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Elasticity Theory

The central model of solid mechanics. Rubber, metals (and
alloys), rock, wood, bone ... can all be modelled as elastic
materials, even though their chemical compositions are very
different.

For example, metals and alloys are crystalline, with grains
consisting of regular arrays of atoms. Polymers (such as rubber)
consist of long chain molecules that are wriggling in thermal
motion, often joined to each other by chemical bonds called
crosslinks. Wood and bone have a cellular structure ...



A brief history

1678 Hooke's Law

1705 Jacob Bernoulli

1742 Daniel Bernoulli

1744 L. Euler elastica (elastic rod)

1821 Navier, special case of linear elasticity via molecular model
(Dalton’s atomic theory was 1807)

1822 Cauchy, stress, nonlinear and linear elasticity

For a long time the nonlinear theory was ignored/forgotten.

1927 A.E.H. Love, Treatise on linear elasticity

1950's R. Rivlin, Exact solutions in incompressible nonlinear elasticity
(rubber)

1960 -- 80 Nonlinear theory clarified by J.L. Ericksen, C. Truesdell ...
1980 -- Mathematical developments, applications to materials,
biology ...



Kinematics

y

Reference configuration Deformed configuration

Q c R3 bounded domain with
(Lipschitz) boundary 0f2.

Label the material points of the body by the

positions x € €2 they occupy Iin the reference
configuration. 2



Reference configuration Deformed configuration

Typical motion described by a sufficiently smooth
map vy . €2 X [t17t2] — R3, Yy — y(CIZ‘,t)

Deformation gradient
F = Dy(z,t), Fjo = 54

T 8:13‘05'



Invertibility

To avoid interpenetration of matter, we re-
quire that for each ¢, y(-,t) is invertible on €2,
with sufficiently smooth inverse z(-,t). We also
suppose that y(-,t) is orientation preserving;
hence

J=detF(z,t) >0 for xz € Q2. (1)

By the inverse function theorem, if y(-,t) is C1,
(1) implies that y(-,t) is locally invertible.
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Global inverse function theorem for
C! deformations

Let 2 C R"™ be a bounded domain with Lips-
chitz boundary 92 (in particular €2 lies on one
side of 8 locally). Let y € C1(£; R™) with

det Dy(z) > 0 for all x € Q

and y|go one-to-one. Then y is invertible on
Q.

Proof uses degree theory. cf Meisters and Olech,
Duke Math. J. 30 (1963) 63-80.



Notation

S
3
X
3

|

{real n X n matrices}
MY = {F e M™":detF > 0}

{Re M™":R'R=1detR =1}
{rotations}.

U
O
~
3
N—’
|

If a € R" be R" the tensor product a ® b is
the matrix with the components

(a ® b)zg = aibj.
[Thus (a®b)e = (b-c)a if c€ R".]



Variational formulation of nonlinear

elastostatics

We suppose for simplicity that the body is ho-
mogeneous, i.e. the material response is the
same at each point. In this case the total elas-
tic energy corresponding to the deformation

y = y(x) is given by

I(y) = | W(Dy(x))da,

where W = W (F) is the stored-energy function
of the material. We suppose that W : M_?_X3 —
R is ¢! and bounded below, so that without

loss of generality W > 0.



We will study the existence/nonexistence of
minimizers of I subject to suitable boundary
conditions.

Issues.

1. What function space should we seek a
minimizer in? This controls the allowable sin-
gularities in deformations and is part of the
mathematical model.

2. What boundary conditions should be
specified?

3. What properties should we assume
about W7



The Sobolev space WP

Whe={y: Q—R>: |yll1,p < oo}, where

lylly ., = { Jolly(@)|P + | Dy(z)[P] dz) /P if 1 < p < oo
D esssupzco (Jly(x)| + |Dy(z)|) if p= o0

Dy is interpreted in the weak (or distributional)
sense, so that

ana Q) Zawa

for all ¢ € C§°(£2).

dx




We assume that y belongs to the largest Sobolev
space Wil =wll(Q:R3), so that in particu-
lar Dy(x) is well defined for a.e. = € 2, and

I(y) € [0, 00].



y 6 Wl,oo

_ )

Lipschitz

"y 5

(because every y €¢ Wbl is absolutely contin-
uous on almost every line parallel to a given
direction)




Cavitation

l |

y(z) = 1tlzly

|

ye WP for 1 <p< 3.

Exercise: prove this.



Boundary conditions

We suppose that 992 = 9021 U 0€25> U N, where
0L21,0%2> are disjoint relatively open subsets
of 02 and N has two-dimensional Hausdorff
measure H2(N) = 0 (i.e. N has zero area).

We suppose that y satisfies mixed boundary
conditions of the form

y‘@Ql — g()v
where 7 : Q21 — R3 is a given boundary dis-
placement.



By formally computing

d d
—I(y+7¢)|lr=0 = — / W (Dy+T1Dy) dz|i=0 = 0,
dr dr JQ

we obtain the weak form of the Euler-Lagrange
equation for I, that is

/Q DpW(Dy) - Dodz =0 (%)
for all smooth ¢ with ¢|sq, = 0.
(A-B=1tr A'B)

Tr(F) = DpW(F) is the
Piola-Kirchhoff stress tensor.



If y, 0€21 and 0€2, are sufficiently regular then
(*) is equivalent to the pointwise form of the
equilibrium equations

DivDrW(Dy) =0 in Q,

together with the natural boundary condition
of zero applied traction

DrW(Dy)N =0 on 9,

where N = N(x) denotes the unit outward nor-
mal to 0€2 at «x.



Example: boundary conditions for buckling of a bar

y(x) == y(x1,x0,23) = (Az1,T2,73)
A<

y(0<25) traction free



Hence our variational problem becomes:
Does there exist y* minimizing

I(y) = [ W(Dy)da
in
A= {y e Whl:y invertible,ylpq, = ¥}?

We will make the invertibility condition more
precise later.



Properties of W

To try to ensure that deformations are invert-
Ible, we suppose that

(H1) W(F) — oo as detF — 0+ .

So as to also prevent orientation reversal we
define W(F) = c if det FF < 0. Then
W : M3%3 = [0, co] is continuous.



Thus if I(y) < oo then detDy(x) > 0 a.e..
However this does not imply local invertibil-
ity (think of the map (r,0) — (r,20) in plane
polar coordinates, which has constant positive
Jacobian but is not invertible near the origin),
nor is it clear that detDy(x) > u > 0 a.e..



We suppose that W is frame-indifferent, i.e.

(H2) W(RF) = W(F)
for all R € SO(3),F € M3%3.

In order to analyze (H2) we need some linear
algebra.



Square root theorem

Let C' be a positive symmetric n X n matrix.
Then there is a unique positive definite sym-
metric n x n matrix U such that

C =U?
(we write U = C1/2).



Formula for the square root

Since C' is symmetric it has a spectral decom-
position
n
C = Z A€ R e;.
i=1
Since C' > 0, it follows that \; > 0. Then

n
U=> 27 weé
1=1

satisfies U? = C.



Polar decomposition theorem

Let F ¢ M_?_X”. Then there exist positive defi-

nite symmetric U, V and R € SO(n) such that

F'=RU =VR.

These representations (right and left respec-
tively) are unique.



Proof. Suppose F = RU. Then U2 = FIF :=
C. Thus if the right representation exists U
must be the square root of C. But if a €
R” is nonzero, Ca-a = |Fa|? > 0, since F is
nonsingular. Hence C' > 0. So by the square
root theorem, U = C1/2 exists and is unique.
Let R=FU!. Then

RIR=vU"1rTpy-1=1

and det R = det F(detU) 1 = 41,

The representation FF = V R7 Is obtained simi-
larly using B := FF1 and it remains to prove
R = Ry. But this follows from F = Ry (RIVRy),
and the uniqueness of the right representation.



Exercise: simple shear

y(z) = (z1 + vz2, 2, 73). // :
i)

I

|

I

|

A I A

~v = tan# |
- |
! = angle of shear |
I

cosy siny O (cosy  siny 0 )

| o : 14sin? 4
F = siny cosvy O Sin 1 oS O
0 0 1)\ o 0 1/
tany = % As v — 0O+ the eigenvectors of U

and V tend to \/Li(el -+ 62),%(61 — 62),63.



Hence (H2) implies that
W(F)=W(RU) =W (U) =W(C).

Conversely if W(F) =W (U) or W(F) = W(C)
then (H2) holds.

T hus frame-indifference reduces the dependence
of W on the 9 elements of F' to the 6 elements

of U or C.



Material Symmetry

In addition, if the material has a nontrivial
Isotropy group S, W satisfies the material sym-
metry condition

W(FQ)=W(F) forall Qe S, F ¢ M>%3.

The case S = SO(3) corresponds to an isotropic
material.



T he strictly positive eigenvalues v, vo,v3 of U
(or V') are called the principal stretches.

Proposition 1

W is isotropic iff W(F) = ®(vq,vo,v3), Where
P Is symmetric with respect to permutations
of the v;.

Proof. Suppose W is isotropic. Then F =
RDQ for R,QQ € SO(3) and D = diag (v1,vo,v3).
Hence W = W (D). But for any permutation
P of 1,2,3 there exists ) such that

Qdiag (v1,v2,v3)Q1 = diag (vp1,vpo, vp3).

The converse holds since QT FTFQ has the
same eigenvalues (namely v?) as FIF.



(H1) and (H2) are not sufficient to prove the
existence of energy minimizers. We also need
growth and convexity conditions on W. The
growth condition will say something about how
fast W grow for large values of F'. The convex-
ity condition corresponds to a statement of the
type ‘stress increases with strain’. We return
to the question of what the correct form of this
convexity condition is later; for a summary of
older thinking on this question see Truesdell &
Noll.




Why minimize energy?

This is the deep problem of the approach to

equilibrium, having its origins in the Second
[ aw of Thermodynamics.

We will see how rather generally the balance
of energy plus a statement of the Second Law

lead to the existence of a Lyapunov function
for the governing equations.



Balance of Energy

d r /1 .
R O U) de = /b- d
dt/E (20R|yt| + ) T b yrda
tr -y dS / da — 'NdS, (1
g LR Yt Ll (1)

for all E C 2, where pp = pr(x) is the density
in the reference configuration, U is the internal
energy density, b is the body force, tp is the
Piola-Kirchhoff stress vector, qp the reference
heat flux vector and r the heat supply.




Second Law of Thermodynamics

We assume this holds in the form of the Clausius
Duhem inequality

d r
Y de > — ds /—d >
dt/En v = OF T E 0 v (2)

for all E, where n is the entropy and 6 the
temperature.

qr - N




The Ballistic Free Energy

Suppose that the the mechanical boundary con-
ditions are that y = y(x,t) satisfies

y(-,t)lpe, = y(-) and the condition that the
applied traction on 02, is zero, and that the
thermal boundary condition is

0(-,t)|o02; = 00, ar - Nlpa\a0; = 0,

where 0 > 0 is a constant. Assume that the
heat supply r is zero, and that the body force
is given by b = —grad,h(z,y),



hus from (1), (2) with £ = 2 and the bound-
ary conditions

d 1 5
— | |= U — 6 h] dr <
o /Q lsz\ytl + on + r <

0o
tr s dS — (1——) .NdS = 0.
/aQ Rt 90 g ) IR

S0 &€ =g [%PRlytlz + U — 0gn + h} dr is a Lya-
punov function, and it is reasonable to suppose
that typically (y¢,y,0) tends as t — oo to a (lo-

cal) minimizer of £.



