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Abstract

The Du Fort–Frankel scheme for the one-dimensional Schrödinger equation is shown to be equivalent, under a time-
dependent unitary transformation, to the Ablowitz–Kruskal–Ladik scheme for the Klein–Gordon equation. The Schrödinger
equation describes a non-relativistic quantum particle, while the Klein–Gordon equation describes a relativistic particle.
The conditional convergence of the Du Fort–Frankel scheme to solutions of the Schrödinger equation arises because so-
lutions of the Klein–Gordon equation only approximate solutions of the Schrödinger equation in the non-relativistic limit.
The time-dependent unitary transformation is the discrete analog of the transformation that arises from seeking a non-
relativistic limit using the interaction picture of quantum mechanics to decompose the Klein–Gordon Hamiltonian into
the relativistic rest energy and a remainder. The Ablowitz–Kruskal–Ladik scheme is in turn decomposed into a quantum
lattice gas automaton for the one-dimensional Dirac equation, which is also the one-dimensional discrete time quantum
walk. This relativistic interpretation clarifies the origin of the known discrete invariant of the Du Fort–Frankel scheme
as expressing conservation of probability for the 2-component wavefunction in the one-dimensional Dirac equation under
discrete unitary evolution. It also leads to a second invariant, the matrix element of the evolution operator, whose imaginary
part gives a discrete approximation to the expectation of the non-relativistic Schrödinger Hamiltonian.
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1. Introduction

The Schrödinger equation for a particle of mass m in a potential V is

iℏ∂tψ = −
ℏ2

2m
∇2ψ + V(x)ψ, (1)

where ℏ is the reduced Planck’s constant [1–3]. This equation describes the evolution of a wavefunction ψ(x, t), with the
interpretation that |ψ(x, t)|2 is the probability density for the particle to be located at position x at time t.

More generally, an abstract Schrödinger equation takes the form

iℏ∂tψ = Hψ, (2)

where H is a self-adjoint linear operator with no explicit time dependence that acts on ψ. The solution of (2) may be
written formally as

ψ(·, t) = exp(−i(t/ℏ)H)ψ(·, 0). (3)

The evolution is unitary, since exp(−i(t/ℏ)tH) is a unitary operator because H is self-adjoint, and time-reversible since
exp(i(t/ℏ)H) is the inverse of exp(−i(t/ℏ)H). It thus preserves the total probability ||ψ||2 =

∫
|ψ(x, t)|2d3x (the evolution

being unitary restricts the boundary conditions to be consistent with this conservation property). A good numerical scheme
for a Schrödinger equation should also generate unitary and time-reversible evolution, but in discrete time steps ∆t. In
particular, unitary evolution implies stability in the ℓ2 norm.

The leapfrog or second order difference scheme is [4–9]

iℏ
ψn+1

j − ψn−1
j

2∆t
= [Hψ]n

j . (4)

The wavefunction ψ for a particle moving in one dimension can be approximated by its values ψn
j = ψ( j∆x, n∆t) on a

discrete spatial grid indexed by j at discrete times t = n∆t indexed by n. A natural discrete Hamiltonian matrix H for
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Figure 1: (a) The six-point stencil for the Crank–Nicolson scheme across the two time levels n and n + 1. (b) The four-point stencil for the Du Fort–
Frankel scheme across the three time levels n − 1, n, and n + 1. The central point (open circle) is only required for the five-point leapfrog, Harmuth and
Perring–Skyrme schemes described in the appendix.

a free particle (one with V = 0) is defined by discretising the Laplacian in (1) using the 3-point centred finite difference
approximation

[Hψ]n
j = −

ℏ2

2m
1
∆x2

(
ψn

j+1 − 2ψn
j + ψ

n
j−1

)
, (5)

so the abstract leapfrog scheme (4) becomes

iℏ
ψn+1

j − ψn−1
j

2∆t
= − ℏ2

2m

ψn
j+1 − 2ψn

j + ψ
n
j−1

∆x2

 . (6)

This paper is primarily concerned with the Du Fort–Frankel scheme introduced by Wu [10]

iℏ
ψn+1

j − ψn−1
j

2∆t
= − ℏ2

2m

ψn
j+1 −

(
ψn+1

j + ψn−1
j

)
+ ψn

j−1

∆x2

 . (7)

This scheme is obtained by replacing 2ψn
j in (6) with the average

(
ψn+1

j + ψn−1
j

)
, the same replacement made by Du Fort &

Frankel to construct their scheme for the real diffusion equation [11]. The scheme thus uses the four-point stencil shown in
Fig. 1(b). It omits ψn

j located at the central point of the stencil. The Du Fort–Frankel scheme (7) is unconditionally stable,
unlike the leapfrog scheme (6), and one can rearrange (7) to give an explicit formula for ψn+1

j locally at each grid point (see
section 3).

These properties make the Du Fort–Frankel scheme an attractive alternative to the Crank–Nicholson scheme. The latter
uses the Cayley transform [12] (

I + 1
2 i(∆t/ℏ)H

)−1 (
I − 1

2 i(∆t/ℏ)H
)

(8)

to construct a unitary and time-reversible approximation to exp(−i∆tH/ℏ) for the evolution between two time levels, given
concretely by

iℏ
ψn+1

j − ψn
j

∆t
= − ℏ2

2m
1
2

ψn+1
j+1 − 2ψn+1

j + ψn+1
j−1

∆x2 +
ψn

j+1 − 2ψn
j + ψ

n
j−1

∆x2

 . (9)

This scheme uses the six point stencil shown in Fig. 1(a). It is implicit, because each timestep requires the solution
of a tridiagonal linear system involving the operator

(
I + 1

2 i(∆t/ℏ)H
)

to determine the ψn+1
j at all grid points j. This

complicates a parallel implementation. The widely used Thomas algorithm for solving tridiagonal systems is inherently
serial, though parallel alternatives, such as cyclic reduction or diagonalisation by discrete Fourier transform, are available.
The implicitness incurs significantly more computational complexity and expense in multiple spatial dimensions, as some
iterative algorithm will typically be required to solve the linear system. Like the above Du Fort–Frankel scheme, this is the
complex version of the Crank–Nicolson [13] scheme for the real diffusion equation.

