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Plan of course 

Lectures 1-3 

   Mathematics of crystalline solids 

 

Colloquium + lectures 4-5 

   Mathematics of liquid crystals 



Plan for lectures 1-3 

1. Modelling of solid phase transformations via 

nonlinear elasticity.  

 Mathematical tools for describing microstructure. 

Classical austenite-martensite interfaces. 

 

2. Macrotwins, 

 Nonclassical austenite-martensite interfaces  

     Nucleation of austenite in martensite 

 

3.   Incorporating interfacial energy. 



Macrotwins in Ni65Al35 involving two 

tetragonal variants (Boullay/Schryvers) 



Martensitic microstructures in CuAlNi (Chu/James) 



                 CuZnAl  microstructure:  Michel Morin (INSA de Lyon) 



Themes of lectures 

1. Role of compatibility of gradients in 

microstructure morphology. 

2. Why do we see these particular 

microstructures rather than different 

ones? 

 

 

 



Critique 

  

 We use a static theory, whereas this is 
clearly a pattern formation problem, which 
should be treated using an appropriate 
dynamical model. 

 

 Such a model should tell us which 
morphological features are predictable 
(e.g. via invariant manifolds, attractors …) 
in a given experiment, and predict them. 



 (a) what are appropriate dynamical equations?  

 (b)  analysis currently intractable for any such 

model. 

 

Static theories are not truly predictive: 

(i) Large redundancy in energy minimizers. 

(ii) The microstructure geometry is typically 

assumed a priori, and shown to be 

consistent with the theory (although 

interesting details may be predicted). 





Compatibility question: 





Hadamard jump condition 



Martensitic Transformations 

   These involve a change of shape of the 

crystal lattice at a critical temperature. 

 

e.g. cubic to tetragonal 

µ > µc
cubic

austenite µ < µc
three tetragonal variants

of martensite



Energy minimization problem 

for single crystal 



Typically we assume that

Ã(A; µ)!1 as detA! 0+;

so that in¯nite energy is required to compress

the body to zero volume.

We can then set Ã(A; µ) =1 for detA · 0, so

that Ã :M3£3£ [µ1; µ2]! [0;1] is continuous.

There is a substantial literature on the ques-

tion of how this condition can be supplemented

so that deformations with ¯nite energy are

invertible maps from ­ ! R3, so that inter-

penetration of matter does not occur.



Frame-indi®erence requires

Ã(RA; µ) = Ã(A; µ) for all R 2 SO(3):

If the material has cubic symmetry then also

Ã(AQ; µ) = Ã(A; µ) for all Q 2 P24;

where P24 is the group of rotations of a cube.



Energy-well structure 

Assume 

Assuming the austenite has cubic symmetry,

and given the transformation strain U1 say, the

N variants Ui are the distinct matrices QU1Q
T ,

where Q 2 P24.

austenite 

martensite 



Cubic to tetragonal (e.g. Ni65Al35) 
 

N = 3

U1 = diag (´2; ´1; ´1)

U2 = diag (´1; ´2; ´1)

U3 = diag (´1; ´1; ´2)



Exchange of 

stability  



Why use nonlinear elasticity? 

1. Conceptually simpler 

2. Large rotations occur in martensitic 

transformations. If these are linearized 

then phantom stresses are predicted. 

The use of nonlinear elasticity to describe martensitic 

transformations and their microstructure is due to B/James 

(1987), following work of many authors applying nonlinear 

elasticity to crystals, especially J.L. Ericksen. There is a 

‘linearized’ version of the theory due to Khachaturyan and 

Roitburd. 



Rank-one connections between 

energy-wells 



Twins 



Weak convergence = convergence of averages 

Simple laminate 



Atomistically sharp interfaces for 

cubic to tetragonal transformation 

in NiMn    

 

Baele, van Tenderloo, Amelinckx 



Formulation of energy minimization 

problem in terms of Young measures 



Gradient Young measures 



Gradient Young measure of simple 

laminate 



Quasiconvexity 



Quasiconvexity is the central convexity 

condition of the calculus of variations 





Quasiconvexification 



   There is no known characterization of 
quasiconvexity. 

 

 No local characterization (for example, 
inequalities on  f  and its derivatives at 
an arbitrary matrix A) exists (Kristensen). 



Classical austenite-martensite 

interfaces 



How does austenite transform to martensite as µ 

passes through µc? 

It cannot do this by means of an exact interface 

between austenite and martensite, because this 

requires the middle eigenvalue of Ui to be one, 

which in general is not the case (but see studies of 

James et al on low hysteresis alloys). 

So what does it do? 