For thermoelasticity, W (F,0) can be identi-
fied with the Helmholtz free energy U(F,0) —
On(F,0). Hence, if the dynamics and bound-
ary conditions are such that as t —+ oo we have
yr — 0 and 6 — 0y, then this is close to saying
that y tends to a local minimizer of

loo(y) = |_[W(Dy,00) + h(z,y)] da.

T he calculation given follows work of Duhem,
=ricksen and Coleman & Dill.




Of course a lot of work would be needed to
justify this (we would need well-posedness of
suitable dynamic equations plus information on
asymptotic compactness of solutions and more;
this is currently out of reach). Note that it is
not the Helmoltz free energy that appears in
the expression for & but U — 0gn, where 0 is
the boundary temperature.

For some remarks on the case when 6 depends
on xz see J.M. Ball and G. Knowles,

LLyapunov functions for thermoelasticity with
spatially varying boundary temperatures. Arch.
Rat. Mech. Anal., 92:193—-204, 1986.



Existence in one dimension

To make the problem nontrivial we consider
an inhomogeneous one-dimensional elastic ma-
terial with reference configuration 2 = (0,1)
and stored-energy function W(z,p), with cor-
responding total elastic energy

1) = [ WG, u(@) + ha,y(@))) da,

where h iIs the potential energy of the body
force.



We seek to minimize I in the set of admissible
deformations

A={yewb(0,1): yz(z) >0 a.e.,
y(0) = o, y(1) = B},

where a < 3. (We could also consider mixed
boundary conditions y(0) = «, y(1) free.)

(Note the simple form taken by the invertibility
condition.)



Hypotheses on W:
We suppose for simplicity that
W :[0,1] x (0,00) — [0, 00) is continuous.

(H1) W(xz,p) — oo as p — 0+.
As before we define W(xz,p) = oo if p <DO0.

(H2) is automatically satisfied in 1D.

(H3) W(xz,p) > W(p) for all p > 0O,
r € (0,1), where W : (0,00) — [0, 00)
IS continuous with Iimp%oo% = 00.



(H4) W(x,p) is convex in p, i.e.
Wiz, Ap+ (1 -X)q) < AW (z,p)+ (1 -X)W(z,q)
forall p>0,¢g>0,X2€(0,1),z € (0,1).

If W is C! in p then (H4) is equivalent to
the stress Wy(x,p) being nondecreasing in the
strain p.

(H5) h:[0,1] x R — [0, 00) is continuous.



Theorem 1
Under the hypotheses (H1)-(H5) there exists

y* that minimizes I in A.

Proof.

A is nonempty since z(z) = a+ (8 — o)z
belongs to A. Since W > 0,h > 0,

0 <l=inf,cal(y) < oco.

Let y() be a minimizing sequence,
ie. y) e A, 1(yU)) =1 as j— oo



We may assume that
iM,i_so0 fO W (x, y(]))dx = [q,

iMoo Jo R(z,yY)) dz = 15,
where [ = [1 4 [».

Since fQ\U(y(]))d:c < M < oo, by the de la
Vallée Poussin criterion (see e.g. One-dimensional
variational problems, G. Buttazzo, M. Giaquinta,
S. Hildebrandt, OUP, 1998 p 77) there exists

a subsequence, which we continue to call y(])

converging weakly in L1(0,1) to some xz.



Let y*(x) = a4+ 2(s) ds, so that y;, = z. Then
yD(z) = o+ [§ i (s) ds — y*(x)

for all z € [0,1]. In particular y*(0) = «,

y (1) = 6.

By Mazur’s theorer_n, there exists a sequence
2(k) = Z;?O:k A§k)y§7) of finite convex combi-

nations of the yéj) converging strongly to z,
and so without loss of generality almost every-

where.



By convexity
1
/O W(w,z(k))da} < /O Z )\(k)W(x y(J))dx

< sup W(:U y(]))da:.
j>k /0

Letting £k — oo, by Fatou's lemma
1 1
/O W (x,y) dx :/O Wz, z)dx <ly.

But this implies that yX(z) > 0 a.e. and so
y* € A.



Also by Fatou's lemma

1 1 .
/Oh(a:,y*)dmgliminf Wz, y D) de = 1.

1—o0 JO

Hence I < I(y*) <11+ 1>, =1
So I(y*) =1 and y* is a minimizer.



Discussion of (H3)

We interpret the superlinear growth condition
(H3) for a homogeneous material.

y(x) = px j Rk
1/p 1

Total stored-energy = Wzgp).

So limp—eo W}gp) — oo Ssays that you can’t get
a finite line segment from an infinitesimal one

with finite energy.



Simplified model of atmosphere

y(1) =

y(0) =0

Assume constant density
pr and pressure ppr In the
reference configuration.
Assume gas deforms
adiabatically so that the
pressure p and density p
satisfy pp~" = prog’,
where v > 1 is a constant.



The potential energy of the column is

I(y) = /1 | PR — - png(fv)_ dx
0 (v — Dyz(z)? _
H g F (1 | d
— PRY 0 _ygg(m)’Y—l - ( —a:)yx(:c)_ Z,
_ __ DR
where k = g (1)

We seek to minimize I In
A= {yewWhl(0,1):y, >0 a.e.,
y(0) =0,y(1) = a}.



Then the minimum of I(y) on A is attained iff

1/~

_ p

a < acrit, Where agpit = 711 (pRRg) .
(7

acrit Can be interpreted
as the finite height of Qcrit |
the atmosphere predicted
by this simplified model
(cf Sommerfeld).

1

Il T

If a > agrt then minimizing sequences y(j) for
I converge to the minimizer for a = ot PIUS
a vertical portion.



For details of the calculation see J.M. Ball,
[Loss of the constraint in convex variational
problems, in Analyse Mathématiques et Appli-
cations, Gauthier-Villars, Paris, 1988, where a
general framework is presented for minimizing
a convex functional subject to a convex con-
straint, and is applied to other problems such
as Thomas-Fermi and coagulation-fragmentation

equations.



Discussion of (H4)

For simplicity consider the case of a homo-
geneous material with stored-energy function
W = W(p). The proof of existence of a min-
imizer used the direct method of the calculus
of variations, the key point being that if W is
convex then

Bp) = [ W) do

is weakly lower semicontinuous in L1(0,1), i.e.
) = pin L1(0,1) (that is folp(j)vda: — folpvda:
for all v € L°°(0,1)) implies

1 1 .
/OW(p)dmgnminf W (pD) da.

J]—00 0O



Proposition 2 (Tonelli)
If E is weakly lower semicontinuous in L1(0,1)
then W is convex.

Proof. Define pl9) as shown.
P p) — Ap+ (1 A)g in L1(0,1)
b — — e WwWEW)de =AW (p) 4+ (1 - )W (q)

> W(Ap+ (1 —A)g)

|
<.|INL



If W(x,-) is not convex then the minimum is
IN general not attained. For example consider
the problem

o jgl[(yx——l)Q(yx—-Q)Q 302] da.

F(y — =
y(0)=0,y(1)=3 Yz 2
4+3/2

Then the infimum is zero

but is not attained.
slopes 1 and 2




More generally we have the following result.

T heorem 2
If W:R — [0, 00] is continuous and

I(y) = Jg[W(yz) + h(z,y)] dx

attains a minimum on
A={yewhl:y(0)=0,y(1) =8}

for all continuous h: [0,1] x R — [0, 00) and all
B then W is convex.



Let I = inf,c4 Jo W(ys) dz,

m = INTyc g fol (W (yz) + |y — Bz|?] de.
Then I < m. Let € > 0 and pick z € A with
JEW (2z) dz < 1 +e.

Define 2U) ¢ A by

A0)(2) = 65 4 LGz — B)
9 J

k kE+ 1
for_.gxé _l_ 9

J J

k=0,...,5—1.



T hen

2)(2) - Ba| = |ﬁ<§—x>+j—1z<j<x—§>>|

k k41
< C’j_lfor—.gacg + :

J J

So

| j—1 i+l L 1.
71(:0U)) = Wzl — 2)) da + (7)) — Brl24
(=) kEO/% 22z~ 2)) do | 129 = Baf? do

[

J—1 1

> i [ W) de 02
k=0 O

< [ 4 2¢

for 5 sufficiently large. Hence m < [ and so
[ = m.



But by assumption there exists y* with

I(y*) = Jg W(y3)dz + [ ly* — Bz|?dz = L.
Hence y*(x) = Bx and thus

I3 W (yz) dz > W ()
for all y € A.

Taking in particular

(

(:E)_<pa; IfOoO<zxz <A
RV e+ Ap—q) iFA<z <1,
with 8 = Ap+ (1 — X\)g we obtain

Wp+ (1 —=X)gq) <AW(p)+ (1 -X)W(q)
as required.




There are two curious special cases when the
minimum is nevertheless attained when W is
not convex. Suppose that (H1), (H3) hold
and that either

(i) I(y) = Jg W (x,yz) dx, or

(i) I(y) = JG W (yz) + h(y)] da.

Then I attains a minimum on A.



(i) can be found in Aubert & Tahraoui (J. Dif-
ferential Eqns 1979) and uses the fact that

inf,ca fol W(z,yz) de = inf, c 4 fol W**(x,yy) dz,
where W** is the lower convex envelope of W.

W(z,p)

a

-
-

“TT N W (2, p)

p



1
iy I(y) = /O (W (y2) + h(y)] da

Exercise.
Hint: Write x = z(y) and use (i).



The Euler-Lagrange equation in 1D

Let y minimize I in A and let ¢ € C5°(0,1).
Formally calculating

d

d_I(y + 7'90)|7'—O =0
-

we obtain the weak form of the Euler-Lagrange
equation

[ W, u) s + by, y)el dz = 0.



However, there is a serious problem in making
this calculation rigorous, since we need to pass
to the Iimit = — O+ in the integral

dx.

T

/1 W (z,ye + 702) — W(z,yz)
0

and the only obvious information we have is
that

1
/O Wiz, yz) der < co.



But W, can be much bigger than W. For

example, when p is small and W(p) = % then
Wp(p)| = # is much bigger than W(p). Or if

p is large and W (p) = exp p? then
W,(p)| = 2pexp p? is much bigger than W (p).

It turns out that this is a real problem and
not just a technicality. Even for smooth ellip-
tic integrands satisfying a superlinear growth
condition there is no general theorem of the
one-dimensional calculus of variations saying

that a minimizer satisfies the Euler-LLagrange
equation.



Consider a general one-dimensional integral of
the calculus of variations

1
I(”U,) :/O f(a:,u, uil?) dwa
where f is smooth and elliptic (regular), i.e.

fop = 1> 0 for all z,u,p.

Suppose also that

f(z,u,p)

lim = oo for all x, u.
pl—oco [P




Suppose u € W11(0, 1) satisfies the weak form
of the Euler-Lagrange equation

1
|| Unpa + fupl dz = 0 for all p € C§°(0, 1),

so that in particular fp, fu € LL (0, 1).

Then

lOC

Ip = /awfu—|—const

where a € (0,1), and hence (Exercise) ug is
bounded on compact subsets of (0,1).

It follows that w iIs a smooth solution of the
Euler-Lagrange equation dfp fu on (0,1).