The Schrödinger equation (1) contains one time derivative but two spatial derivatives. The same asymmetry appears in
the stencil for the Crank–Nicholson scheme, which contains three spatial points at each of two time levels. This asymmetry
between space and time makes the Schrödinger equation incompatible with special relativity, which requires an equation
to be invariant under Lorentz transformations that mix the space and time coordinates.
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By contrast, space and time appear symmetrically in the four-point stencil for the Du Fort–Frankel scheme shown in
Fig. 1(b). This paper will explore the properties of the Du Fort–Frankel scheme as a discretisation of a relativistic quantum
wave equation, not of the Schrödinger equation (1).

2. Relativistic wave equations

The Schrödinger equation (1) for a free particle coincides with the Newtonian expression E = |p|2/(2m) for the energy
of a free classical point particle with momentum p and mass m when one replaces E and p by differential operators:

E → iℏ∂t, p→ −iℏ∇. (10)

Making the same replacements in the relativistic energy-momentum relation E2 = c2|p|2 + m2c4 for a free classical point
particle gives the Klein–Gordon equation [1–3]

∂ttu − c2∇2u = −(mc2/ℏ)2u. (11)

The line element ds2 = |dx|2 − c2dt2, and hence the differential operator ∂tt − c2∇2 on the left hand side, are invariant under
Lorentz transformations. The whole equation is thus Lorentz-invariant if we treat u as a Lorentz-invariant scalar field.

By construction, the Klein–Gordon equation has plane wave solutions proportional to exp(i(k · x − ωt)) that satisfy the
dispersion relation

ω2 = c2|k|2 + (mc2/ℏ)2. (12)

This is just a rewriting of the above energy-momentum relation using the frequency ω = E/ℏ and wave vector k = p/ℏ.
Unlike the previous Schrödinger equation, there are two branches of solutions: one with positive frequencies ω ≥ mc2/ℏ,
and one with negative frequencies ω ≤ −mc2/ℏ. Expanding the positive branch for |k| ≪ mc/ℏ gives

ω = c
√

(mc/ℏ)2 + |k|2 = mc2/ℏ + ℏ|k|2/(2m) + O(|k|4). (13)

This recovers the dispersion relation ω = ℏ|k|2/(2m) for the Schrödinger equation, but offset by the Compton frequency
mc2/ℏ associated with the relativistic rest energy mc2. The group velocity for both signs of ω is

∇kω = (c2/ω)k. (14)

This satisfies the bound |∇kω| < c, and coincides with the expression

v =
p√

m2 + |p|2/c2
(15)

for the velocity v of a relativistic particle with momentum p.
The fundamental solution of the one-dimensional Klein–Gordon equation for a concentrated Dirac δ-function source

at (ξ, τ) is [14]

u(x, t) =

J0

(
m

√
(t − τ)2 − (x − ξ)2/c2

)
/(2c), for |x − ξ| ≤ c|t − τ|,

0, for |x − ξ| > c|t − τ|,
(16)

where J0 is the Bessel function of the first kind of order zero. The support of this solution is thus confined to the boundary
and interior of the light cone |x − ξ| = c|t − τ|, as one would expect from the bound on the group velocity. However,
the support occupies the whole interior of the light cone, rather than being confined to the light cone itself, as for the
corresponding fundamental solution of the wave equation. By contrast, the support of the fundamental solution

ψ(x, t) = (2πi tℏ/m)−1/2 exp
(
i x2/(2tℏ/m)

)
(17)

of the one-dimensional Schrödinger equation extends over the whole domain.
The Schrödinger equation (1) implies an equation for conservation of probability,

∂t

(
|ψ|2

)
+ ∇·

(
iℏ
2m

(
ψ∇ψ − ψ∇ψ

))
= 0, (18)

with a flux called the probability current [1–3]. An overbar denotes a complex conjugate. The Klein–Gordon equation (11)
implies another conservation law with the same flux:

∂t

(
iℏ

2mc2 (u∂tu − u∂tu)
)
+ ∇·

(
iℏ
2m

(u∇u − u∇u)
)
= 0. (19)

However, the quantity appearing in the time derivative cannot be interpreted as a probability density. It is not positive
definite, as we can specify u and ut independently as initial conditions for the second-order Klein–Gordon equation.
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2.1. Dirac equation
This difficulty led Dirac to seek a relativistic wave equation involving only first derivatives in space and time. This also

fits the abstract Schrödinger equation (2) that generates evolution through the unitary operator exp(−itH/ℏ). In one spatial
dimension this is accomplished by the system

∂tu + c∂zu = (mc2/ℏ)d, (20a)
∂td − c∂zd = −(mc2/ℏ)u, (20b)

which takes the form (2) with the matrix Hamiltonian

H =
(
−icℏ∂z imc2

−imc2 icℏ∂z

)
(21)

acting on the 2-component wavefunction Φ2 = (u, d)T. Eliminating d between these two equations leads back to the Klein–
Gordon equation (see Section 6). The left hand sides of (20) describe the propagation of u and d along characteristics
with speeds ±c, as appropriate for a massless particle. The mass terms on the right hand sides mix these two propagation
directions, leading to the characteristic “Zitterbewegung” or trembling motion of a relativistic particle [1–3].