(Classical) austenite-martensite interface in CuAlNi  
(courtesy C-H Chu and R.D. James) 



Gives formulae of  the  

crystallographic 

theory of martensite 

(Wechsler, Lieberman, 

Read) 

24 habit planes for 

cubic-to-tetragonal 



Rank-one connections for A/M interface 



Possible lattice parameters 

for classical austenite-martensite 

interface . 



Macrotwins in Ni65Al35 

 
JB, D. Schryvers, Ph. Boullay 

(Antwerp)   

 



Macrotwins in Ni65Al35 involving two 

tetragonal variants (Boullay/Schryvers) 



Crossings and steps 



Macrotwin formation 



B/Schryvers 

Different martensitic plates 

never compatible 

(Bhattacharya) 



Nonclassical austenite-

martensite interfaces  

 
JB/ Carsten Carstensen (Berlin), 

Konstantinos Koumatos (Oxford), 

Hanus Seiner (Prague). 

 



Nonclassical austenite-martensite 

interfaces (B/Carstensen 97) 



Nonclassical interface with double 

laminate 



Nonclassical interface calculation 

ºx = ±1

ºx = º

supp º ½
SN

i=1 SO(3)Ui



More on quasiconvexifications 

Let K ½Mm£n be compact. Then

Kqc = fF 2Mm£n : F = ¹º; º a homogeneous

gradient Young measure with supp º ½ Kg
= fF 2Mm£n : '(F) ·max

G2K
'(G) for all quasiconvex 'g

' is polyconvex if '(F) = g(J(F)) for some

convex function g of the list J(F) of all minors

of F . Thus if m = n= 3, ' is polyconvex if

'(F) = g(F; cof F;detF)

for some convex g.



' polyconvex) ' quasiconvex.

Kqc ½Kpc



Two martensitic wells 



For a nonclassical interface we need that for

some a; b; c satisfying these inequalities the mid-

dle eigenvalue of FTF is one, and we thus get

(Ball & Carstensen 97) such an interface pro-

vided

´¡12 · ´1 · 1 or 1 · ´¡12 · ´1 if ´3 < 1;

´2 · ´¡11 · 1 or 1 · ´2 · ´¡11 if ´3 > 1:

The proof is by calculating Kpc and showing

by construction that any F 2 Kpc belongs to

Kqc.



More wells – necessary 

conditions 

K =

N[

i=1

SO(3)Ui



First choose '(G) = §det(G). Then

detF = ¾min(F )¾mid(F )¾max(F ) = ´min´mid´max:



Finally choose '(G) = ¾max(cofG), which is a

convex function

of cof (G) and hence polyconvex. Then

¾mid(F)¾max(F) · ´mid´max

Combining these inequalities we get that

´min · ´¡1
mid

· ´max:



For cubic to tetragonal we have that

U1 = diag (´2; ´1; ´1); U2 = diag (´1; ´2; ´1);

U3 = diag (´1; ´1; ´2);

and the necessary conditions become

´1 · ´¡11 · ´2 if ´1 · ´2;

´2 · ´¡11 · ´1 if ´1 ¸ ´2:

But these turn out to be exactly the conditions

given by the two-well theorem to construct a

rank-one connection from

(SO(3)U1 [ SO(3)U2)qc to the identity!

Hence the conditions are su±cient also.



Values of deformation parameters allowing classical and 

nonclassical austenite-martensite interfaces 



Interface normals 



Experimental 

procedure 

(H. Seiner) 



Optical 

micrograph  

(H. Seiner) of 

non-classical 

interface 

between 

austenite and 

a martensitic 

microstructure

.  

The arrows 

indicate the 

orientations of 

twinning 

planes of 

Type-II and  

compound 

twinning 

systems 





Twin crossing gradients 



Cubic-to-orthorhombic energy wells 







Possible volume fractions 



Possible nonclassical interface 

normals 



Curved interface between crossing twins and austenite resulting from the inhomogeneity 

of compound twinning. (Optical microscopy,H. Seiner) 



Construction of curved interface 

This is possible at zero stress provided 1 is

rank-one connected to a relative interior point

of the set K = [Ni=1SO(3)Ui of the martensitic
wells, where relative is taken with respect to

the set D = fA : detA = detUig. Such relative

interior points are known to exist in the cubic-

to-tetragonal case due to a result by Dolzmann

and Kirchheim.



Nucleation of austenite in mechanically 

stabilized martensite by localized 

heating 

JB, Konstantinos Koumatos  

Hanus Seiner 
  

 

TexPoint fonts used in EMF.  
Read TexPoint manual before you delete this box.: AAAAAAAAAAAAAAAAAA 

abcabc



Mechanically stabilized 

martensite 

The shape-recovery process in shape-memory

alloys (SMAs) concerns the thermally driven

transition from the low temperature phase

(martensite) into the high-temperature phase

(austenite). For many SMAs, the critical tem-

perature for initiation of the shape-recovery

process depends strongly on the microstruc-

ture of the martensite.