Example (B & Mizel)
Minimize
I(u) = /_11 (2% — u6)2u58 + eug] dx
subject to
u(—1) = -1, u(1l) =1,
with 0 < € < ¢g = -001.



Result of finite-element minimization, minimiz-
ing I(up) for a piecewise affine approximation
up, tO u on a mesh of size h, when h is very
small. The method converges and produces

two curves u~.



/M
A 08 06 A4 02 D/'Eff-d 06 08 1
i)

-1 -

However the real minimizer is v™, which has a
singularity

2
uw*(x) ~ |x|3signz as z ~ 0.



Since u}. is unbounded, it does not satisfy the

(weak form of) the Euler Lagrange equation,
namely

I
fux:/o fu + constant.

Note that this equation is elliptic, since
fusu, = 2€, SO that any weak solution is smooth.

Moreover the Lavrentiev phenomenon holds:

infl = I(u* inf I = I(u*
n (u)<AﬂCOO (u™),

where A= {ue Whl(—-1,1): u(£l) = +1}.




For this problem one has that

I(u* 4+ tp) = oo for t = 0, if p(0) # 0.

u* + ty
Also if v(7) ¢ Wl converges a.e. to u* then

I(u(j)) — 00

(the repulsion property), explaining the numer-
ical results.



Derivation of the EL equation for 1D
elasticity

Theorem 3

Let (H1) and (H5) hold and suppose further
that W, exists and is continuous in (x,p) €
[0,1] x (0,00), and that hy exists and is contin-
uous in (z,y) € [0,1] x R. If y minimizes I in
A then Wy(-,yz(-)) € C1([0,1]) and

%Wp(a},yx(az)) — hy(z,y(2)) for all z € [0,1]. (EL)



Proof.

Pick any representative of y, and let

Q; = {z € [0,1] : % < yz(xz) < j}. Then Q; is
measurable, €2; C €2;471 and

meas ([O, 1]\ UFZ j) = 0.

Given j, let z € L°°(0, 1) with fQj zdx = 0. For
| sufficiently small define y¢ € W1:1(0,1) by

yo(x) = yz(x) + ex;(x)z(x), y°(0) = a,

where x; Is the characteristic function of £2;.



Then
d

_I(yg) le=0

= o
/

Hence

xXr
Wp(m,ym)z—l—hy/O X% ds] dx

Wp(m, Yr) — /Oaj hy(s,y(s)) ds] z(x) dx

h
W(z, yz) — /O hy(s,y(s)) ds = C; in 2,

and clearly (Jj IS independent of j.



Corollary 1
Let the hypotheses of Theorem 3 hold and

assume further that
lim max Wp(x,p) = —o0 * ).
p—0+ z€[0,1] p(@,p) ()
T hen there exists u > 0 such that
yz(x) > pn >0 a.e. z €][0,1].

Proof.
Wy(x,yz(x)) > C > —oc0 by (EL).




Remark.
(*) is satisfied if W (x,p) is convex in p for all
r € [0,1],0 < p < e for some € > 0 and if

H1 I in W — o
(H1+4) p$@+wg35?1] (z,p) = o0
Proof.
W(x,e) = W(z,p)

eE—DPp

Wp(ma p) S



Corollary 2.

If (*), (H3) and the hypotheses of Theorem
3 hold, and if W(x,-) is strictly convex then y
has a representative in C1([0,1]).

Proof.

Wy(z,yz(x)) has a continuous representative.
So there is a subset S C [0, 1] of full measure
such that Wy(z,yz(z)) is continuous on S. We
need to show that that if {z;},{Z,;} C S with
r; — x,Z; — = then the limits lim;_, ., yz(z;),
im0 y2(Z;) exist and are finite and equal.



By (H3) and convexity,

iMp—00 MiN, o 1] Wa(x, p) = co. Hence we may
assume that yz(z;) — 2z,y2(%;) — Z € [p,0)
with z #%= z. Hence Wy(z,z) = Wp(z,z), which
by strict convexity implies z = z.



Existence of minimizers in 3D
elastostatics

Relerence configuration Deformed configuration

Q2 ¢ R3 bounded domain with Lipschitz
boundary 0£2, 0€21 C 02 relatively open,
7 : 027 — R3 measurable.



Minimize
I(y) = /Q W (Dy) dz
N

A={y € wbl: det Dy(z) >0 a.e., Yo, = ¥}

(Note that we have for the time being replaced
the invertibility condition by the local conditi-
ion det Dy(xz) > 0 a.e., which is easier to han-
dle.)



So far we have assumed that W : Mi“ — [0, 00)
IS continuous, and that

(H1) W(F) — oo as det F — 0+,

so that setting W(F) = ~ if detF < 0, we
have that W : M3%3 — [0,00] is continuous,
and that W is frame-indifferent, i.e.

(H2) W(RF) =W (F) for all R € SO(3),F € M3*3.

(In fact (H2) plays no direct role in the
existence theory.)



Growth condition

Y 4

|

 W(F)
M — 00
Flsoo |F|3

says that you can’'t get a finite line segment
from an infinitesimal cube with finite energy.



We will use growth conditions a little weaker
than this. Note that if

W(F) > C(1+|F|>te)
then any deformation with finite elastic energy
| W(Dy(a)) da

is in W13t€ and so is continuous.



Convexity conditions

T he key difficulty is that W is never convex, SO
that we can't use the same method to prove
existence of minimizers as in 1D.

Reasons
1. Convexity of W is inconsistent with (H1)

because Mj_><3 iS not convex.



A =diag(1,1,1)

W(5(A+ B)) =
> W (A) + 2W(B)

(A + B) = diag (0,0,1)

detF' >0

B = dlag (_17 _17 1)




2. If W is convex, then any equilibrium solution
(solution of the EL equations) is an absolute
minimizer of the elastic energy

I(y) = /Q W (Dy) dz.

Proof.
I(z) = /Q W(Dz)dx >

/Q[Wwy) + DW (Dy) - (Dz — Dy)] dz = I(y).

T his contradicts common experience of nonunigque
equlibria, e.g. buckling.



Examples of nonunique equilibrium solutions

08

Pure zero traction problem.




For an isotropic material could we assume in-
stead that ®(vq,vp,v3) IS convex in the princi-

pal stretches vy, vo,v37

This is a consequence of

the Coleman-Noll inequality.

While it is consistent with
(H1) it is not in general
satisfied for rubber-like
materials, which are almost
incompressible (vivovz = 1),
and so have nonconvex
sublevel sets.

v2

nonconvex
sublevel set
P <c

v1



Rank-one matrices and the Hadamard

jump condition
TN

y piecewise affine

Dy=B, z-N <k

Let C = A—-—B. Then Cz =0 if x-N = 0.
Thus C(z — (- N)N) = 0 for all z, and so

Cz= (CN ® N)z. Hence

A—B=a®N

Hadamard
jump condition



More generally this holds for y piecewise Cl,
with Dy jumping across a C1 surface.

DyT(zg) = A

Dy (zg) = B A—B=a® N

Exercise: prove this by blowing up around x
using ye(z) = ey(=—=9).



Rank-one convexity

W is rank-one convex if the map
t— W(F +ta® N) is convex for each
Fe M3%3 and a € R3, N € R3.

(Same definition for M™*™ )

Equivalently,

WAF + (1 -M)G) < AW(F) + (1 - A)W(G)

if .G € M3%3 with F— G =a® N and )\ €
(0,1).



Rank-one cone

d AN={a®N :a,N € R3}

Rank-one convexity is consistent with (H1) be-
cause det(F+ta®N) is linear in ¢, so that M3*3

IS rank-one convex

(i.e. if F,G € MZ*> with F— G =a® N then

AF + (1-X)G € M373)




A specific example of a rank-one convex W is
an elastic fluid for which

W (F) = h(det F),

with h convex and lims_,g4 h(d) = oo.

Such a W is rank-one convex because if

F,G € M7*° with F — G =a® N, and

A€ (0,1) then

W(AF + (1 = \)G) h(\det F + (1 — \) det Q)
Ah(det F) + (1 — M)h(det G)

AW (F) + (1 — W (Q).

[




If W e Cl(M_:f_X3) then W is rank-one convex
ifft — DW(F+ta®N)-a® N is nondecreasing.

The linear map

y(x) = (F+ta® N)x = Fo + ta(xz - N)

represents a shear relative to Fx parallel to a
plane 'l with normal N in the reference config-
uration, in the direction a. The corresponding
stress vector across the plane 1 is

tp = DW(F 4 ta ® N)N,

and so rank-one convexity says that the com-
ponent tr - a in the direction of the shear is
monotone in the magnitude of the shear.



If W € 02(M3><3) then W is rank-one convex
iff

d2
@W(F +ta® N)|¢=0 > O,

for all F' & Mf_X3,a,N c R3, or equivalently

O2W (F)

(Legendre-Hadamard condition).

D?°W(F)(a®N,a®N) =

aiNoa;Ng > 0,



T he strengthened version

O2W (F)
8Fm8Fjﬁ
for all F,a, N and some constant pu > O is called
strong ellipticity.

D?W (F)(a®N, a®@N) = a;iNaajNg > ulalleIQ,

One consequence of strong ellipticity is that
it implies the reality of wave speeds for the
equations of elastodynamics linearized around
a uniform state y = F'x.



Equation of motion of pure elastodynamics

pry = DivDW (Dy),

where pp is the (constant) density in the
reference configuration.

Linearized around the uniform state y = Fx
the equations become

. O2W (F)
u; = U; ~A3-
PRY: 8FZQ8F35 Jrof8




The plane wave

u=af(x-N — ct)

IS a solution if

C(F)a = c®pRa,
where
O°W (F
ij — ( ) NaNﬁ.
Since C(F) > 0 by strong ellipticity, it follows
that ¢2 > 0 as claimed.




Quasiconvexity (C.B. Morrey, 1952)

Let W : M™*™ — [0, 00] be Borel measurable.
W is said to be quasiconvex at F &€ M™*" if
the inequality

/Q W(F + Do(z)) do > /Q W (F) dz

holds for any ¢ € Wg'™°(2; R™), and is quasi-
convex if it is quasiconvex at every F € M™MX™,
Here €2 C R"™ is any bounded open set whose
boundary 0€2 has zero n-dimensional Lebesgue
measure.



Remark

Wol’oo(Q; R™) is defined as the closure of
C8°(£2; R™) in the weak* topology of

Wl (Q:R™) (and not in the norm topology
- why?). That is ¢ € Wg'™°(; R™) if there
exists a sequence go(j) c C3°(€2; R™) such that
o) X D) X Dy in L.

Sometimes the definition is given with C5° re-
placing W&’OO. his is the same if W is finite
and continuous, but it is not clear (to me) if
it iIs the same if W is continuous and takes the
value +oo.




Setting m = n = 3 we see that W is
quasiconvex if for any F € M3%3 the pure dis-
placement problem to minimize

I(y) = [ W(Dy()) de
subject to the linear boundary condition
y(x) = Fx, © € 022,

has y(x) = Fx as a minimizer.



Proposition 3
Quasiconvexity is independent of 2.

Proof. Suppose the definition holds for €2, and
let 21 be another bounded open subset of R"
such that 0€271 has n-dimensional measure zero.
By the Vitali covering theorem we can write €2
as a disjoint union

@)

Q= J(a; +£21)UN,

1=1

where N is of zero measure.