This factorisation of the one-dimensional Klein–Gordon equation into a first-order system with the self-adjoint Hamil-
tonian (21) relies on the factorisation ∂tt−c2∂zz = (∂t+c∂z)(∂t−c∂z). More generally, the three-dimensional Dirac equation
requires a 4-component wavefunction Φ4, and factorises the three-dimensional Laplacian as (σ · ∇)2 = I2∇2, where I2 is the
2 × 2 identity matrix, using the three Pauli spin matrices [1–3]

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (22)

The three-dimensional Dirac equation reduces to two independent copies of the system (20) for wavefunctions that depend
only on z and t. It is convenient to choose z as the spatial coordinate because σz is diagonal.

More generally, given a wavefunction that solves the Dirac equation, every component individually solves the Klein–
Gordon equation (which just expresses the relativistic energy-momentum relation). However, the extra structure in the
Dirac equation as a first order system changes the interpretation of the solution. In particular, the system (20a,b) implies a
conservation law for the positive-definite probability density |u|2 + |d|2,

∂t

(
|u|2 + |d|2

)
+ ∇·

(
c(|u|2 − |d|2)

)
= 0. (23)

2.2. Interaction picture and non-relativistic limit
The abstract Schrödinger equation (2) describes the evolution of the wavefunction ψ in time. Physically meaningful

quantities are expressed as expectations of self-adjoint linear operatorsA, known as observables, defined by

E(A) =
⟨A⟩
||ψ||2 , where ⟨A⟩ =

∫
ψAψ d3x, and ||ψ||2 =

∫
|ψ|2 d3x. (24)

The expectation is invariant under global changes of phase: ψ 7→ ψeiα for any constant α.
The operators A usually have no explicit time dependence. For example, the probability of the particle described by

the concrete Schrödinger equation (1) being in some subset X of space is given by taking A to be the indicator function
for x ∈ X. It is common to normalise the wavefunction so that ||ψ|| = 1. The expectation E(A) then coincides with the
matrix element ⟨A⟩. However, the recovery of the expectation of the Hamiltonian for the Schrödinger equation in the
non-relativistic limit depends crucially on the different normalisations of the relativistic and non-relativistic theories.

This Schrödinger picture is just one approach to formulating quantum mechanics. The interaction, or Dirac, picture
decomposes the Hamiltonian intoH = H0 +HI . If ϕ is the wavefunction in the Schrödinger picture that satisfies iℏ∂tϕ =
(H0 +HI)ϕ, the wavefunction

ψ(x, t) = eiH0t/ℏϕ(x, t), (25)

in the interaction picture evolves according to [3]

iℏ∂tψ = eiH0t/ℏHIe−iH0t/ℏψ. (26)

We use ψ for the transformed wavefunction so that we later obtain the familiar non-relativistic Schrödinger equation for ψ
by applying the interaction picture to a relativistic wave equation for ϕ.

More generally, any time-independent operatorA in the Schrödinger picture (other than the Hamiltonian) becomes

AI(t) = eiH0t/ℏAe−iH0t/ℏ (27)

in the interaction picture. The interaction picture thus interpolates between the Schrödinger picture, for which H0 = 0,
and the Heisenberg picture, for which H0 = H and HI = 0. The interaction picture is commonly used to construct the
wavefunction ϕ using a convergent sequence of nested integrals whenHI is treated as a perturbation toH0 [3].
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To apply the interaction picture to constructing the non-relativistic limit of the one-dimensional Dirac equation above,
we diagonalise the algebraic mass terms mc2/ℏ in the Hamiltonian (21) by applying the unitary transformation(

u
d

)
=

1
√

2

(
1 1
−i i

) (
ϕ+
ϕ−

)
. (28)

The Hamiltonian becomes (
mc2 −icℏ∂z

−icℏ∂z −mc2

)
︸                 ︷︷                 ︸

H

=

(
mc2 0

0 mc2

)
︸         ︷︷         ︸
H0

+

(
0 −icℏ∂z

−icℏ∂z −2mc2

)
︸                 ︷︷                 ︸

HI

. (29)

We thus isolate the rest mass HamiltonianH0 = mc2I2 and treatHI = H −H0 as a perturbation. AsH0 is a multiple of the
identity matrix I2 it commutes with any other operatorA, soAI(t) = A is unchanged according to the prescription (27).

Following (25) we introduce
ψ±(x, t) = ϕ±(x, t)eimc2t/ℏ. (30)

We will find below that, althoughHI is not small relative toH0 in the operator norm, ||HIΨ|| is much smaller than ||H0Ψ||
for wavefunctions Ψ = (ψ+, ψ−)T describing non-relativistic solutions. The wavefunctions ψ± evolve according to

∂tψ+ + c∂zψ− = 0, (31a)

∂tψ− + c∂zψ+ = 2i
mc2

ℏ
ψ−. (31b)

The algebraic right hand side now only affects ψ−. The slowly-varying approximation

|∂tψ−| ≪ 2
mc2

ℏ
|ψ−| , (32)

holds in the non-relativistic limit, when the wavefunction oscillates with frequencies much smaller than the Compton
frequency mc2/ℏ. Making this approximation in (31b) allows us to solve for ψ− in terms of the gradient of ψ+,

ψ− = −
ℏ

2mc
i∂zψ+. (33)

From this relation we can estimate |ψ−|/|ψ+| ∼ |p|/(2mc). The estimate is exact for plane wave solutions, which are
eigenfunctions of the momentum operator p. The ratio of the momentum p to the momentum scale mc is small for a
particle moving non-relativistically.

Substituting the relation (33) into the evolution equation (31a) for ψ+ leads to the one-dimensional Schrödinger equation
for a free particle:

iℏ∂tψ+ = −
ℏ2

2m
∂zzψ+. (34)

As in derivations of the Navier–Stokes equations from kinetic theory, this derivation of the Schrödinger equation eliminates
the fast variable ψ− to obtain a closed evolution equation for the slow variable ψ+ alone [15, 16]. The same idea is used
in geophysical fluid dynamics to construct balanced models, such as the quasigeostrophic equations. These describe low-
frequency motions in rapidly rotating fluid flows, while eliminating high-frequency inertia-gravity waves, by formulating
a closed evolution equation for the height or potential vorticity field alone [17].