In particular, if the martensite is mechanically

treated so that it is more di±cult for it to make

a compatible interface with the austenite, the

critical temperature is shifted signi¯cantly up-

wards. This e®ect is called the mechanical

stabilization of martensite and occurs for both

single crystals and polycrystalline SMAs.



Experimental observations 

Specimen: single crystal of CuAlNi prepared by

the Bridgeman method in the form of a pris-

matic bar of dimensions 12£3£3mm3 in the

austenite with edges approximately along the

principal cubic directions.

By unidirectional compression along its longest

edge, the specimen was transformed into a sin-

gle variant of mechanically stabilized 2H marten-

site. Due to the mechanical stabilization e®ect

the reverse transition did not occur during un-

loading.



The martensite-to-austenite transition temper-

atures determined by DSC were AS = ¡6±C
and AF = 22±C. The critical temperature TC

for the transition from the stabilized marten-

site induced by homogeneous heating for this

specimen was »60±C. This was estimated from
optical observations of the transition with one

of the specimen faces laid on and thermally

contacted with a gradually heated Peltier cell,

using a heat conducting gel.



The specimen was freely laid on a slightly pre-

stressed, free-standing polyethylene (PE) foil

to ensure minimal mechanical constraints, then

locally heated by touching its surface with an

ohmically heated tip of a soldering iron with

temperature electronically controlled to be 200±C,
i.e. signi¯cantly above the AS and TC temper-

atures.

Localized heating experiment 





When touched at a corner, nucleation of austen-

ite occured there immediately. When touched

at an edge or face, nucleation did not oc-

cur at the site of the localized heating, but

at some corner, after a time delay (su±cient

for heat conduction to make the temperature

there > TC).









We ¯x µ to be the temperature of the probe.

Then it is reasonable to assume that

minAÃ(A; µ) = ¡± < 0 and that

Ã(A; µ) =

(
¡± if A 2 SO(3) (austenite);

0 if A 2 S6i=1 SO(3)Ui (martensite):



Here the Ui are the six orthorhombic variants

given by



Proposed explanation. Nucleation is geometri-

cally impossible in the interior, on faces and at

edges, but not at a corner. We express this by

proving in a simpli¯ed model that if Us denotes

the initial pure variant of martensite then at Us

the free-energy function is quasiconvex (in the

interior), quasiconvex at the boundary faces

(cf Ball & Marsden 1981) and quasiconvex at

the edges, but not at a corner.

To make the problem more tractable we as-

sume that Ã(A; µ) := W(A) is in¯nite outside

the austenite and martensite energy wells.



So W(A) <1 on

K = SO(3) [
6[

i=1

SO(3)Ui



Theorem I(º) ¸ I(±Us)

(quasiconvexity at Us)

Nucleation impossible in the interior 



Similarly in these cases we have

Theorem I(º) ¸ I(±Us)

(quasiconvexity at the boundary and

edges at Us)

Nucleation impossible at faces or edges 



Nucleation possible at a corner 

I(º) < I(±Us)

I not quasiconvex at a corner.



Remarks 

1. We are able to prove quasiconvexity at faces

with most, but not all, normals. What would

happen for a specimen that was a ball?

2. We have shown that a localized nucle-

ation can only occur at a corner, but one could

hope to show using methods of Grabovsky &

Mengesha (2009) that any º su±ciently close

to ±Us with I(º) < I(±Us) must involve nucle-

ation at a corner.



CuZnAl  microstructure:  Michel Morin (INSA de Lyon) 
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Proof of Theorem 2 uses quasiregular maps,

which are useful also in constructing nonpoly-

convex quasiconvex functions. False in higher

dimensions (Iwaniec, Verhota, Vogel 2002)



Application to bicrystal microstructure 



Microstructure in polycrystalline

BaTiO3 (G. Arlt).



Adding interfacial energy to the 

nonlinear elasticity model 





This is good because it provides an explanation

of why very ¯ne microstructures are observed,

but bad

(a) because real microstructures are not in-

¯nitely ¯ne, and have characteristic length-

scales,

(b) because the minimum is not attained.



These issues can be addressed by adding to

the free-energy functional a term representing

interfacial energy, resulting from the di®erent

atomic environment at twin boundaries and/or

lattice curvature.

The natural way to try to understand what

form the interfacial energy should take is via

passage from an atomistic to a continuummodel,

but there is some confusion as to how this

should be done.