&

€24
C2

Let o € W, °(£21; R") and define

. L—a,; . .
5(z) = g;0( - ) for x E.az + £,$21 |
O otherwise



Then ¢ € W&’OO(Q; R™) and
/Q W(F + Do(z)) da

- Z /a-—l—e-Ql WAF+ De (aj : ai) Jdr

i

_ (Z ey) /91 W(F + Do(z)) da

i=1
meas <2
meas {24

) /Ql W(F + Do(z)) da
> (meas Q)W (F).



Another form of the definition that is equiva-
lent for finite continuous W is that

/Q W (Dy)dx > (meas Q)W (F)

for any y € W12 such that Dy is the restriction
to a cube Q (e.g. Q@ = (0,1)™) of a Q-periodic
map on R™ with Jo Dydz = F'.

One can even replace periodicity with almost
periodicity (see J.M. Ball, J.C. Currie, and P.J.
Olver. Null Lagrangians, weak continuity, and
variational problems of arbitrary order. J. Func-
tional Anal., 41:135—-174, 1981).



Theorem 4

If W iIs continuous and quasiconvex then W is
rank-one convex.

Remark

This is not true in general if W is not contin-

uous. As an example, define for given nonzero
a, N

W0 =W N)=0,W(F) = oo otherwise.

Then W is clearly not rank-one convex, but it
IS quasiconvex because given F' = 0,a® N there
s no p € Wy with F 4+ Do(z) € {0,a ® N}



Proof
We prove that

W(F) < AW (F—(1-X)a®N)+(1-N)W (F4+Xa®N)
forany Fe M " ac R, Ne R™ \Ae (0,1).

Without loss of generality we suppose that
N = e1. We follow an argument of Morrey.

Let D= (—(1—=X),\) x (—p,p)" 1 and let Dji
be the pyramid that is the convex hull of the
origin and the face of D with normal =e;.




Lj

p
—p~ N1 - I)\)a ® GJV

+Dp = Aa ® eq l (1-Na®ej—>

D,-

L1
D,

p~IN(1 — Aa® e; D,
—p

Let p € Wol’OO(D;Rm) be affine in each

Dj[ with ©(0) = A(1 — Ma.

The values of Dy are shown.



By quasiconvexity

n—1
o w(r) < P Awr (1 - Nawe)

: (2p)"1(1 - N)

n

W(F 4+ Xa®eq)

n n—1
+ > (20) (W (F + p~1A(1 —Aa®ej)
j=2 ="

+W(F —p A1 - Na®e))]

Suppose W (F) < oco. Then dividing by (2p)"1,
letting p — 04 and using the continuity of W,
we obtain

WEF)) X AMWEFE -(1-Na®e1))+ (1 =AW (F +Aa®eq)

as required.



Now suppose that W(F — (1 — MN)a ® e7) and
W(F+ X a®eq) are finite. Then g(7) = W(F +
Ta®eq) lies below the chord joining the points
(=(1 = A),9(=(1—=A))), (A, g(A)) whenever
g(T) < 0o, and since g is continuous it follows
that ¢(0) = W(F) < .

+ 9

WV

—(1—=X) A\




Corollary 3

If m = 1 or n = 1 then a continuous W :
M™X" [0, co] is quasiconvex iff it is convex.

Proof.

If m=1orn=1 then rank-one convexity is
the same as convexity. If W is convex (for any
dimensions) then W is quasiconvex by Jensen'’s
iInequality:

1
meas 2 /%W(F D) dz
=W (measQ /Q(F +De) dx) = W),



Theorem 5
Let W . M™*™ — [0,00] be Borel measurable,

and 2 C R™ a bounded open set. A necessary
condition for

I(y) = [ W(Dy)da

to be sequentially weak* lower semicontinuous
on W1°(: R™) is that W is quasiconvex.

Proof.
Let FFe M™MX" o € W&’OO(Q; R™), where
Q= (0,1)™.



Given k write €2 as the disjoint union

Q=

where a§k)
define

yF) (2) =«

0

J:

(a§k) + €§k)Q) U N,
1

c R™, |e§k)| < 1/k,meas N, = O, and

(

\

(9

Fo+ €§k)¢ (m

Fx

O

) for x € a§k) -+ 6§k)Q

otherwise



Then y*) X Fz in W1 as k — oo and so

(meas QYW (F) < liminf I(y(%))

k— 00

o )
_ Z/ W(F + Do | = ZJ ) dax
2o o4 )




Theorem 6 (Morrey, Acerbi-Fusco, Marcellini)
Let 2 C R"™ be bounded and open. Let

W . M™*" — [0,00) be quasiconvex and let
1 <p<oo. If p<oo assume that

0 < W(F) < c(1+ |F|P) for all F € M™*".
Then
I(y) = [ W(Dy)da

is sequentially weakly lower semicontinuous (weak*
if p=o0) on Wip,

Proof omitted. Unfortunately the growth con-
dition conflicts with (H1), so we can’t use this
to prove existence in 3D elasticity.



Theorem 7 (Ball & Murat)

Let W : M™*" — [0, 0] be Borel measurable,
and let 2 ¢ R"™ be bounded open and have
boundary of zero n-dimensional measure. If

I(y) = [ [W(Dy) + h(a,y)] da

attains an absolute minimum on A ={y : y —
Fx € W&’l(Q;Rm)} for all F and all smooth
nonnegative h, then W Is quasiconvex.

Proof (Exercise: use the same method as
Theorem 2 and Vitali.)



Theorem 8 (van Hove)
Let W(F) — ngle F.; be quadratic. Then

W Is rank-one convex < W IS quasiconvex.

Proof.
Let W be rank-one convex. Since for any

1,00
p € W3

| IW(F +Dg) =W () da = |_

we just need to show that the RHS is > 0.

CijklPi,j Pk, AT

Extend ¢ by zero to the whole of R" and take
Fourier transforms.



By the Plancherel formula

/Q CiiklPi,j Pk, AT

as required.

>

/ CijklPi,j Pk, AT

4r? /Rn Re [c;kPi;Préi] d€
O



Null Lagrangians

When does equality hold in the quasiconvexity
condition? That is, for what L is

/Q L(F 4+ Do(z)) da = /Q L(F) dx

for all ¢ €& Wol’OO(Q;Rm)? We call such L
quasiaffine.



Theorem 9 (Landers, Morrey, Reshetnyak ...)

If L : M™*" — R is continuous then the fol-
lowing are equivalent:

(i) L is quasiaffine.

(ii) L is a (smooth) null Lagrangian, i.e. the
Euler-Lagrange equations DivDpL(Du) =

hold for all smooth w.

(iii) L(F) = constant + 3, 1 cpJi(F'),

where J(F) = (Jl(F),...,Jd(m,n)(F)) consists
of all the minors of F. (e.g. m = n = 3:
L(F)=const. +C-F+ D - -cof FF4+ edet F).

(iv) u — L(Du) is sequentially weakly contin-
uous from WiP — L1 for sufficiently large p

(p > min(m,n) will do).

d(m n)



Ideas of proofs.

(i) = (iii) use L rank-one affine (Theorem 4).
(iii)=(iv) Take e.qg.

J(Du) U1 1UD 2 — UL 2UD ]

(uiun2) 1 — (u1un.1) 2

If u IS smooth.
So if p € CF(2)

/Q J(Du) - pdr = /Q [ugun 102 — uruo 20 1) de.

True for u €¢ W12 by approximation.



If () — 4 in WP p>2 then
/Q J(Du(j))go de = /Q[ugj)ug%goQ —ugj)ug%goyl] dx
— J(D d
| I(Dwpde
since ugj) — uq INn LP', ugj% — upq in LP, and

since J(Du'9)) is bounded in LP/2 it follows
that J(Du)) — J(Duw) in LP/2

For the higher-order Jacobians we use
iInduction based on the identity

a(ula-'°7um) — i(_l)s—kl 0 (Ul a(qu-'aum) )

o(x1,...,Tm) [—1 Ox s




For example, suppose m=n =3, p > 2,
w9 =~ in WP, cof Du{) bounded in LY,
det Dul9) — y in L. Then y = det Du.

(iv)=(i) by Theorem 5.

(i)<(ii)

d
= /Q L(F + Do + tDv) da

= 0
t=0
for all g, ¢ € Cg°

N /Q DL(F + Do) - D da = O.

Du



Polyconvexity

Definition
W iIs polyconvex if there exists a convex func-
tion g : RA(m,n) _y (—o0, 0] such that

W(F) = ¢g(J(F)) for all F € M™*"™,

e.g. W(F) =g¢g(F,detF) if m =n =2,
W(F) = g(F,cof F,det F') if m =n = 3,
with g convex.



Theorem 10

Let W : M™*™ — [0,o00] be Borel measurable
and polyconvex, with g lower semicontinuous.
Then W is quasiconvex.

Proof. Writing

1
dz = / dz,
][Qf v meas 2 Qf g

EWE+Dp@)de = f g((F+ Dp(a))) da
Jenzsen g (fQ J(F 4+ D) dw)
= g(J(F))

W (F).



Remark

If m > 3,n > 3 then there are quadratic rank-
one convex W that are not polyconvex. Such
W cannot be written in the form

N [
W(F) =QF)+ 3 oy JV (1),
=1

where () > 0 Is quadratic and the Jél) are 2 x 2
minors (Terpstra, D. Serre).



Examples and counterexamples

We have shown that

W convex = W polyconvex = W quasiconvex
= W rank-one convex.

The reverse implications are all false if

m > 1, n > 1, except that it is not known

whether W rank-one convex = W quasicon-
vex when n > m = 2.

W polyconvex # W convex since any minor is
polyconvex.



Example (Dacorogna & Marcellini)

m=n =2
W~(F) = |F|* — 2v|F|°det F, v €R,
where |F|?2 = tr (FTF).

[t is not known for what ~ the function W, is
quasiconvex.



23

W~ is convex <& || < 3
polyconvex <& |vy| <1
quasiconvex <& |y < 1l4¢

for some (unknown) € > 0O

2
rank-one convex << |y| < 73 ~ 1.1547....

Numerically (Dacorogna-Haeberly)
14+e=1.1547....

In particular W quasiconvex % W polyconvex
(see also later).



Theorem 11 (Sverak 1992)
If n>2,m >3 then W rank-one convex = W

guasiconvex.

Sketch of proof.
It iIs enough to consider the case n = 2, m = 3.
Consider the periodic function « : R? — R3

1 Sin 2wxq
u(zr) = — Sin 2mwxo
™\ sin 27T(£Ul —|—£UQ)



Then

c052wx1 O
Du(z) = COS 27T o
COS 27r(a:1 + z5) cos22w(x1 + xo)
( r O )

c L:=<X]10 s | :rs,teR; a.e.
t t

\ /




L is a 3-dimensional subspace of M3%2 and

the only rank-one lines in L are in the r,s,t
O O O

1
directions (i.e. parallelto | O O |, | ©
O O O

or

).

= O O
= O O

Hence g(F) = —rst is rank-one affine on L.



However

1
][(0,1)29(Du) dr = —Z <0=g <][(O,1)2 Du da:) ,

violating quasiconvexity.
For F € M3*%2 define

fer(F) = g(PF) +e(|[F|? + |F|*) + k|F — PF|?,

where P : M3%2 — [, is orthogonal projection.
Can check that for each € > 0 there exists
k(e) > 0 such that fe = f_ () is rank-one con-
vex, and we still get a contradiction.



