
If Z € H2(C; S1) then the degree may be de-
fined by the same formula

1 Z

interpreted in the sense of distributions (L.
Boutet de Monvel).



T heorem

Let Q € W12(G: Q5). The following are equiv-
alent:

(i) Q is orientable.

(i) TrQ € H%((J;Qz) is orientable for every
component C of 0G.

(iii) deg (A(TrQ),C) € 27Z for each component
C of 0G.

We sketch the proof, which is technical.



(i) & (ii) for continuous @

0S2

The orientation at the beginning and end of
the loop are the same since we can pass the
loop through the holes using orientability on
the boundary.



(ii) < (iii). If Tr@ is orientable on C then

deg (A(TrQ),0) = deg (Z%(n),C)
(Zz)s
ds
27Tz c Z2
— /QZSdS
271
= 2deg (Z(n),C)
Conversely, if A(TrQ(s)) = ¢¥9(s) and

0(1) —6(0)
2T

deg(A(TrQ),C) = c 27

i0(s)
then Z(s) = e 2 € H2(C S1) and so TrQ is

orientable.



We have seen that the (constrained) Landau-
de Gennes and Oseen-Frank theories are equiv-
alent in a simply-connected domain. Is this
true in 2D for domains with holes?

If we specify Q on each boundary component
then by the Theorem either all () satisfying
the boundary data are orientable (so that the
theories are equivalent), or no such @ are ori-
entable, so that the Oseen Frank theory can-
not apply and the Landau- de Gennes theory
must be used.




More interesting is to apply boundary condi-
tions which allow both the Landau - de Gennes
and Oseen-Frank theories to be used and com-
pete energetically.

G = 2\ U;;L:]_ W;
So we consider the problem
of minimizing - 90
_ 2
Q= [ IVQPdz |

subject to Q| = g orientable
with the boundaries dw; free.



Since A is bijective and

2

Q) = % | IVAQde
our minimization problem is equivalent to min
Imizing

I(m) = 3/ \Vm|2d:c
s? JG

i W )(G Sy =

{m e Wh2(G; S1) 1 mlpq = A(9)}.



In order that @) is orientable on 92 we need
that

deg(m, 02) € 2Z.

We always have that

n
deg(m,02) = » deg(m,dw;).

1=1

Hence if there is only one hole (n = 1) then
deg(m, Ow1) is even and so every () is orientable.

So to have both orientable and non-orientable
Q we need at least two holes.



Tangent boundary conditions
on outer boundary. No (free)
boundary conditions on inner
circles.

Q) = |_IVQPde

I(n) = 25° /Q Vn|2da



.

€



For M large enough
the minimum energy
configuration is
unoriented, even
though there is a
minimizer among
oriented maps.

If the boundary
conditions
correspond to the
Q-field shown, then
there is no
orientable Q that
satisfies them.




The general case of two holes (n = 2).

Let h(g) be the solution of the problem

Ah(g) = 0in G

325/9) — A(g) x 8125_9) on 9%

h(g) = 0 on dwq U Jdwo,

where 387 IS the tangential derivative on the
boundary (cf Bethuel, Brezis, Helein).

Let J(g) = (J(g9)1, J(g9)2), where
J(g)t = fawz 8h(g) ds.




T heorem
All global minimizers are nonorientable iff

dist(J(g)1, 7)) < dist(J(g)*,27)

and all are orientable iff

dist(J(g)t,27) < dist(J(g)t,2Z + 1)

In the stadium example we can show that the
first condition holds whatever the distance be-
tween the holes, so that the minimizer is always
non-orientable.



Existence for full Q-tensor theory

We have to minimize

1@ = [ [¥5(Q) +¥p(Q V) do

subject to suitable boundary conditions.

Suppose we take yvg : £€ — R to be contin-
uous and bounded below, & = {Q € M3%3 .
Q = Ql,trQ = 0}, (e.g. of the quartic form
considered previously) and

4
YE(Q,VQ) = ) LI
i=1

which is the simplest form that reduces to Oseen-
Frank in the constrained case.