 NiMn   Baele, van Tenderloo, Amelinckx 

Some interfaces are atomistically sharp 

while others are diffuse … 



   Diffuse (smooth) 

interfaces in 

Pb3V2O8  

Manolikas, van Tendeloo,  

Amelinckx  



   Diffuse interface in perovskite (courtesy Ekhard Salje) 



Second gradient model for diffuse interfaces 
JB/Elaine Crooks (Swansea)  

How does interfacial energy a®ect the predic-

tions of the elasticity model of the austenite-

martensite transition?



Use simple second gradient model of interfacial

energy (cf Barsch & Krumhansl, Salje ), for

which energy minimum is always attained.

It is not clear how to justify this model on the

basis of atomistic considerations (the wrong

sign problem { see, for example, Blanc, LeBris,

Lions).



Hypotheses 

No boundary conditions (i.e. boundary trac-

tion free), so result will apply to all boundary

conditions.





by Friesecke, James, Müller Rigidity Theorem 



Idea of proof 

Reduce to problem of local minimizers for 

 



Smoothing of twin boundaries 



Lemma

Let Dy(x) = F (x¢N), where F 2W
1;1
loc

(R;M3£3)
and

F (x ¢N)! A;B

as x ¢ N ! §1. Then there exist a constant

vector a 2 R3 and a function u : R ! R3 such

that

u(s)! 0; a as s! ¡1;1;

and for all x 2 R3

F (x ¢N) = A+ u(x ¢N)­N:

In particular

B = A+ a­N:







Sharp interface models 

However this is not a sensible model, because

if we have a sharp interface and approximate y

by a smooth deformation, then the interfacial

energy disappears and the elastic energy hardly

changes. Thus a minimizer can never have a

sharp interface.



A model allowing smooth and sharp interfaces 

JB/ Carlos Mora-Corral (Madrid) 



GSBV 





One-dimensional case 





More realistic 1D model 





Theorem

Let W : (0;1)! [0;1) be C1 and satisfy limt!0+W (t) =1 and suppose that

there exist r1; r2 with 0 < r1 < r2 such that ¡1 < sup(0;ri]W
0 = inf [ri;1)W

0 <
1 for i 2 f1; 2g. Let ¸ 2 (r1; r2).

Then there exists a minimiser of the functional I";Ã in A¸. Moreover, if y is

a minimizer then u = y0 satis¯es:
(i) u 2 [r1; r2] a.e.

(ii) Su is ¯nite.

(iii) ru is continuous and in SBV ,

W 0(u)¡ 2"2r2u = c

for some constant c 2 R, ru(0) = ru(1) = 0 and 2"2ru(z) = Ã0([u](z)) for all

z 2 Su, c =
R 1
0
W 0(u) dx and

W (u)¡ "2(ru)2 ¡ cu = d;

for some constant d 2 R.







An introduction to the 

mathematics of liquid crystals 

John Ball 

Centre for Nonlinear PDE 

University of Oxford 

Colloquium, Würzburg, 11 January 2012 
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Liquid crystals 

A multi-billion 

dollar industry. 

An intermediate 

state of matter 

between liquids 

and solids.  

Liquid crystals flow like liquids, but the 

constituent molecules retain orientational order. 



Classes of liquid crystals 

Liquid crystals are of many different types, three main 

classes being nematics, cholesterics and smectics. 

Many liquid crystals consist of rod-like molecules. 

Length 2-3 nm 



Depending on the nature of the molecules, the  

interactions between them and the temperature  

the molecules can arrange themselves in  

different phases. 

 

Isotropic fluid – no orientational  

or positional order 



Nematic phase 

orientational but 

no positional 

order 

Smectic A 

phase 

Smectic C 

phase 

Orientational and some positional order 

The molecules have time-varying orientations

due to thermal motion.



Electron micrograph 

 of nematic phase 

http://www.netwalk.com/~laserlab/lclinks.html 



Cholesterics 

DoITPoMS, Cambridge 

If a chiral dopant is added the

molecules can form a cholesteric

phase in which the mean

orientation of the molecules

rotates in a helical fashion.



Isotropic to nematic phase 

transition 

The nematic phase typically forms on cooling

through a critical temperature µc by a phase

transformation from a high temperature isotropic

phase.

µm µc

µ > µc

isotropic

µm < µ < µc

nematic

µ < µm

other LC or

solid phase



DoITPoMS, 

Cambridge 



The twisted nematic display 

Wikipedia 



The director 

A ¯rst mathematical description of the nematic

phase is to represent the mean orientation of

the molecules by a unit vector n= n(x; t).

n

But note that for most liquid

crystals n is equivalent to ¡n,
so that a better description is

via a line ¯eld in which we

identify the mean orientation

by the line through the origin

parallel to it.





Defects 

Roughly these can be thought of as (point or

line) discontinuities in the director or line ¯eld.