So is there a tractable characterization of
quasiconvexity? This is the main road-block
of the subject.

Theorem 12 (Kristensen 1999)

For m > 3,n > 2 there is no local condition
equivalent to quasiconvexity (for example, no
condition involving W and any number of its

derivatives at an arbitrary matrix F).

Idea of proof. Sverak’'s W is ‘locally quasi-
convex', i.e. It coincides with a quasiconvex
function in a neighbourhood of any F.



This might lead one to think that no charac-
terization of quasiconvexity is possible. On the
other hand Kristensen also proved

Theorem 13 (Kristensen)
For m > 2,n > 2 polyconvexity is not a local
condition.

For example, one might contemplate a
characterization of the type

W quasiconvex < W is the supremum of a
family of special quasiconvex functions (includ-
ing null Lagrangians).



Existence based on polyconvexity

We will show that it is possible to prove the ex-
Istence of minimizers for mixed boundary value
problems if we assume W Is polyconvex and
satisfies (H1) and appropriate growth condi-
tions. Furthermore the hypotheses are satis-
fied by various commonly used models of nat-
ural rubber and other materials.



heorem 14

Suppose that W satisfies (H1) and the hy-
potheses

(H3) W(F) > co(|F|? + |cof F|3/2) —¢; for all

F € M3*3, where ¢g > 0,

(H4) W is polyconvex, i.e. W (F) = g(F,cof F,det F')
for all F € M3%3 for some continuous convex

g.

Assume that there exists some y in

A={ye WH (2 R?) : ylpn, = ¥}

with I(y) < oo, where H2(8$21) > 0 and
y : 921 — R3 is measurable. Then there exists
a global minimizer y* of I in A.



Theorem 14 is a refinement (weakening the
growth conditions) of

J.M. Ball, Convexity conditions and existence
theorems in nonlinear elasticity. Arch. Rat.
Mech. Anal., 63:337—403, 1977

(see also J.M. Ball. Constitutive inequalities
and existence theorems in nonlinear elastostat-
ics. In R.J. Knops, editor, Nonlinear Analysis
and Mechanics, Heriot-Watt Symposium, Vol.
1. Pitman, 1977.)

due to

S. Miuller, T. Qi, and B.S. Yan. On a new
class of elastic deformations not allowing for
cavitation. Ann. Inst. Henri Poincaré, Anal-
yse Nonlinéaire, 11:217243, 1994.



Proof of Theorem 14

To give a reasonably simple proof we will com-
bine (H1), (H3), (H4) into the single hypoth-
esis

W(F) = g(F,cof F,det I')

for some continuous convex function g ; M3%3x
M3*%3 x R — R U 400 with g(F, H,§) < oo iff
0 >0 and

g(F, H,8) > co(|F|P + |H[P") + h(5),

for all F € M3%3, where p > 2, %—l—% = 1,

co >0 and h : R — [0,00] is continuous with
h(8) < oo iff § >0 and limy_, 29 = oo,



Let I = inf c4I(y) and let yU) be a minimizing
sequence for I in A, so that

lim I(y\)) =1.

Y d®

Then since by assumption [ < co we may as-
sume that

[+1>  I(yW)
(4) ()7
> /Q (co[IDy 171P 4 |cof Dy |7 ]
+h(det Dy(j))) dx

for all j.



Lemma 1

T here exists a constant d > 0 such that

/ |z|Pdx < d (/ | Dz|Pdx +
Q2 Q2

for all z € W1P(Q:;R3).

Proof.

p
/ zdA )
92,

Suppose not. Then there exists 2(J) such that

— (3)p - (3)p
1 /Q|z |dm2](/Q|Dz Pdx 4

for all j.

/ ) g4
o))




Thus 2() is bounded in WP and so there is
a subsequence zUr) —~ 2 in WlP, Since Q is
Lipschitz we have by the embedding and trace
theorems that

2Uk) 5 2 strongly in LP, 2Uk) ~ 2 in L1 (69).

In particular [o |z[Pdx = 1.



But since |- |P is convex we have that

/ |1 Dz[Pdx < 1im inf/ |Dz(j’f)|pda: = 0.
Q2 k—oo J2

Hence Dz = 0 in €2, and since €2 is connected
it follows that z = constant a.e. in 2. But
also we have that [yq. 2dA = 0, and since

12(91) > 0 it follows that z = 0, contradict-

ing Jo |z|Pde = 1.



By Lemma 1 the minimizing sequence y{) is
bounded in WP and so we may assume that
y(j) — y* in WLP for some y*.

But also we have that cof Dy{7) is bounded in
LP and that [ h(det Dy{))dz is bounded. So
we may assume that cof Dy(¥) —~ H in L? and
that det Dy() —§ in L1

By the results on the weak continuity of minors
we deduce that H = cof Dy* and 6 = det Dy*.



u = (Dy*, cof Dy*,det Dy™)). Then

w9~y in L1(Q: R19).

But g Is convex, and so using Mazur's theorem
as in the proof of Theorem 1,
I(y*) = / g(uw)dz < liminf g(u(j)) dx
7—00
= lim I(y(j)) =)
7]—>00
But yD|sn, =7 — y*lag, in L1(8921;R3) and
so y* € A and y* is a minimizer.



Incompressible elasticity

Rubber is almost incompressible. Thus very
large forces, and a lot of energy, are required
to change its volume significantly. Such mate-
rials are well modelled by the constrained the-
ory of incompressible elasticity, in which the
deformation gradient is required to satisfy the
pointwise constraint

detF = 1.



Existence of minimizers in

incompressible elasticity

Theorem 15

Let U = {F € M3%3 : detF = 1}. Suppose
W : U — [0,00) is continuous and such that
(H3)' W(F) > co(|F|2 + |cof FI) — e

for all F' € U,

(H4)' W is polyconvex, i.e. W(F) = g(F,cof F')
for all FF € U for some continuous convex g.
Assume that there exists some y In

A= {ye WH(Q;R3) : det Dy(z) = 1 a.e.,ylso, = ¥}

with I(y) < oo, where H2(81) > 0 and
y : 01 — R3 is measurable. Then there exists
a global minimizer y* of I in A.



Proof.

For simplicity suppose that

W(F) = g(F,cof F') for some continuous con-
vex g 1 M3%3 x M3%3 5 R, where

g(F,H) > co(|F|P+|H|9) —cq for all F, H, where
p>2,q>p and cg > 0.

Letting /) be a minimizing sequence the only
new point is to show that the constraint is sat-
isfied. But since det Dy{Y) = 1 we have by the
weak continuity properties that for a subse-
quence det Dyl7) X det Dy in L™, so that the
weak limit satisfies det Dy = 1.



Models of natural rubber

1. Modelled as an incompressible isotropic
material.
Constraint is det F' = vqvov3z = 1.

Neo-Hookean material

® = a(v 4 v5 + v3 — 3),

where o« > 0 Is a constant. This can be derived
from a simple statistical mechanics model of
long-chain molecules.



Mooney-Rivlin material.

® = a(v? + v3 + v5 — 3)
+B((v2v3)? + (v3v1)° + (v1v2)° — 3),

where o« > 0,8 > 0 are constants. Gives a
better fit to bi-axial experiments of Rivlin &
Saunders.

Ogden materials.

N
=) a; (V] + vh 4 ,013%' —3)
1=1

M
+ > Bi((vov3)% 4 (v3v1)% + (v1v2)% — 3),
i=1

where «;, 3;, p;, g; are constants.



e.g. for a certain vulcanised rubber a good fit

IS given by N =2, M = 1,p1 = 5.0,

pp=13qg1 =2,a1 =2.4x 1073, ar, =4.8,

31 = 0.05kg/cm?. The high power 5 allows a
better modelling of the tautening of rubber as
the long-chain molecules are highly stretched
and the cross-links tend to prevent further stretch-
ing.



2. Modelled as compressible isotropic material
Add h(vivovy) to above @, where h is convex,
h(6) — oo as § — 04, and h has a steep mini-
mum near 0 = 1.

hid)

0



Convexity properties of isotropic
functions

Let R} = {z = (z1,...,2n) € R" 1 z; > 0}.

Theorem 16 (Thompson & Freede)
Let n > 1 and for ' € M™*" |et

W(F) — CD(’U]_, e 7Un)7

where & is a symmetric real-valued function of
the singular values v; of F'. Then W is convex
on M™ ™ iff & is convex on R’[I”_ and nonde-
creasing in each v;.




Proof.
Necessity. If W is convex then clearly ® is

convex. Also for fixed nonnegative

vl,...,vk_l,vk_|_1,...,vn

g(v) = W(diag (v1,...,v5_1, |v|, Vg+1,---,0n))

IS convex and even in v. But any convex and
even function of |v| is nondecreasing for v > 0.

T he sufficiency uses von Neumann's inequality
- for the details see Ball (1977).



Lemma 2 (von Neumann)

Let A, B € M™*™ have singular values
v1(A) > ... > vn(A), vi(B) = ... > vn(B)
respectively. Then

o 12 1 (QARB) = 3 vi(A)ui(B)



Applying Theorem 16 we see that if p > 1 then

P, (F) zvzl?—l—vg—l—fug

IS a convex function of F.

Since the singular values of cof F' are
vov3, v3V1, V1V It also follows that if ¢ > 1

Wy (F) = (vov3)? + (v3v1)? 4+ (v1vp)?

IS a convex function of cof F'.



Hence the incompressible Ogden material

N
® =) o;(vy +v5 + w5’ —3)
i=1

M
+ ) Bi((vov3) 4 (v3v1)% + (viva)% — 3),
i=1
IS polyconvex if the «; > 0,3; > 0,

p1=>...2pNn=>21,qg12...2qpy = 1.

And in the compressible case if we add a con-
vex function h = h(det ') of det F' then under
the same conditions the stored-energy function
IS polyconvex.



It remains to check the growth condition of
heorems 14, 15, namely

W(F) > co(|F|? + |cof F|3/2) — ¢;

for all F € M3%3, where ¢y > 0.

This holds for the Ogden materials provided
P12 2,q1 Z% and a1 > 0,51 > 0.

This includes the case of the Mooney-Rivlin
material, but not the neo-Hookean material.
In the incompressible case, Theorem 15 covers
the case of the stored-energy function

C|>:a(v]10+vg—|—vg—3)
If p > 3.



For the neo-Hookean material (incompressible
or with h(det F') added) it is not known if there
exists an energy minimizer in A, but it seems
unlikely because of the phenomenon of cavita-
tion.




In particular the stored-energy function

W (F) = a(|F|? — 3) 4+ h(det F)

is not W12 quasiconvex (same definition but

with the test functions ¢ €& Wo instead of
1,00

weo).

To see this consider the radial deformation vy :
B(0,1) — R3 given by

"“(R)

y(z) =

where R = |z|.



Since y; = T(RR)mz it follows that

Yi,o R

_ T(R)5 —|— (r’ _ %) ;T

that iIs

In particular

Dy(x)|* =r"* + 2 (




Set F' = A1 where A > 0. Then
W(A1) = 3a(A? — 1) + h()\3).
On the other hand, if we choose
r3(R) = R> 4+ X\° — 1,

then y(z) = Ax for || = 1 and

?’)

det Dy(z) = ' (—)2 = 1.