Theorem (Davis & Gartland 1998)

Let 2 ¢ R3 be a bounded domain with smooth
boundary 0€2. Let L, =0 and

3 1
L3 >0,—-L3z < Ly <2L3, —gL3 — ELQ < L.

Let Q : 02 — £ be smooth. Then

3
1@ = [ Ws(@+ Y LI(VQ)]de
1=1
attains a minimum on

A={Q e Wh2(2;8) : Qlan = Q1.



Proof

By the direct method of the calculus of vari-
ations. Let QU) be a minimizing sequence in
A. the inequalities on the L; imply that

3
N L (VQ) > p|VQ?
i=1

for all @ (in particular ¥2_; I;(VQ) is convex in
V@). By the Poincaré inequality we have that

QW) is bounded in W12
so that for a subsequence (not relabelled)
QU) « Q* in w2

for some Q* € A.



We may also assume, by the compactness of
the embedding of W12 in L2, that QU) — @
a.e. in 2. But
1(Q*) < liminf 1(Q\))
J]—C0
by Fatou’s lemma and the convexity in VQ.
Hence Q* is a minimizer.

In the quartic case we can use elliptic regularity
(Davis & Gartland) to show that any minimizer
Q* is smooth.



Proposition. For any boundary conditions, if
L4 #= 0 then

4
1@ = [ (@ + Y Lillda
1=1

IS unbounded below.



Proof. Choose any () satisfying the boundary
conditions, and multiply it by a smooth func-
tion p(x) which equals one in a neighbourhood
of 02 and is zero in some ball B C €2, which
we can take to be B(0,1). We will alter @Q in

B so that

A
HQ) = [ [Wp(@Q+ Y Lil]da
1=1

is unbounded below subject to Q|sp = O.



Choose

Q(z) = 0(r)

where r = |z|. T

_ -
L@ — 1], (1) =0,
x| x| 3

nen

2 4
v 2 — _9/2 _92’
VP =202+

and

3

4
Iqp = QpiQij kQij1 = 59(9’2 — T—292)-



Hence

J(Q) <4 |

O

2 {wB<Q>+O(§9’2 | 4292)+

4 /12 3 2

where (' is a constant.

Provided 0 is bounded, all the terms are bounded
except

1 /2 4
4 / 2(-(1 il 9) 02 dr.
7707' 3 —|—94 r



Choose

[ 00(2 + sin kr) 0<r<2

0(r) = i 20p(2+sinH(1-r) L<r<i

The integrand is then bounded on (3,1) and

we need to look at

1
5 5 /2 4
A /O % 2 (gc + §L490(2 + sin kr)) 03k? cos? kr dr,

which tends to —oo If L460g is sufficiently neg-
ative.



The Onsager model
(Joint work with Apala Majumdar)

In the Onsager model the bulk free-energy at
temperature 6 > 0 has the form

Io(p) = U(p) — 0n(p),

where the entropy iIs given by

n(p) = — /52 p(p) In p(p) dp.



With the Maier-Saupe molecular interaction,
the internal energy Is given by

Ulp) = r [, [,I&— @ 0)p@)p(e) dpda

where x > 0 Is a coupling constant.

Denoting by

Q) = [ w©p— o) dp

the corresponding Q-tensor, we have that
1 1
2
= ——1) - ——1 dpd
QPR = [, [, (pep—31) (48 q—Dp(P)p(a)dpdg

/52 P )7 - %]p(p)p(q) dp dg.



Hence U(p) = —k|Q(p)|? and

Iy(p) = 9/32 p(p) In p(p) dp — k|Q(p)|*.