Schlieren texture of a nematic film  

with surface point defects (boojums).  

Oleg Lavrentovich (Kent State) 

Zhang/Kumar 2007 

Carbon nano-tubes as liquid crystals 



Modelling via molecular dynamics 

Twisted nematic display molecular simulation  

M. Ricci, M. Mazzeo, R. Berardi, P. Pasini, C. Zannoni 

(courtesy Claudio Zannoni) 



Continuum models  

­

To keep things simple consider

only static con¯gurations,

for which the °uid velocity is zero.



x0 

Ω 

B(x0,) 

Molecular orientations 

Fix x0 and a

small ± > 0.







In practice Q is observed to be very nearly

uniaxial except possibly very near defects, with

a constant value of s (typical values being in

the range 0:6¡ 0:8).



Landau – de Gennes free energy  

At each point x we have a Q¡tensor Q(x).





Thus this model predicts that there is a phase

transformation from an isotropic °uid to a

uniaxial nematic phase at the critical

temperature µNI.



Possible defects in constrained theory 

Hedgehog 



Disclinations 



  

                                         

Index one half singularities 

These are nonorientable and of in¯nite energy.



Mathematical challenges 
1. Give a rigorous derivation of a continuum

model from a molecular one. What forms should

the bulk and elastic energies have, is it reason-

able to use second moments, boundary condi-

tions ...?)

2. What is the best way to describe defects?

(For example, are there useful asymptotics as

"! 0 in the Landau - de Gennes theory?)



The eigenvalue constraints 

Question: how are the eigenvalue constraints

¡1
3
< ¸i(Q) <

2

3

maintained in the theory?

B/Majumdar



Nonlinear elasticity 



To ensure this we assume that

W(A)!1 as detA! 0+



Correspondingly, it is natural to suppose that

ÃB(Q; µ)!1 as ¸min(Q)!¡1
3
+ :

We show how such an ÃB can be constructed

on the basis of a microscopic model.

Such a suggestion was made by Ericksen in the

context of his model of nematic liquid crystals.



The Onsager model  

In the Onsager model the probability measure

¹ is assumed to be continuous with density ½=

½(p), and the bulk free-energy at temperature

µ > 0 has the form

Iµ(½) = U(½)¡ µ´(½);

where the entropy is given by

´(½) = ¡
Z

S2
½(p) ln ½(p) dp:





(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.

R. and Sluckin, T. J.(1986))



Remarks

1. The blow-up corresponds to a perfectly

aligned state having entropy ¡1.

2. All critical points of ÃB are uniaxial. Phase

transition predicted from isotropic to uniaxial

nematic phase just as in the quartic model.

Theorem

ÃB(Q; µ) ¸ c0 ¡
µ

2
ln(¸min(Q) +

1

3
);

so that ÃB(Q; µ)!1 as ¸min(Q)! ¡1
3
+.



If not, this would mean that a minimizer of I

would have an unbounded integrand. Surely

this is inconsistent with being a minimizer ....











This seems to be very di±cult.





Proposition.

Given Q = QT ; trQ = 0, Q is uniaxial if and

only if

jQj6 = 54(detQ)2:



Proof. The characteristic equation of Q is

det(Q¡ ¸1) = detQ¡ ¸tr cof Q+0¸2 ¡ ¸3:

But 2tr cof Q = 2(¸2¸3+¸3¸1+¸1¸2) = (¸1+

¸2+ ¸3)
2¡ (¸21+ ¸22+ ¸23) = ¡jQj2. Hence the

characteristic equation is

¸3 ¡ 1

2
jQj2¸¡ detQ = 0;

and the condition that ¸3¡ p¸+ q = 0 has two

equal roots is that p ¸ 0 and 4p3 = 27q2.



Energetics 

Ω 





The domain of  





Frame-indifference 





Hence Q¤(¹x) = RQ(¹x)RT , and so

@Q¤ij
@zk

(¹x) =
@

@zk
(RilQlm(¹x)Rjm)

=
@

@xp
(RilQlmRjm)

@xp

@zk

= RilRjmRkp
@Qlm

@xp
:

Thus, for every R 2 SO(3),

Ã(Q¤;D¤) = Ã(Q;D);

where Q¤ = RQRT , D¤ijk = RilRjmRkpDlmp.

Such Ã are called hemitropic.



Material symmetry 

The requirement that

Ã(Q¤(¹x);rzQ
¤(¹x)) = Ã(Q(¹x);rxQ(¹x))

when z = ¹x+ R̂(x¡ ¹x), where R̂ = ¡1+2e­ e,

jej = 1, is a re°ection is a condition of ma-

terial symmetry satis¯ed by nematics, but not

cholesterics, whose molecules have a chiral na-

ture.