Then

2
/3(071)[04(|Dy(a:)| —3) + h(det Dy(z))] dz

I 4
! 34 A3-1)\3
0 R3

R34 23 1\3 '
-|-2< =3 ) — 3| +h(1)| dR,

which is of order A2 for large \.

Hence

D 1
/B(O,l) W (Dy(z))dzx < B(0.1) W (A1) dz

for large \.



Since W12 quasiconvexity is necessary for weak
lower semicontinuity of I(y) in W12 this sug-
gests that the minimum is not attained. (For

a further argument suggesting this see

J.M. Ball, Progress and Puzzles in Nonlinear
Elasticity, Proceedings of course on Poly-, Quasi-
and Rank-One Convexity in Applied Mechan-
ics, CISM, Udine, 2010.



However there is an existence theory that cov-
ers the neo-Hookean and other cases of poly-
convex energies with slow growth, due to

M. Giaquinta, G. Modica and J. SoucCek, Arch.
Rational Mech. Anal. 106 (1989), no. 2, 97-
159

using Cartesian currents. In the previous exam-
ple this would give as the minimizer y(x) = Az,
l.e. the function space setting does not allow
cavitation. A simpler proof of this result is in

S. Muller, Weak continuity of determinants and
nonlinear elasticity, C. R. Acad. Sci. Paris Ser.
I Math. 307 (1988), no. 9, 501-506.



The Euler-Lagrange equations

Suppose that W ¢ Cl(MiX3). Can we show
that the minimizer y* in Theorem 14 satisfies
the weak form of the Euler-Lagrange equa-
tions?

As we have seen the standard form of these
are formally obtained by computing

d

d
—I(y+79¢)|r=0 = — / W (Dy+1Dy) dzx|i=g = O,
dr dr JQ

for smooth ¢ with |50, = 0.



This leads to the weak form

/Q DWW (Dy) - Dodx = O

for all smooth ¢ with ¢|sn, = 0.

As we have seen, the problem in deriving this
weak form is that |DW (Dy)| can be bigger than
W (Dy), and that we do not know if

det Dy(x) > u > 0 a.e.

It Is an open problem to give hypotheses un-
der which this or the above weak form can be
proved.



However, it turns out to be possible to de-
rive other weak forms of the Euler-Lagrange
equations by using variations involving compo-
sitions of maps.

We consider the following conditions that may
be satisfied by W:

(C1) [DpW(F)F'| < K(W(F)+1) for all F € M3*>,
where K > 0 is a constant, and
(C2) |[F'DpW(F)| < K(W(F)+1) for all F € M3*>,

where K > 0 is a constant.



As usual, | - | denotes the Euclidean norm on
M3%3, for which the inequalities |F-G| < |F|-|G]
and |FG| < |F|- |G| hold. But of course the
conditions are independent of the norm used
up to a possible change in the constant K.

Proposition 4
Let W satisfy (C2). Then W satisfies (C1).




Proof
Since W is frame-indifferent the matrix DpW (F)F{

IS symmetric (this is equivalent to the symme-
try of the Cauchy stress tensor

T = (det F)~1Tn(F)F!). To prove this, note
that

%W(exp(Kt)F)\t:O =DgW(F)-(KF)=0

for all skew K. Hence
DpW(F)FL] - [F(DpW (F))!]
FIDpw(F)] - [FIDpw (F)]E
< |F'DpW(F)|?,

DpW (F)F1|?

from which the result follows.



—XxXample
_et

1

det F
Then W is frame-indifferent and satisfies (C1)
but not (C2).

W(F) = (FI'F)1;

Exercise: check this.

AS before let

A={yecwhbli(Q;R>): Yloc, = Y}



We say that y is a WP Jocal minimizer of

I(y) = /Q W (Dy) dz

in A if I(y) < oo and

I(z) > I(y) forall ze A

with ||z — y||1 p sufficiently small.



heorem 17

For some 1 < p < oo let y € AN WLP(Q:R3)
be a WP local minimizer of I in A.

(i) Let W satisfy (C1). Then

/Q [DEW (Dy) Dy - Do(y) dz = 0

for all ¢ € C1(R3;R3) such that ¢ and D¢ are
uniformly bounded and satisfy ¢(y)|gn, = 0 in

the sense of trace.
(ii) Let W satisfy (C2). Then

[ 1w (Dy)1 — Dy DpW (Dy)] - D da = 0

for all ¢ € C3(2; R3).



We use the following simple lemma.

Lemma 3
(a) If W satisfies (C1) then there exists v > 0O
such that if C € M3*> and |C — 1] < v then

IDpW (CF)F'| <3K(W(F) + 1) for all F e M3*>.

(b) If W satisfies (C2) then there exists v > 0
such that if C'€ M3*3 and |C — 1| < v then

FI'DpW(FC)| < 3K(W(F) + 1) for all F e M3*>.



Proof of Lemma 3

We prove (a); the proof of (b) is similar. We
first show that there exists v > 0 such that if
C'— 1] <~ then

W(CF)+1< g(W(F) + 1) for all F & M;O’I_X?’.

For t € [0,1] let C(t) =tC + (1 —¢t)1. Choose
v € (0,6%() sufficiently small so that |C—1| <~
implies that |C(¢)~1| < 2 for all ¢t € [0, 1].

This is possible since |1] = /3 < 2.



For |C' — 1| < v we have that
W(CF) — W(F)
1 d
— —WI((C(t)F) dt
[ W@

= [ DeW(C®F) - [(C -~ DF]de

/01 DpW(CH)F)(CH)F)L - ((C—-1)C() 1) dt
< K/Ol[W(C(t)F) +1]-|C —1]- |C(t)_1| At

< 2K~ /Ol(W(C(t)F) + 1) dt.



Let 6(F) = sup|C_1|<7W(OF). Then

W(CF)-W(F) < 6(F)—W(F)
< 2K~(6(F) + 1)

Hence
(0(F) +1)(1 -2Kv) < W(F) + 1,
from which

W(CF) +1< 5 (W(F)+1)

follows.



Finally, if |C — 1| <~ we have from (C1) and
the above that

DpW(CF)F!| = |DpW(CF)(CF)Tc~1
K(W(CF) +1)|c~T]
SK(W(F)+ 1),

A IA

as required.



Proof of Theorem 17
Given ¢ as in the theorem, define for |r| suffi-

ciently small

yr(z) = y(z) + 7o(y(x)).
T hen

Dyr(z) = (1 + 7Dp(y(z)))Dy(z) a.e. z € 2.

and so yr € A. Also detDy-(x) > O for a.e.
z € 2 and lim:_,0 [lyr — yllyy1p = 0.



Hence I(yr) > I(y) for |r| sufficiently small.
But

(1) - 1))
1 1 d
= — [, | =W((+ s7Dp(y(2))) Dy(x)) ds da

T

1
= | | DW(( + s7De(y(2))) Dy())
- [De(y(2)) Dy(2)) ds da.



Since by Lemma 3 the integrand is bounded
by the integrable function

BK(W(Dy(xz)) + 1) sup |De(z)|,
2zeR3

we may pass to the limit = — 0 using domi-
nated convergence to obtain

| [DEW (Dy)Dy"] - De(y) da = 0.

as required.



(ii) This follows in a similar way to (i) from
Lemma 3(b). We just sketch the idea. Let
p € C3(2; R3). For sufficiently small 7 > 0 the
mapping 6 defined by

0-(z) = z+ 70(2)

belongs to C1(2; R3), satisfies det DO,-(z) > 0,
and coincides with the identity on 90€2. By the
global inverse function theorem 6, is a diffeo-
morphism of €2 to itself.



Thus the ‘inner variation’

yr(z) i=y(27), = =27+ 7p(27)
defines a mapping yr € A, and

Dyr(z) = Dy(2:)[1 + 7Do(2:)]" ! a.e. z €.

Since y € WP it follows easily that
|lyr — yllyy1p — 0 as 7 — 0.



Changing variables we obtain

I(yr) = [ W(Dy()[1+rDp()] )
det(1 4+ 7Dp(2)) dz,

from which
[ IW(Dy)1 — Dy DpW (Dy)] - D da = 0

follows from (C2) and Lemma 3 using domi-
nated convergence.



Interpretations of the weak forms

To interpret Theorem 17 (i), we make the fol-
lowing

Invertibility Hypothesis.

y is a homeomorphism of 2 onto Q' := y(2),
Q' is a bounded domain, and the change of
variables formula

| fy@)det Dy(a) do = [ f(2)dz

holds whenever f: R3 — R is measurable, pro-
vided that one of the integrals exists.



Theorem 18
Assume that the hypotheses of Theorem 17
and the Invertibility Hypothesis hold. Then

/Q/ o(z) - Dp(z)dz=0

for all ¢ € C1(R3;R3) such that ¢|,(50,) =0,

where the Cauchy stress tensor o is defined by
o(2) =Ty 1(2)), z€

and T'(z) = (det Dy(z)) " 1DpW (Dy(x))Dy(z)?L

Proof. Since by assumption y(£2) is bounded,
we can assume that ¢ and Dy are uniformly
bounded. The result then follows straighfor-
wardly.



Thus Theorem 17 (i) asserts that y satisfies
the spatial (Eulerian) form of the equilibrium
equations. Theorem 17 (ii), on the other hand,
iInvolves the so-called energy-momentum ten-
sor

E(F) =W(F)1 - F'DrW(F),

and is a multi-dimensional version of the Du
Bois Reymond or Erdmann equation of the
one-dimensional calculus of variations, and is
the weak form of the equation

Div E(Dy) = 0.



The hypotheses (C1) and (C2) imply that W
has polynomial growth.

Proposition 4

Suppose W satisfies (C1) or (C2). Then for
some s >0

W(F) < M(|F|® 4 |F~1®) for all F € M.




Proof
Let V € M3%3 be symmetric. For ¢ > 0

d

(DEW (Y )etV) - V]

(e DEW (")) - V|
< KW(Y)+ 1)V

W(etv)|

From this it follows that

W) +1<W@)+ 1)e8V

Now set V = InU, where U = UL > 0, and
denote by v; the eigenvalues of U.



Since
3

3
nU = (Y (nv)?)2 <Y Jiny),
1=1

i=1
it follows that

UL < (of + o7 ) (08 + 0T (F +037)

3 3
3_3( Z v,iK—I— Z vz-_K)?’
1=1 1=1

[

[A

A

3 3
CCY vt 4+ Y v3)
1=1 1=1
< C1[JUIPK + U1 13K,

where C' > 0, C1 > 0 are constants.



We thus obtain

W(U) < M([UPE +|u—1138),

where M = C{(W(1) + 1). The result now
follows from the polar decomposition F' = RU
of an arbitrary F € M3*3, where R & SO(3),

U=U!>0.




If W = ®(vq,vo,v3) is isotropic then both (C1)

and (C2) are equivalent (Exercise) to the con-
dition that

(V1P 1, v2P,0,v3P 3)| < K(P(v1,v2,v3) + 1)

for all v; > 0 and some K > 0, where & ; =
8@/81}2

Now for p > 0,q > O

3
2.
1=1

= p(v] + v + %),

O
Uia—m(vzf -+ vg -+ vg)

3
2.
1=1

i —((v203)1 + (v301)? + (v102)7)

= 2¢((v2v3)? 4 (v3v1)? + (v1v2)?)