The matrix element of the interaction Hamiltonian is

⟨HI⟩ =
∫
−2mc2|ψ−|2 − icℏ

(
ψ+∂zψ− + ψ−∂zψ+

)
dz. (35)

If we insert the approximation (33) for ψ− in terms of ψ+, ⟨HI⟩ coincides with the matrix element of the Schrödinger
Hamiltonian for the ψ+ state,

⟨HS ⟩ =
∫
− 1

2m
ψ+∂zzψ+dz =

∫
1

2m
|∂zψ+|2dz. (36)

The second step requires the usual integration by parts. Another useful expression, when ψ+ and ψ− are related by (33), is

⟨HI⟩ =
∫

2mc2|ψ−|2dz, (37)

which is also equal to ⟨HS ⟩. However, the natural normalisation of the 2-component wavefunction for the interaction
picture of the Klein–Gordon equation differs from the normalisation of the Schrödinger equation. The expectations of HI

andHS are

E(HS ) =
⟨HS ⟩
||ψ+||2

, E(HI) =
⟨HI⟩

||ψ+||2 + ||ψ−||2
. (38)
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Only the sum ||ψ||2 = ||ψ+||2 + ||ψ−||2 is conserved by the Klein–Gordon equation. Neither term is conserved separately.
However, we can use (37) to replace ||ψ−||2 by ⟨HI⟩/(2mc2) in the non-relativistic limit, which implies

E(HS ) =
(
1 +
||ψ−||2
||ψ+||2

)
E(HI) =

⟨HI⟩
||ψ||2 − ⟨HI⟩/(2mc2)

. (39)

We can thus recover the expectation of the Hamiltonian in the Schrödinger equation from the invariants ||ψ||2 and ⟨HI⟩ of
the Klein–Gordon equation in the interaction picture.

The transformation (30) based on the interaction picture is equivalent to the substitution made by Pauli [2] to break
the symmetry between ϕ+ and ϕ− by seeking solutions whose time-dependence is close to e−imc2t/ℏ. The same Wentzel–
Kramers–Brillouin (WKB)-like ansatz [18]

u(x, t) = ψ(x, t)eimc2t/ℏ (40)

transforms the Klein–Gordon equation (11) into the complex telegraph equation

− ℏ2

2mc2 ∂ttψ + iℏ∂tψ = −
ℏ2

2m
∇2ψ. (41)

We can now motivate the Schrödinger equation as describing solutions ψ(x, t) that vary sufficiently slowly in time, with
frequencies much less than the Compton frequency mc2/ℏ, that we can neglect the first term relative to the second term
on the left hand side. We can also motivate rewriting the Du Fort–Frankel scheme (7) as a centred finite difference
discretisation of the one-dimensional complex telegraph equation:

− ℏ2

2mc2

ψn+1
j − 2ψn

j + ψ
n−1
j

∆t2 + iℏ
ψn+1

j − ψn−1
j

2∆t
= − ℏ2

2m

ψn
j+1 − 2ψn

j + ψ
n
j−1

∆x2 . (42)

This follows Du Fort & Frankel’s observation that solutions of their scheme converge to solutions of a real telegraph
equation, rather than to solutions of a diffusion equation [11]. The form (42) also leads to a more general class of Du Fort–
Frankel schemes in which one takes an existing scheme with a finite difference approximation to a first time derivative ∂tψ,
as illustrated by the second term on the left hand side of (42), and adds a constant multiple of the centred finite difference
approximation to ∂ttψ with a constant chosen to optimise the stability of the overall scheme [19, 20].

The transformation (30) can also be interpreted as a special case of the general invariance of the Schrödinger and
Klein–Gordon equations under the gauge transformations

ϕ(x, t) = ψ(x, t)eiχ(x,t) (43)

when appropriate scalar V = ∂tχ and vector A = ∇χ potentials are included. This transformation is thus distinct from the
earlier transformation under (24) that changed the phase of the wavefunction by a constant. By taking the gauge function χ
to be an affine function of t alone, one can absorb the relativistic energy due to the rest mass into a constant scalar potential,
leaving the equivalent of the interaction HamiltonianHI .

3. Dispersion relations for the Du Fort–Frankel and other schemes

We first rewrite Wu’s Du Fort–Frankel scheme (7) as

i
(
ψn+1

j − ψn−1
j

)
= −1

λ

(
ψn

j+1 −
(
ψn+1

j + ψn−1
j

)
+ ψn

j−1

)
, (44)

with a single dimensionless parameter λ = m∆x2/(ℏ∆t). This becomes λ = (mc2/ℏ)∆t on putting ∆x = c∆t. Thus λ is the
change in phase over a timestep ∆t for an oscillation at the Compton frequency mc2/ℏ. From now on it is more convenient
to adopt dimensionless, so-called natural, units in which c = 1 and ℏ = 1, so λ = m∆t.

Equation (44) is formally implicit, since ψn+1
j appears on both sides, but we can solve locally for

ψn+1
j = −1 + iλ

1 − iλ
ψn−1

j +
1

1 − iλ

(
ψn

j+1 + ψ
n
j−1

)
. (45)

There is no need to solve a linear system that couples different grid points, as needed for the Crank–Nicolson scheme (9).
Equation (45) may be rewritten more simply as

ψn+1
j = −e2iα ψn−1

j +
1
2

(
1 + e2iα

) (
ψn

j+1 + ψ
n
j−1

)
(46)

by introducing α = tan−1 λ. Seeking plane wave solutions with ψn
j = exp(i(k j∆x − ωn∆t)) yields the dispersion relation

cos (ω∆t + α) = cos(k∆x) cosα. (47)
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Figure 2: Dispersion relations for the leapfrog, Du Fort–Frankel (DF) and Crank–Nicolson (CN) schemes, and for the Schrödinger and shifted Klein–
Gordon equations, for dimensionless mass parameters (a) λ = 1/2 and (b) λ = 2. For λ = 2, the upper branch of the DF dispersion relation almost
coincides with the CN dispersion relation. The blue dots mark the ends of the stable region for the LF scheme, whose lower branch passes through
ω∆t = −π at k = 0. The right-hand legend applies to both plots.