Since any R 2 O(3) can be written as R̂~R,

where ~R 2 SO(3) and R̂ is a re°ection, for a

nematic

Ã(Q¤; D¤) = Ã(Q;D)

where Q¤ = RQRT ; D¤ijk = RilRjmRkpDlmp and

R 2 O(3). Such Ã are called isotropic.



Bulk and elastic energies 

Thus, putting D = 0,

ÃB(RQR
T) = ÃB(Q) for all R 2 SO(3);

which holds if and only if ÃB is a function of the

principal invariants of Q, that is, since trQ= 0,

ÃB(Q) = ¹ÃB(jQj2;detQ):



An example of a hemitropic, but not isotropic,

function is

I5 = "ijkQilQjl;k:



For the elastic energy we take

ÃE(Q;rQ) =
4X

i=1

LiIi;

where the Li are material constants.



The constrained theory 



Oseen-Frank energy 

Formally calculating ÃE in terms of n;rn we

obtain the Oseen-Frank energy functional



Function Spaces  

(part of the mathematical model) 

Unconstrained theory. 



Constrained theory. 



Existence of minimizers in the 

constrained theory 



The equilibrium equations (JB/Majumdar) 



Can we orient the director? (JB/Zarnescu) 



Relating the Q and n descriptions 





A smooth nonorientable  director field  

in a non simply connected region. 



  

                                         

The index one half singularities are non-orientable 



Thus in a simply-connected region the uniaxial de 

Gennes and Oseen-Frank theories are equivalent. 

Another consequence is that it is 

impossible to modify this Q-tensor 

field in a core around the singular 

line so that it has finite Landau-de 

Gennes energy. 

(See also a recent topologically more general lifting result 

of Bethuel and Chiron for maps u:→N.) 



Ingredients of Proof of Theorem 2 

• Lifting possible if Q is smooth and  simply-
connected 

• Pakzad-Rivière theorem (2003) implies that if  
is smooth, then there is a sequence of smooth 
Q(j) converging weakly to Q in W1,2 

• We can approximate a simply-connected 
domain with boundary of class C by ones that 
are simply-connected with smooth boundary 

• The Proposition implies that orientability is 
preserved under weak convergence 



2D examples and results 

for non simply-connected regions 



Given Q 2W1;2(G;Q2) de¯ne the auxiliary

complex-valued map

A(Q) =
2

s
Q11 ¡

1

3
+ i

2

s
Q12:

Then A(Q) = Z(n)2,

where Z(n) = n1+ in2.

A : Q2! S1.



Let C = fC(s) : 0 · s · 1g be a smooth Jordan
curve in R2 ' C.

If Z : C ! S1 is smooth then the degree of Z

is the integer

deg (Z;C) =
1

2¼i

Z

C

Zs

Z
ds:

Writing Z(s) = eiµ(s) we have that

deg (Z;C) =
1

2¼i

Z 1
0
iµsds=

µ(1)¡ µ(0)

2¼
:



If Z 2 H
1
2(C;S1) then the degree may be de-

¯ned by the same formula

deg (Z;C) =
1

2¼i

Z

C

Zs

Z
ds:

interpreted in the sense of distributions (L.

Boutet de Monvel).



Theorem

Let Q 2W1;2(G;Q2). The following are equiv-

alent:

(i) Q is orientable.

(ii) TrQ 2 H
1
2(C;Q2) is orientable for every

component C of @G.

(iii) deg (A(TrQ); C) 2 2Z for each component

C of @G.

We sketch the proof, which is technical.



P 

The orientation at the beginning and end of

the loop are the same since we can pass the

loop through the holes using orientability on

the boundary.

(i) , (ii) for continuous Q



(ii) , (iii). If TrQ is orientable on C then

deg (A(TrQ); C) = deg (Z2(n); C)

=
1

2¼i

Z

C

(Z2)s

Z2
ds

=
1

2¼i

Z

C
2
Zs

Z
ds

= 2deg (Z(n); C)

Conversely, if A(TrQ(s)) = eiµ(s) and

deg(A(TrQ); C) =
µ(1)¡ µ(0)

2¼
2 2Z

then Z(s) = e
iµ(s)
2 2 H

1
2(C; S1) and so TrQ is

orientable.



We have seen that the (constrained) Landau-

de Gennes and Oseen-Frank theories are equiv-

alent in a simply-connected domain. Is this

true in 2D for domains with holes?

If we specify Q on each boundary component

then by the Theorem either all Q satisfying

the boundary data are orientable (so that the

theories are equivalent), or no such Q are ori-

entable, so that the Oseen Frank theory can-

not apply and the Landau- de Gennes theory

must be used.