Given Q we define

9) = inf I
vp(Q0) = it Iy(p)

6  inf N pdp — 2
{p:Q(p)=Q}/52p pdp — KIQ)

(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.
R. and Sluckin, T. J.(1986))



et
I(p) = [, p(p) Inp(p)dp

Given Q with Q = Q1. trQ = 0 and satisfying
A(Q) > —1/3 we seek to minimize J on the
set of admissible p

Ag={peL'(S%) :p> 07/52de = 1,Q(p) = Q}.

Remark: We do not impose the condition
po(p) = p(—p), since it turns out that the mini-
mizer in AQ satisfies this condition.



Lemma. Ag is nonempty.

(Remark: this is not true if we allow some
N\, = —1/3.)

Proof. A singular measure u satisfying the con-
straints is

13 1
1=1

and ap € AQ can be obtained by approximating
this.



For € > O sufficiently small and 1 =1,2,3 let

90§:<01 if |p-e;j| <1—¢
¢ = TIp-gl=>1—c¢
Then
1 3 1 e &2
S | | €
p(p) (1_%6)(1_8)7;;1[ it 35 6]90%(17)




Theorem. J attains a minimum at a unique
PQ € AQ.

Proof. By the direct method, using the facts
that plnp is strictly convex and grows super-
linearly in p, while AQ IS sequentially weakly
closed in L1(S2).

Let f(Q) = J(pg) = infpeAQ J(p), so that

vB(Q,0) = 0f(Q) — K|Q|>.



T heorem
f Is strictly convex in Q and

lim f(Q) = .
)\min(Q)H—%‘F

Proof
The strict convexity of f follows from that

of pInp. Suppose that Apmin(QYW) — —3% but
£(0QU)) remains bounded. Then

. . . 1 /. .
QW) D422 = /S P @) (eP)2dp — 0,

where el) is the eigenvector of QW) corre-
sponding to Amin(QU)).



But we can assume that POG) — P in L1(S%),

where [¢2 p(p) dp = 1 and that eld) ¢,
Passing to the limit we deduce that

27 —
[ P@)(p-e)?dp=0.

But this means that p(p) = 0O except when
p-e =0, contradicting [c2 p(p)dp = 1.

el = 1.




The Euler-Lagrange equation for J

Theorem. Let Q = diag (A1, A2, A3). Then

exp(p1ps + uop3 + p3p3)
Z (@1, 2, U3)

pqQ(p) =

Y

where

Z(p1, p2, p3) = /52 exp(u1pg + p2p3 + 13p3) dp.
The u; solve the equations

oln~z

O
and are unique up to adding a constant to each

i

1
:>‘2+§7 7’2172737



Proof. We need to show that pg satisfies the
—uler-Lagrange equation. There is a small
difficulty due to the constraint p > 0. For

T >0 let Sy = {p € S?: polp) > 7}, and let
2z € L°(S?) be zero outside S; and such that

1
?p— =1 dp = 0, dp = 0.
ST(p p 3 )z(p) dp STZ(p) P

Then pe 1= pg + ez € Ag for all € > 0 suffi-
ciently small. Hence

S I(pole=o = [, [141npola(w) dp =0,



So by Hahn-Banach

3
1
1+1Inpg= > Cilpip; 3] - C
1,J=1

for constants C;;(7), C(7). Since Sr increases
as T decreases the constants are independent
of 7, and hence

3
po(p) = Aexp ( > Ciqu;pj) if po(p) > 0.
1,J=1



Suppose for contradiction that

E={pe S?:pg(p) =0}

is such that H2(E) > 0. Note that since
[s2 podp = 1 we also have that H?(S?\E) > 0.
There exists z € L°°(S2) such that

1
(p®p—§1)2(p) dp = 0, 2(p) dp = 4.