There are two real frequencies ω for each k and α, so the scheme is indeed unconditionally stable. The left-hand side is
an even function of ω∆t + α, and for k = 0 the two roots are ω = 0 and ω∆t = −2α. For small k there is a branch with
ω ∼ k2/(2m), which agrees with the dispersion relation of the Schrödinger equation.

The dispersion relation for the Crank–Nicolson scheme (9) is

tan(ωCN∆t/2) =
1
λ

sin2 (k∆x/2) . (48)

This equation always has a solution for a real frequency ωCN for all real k and λ, so this scheme is also unconditionally
stable. The dispersion relation for the leapfrog scheme in (6) is

sin(ωLF∆t) =
2
λ

sin2 (k∆x/2) . (49)

This only has a solution for a real frequency ωLF for all real k when λ ≥ 2, as found by Harmuth [5]. Moreover, there are
then two real solutions, one with ωLF → 0 as k → 0, and a second with ωLF → −π/∆t as k → 0. For the special case
λ = 2, shown in Fig. 2(b), the group velocity dωLF/dk is discontinuous at k = ±π/∆x. For larger λ, the group velocity
vanishes at k = ±π/∆x for the leapfrog scheme, just as it does for the Du Fort–Frankel and Crank–Nicolson schemes. The
dispersion relations for the numerical schemes are all 2π-periodic, unlike the dispersion relations for the partial differential
equations (PDEs).

Figure 2 compares the dispersion relations for the Du Fort–Frankel, leapfrog, and Crank–Nicolson schemes, for the
two parameter values λ = 1/2 and λ = 2, with the dispersion relation of the Schrödinger equation, and with the dispersion
relation of the Klein–Gordon equation shifted by −λ,

ωKG∆t = −λ ±
√
λ2 + k2∆x2. (50)

This shift in frequency makes the upper branch pass through ω = 0 when k = 0. For λ = 1/2, the dispersion relation of
the Du Fort–Frankel scheme is close to that of the shifted Klein–Gordon equation, except where k∆x approaches ±π. The
discrepancy in the lower branches at k = 0, which is visible for λ = 1/2 and large for λ = 2, may be removed by changing
the relation between λ and the mass in the Klein–Gordon equation, as described at the end of Section 4. However, this also
changes the curvature of the upper branch of the numerical dispersion relation, so it becomes a less accurate approximation
to the dispersion relation of the Schrödinger equation.
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4. The Du Fort–Frankel scheme as a discretisation of the Klein–Gordon equation

To move the symmetry in the dispersion relation of the Du Fort–Frankel scheme to be around ω = 0, as in the unshifted
Klein–Gordon equation, we make the change of variables

ψn
j = un

je
inα. (51)

This substitution transforms (46) into an equation with real coefficients:

un+1
j = −un−1

j + cosα
(
un

j+1 + un
j−1

)
, (52)

which we can rewrite as
un+1

j = −un−1
j + un

j+1 + un
j−1 − 2 sin2 (α/2)

(
un

j+1 + un
j−1

)
. (53)

This coincides with the Ablowitz–Kruskal–Ladik discretisation [21, 22]

un+1
j = −un−1

j + un
j+1 + un

j−1 − (1/2)m̃2∆t2
(
un

j+1 + un
j−1

)
, (54)

of the dimensionless one-dimensional Klein–Gordon equation

∂ttu = ∂zzu − m̃2u, (55)

with an effective mass m̃ given by
m̃∆t = 2 sin (α/2) ∼ α

(
1 − α2/24 + · · ·

)
. (56)

Thus m̃∆t ∼ α for α ≪ 1, as expected from the small k behaviour of the low frequency branch of the dispersion relation
(47) for the Du Fort–Frankel scheme.

The m̃ term in (54) is the natural discretisation of the m̃ term in (55) for the four point stencil in Fig. 1(b). One may
instead treat (54) as a discretisation of the Klein–Gordon equation with mass M̃ = α/∆t = (1/∆t) tan−1(m∆t), with the
property that the discrete solutions ψn

j = exp(±inα) for wavenumber k = 0 have the same frequencies as the continuous
solutions ψ = exp(±iM̃t) of the Klein–Gordon equation. However, the shifted dispersion relation that passes though ω = 0
at k = 0 now becomes a less accurate approximation to the dispersion relation of the Schrödinger equation.

5. Leapfrog formulation

The further substitution
un

j = wn
j exp(−inπ/2) (57)

transforms (52) into
wn+1

j = wn−1
j + i cosα

(
wn

j+1 + wn
j−1

)
. (58)

This matches the abstract leapfrog, or second order difference, scheme in (4) for the discrete Hamiltonian H̃ defined by

[
H̃wn]

j = −
1

2∆t
cosα

(
wn

j+1+ wn
j−1

)
= − ℏ

2m̂

wn
j+1− 2wn

j + wn
j−1

∆x2 − ℏ
m̂∆x2 wn

j . (59)

The first term is the three-point centred finite difference approximation of the operatorH = −ℏ/(2m̂) ∂xx with an effective
mass

m̂ = m/ sinα (60)

that depends upon α, and hence upon the timestep ∆t. The second term in (59) adds a constant potential V = −ℏ/(m̂∆x2) set
by the shortest resolved lengthscale ∆x. This cancels the contribution from the central point in the three-point Hamiltonian
(5), as required to fit the four-point stencil in Fig. 1(b).