More interesting is to apply boundary condi-

tions which allow both the Landau - de Gennes

and Oseen-Frank theories to be used and com-

pete energetically.

G=­nSni=1 ¹!i
So we consider the problem

of minimizing

I(Q) =

Z

G
jrQj2dx

subject to Qj@­ = g orientable

with the boundaries @!i free.



Since A is bijective and

I(Q) =
2

s2

Z

G
jrA(Q)j2dx

our minimization problem is equivalent to min-

imizing

Î(m) =
2

s2

Z

G
jrmj2dx

in W
1;2
A(g)

(G;S1) =

fm 2W1;2(G;S1) : mj@­ = A(g)g.



Hence if there is only one hole (n = 1) then

deg(m;@!1) is even and so every Q is orientable.

So to have both orientable and non-orientable

Q we need at least two holes.



Tangent boundary conditions 

on outer boundary. No (free) 

boundary conditions on inner 

circles. 





For M large enough 

the minimum energy 

configuration is 

unoriented, even 

though there is a 

minimizer among 

oriented maps. 

 

If the boundary 

conditions 

correspond to the 

Q-field shown, then 

there is no 

orientable Q that 

satisfies them. 



The general case of two holes (n= 2).

Let h(g) be the solution of the problem

¢h(g) = 0 in G

@h(g)

@º
= A(g)£ @A(g)

@¿
on @­

h(g) = 0 on @!1 [ @!2;

where @
@¿

is the tangential derivative on the

boundary (cf Bethuel, Brezis, Helein).

Let J(g) = (J(g)1; J(g)2), where

J(g)i = 1
2¼

R
@!i

@h(g)
@º

ds.



Theorem

All global minimizers are nonorientable i®

dist(J(g)1;Z) < dist(J(g)1;2Z)

and all are orientable i®

dist(J(g)1;2Z) < dist(J(g)1;2Z+1)

In the stadium example we can show that the

¯rst condition holds whatever the distance be-

tween the holes, so that the minimizer is always

non-orientable.



Existence for full Q-tensor theory 

Suppose we take ÃB : E ! R to be contin-

uous and bounded below, E = fQ 2 M3£3 :

Q = QT ; trQ = 0g, (e.g. of the quartic form

considered previously) and

ÃE(Q;rQ) =
4X

i=1

LiIi;

which is the simplest form that reduces to Oseen-

Frank in the constrained case.





Proof

By the direct method of the calculus of vari-

ations. Let Q(j) be a minimizing sequence in

A. the inequalities on the Li imply that

3X

i=1

LiIi(rQ) ¸ ¹jrQj2

for all Q (in particular
P3
i=1 Ii(rQ) is convex in

rQ). By the Poincar¶e inequality we have that

Q(j) is bounded in W1;2

so that for a subsequence (not relabelled)

Q(j) * Q¤ in W1;2

for some Q¤ 2 A.



In the quartic case we can use elliptic regularity

(Davis & Gartland) to show that any minimizer

Q¤ is smooth.









Hence

J(Q) · 4¼

Z 1

0
r2
·
ÃB(Q) + C

µ
2

3
µ02+

4

r2
µ2
¶
+

L4
4

9
µ

µ
µ02 ¡ 3

r2
µ2
¶¸

dr;

where C is a constant.

Provided µ is bounded, all the terms are bounded

except

4¼

Z 1

0
r2
µ
2

3
C +

4

9
L4µ

¶
µ02 dr:



Choose

µ(r) =

(
µ0(2+ sin kr) 0 < r < 1

2

2µ0(2+ sin k
2
)(1¡ r) 1

2
< r < 1

The integrand is then bounded on (1
2
;1) and

we need to look at

4¼

Z 1
2

0
r2
µ
2

3
C +

4

9
L4µ0(2+ sin kr)

¶
µ20k

2 cos2 kr dr;

which tends to ¡1 if L4µ0 is su±ciently neg-

ative.



The Onsager model  

(joint work with Apala Majumdar) 

In the Onsager model the bulk free-energy at

temperature µ > 0 has the form

Iµ(½) = U(½)¡ µ´(½);

where the entropy is given by

´(½) = ¡
Z

S2
½(p) ln ½(p) dp:





(cf. Katriel, J., Kventsel, G. F., Luckhurst, G.

R. and Sluckin, T. J.(1986))



Let

J(½) =

Z

S2
½(p) ln ½(p) dp:

Given Q with Q = QT ; trQ = 0 and satisfying

¸i(Q) > ¡1=3 we seek to minimize J on the

set of admissible ½

AQ = f½ 2 L1(S2) : ½ ¸ 0;

Z

S2
½ dp = 1; Q(½) = Qg:

Remark: We do not impose the condition

½(p) = ½(¡p), since it turns out that the mini-
mizer in AQ satis¯es this condition.