And

3
0
> |lvi=—h(vivov3)| = 3vivovs|h (vivav3))
i—1 8?)2'

Hence both (C1) and (C2) hold for compress-
ible Ogden materials if p; > 0,q; > 0,05 >
0,8; >0, and h > 0,

5R'(8)| < K1(h(8) + 1)

for all 4 > 0.



—Xercise.

Work out a corresponding treatment of weak
forms of the Euler-Lagrange equation in the
iIncompressible case.




Existence of minimizers with body and
surface forces

Mixed displacement-traction problems.
Suppose that 02 = 0€21 U 9€25, where
021N02> = (. Consider the ‘dead load’ bound-

ary conditions:

Yyloo, y
trlo, = tr

where tp(xz) = DpW (Dy(x))N(x) is the Piola-
Kirchhoff stress vector, N(x) is the unit out-
ward normal to 82 and Tp € L1(8%25; R3).




Suppose the body force b is conservative, SO

that

b(y) = —grad,W(y),
where W = W(y) is a real-valued potential.
The most important example is gravity, for
which b = —ppes3, where e3 = (0,0,1), where

the density in the reference configuration pp >

O

IS constant. In this case we can take

V(y) = —gy3.



Consider the functional

[) = [ WD) +VWlde— [ Tr-ydA

Then formally a local minimizer y satisfies

| [DEW (Dy)-Dp—b(y)-¢] da— /mz FrepdA =0

for all smooth ¢ with ¢|sn, = 0, and thus

Div DpW (Dy) + b
trloc,

0 in Q,

In.



Theorem 19

Suppose that W satisfies (H1) and

(H3) W(F) > co(|F|?2 + |cof F|3/2) —¢; for all

F € M3%3, where ¢g > 0,

(H4) W is polyconvex, i.e. W (F) = g(F,cof F,det F)
for all F € M3%3 for some continuous convex

g. Assume further that W is continuous and
such that

W (y) > —doly|® — d1

for constants dg > 0,d; > 0,1 < s < 2, and
that tp € L2(3Q2; R3).



Assume that there exists some y in

A= {ye WH'(Q;R?) : ylpa, = ¥}

with I(y) < oo, where H2(821) > 0 and

y : 021 — R3 is measurable. Then there exists
a global minimizer y* of I in A.

Sketch of proof.

We need to get a bound on a minimizing se-

quence y(j>. By the trace theorem there is a
constant c» > 0 such that

Dy + |2 do > do [ _ [yI?dA
Jo P9l + ol dz > do | 1y

for all y € W12,



Using Lemma 1 and the boundary condition on
021, we thus have for any y € A,

CQO 2 / 3
I > = Dul<d cof Dvyl2 d
(y) > 5 Q| y|“dx + co Q| y|2 dz
2 S
m da;—d/ dax
+ /Qlyl 0 QIyl

1 _
[e1TR|% + €|y|?] dA + const.

2 Joq,

Thus choosing a small ¢

3
I(y) 2 ag |_[IDyl? + Iy|? + |cof Dy|?] dz — ay

for all y € A and constants ag > 0,aq1, giving
the necessary bound on y(j>.



Pure traction problems.

Suppose 921 = 0 and that b = by is constant.

Then choosing ¢ = const. we find that a nec-

essary condition for a local minimum is that
/Q bode + | TrdA =0,

saying that the total applied force on the body

IS zero.
If this condition holds then I is invariant to

the addition of constants, and it is convenient
to remove this indeterminacy by minimizing I
subject to the constraint

dz = 0.
IR



We then get the existence of a minimizer under
the same hypotheses as Theorem 19, but using
the Poincaré inequality

/Q y|?dz < C (/Q |Dy|°dz + (/dea:>2> .

It is also possible to treat mixed displacement
pressure boundary conditions (see Ball 1977),
which are conservative.



Invertibility

Recall the Global Inverse Function Theorem,
that if 2 C R" is a bounded domain with Lip-
schitz boundary 82 and if y € C1($2; R™) with

det Dy(x) > 0 for all x € Q

and y|so one-to-one, then y is invertible on <.

Can we prove a similar theorem for mappings
iIn a Sobolev space?



Before discussing this question let us note an
amusing example showing that failure of y to
be C! at just two points of the boundary can
Invalidate the theorem.

—
&)
Rubber sheet Inner wire twisted Yellow region
stuck to rigid through w about double covered

wires vertical axis



A. Weinstein, A global invertibility theorem for
manifolds with boundary, Proc. Royal Soc.
—dinburgh, 99 (1985) 283—284.

shows that a local homeomorphism from a com-
pact, connected manifold with boundary to a
simply connected manifold without boundary
IS invertible if it is one-to-one on each compo-
nent of the boundary.




Results for y € WP p > n,
(so that y is continuous).

J.M. Ball, Global invertibility of Sobolev func-
tions and the interpenetration of matter, Proc.
Royal Soc. Edinburgh 90a(1981)315-328.



T heorem 20

Let 2 C R"™ be a bounded domain with Lip-
schitz boundary. Let y : Q — R™ be contin-
uous in 2 and one-to-one in Q. Let p > n
and let y € WhP(Q; R") satisfy ylgo = 7|y,
det Dy(x) > 0 a.e. in 2. Then

(1) y(£2) = y(£2),

(ii) y maps measurable sets in 2 to measur-
able sets in y(£2), and the change of variables

formula

/Af<y<x>>dewy<a:> do= [ f(v)dv

y(A)



holds for any measurable A C 2 and any mea-
surable f : R" — R, provided one of the inte-
grals exist,

(iii) y is one-to-one a.e., i.e. the set

S={vey(): vy~ 1(v) contains more
than one element}

has measure zero,

(iv) if v € () then y~1(v) is a continuum
contained in 2, while if v € 9y(£2) then each
connected component of y~1(v) intersects 9%2.



Note that y(£2) is open by invariance of do-
main. Proof of theorem uses degree theory
and change of variables formula of Marcus and
Mizel. Examples with complicated inverse im-
ages y—1(v) can be constructed.



Theorem 21

Let the hypotheses of Theorem 20 hold, let
y(2) satisfy the cone condition, and suppose
that for some g > n

/Q |(Dy($))_1|q det Dy(z) dx < oo.

Then y is a homeomorphism of 2 onto y(<2),
and the inverse function z(y) belongs to
Wwha(z(2); R™). The matrix of weak deriva-
tives z(-) is given by

Dz(v) = Dy(z(v))~ ! a.e. in ().

If further y(<2) is Lipschitz then y is a homeo-
morphism of Q onto y(<2).



Note that formally we have

| 1(Dy(@) 77 det Dy() de

= D Idv.
oy D)/

Idea of proof.
Get the inverse as the |limit of a sequence of

mollified mappings. Suppose z(-) is the in-
verse of y. Let p: be a mollifier, i.e. p: > 0O,

supp ps CC B(0,¢), [gnpe(v)dv = 1, and define

ze(v) = /y o Po(v = W)



Changing variables we have

re(v) = /Q ps(v —y(z))zdet Dy(z) dz.

In this way the mollified inverse is expressible
directly in terms of y, and one can show that
for any smooth domain D CC y(£2) we have

/D | Dze(v)]|9dv < M < oo,

where M is independent of sufficiently small
e. T hen we can extract a weakly convergent
subsequence in W1P(D:;R"™) for every D, giving
a candidate inverse.



For the pure displacement boundary-value prob-
lem with boundary condition

Yoo = Yloo

for which the existence of minimizers was proved
In Theorem 14, we get that any minimizer is a

homeomorphism provided we strengthen (H3)
by assuming that

W (F) > co(|FIP + \cowa + (det F)™*) — ey,

where p > 3,9 > 3, s > 4=3 and that y satisfies
the hypotheses of Theorem 21.



With this assumption we have that for any
y e A with I(y) < oo,

/Q |Dy($)_1|a det Dy(x) dx
= /Q lcof Dy(x)|° (det Dy(x))1 %dx

<c /Q<|cony\q + (det Dy) 1= () da

_ /
where o = qq—l—s > 3, since (1 — o) (g) — —s.



An interesting approach to the problem of in-
vertibility (i.e. non-interpenetration of matter)
In Mmixed boundary-value problems is given in
P.G. Ciarlet and J. NecCas, Unilateral problems
in nonlinear three-dimensional elasticity, Arch.
Rational Mech. Anal., 87:(1985) 319—-338.
They proposed minimizing

I(y) = [ W(Dy)de

subject to the boundary condition ylspn, = ¥
and the global constraint

/Q det Dy(z) dz < volume (y(2)).



If y € WLP(Q; R3) with p > 3 then a result of
Marcus & Mizel says that

— —1
/Q det Dy(z) dx = /y(Q) cardy™ ~(v) dw.

so that the constraint implies that y is one-to-
one almost everywhere.

They showed that IF the minimizer y* is suffi-
ciently smooth then this constraint corresponds
to smooth self-contact.



They then proved the existence of minimizers
satisfying the constraint for mixed boundary
conditions under the growth condition

W(F) 2 co(|F|P + [cof F|? + (det F) %) — ¢,

with p > 3,q > o 1,5 > 0. (The point is to
show that the constraint is weakly closed.)



Results in the space

AT (Q) = {y: Q — R"™ Dy € LP(2; M™<"™),
cof Dy € LY(2; M™*™),det Dy(z) > 0 a.e. in Q},

following V. Sverak, Regularity properties of
deformations with finite energy, Arch. Rat.
Mech. Anal. 100(1988)105-127.

For the results we are interested in Sverak as-

sumes p >n—1,q > z%’ but Qi, Miiller, Yan

show his results go through with p>n—1,qg >

—, which we assume. Notice that then,since

(det F)1 = F(cof F)!', we have |det F| < |cofF|%
so that det Dy € L1(Q).



In fact, if Dy € L™ 1 cof Dy € L% then det Dy
belongs to the Hardy space H1(Q) (Iwaniec &
Onninen 2002).

If y € Af,(2) with p>n —1,¢> " then it is
possible to define for every a € €2 a set-valued
image F'(a,y), and thus the image F(A) of a

subset A of €2 by

F(A) = UgeaF(a,y).



Furthermore
T heorem 22

Assume p < n.
(i) y has a representative y which is continuous
outside a singular set S of Hausdorff dimension

n — p.
(i) H*1(F(a)) = 0 for all a € Q.

(iii) For each measurable A C 2, F(A) is mea-
surable and

LYF(A)) < /Adet Dy(zx) dzx.

In particular L*(F(S)) = 0.



We suppose that 2 is C°° and for simplicity
that y is a diffeomorphism of some open neigh-
bourhood Qg of Q onto y(£2gp). Now suppose
that y € Af(Q) with ylog = 7laq.

Given v € y(Q), let

Gv)={zcQ:veF(zx)}.

Thus G(v) consists of all inverse images of v.



Theorem 23
(i) For each v € y(Q2) the set G(v) is a nonempty

continuum in €2.
(ii) For each measurable A C y(2) the set
G(A) = UycaG(v) is measurable and

LA =/ det Dy(z) da.
(A) = [, det Dy(z) de
(iii) Let T = {v € y(2);diam G(v) > 0}. Then
H1(T) = 0.

Thus we can define the inverse function z(v)

for all v € T, and Sverak proves that
z(-) € WH(7(2)).



Regularity of minimizers

Open Problem: Decide whether or not the
global minimizer y* in Theorem 14 is smooth.

Here smooth means C° in €2, and C° up to
the boundary (except in the neighbourhood of

points xg € 0€21 N 02> where singularities can
be expected).