The Du Fort–Frankel scheme is thus unitarily equivalent to the leapfrog, or second order difference, scheme for the
three-point Hamiltonian (5) and a constant potential. However, the mass in the Hamiltonian is rescaled by 1/(sinα), which
diverges as ∆t → 0. A related result for the leapfrog scheme using the five-point stencil is described in the appendix.

6. Two-time-level formulation

The one-dimensional Klein–Gordon equation can be obtained by eliminating d from the one-dimensional Dirac equa-
tion

∂tu + ∂zu = md, (61a)
∂td − ∂zd = −mu. (61b)
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Similarly, the discrete equation (52) that determines u at time level n+ 1 in terms of u at the two previous time levels n and
n − 1 can be rewritten as the system

un+1
j+1 = aun

j + bdn
j , (62a)

dn+1
j−1 = adn

j − bun
j , (62b)

relating two variables u and d on the 2 time levels n and n + 1, with the real coefficients

a = cosα, b = sinα. (63)

A closely related result was used previously to relate the Du Fort–Frankel scheme for the real diffusion equation to some
2-component lattice Boltzmann schemes [23, 24].

The algorithm (62a,b) is equivalent to the composition of two unitary linear operators, streaming S and collisions C,
defined by

S (u1, . . . , uN , d1, . . . dN)T = (uN , u1, . . . , uN−1, d2, . . . , dN , d1)T (64)

for periodic boundary conditions, where (· · · )T indicates the (non-Hermitian) transpose of a vector, and

C
(
u
d

)
=

(
cosα sinα
− sinα cosα

) (
u
d

)
(65)

is applied pointwise to each pair (un
j , d

n
j )

T. Each operator exactly solves one of the decoupled systems

S

∂tu + ∂zu = 0,
∂td − ∂zd = 0,

C

∂tu = md,
∂td = −mu,

(66)

over a timestep ∆t, so their composition SC defines a discrete unitary evolution that approximates the continuous system
(61a,b). This system has arisen before as a quantum lattice gas automaton, a “quantum lattice Boltzmann equation,” a
quantum generalisation of a random walk on a lattice called the discrete time quantum walk, and as a realisation of the
Feynman checkerboard model [22, 25–30]. It can also be derived by integrating the system (61a,b) along its characteristics
x = x0 ± (t − t0) for a timestep ∆t and applying a unitary change of variables [22, 31].

This discrete system approximates the solution of the continuous system (61a,b) with a local error of O(∆t2), and
corresponding global error of O(∆t), inherent in the splitting of (61a,b) into two subsystems (66) whose evolutions are
given by the non-commuting operators S and C. Moreover, the ordering of the decomposition as SC rather than CS breaks
the time-reversal symmetry of the original formulation (52) for u alone across 3 time levels.

Both defects are remedied by the symmetric second-order Strang [32] splitting C1/2SC1/2, where C1/2 is a rotation by
angle α/2 analogous to (65). Writing this out in full gives

un+1
j = â

(
âun

j−1 + b̂dn
j−1

)
+ b̂

(
âdn

j+1 − b̂un
j+1

)
, (67a)

dn+1
j = â

(
âdn

j+1 − b̂un
j+1

)
− b̂

(
âun

j−1 + b̂dn
j−1

)
, (67b)

with â = cos(α/2) and b̂ = sin(α/2). Moreover, by writing the solution after n timesteps as

un
1
:

un
N

dn
1
:

dn
N


=

(
C1/2SC1/2

)n



u0
1
:

u0
N

d0
1
:

d0
N


= C1/2 (SC)n C−1/2



u0
1
:

u0
N

d0
1
:

d0
N


(68)

this symmetric second-order splitting becomes equivalent to the original splitting SC applied to the transformed variables
ũ j and d̃ j defined by [22, 33] (

ũn
j

d̃n
j

)
= C−1/2

(
un

j
dn

j

)
, (69)

where C−1/2 is a rotation by angle −α/2 applied pointwise to each pair (un
j , d

n
j )

T.

7. Wu’s discrete invariant

The above two-time-level formulations generate a discrete unitary evolution of the u and d variables from time level n
to time level n + 1. They therefore conserve the total probability

Pn =
∑

j

{
|un

j |2 + |dn
j |2

}
=

∑
j

{|ũn
j |2 + |d̃n

j |2
}
. (70)
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The two expressions are equal because un
j and dn

j are related to ũn
j and d̃n

j by the unitary transformation (69). We can
combine (62a,b) to reconstruct

dn
j =

1
λ

(
un

j+2 −
√

1 + λ2 un−1
j+1

)
(71)

from u at time levels n and n − 1,and thus write

Pn =
∑

j

{
|un

j |2 +
1
λ2

∣∣∣∣un
j −
√

1 + λ2 un−1
j−1

∣∣∣∣2} . (72)

Rewriting this expression using the ψn
j variables gives the invariant found by Wu [10]:

Pn =
1
λ2

∑
j

{
(1 + λ2)

(
|ψn

j |2 + |ψn−1
j |2

)
− 2
√

1 + λ2 Re
(
ψn

j ψ
n−1
j−1 e−iα

)}
. (73)

Wu [10] called this expression “energy”, following common usage for a quadratic invariant of a linear evolution equation in
PDE theory. We have shown here that it corresponds to the squared ℓ2 norm of the solution of the first order system written
using un

j and dn
j , which is conserved by unitary evolution. We will find an invariant related to the quantum-mechanical

energy, the expectation of the Hamiltonian operator, in the next two sections.

8. Two-time-level schemes in ψ± variables

Having constructed two-time-level schemes in the u and d variables, we can transform them into two-time-level
schemes for the ψ± variables. To simplify notation we write ψ+( j∆x, n∆t) = Pn

j and ψ−( j∆x, n∆t) = Mn
j .