Lemma. AQ is nonempty.

(Remark: this is not true if we allow some

¸i = ¡1=3.)

Proof. A singular measure ¹ satisfying the con-

straints is

¹ =
1

2

3X

i=1

(¸i+
1

3
)(±ei + ±¡ei);

and a ½ 2 AQ can be obtained by approximating

this.



For " > 0 su±ciently small and i= 1;2;3 let

'"i =

(
0 if jp ¢ eij < 1¡ "
1
4¼"

if jp ¢ eij ¸ 1¡ "

Then

½(p) =
1

(1¡ 1
2
")(1¡ ")

3X

i=1

[¸i+
1

3
¡ "

2
+
"2

6
]'"ei(p)

works. ¤



Theorem. J attains a minimum at a unique

½Q 2 AQ.

Proof. By the direct method, using the facts

that ½ ln ½ is strictly convex and grows super-

linearly in ½, while AQ is sequentially weakly

closed in L1(S2). ¤

Let f(Q) = J(½Q) = inf½2AQ
J(½), so that

ÃB(Q; µ) = µf(Q)¡ ·jQj2:







The Euler-Lagrange equation for J 

Theorem. Let Q = diag (¸1; ¸2; ¸3). Then

½Q(p) =
exp(¹1p

2
1+ ¹2p

2
2+ ¹3p

2
3)

Z(¹1; ¹2; ¹3)
;

where

Z(¹1; ¹2; ¹3) =

Z

S2
exp(¹1p

2
1+ ¹2p

2
2+ ¹3p

2
3) dp:

The ¹i solve the equations

@ lnZ

@¹i
= ¸i+

1

3
; i = 1;2;3;

and are unique up to adding a constant to each

¹i.





So by Hahn-Banach

1+ ln ½Q =

3X

i;j=1

Cij[pipj ¡
1

3
] + C

for constants Cij(¿); C(¿). Since S¿ increases

as ¿ decreases the constants are independent

of ¿ , and hence

½Q(p) = A exp

0
@

3X

i;j=1

Cijpipj

1
A if ½Q(p) > 0:



Suppose for contradiction that

E = fp 2 S2 : ½Q(p) = 0g

is such that H2(E) > 0. Note that since
R
S2 ½Qdp = 1 we also have that H2(S2nE) > 0.

There exists z 2 L1(S2) such that

Z

f½Q>0g
(p­p¡1

3
1)z(p) dp = 0;

Z

f½Q>0g
z(p) dp= 4¼:



Changing coordinates we can assume that D =
P3
i=1 ¹iei ­ ei and so 1 =

P3
i=1 ¹i(p

2
i ¡

1
3
) on

S2nE for constants ¹i. If the ¹i are equal then

the right-hand side is zero, a contradiction,

while if the ¹i are not all zero it is easily shown

that the intersection of S2 with the set of such

p has 2D measure zero.

Indeed if this were not true then by Hahn-

Banach we would have

1 =

3X

i;j=1

Dij(pipj ¡
1

3
±ij) on S2nE

for a constant matrix D = (Dij).







Applying the lemma with Rei = ¡ei; Rej = ej

for j 6= i, we deduce that for Q = diag (¸1; ¸2; ¸3),

½Q(p) =
exp(¹1p

2
1+ ¹2p

2
2+ ¹3p

2
3)

Z(¹1; ¹2; ¹3)
;

where

Z(¹1; ¹2; ¹3) =

Z

S2
exp(¹1p

2
1+ ¹2p

2
2+ ¹3p

2
3) dp;

as claimed.



Finally

@ lnZ

@¹i
= Z¡1

Z

S2
p2i exp(

3X

j=1

¹jp
2
j ) dp

= ¸i+
1

3
;

and the uniqueness of the ¹i up to adding a

constant to each follows from the uniqueness

of ½Q. ¤



Hence the bulk free energy has the form

ÃB(Q; µ) = µ
3X

i=1

¹i(¸i+
1

3
)¡ µ lnZ ¡ ·

3X

i=1

¸2i :



2. All critical points of ÃB are uniaxial. Phase

transition predicted from isotropic to uniaxial

nematic phase just as in the quartic model.

1. c0 ¡ 1
2
ln(¸min(Q) +

1
3
) · 1

µ
ÃB ·

c1 ¡ ln(¸min(Q) +
1
3
).

Remarks 





Liquid crystal elastomers 
These are polymers for which the long chain

molecules are liquid crystals.

Thermo-optical actuation 

(P. Palffy-Muhoray) 

Actuation by  

hot and cold air 

(E. Terentyev) 

 

Courtesy M. Warner 
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