Clearly additional hypotheses on W are needed
for this to be true. One might assume, for
example, that W : M_?"_X?’ — R is C*°, and that
W is strictly polyconvex (i.e. that g is strictly
convex). Also for regularity up to the boundary
we would need to assume both smoothness of
the boundary (except perhaps at 927 N 6$25)
and that y iIs smooth. The precise nature of

these extra hypotheses is to be determined.



The regularity is unsolved even in the sim-
plest special cases. In fact the only situa-
tion in which smoothness of y* seems to have
been proved is for the pure displacement prob-
lem with small boundary displacements from a
stress-free state. For this case Zhang (1991),
following work of Sivaloganathan, gave hypothe-
ses under which the smooth solution to the
equilibrium equations delivered by the implicit
function theorem was in fact the unique global
minimizer y* of I given by Theorem 14.



An even more ambitious target would be to
somehow classify possible singularities in mini-
mizers of I for generic stored-energy functions
W. If at the same time one could associate
with each such singularity a condition on W
that prevented it, one would also, by impos-
INg all such conditions simultaneously, possess
a set of hypotheses implying regularity.

It is possible to go a little way in this direction.



Jumps in the deformation gradient

y piecewise affine

Dy=B, z-N <k

A—B=a® N.

When can such a y with A %= B be a weak
solution of the equilibrium equations?



heorem 24

Suppose that W : M_?_X?’ — R has a local min-
imizer Fp. Then every piecewise affine map y
as above is C1 (i.e. A = B) iff W is strictly
rank-one convex, 1.e. the map

t— W(F + ta® N) is strictly convex for each

F e M3%3 and a € R3, N € R3.

J.M. Ball, Strict convexity, strong ellipticity,
and regularity in the calculus of variations. Proc.
Camb. Phil. Soc., 87(1980)501-513.



Sufficiency. Suppose y is a weak solution. Then
(DW(A) — DW(B))N = 0.

Let 0(¢t) = W(B+ta® N). Then 6'(1) > 6'(0)
and so

(DW(A)—DW(B))-a®QN = a-(DW(A)—DW (B))N > 0,

a contradiction.

T he necessity use a characterization of strictly
convex C1 functions defined on an open convex
subset U of R".



Theorem 25
A function ¢ € CL(U) is strictly convex iff
(i) there exists some z € U with

p(w) = ¢(2z) + Vo(z) - (w — 2)
for |w — z| sufficiently small, and
(ii) Vp is one-to-one.

T he sufficiency follows by applying this to

p(la) =W(B+a® N).

the assumption implying that Ve is one-to-
one.



Proof of Theorem 25 for the case when U =

R" and ‘Pl(;“) » 00 as |z| — oo.

Let z € R"™. Let w € R™ minimize

h(v) = ¢o(v) — Vo(z) - v.
By the growth condition w exists and so
Vh(w) = Vp(w) — Ve(z) = 0.
Hence w = z, the minimum is unique, and soO

p(v) > o(2) + Ve(z) - (v —2)

for all v # z, giving the strict convexity.



Discontinuities iny

An example is cavitation, which we know is
prevented (together with other discontinuities)

e.g. by
W(F) > col| F|" — c1.



Counterexamples to regularity

1. Necas (1977) showed that if m = n? is suffi-
ciently large, then there exists a strictly convex
f = f(Dy) whose corresponding integral

@)= [ F(Dy)de

has a global minimizer

y;;kj — x € B(0,1)

x|
subject to its own (smooth) boundary data on
OB(0,1). Here y* is Lipschitz but not C1.



2. Hao, Leonardi & Necas (1996) modified the
example to work for n > 5 with minimizer

1
2|85 5
n

*
Yij — 17

|z
and by a more sophisticated method Sverak &

Yan (2000) found similar examples which work
forn=3,m=5and n=4,m = 3.

The cases m =n =2, and m = n = 3 remain
open.



Quasiconvexity and partial regularity

Theorem (Kristensen & Taheri 2001, following
Evans 1986)

Let f be smooth and satisfy for some p > 2
the strong quasiconvexity condition

| U (A+D&) = ()] dw > v |_[IDé2+|DélP] da
for all A € M™*™ and all ¢ € C§°(2; R™), to-

gether with the growth condition
co| AP —e1 < f(A) < dolAlP — dj.

Then any local minimizer y* of I in WiP is

smooth outside a closed subset E C €2 with
meas £ = 0.



Remarkable counterexamples of Muller & Sverak

(2001) show that this result is false if we as-
sume only that y* satisfies the weak form of

the Euler-Lagrange equation (rather than be a
local minimizer).



In view of the above and other counterexam-
ples for elliptic systems, if minimizers are smooth
It must be for special reasons applying to elas-
ticity. Plausible such reasons are:

(a) the integrand depends only on Dy (and
perhaps z), and not y

(b) the dimensions m = n = 3 are low,

(c) the frame-indifference of W.

(d) invertibility of .



2D incompressible example.
Minimize

T =/D2d,
(y) B\y\ T

where B = B(0,1) is the unit disc in R?, and
y : B — R?, in the set of admissible mappings

A={yeWh?(B;R?) :detDy =1 a.e.,ylsgp = i},

where in polar coordinatesy : (r,0) — (%r, 20).
hen there exists a global minimizer y* of I in
A. (Note that A is nonempty since y € A.)
But since by degree theory there are no cl
maps y satisfying the boundary condition, it is
immediate that y* is not C1.




Solid phase transformations

Displacive phase transformations are charac
terized by a change of shape in the crystal lat:
tice at a critical temperature.

e.g. cubic — tetragonal

"

e A1




Energy minimization problem
for single crystal

Minimize I,(y) = /Q b(Dy(z), 0) dx

subject to suitable boundary conditions, for
example

Yoo, = U

0 = temperature,
v = Y(F,0) = free-energy density of crystal,

defined for F ¢ M;Q’FX3.



Frame-indifference requires

Y(RF,0) = ¢ (F,0) for all R € SO(3).

If the material has cubic symmetry then also

W(FQ,0) = (F,0) for all Q € P?4,

where P24 is the group of rotations of a cube.



Energy-well structure
K(0) = {F € M3>*3: F minimizes ¥(-,0)}

_|_
Assume / austenite
a(0)SO(3) 0 > 6
K(0) ={ SOB)UUN,SOB)U;(8:) 0 =0
U SO(3)U;(6) 0 < 6,

alf.) =1 \
martensite

Assuming the austenite has cubic symmetry,
and given the transformation strain U4 say, the
N variants U; are the distinct matrices QU1 Q'
where Q € P24,



Cubic to tetragonal (e.g. NigAl,.)

"

U, = diag (n2,m1,71)
Uy = diag (n1,12,11)
Us = diag (n1,01,72)




Exchange of
stability

1 [Jrl |:é'|,_-} L'TE{H."] LTJ [Hf:]

i< 8.



Atomistically sharp interfaces for cubic
to tetragonal transformation in NiMn

Baele, van Tenderloo, Amelinckx
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Macrotwins in NigAl;c involving two tetragonal
variants (Boullay/Schryvers)
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Martensitic microstructures in CuAINi (Chu/James)
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Interfaces correspond to pairs of matrices A, B
with A— B =a ® N, where N is the interface
normal. At minimum energy A, B € K(0).

There are no rank-one connections between
matrices A, B in the same energy well. In gen-
eral there is no rank-one connection between
A€ SO(3) and B € SO(3)U;.



Given U = U?T > 0 and V = V! > 0, when is there a rank-one
connection between SO(3)U and SO(3)V?

That is , when are there rotations R;, s and vectors ¢, N such that

MU =RV +c @ N

heorem 26

Let D = U? — V2 have eigenvalues A1 < A <
A3. Then SO(3)U and SO(3)V are rank-one
connected iff Ao = 0. There are exactly two
solutions up to rotation provided A1 < Ay =
O < A3, and the corresponding N's are orthog-
onal iff trU2 =trV?2, i.e. A\{ = —\s3.




In the case of martensitic variants with U = U;, V = Uj, © # j, we
have U — QV Q! for some rotation ) and so the condition tr U? —
tr V* is automatically satisfied. Rank-one connections correspond
to twins and the corresponding twin normals are always orthogonal.

In this case there is a simpler criterion for the existence of rank-one
connections due to Forclaz, namely that

det(U — V) =0



Gradient Young measures
yU) Q5 R™
Fix z, j, 0.

E C men

Volume{z € B(z,8) with DyU)(z) € E}
Volume B(x,d)

v (B) =

: : ) _
ve = liIm IIm ngkv Young measure corresponding
0—0 k—o0 to Dy(ﬂk),



The Young measure encodes the information
on weak limits of all continuous functions of
DyUr) . Thus

F(DyYUR)) X (g, ).
In particular DyUr) A 5, = Dy(z).
Here

Dy = /Mnxn F dug(F)
and

Voi £y = [ PO dva(F)



Simple laminate
A—B=aQ®N

Dyl 5 XA+ (1-X)B

{ﬁf—m Young measure
VCIZ:>\5A (1—)\)53




Theorem 27 (Kinderlehrer/Pedregal)
A family of probability measures (vz).cq iS the

Young measure of a sequence of gradients Dy(j)
bounded in L°° if and only if

(i) vgy is a gradient (Dy, the weak* limit of
Dy(9))

(ii) (v, f) > f(vy) for all quasiconvex f.



(Classical) austenite-martensite interface in CuAINi
(C-H Chu and R.D. James)




habit Gives formulae of the
g crystallographic
theory of martensite

(Wechsler, Lieberman,
Read)

24 habit planes for cubic-

to-tetragonal
boundary layer

ve =4 + (1~ 2)dp



Rank-one connections for A/M interface




Zﬁﬂ\?ﬁ\\?ﬁ\"\\i\"\?

Possible lattice parameters
for classical austenite-martensite
interface.

T



Quasiconvexification

If f: M™*" — [0,00) then its quasiconvexifica-
tion is defined to be the function

ch = sup{g < f : g quasiconvex}

E C M™X" is quasiconvex if there exists a qua-
siconvex f : M™*X" _ [0,00) with f~1(0) = E.

If K C M™*" is compact, its quasiconvexifica-
tion is the set

265

K9 = (\{E > K : E quasiconvex}



YY9C(F,0) is the macroscopic free-energy func-
tion corresponding to .

K(0)9¢ is the set of macroscopic deformation

gradients corresponding to zero-energy microstruc-
tures.



Nonattainment of minimum energy

Because of the rank-one connections between
energy wells, ¥ is not rank-one convex, hence
not quasiconvex. Thus we expect that the
minimum energy is not in general attained. We
can prove this for the case of two martensitic
energy wells.



Two-well problem

|

K(0) = SO(3)U; U SO(3)Us

U, = diag (”?2{3‘?1:.??1)3 Uy — diag (??11:??21:"’?1)

Theorem 28 (Ball\James)
K (0)49¢ consists of those F & MiX?’ such that

0
F'r = 0 |,
Ui

where ab — ¢? = 77%77%, a-+b—|2c| < 77% -+ 77%.
If Dy(x) € K(0)4¢ a.e. then vy is a plane strain.

o o 8
O ST 0




Corollary 4 (Ball\ Carstensen)

Let FF e K(0)9¢ with FF € K(6). Then the min-
imum of Iy(y) subject to y|go = Fz is not at-
tained.

K (8)% unknown for three or more wells.