Starting from the scheme (61a,b) and applying the unitary transformation

un
j =

1
√

2

(
Pn

j + Mn
j

)
e−inα, dn

j = i
1
√

2

(
Mn

j − Pn
j

)
e−inα, (74)

with a phase rotation to undo the earlier rotation that led to the u and d variables, gives

Pn+1
j =

1
2

(
Pn

j+1 + Pn
j−1

)
+

1
2

e2iα
(
Mn

j−1 − Mn
j+1

)
, (75a)

Mn+1
j =

1
2

e2iα
(
Mn

j+1 + Mn
j−1

)
+

1
2

(
Pn

j−1 − Pn
j+1

)
. (75b)

This is a unitary, but only first-order accurate, finite difference scheme for the PDE system (31a,b). There is another
first-order accurate scheme based on the reversed splitting CS.

Applying the same transformation to the scheme (67a,b) based on the Strang splitting C1/2SC1/2 gives

Pn+1
j =

1
2

(
Pn

j+1 + Pn
j−1

)
+

1
2

eiα
(
Mn

j−1 − Mn
j+1

)
, (76a)

Mn+1
j =

1
2

e2iα
(
Mn

j+1 + Mn
j−1

)
+

1
2

eiα
(
Pn

j−1 − Pn
j+1

)
. (76b)

This is a unitary and second-order accurate approximation to the PDE system (31a,b).
For a massless particle with α = 0 this is the Lax–Friedrichs [34, 35] scheme for the hyperbolic system Pt + Mx = 0,

Mt + Px = 0. The usual Lax–Friedrichs truncation error vanishes here because the space and time steps have been
synchronised so that the Courant number is unity. This property is more transparent in the earlier u and d variables, for
which the various schemes all decouple into un+1

j = un
j−1 and dn+1

j = dn
j+1 for massless particles. These are the exact

solutions for propagation of u and d along the light cone characteristics x = x0 ± (t − t0) in c = 1 units.
The three variants differ only in the phase of M relative to P, since the matrix C containing the algebraic terms is

diagonal in these variables. Eliminating M leads back to the original Du Fort–Frankel scheme for P in the form

Pn+1
j = −e2iαPn−1

j +
1
2

(
1 + e2iα

) (
Pn

j+1 + Pn
j−1

)
. (77)

This is a second-order accurate finite difference approximation to the complex telegraph equation

Ptt − 2imPt = Pxx. (78)

All three variants generate discrete unitary evolution, and thus conserve the total probability

Pn =
∑

j

{
|Pn

j |2 + |Mn
j |2

}
. (79)

This expression is invariant under the different phases of M relative to P in the three variants. However, unlike the u and d
formulations, there is no local reconstruction of M from P over the three time levels. One would have to solve a tridiagonal
system involving Mn

j+1 − Mn
j−1, so it is more efficient to solve the pair of equations over two time levels. The advantage

of this formulation is that it cleanly separates the Schrödinger-like behaviour in P from the relativistic corrections in M.
Only the combined probability (79) is a discrete invariant, but the magnitude of

∑
j |Mn

j |2 gives a measure of the size of the
relativistic corrections.
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9. A discrete energy invariant

We can construct a second discrete invariant related to the quantum-mechanical energy, the expectation of the Hamil-
tonian operator [31]. We write the system (76a,b) schematically as

Ψn+1 = UΨn, (80)

where U is a unitary discrete-time evolution operator that has no explicit dependence on n. It evolves the wavefunction
vector Ψn = (Pn

1, . . . , P
n
N ,M

n
1 , . . . , Mn

N)T of P and M values on the spatial grid at time level n. We define a complex-valued
discrete inner product

⟨Θ|Φ⟩ = ∆z
∑

j

Θ jΦ j, (81)

with complex conjugation applied to the first entry. The sum ranges over the 2N elements of Ψn. This corresponds to
treating Θ and Φ as 2-component vectors, and approximating the integral inner product

∫
Θ†Φ dz by the trapezoidal rule.

The trapezoidal rule is exponentially accurate for domains with equally spaced points and periodic boundary conditions.
The complex-valued matrix element of the evolution operator is then conserved:

⟨U⟩n+1 = ⟨Ψn+1|UΨn+1⟩ = ⟨UΨn|UUΨn⟩ = ⟨Ψn|U†UUΨn⟩ = ⟨Ψn|UΨn⟩ = ⟨U⟩n, (82)

since U†U = I is the identity operator as U is unitary. Moreover, U approximates the exact solution operator exp(−i∆tH) for
the PDE system (31a,b) with O(∆t3) local error, since (76a,b) is a globally second-order accurate discretisation. Expanding
for small ∆t gives

⟨U⟩n = ⟨Ψn| exp(−i∆tH)Ψn⟩ + O(∆t3) = ⟨Ψn|Ψn⟩ − i∆t⟨Ψn|HΨn⟩ − 1
2
∆t2⟨Ψn|H2Ψn⟩ + O(∆t3). (83)

Here H is some discrete Hamiltonian that is compatible with U = exp(−i∆tH) to within an O(∆t3) error. All of the inner
products in the last expression are real, since H is self-adjoint. The imaginary part of −⟨U⟩n/∆t is therefore a discrete
invariant that approximates ⟨H⟩n with an O(∆t2) relative error. The discrete matrix element ⟨U⟩n is given concretely by

⟨U⟩n = ∆z
∑

j

{
Pn

j P
n+1
j + Mn

j Mn+1
j

}
. (84)

We can subtract the real quantity ⟨I⟩n = ∆z
∑

j |Pn
j |2 + |Mn

j |2 to isolate the imaginary part:

⟨U − I⟩n =
1
2
∆z

∑
j

{
Pn

j

(
Pn

j+1 − 2Pn
j + Pn

j−1

)
+ Pn

je
iα

(
Mn

j−1 − Mn
j+1

)
+ Mn

j e
iα

(
Pn

j−1 − Pn
j+1

)
+ Mn

j e
2iα

(
Mn

j+1 − 2Mn
j + Mn

j−1

)
+ 2|Mn

j |2
(
e2iα − 1

) }
, (85)

which rearranges to give

Im ⟨U⟩n = cos(α)
{
2 sin(α)∆z

∑
j

[
|Mn

j |2 −
1
2

Mn
j

(
Mn

j+1 − 2Mn
j + Mn

j−1

) ]
+ Im∆z

∑
j

Mn
j

(
Pn

j−1 − Pn
j+1

) }
. (86)

This concretely defines the discrete H whose matrix element appears in (83). The |Mn
j |2 and Mn

j (P
n
j−1 − Pn

j+1) terms are
recognisable discrete approximations to terms in (35) for the matrix element of the continuous interaction Hamiltonian
⟨HI⟩. The replacement of the mass prefactor 2m by 2 sinα, and the extra term involving Mn

j+1 − 2Mn
j + Mn

j−1, are needed
to create a discrete invariant.