[{PQ>O} {pg>0}



Indeed if this were not true then by Hahn-
Banach we would have
3 1
1= > D;j(pipj — §5z’j) on S°\E
i,j=1
for a constant matrix D = (D;;).
Changing coordinates we can assume that D =
27?:1 pie; @ e; and so 1 = Z?zl Mi(Pf,;Q — %) on
S2\E for constants u;. If the p; are equal then
the right-hand side is zero, a contradiction,
while if the u; are not all zero it is easily shown
that the intersection of S2 with the set of such
p has 2D measure zero.



Define for € > 0 sufficiently small

pe = pQ T € — ez.

Then p. € Ag, since [o(p®p— 21)dp = O.
Hence, since PQ IS the unique minimizer,

—PQ In pQ] dp > 0.

This is impossible since the second integral is

of order e.
Hence we have proved that

3

po(p) = Aexp( Y. Cipip;),a.e. p €S2
1,7=1



Lemma. Let RIQR = Q for some R € O(3).
Then po(Rp) = po(p) for all p € S2.

Proof.
1
(P ®P—21)pq(Lip) dp

1
= R'q@ R'q— 21 d
/52( q® R’ q—21)pgla) dq
= R'QR=Q,

and PO IS unique.




Applying the lemma with Re; = —e;, Re; = ¢;
for j #% i, we deduce that for Q = diag (A1, Ao, A\3),

exp(u1pg + pops + u3p3)
Z(p1, o, 43)

pQ(p) =

)

where

Z(p1, 2, p3) = /52 exp(u1pg + pops + 13p3) dp,

as claimed.



Finally

olnZ 1 5 3 5
= / / - ex 05 ) d
1

and the uniqueness of the u; up to adding a
constant to each follows from the uniqueness

of PQ-




Hence the bulk free energy has the form

3 1 3
vp(Q,0) =6 (X 3) 0INZ —k > A7

1=1 i=1



Remarks
L. co — 1|n(>\m|n(Q)‘|‘3> B =
Cl — |n(>\m|n(Q) =+ 3)

2. All critical points of y»g are uniaxial. Phase
transition predicted from isotropic to uniaxial
nematic phase just as in the quartic model.

3. Minimizers p* of Iy(p) correspond to
minimizers over Q of ¥p(Q). These p* were
calculated and shown to be uniaxial by Fatkullin
and Slastikov (2005), Liu, H. Zhang and P.
Zhang (2005).



Now consider the problem of minimizing

4
1Q = [[[p@ + Y Lili(Q,VQ)] da
2 i=1
subject to, for example,

Q(x)|pn = Qo(x).

Since ¥g(Q) — oo when Ahin(Q) — —1/3 the
difficult term I4 can be absorbed into I3, since

I3 + 314 = (0k; + 3Qk1) Qi kRQij.1 > O

and the existence of a minimizer follows under
appropriate conditions (c.f. Gartland & Davis)
on the L;, even when Ly #= 0.



Liquid crystal elastomers

These are polymers for which the long chain
molecules are liquid crystals.

Actuation by
hot and cold air
(E. Terentyev)

i

Courtesy M. Warner —=

Thermo-optical actuation
(P. Palffy-Muhoray)



References

J.M. Ball and A. Majumdar. Nematic Liquid Crystals:
from Maler-Saupe to a Continuum Theory, Mol.
Cryst. Lig. Cryst. 525 (2010) 1-11.

J.M. Ball and A. Zarnescu, Orientablility and energy
minimization in liquid crystal models, Arch.
Ration. Mech. Anal. (2011)

J.M. Ball, Some open problems in elasticity. In
Geometry, Mechanics, and Dynamics, pages
3--59, Springer, New York, 2002

N. Mottram and C. Newton, Introduction to Q-tensor
theory (on Strathclyde webpage of N. Mottram).



|saac Newton Institute for
Mathematical Sciences, Cambridge

The Mathematics of Liquid Crystals
/ January - 5 July 2013

http://www.newton.ac.uk/programmes/MLC/index.htm
2oy ooy el Organisers:

John Ball

David Chillingworth
Mikhail Osipov

Peter Palffy-Muhoray
Mark Warner