Given this approximation to ⟨HI⟩, we can use (39) to construct a discrete invariant that approximates the expectation
E(HS ),

En = −
⟨U⟩n/∆t

||ψ||2 + ⟨U⟩n/(2m∆t)
= E(HS ) + O(∆t2). (87)

The denominator contains the discrete squared norm ||ψ||2 = ∆z
∑

j{|Pn
j |2 + |Mn

j |2}.
The overall cosα prefactor in (86) improves the quantitative accuracy of the approximation to ⟨HI⟩ in the non-

relativistic regime, although the difference remains O(∆t2) at fixed mass. To see why, consider

Pn
j+1 − Pn

j−1 = 2∆z (∂zP)n
j + O(∆z3) = 4im∆zMn

j + O(∆z3), (88)

using the centred finite difference approximation for ∂zP, and then the slowly varying approximation ∂zP = 2imM from
(33), so

Im
∑

j

Mn
j

(
Pn

j−1 − Pn
j+1

)
= −4 tan(α)

∑
j

{
|Mn

j |2 + O(∆z3)
}
. (89)

11



−40 −30 −20 −10 0 10 20 30 40

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

 

 
t = m
t = 3m
t = 9m
modulus

Figure 3: The real part Reψ (solid lines) and modulus |ψ| (dashed lines) of the solution (93) with σ = 1 at times t = m, t = 3m, t = 9m.

Combining this expression with the |Mn
j |2 term in (86) gives the leading order approximation

Im ⟨U⟩n = cos(α)(2 sinα − 4 tanα)∆z
∑

j

|Mn
j |2 + O(∆z3). (90)

The improved accuracy follows from the observation that

cos(α)(4 tanα − 2 sinα) = 2m∆t + O((m∆t)5), (91)

while
4 tanα − 2 sinα = 2m∆t + O((m∆t)3). (92)

10. Numerical experiments

The Gaussian wavepacket

ψ(z, t) = (2σ/π)1/4 (1 + 2iσt/m)−1/2 exp
(
− σz2

1 + 2iσt/m

)
(93)

is an exact solution of the Schrödinger equation (1) that depends on time only through the ratio τ = t/m, as expected from
the structure of (1). Its width grows with time in proportion to (1 + 4σ2t2/m2)1/2, as shown in Fig. 3.

Figure 4 shows the discrete ℓ2 difference between numerical solutions of the centred split form (76a,b) of the du Fort–
Frankel scheme and the exact solution (93) at t = 9m for increasing numbers of grid points N. Each simulation was
initialised with ψ+ equal to the solution (93) at t = 0, and with ψ− proportional to the spatial derivative of this solution
according to (33). While the differences initially decrease with increasing N, they eventually reach a plateau. Increasing m
delays the onset of this plateau to larger N.

By contrast, for each fixed m the numerical solutions of the du Fort–Frankel scheme show the expected second order
convergence to reference solutions of the transformed Klein–Gordon system in (31a,b). The reference solutions were
obtained by expressing the initial conditions for ψ± as a finite Fourier series. The PDE system (31a,b) then decouples
into pairs of ordinary differential equations for each discrete wavenumber k, whose solutions may be expressed using
exponentials of 2 × 2 matrices. In other words, the Hamiltonian becomes purely algebraic, with only 2 × 2 blocks on
the diagonal. This allows an explicit calculation of exp(−i(t/ℏ)H) in the formal solution (3) of the abstract Schrödinger
equation.

Figure 4 confirms that the du Fort–Frankel scheme converges to solutions of the relativistic Klein–Gordon equation,
rather than to solutions of the Schrödinger equation. This is exactly analogous to Du Fort & Frankel’s observation that
solutions of their scheme converge to solutions of a telegraph equation, not to solutions of a diffusion equation [11]. This
behaviour is required by the Lax equivalent theorem [35, 36] which states that a consistent finite difference scheme for a
well-posed linear initial value problem is convergent if and only if it is stable. The du Fort–Frankel scheme is stable, but
does not converge towards solutions of the Schrödinger equation, so it cannot be a consistent finite difference scheme for
the Schrödinger equation.
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Figure 4: Unsigned differences of the computed (a) ψ+ and (b) ψ− from the Schrödinger exact solution (solid lines), and the Klein–Gordon reference
solution (dashed lines labelled “KG”), at t = 9m for m ∈ {4, 16, 64, 256} on grids with N points covering [−64, 64].

However, the du Fort–Frankel scheme will converge to solutions of the Schrödinger equation if one rescales both time
and the particle mass with increasing resolution N. A more massive particle has a smaller velocity for the same momentum
p, or the same characteristic wavenumber k = p/ℏ, and is thus less influenced by relativistic effects. The ratio of ψ− to ψ+
scales as p/(mc), which becomes smaller as m increases for fixed p.

The difference between the phases of the Schrödinger and Klein–Gordon solutions at time t = mτ is

mτ
[

k2

2m
−

(√
m2 + k2 − m

)]
∼ τ

8
k4/m2. (94)

This source of error becomes O(∆t2), the same as the truncation error of the numerical scheme, if we take m = M/∆t
for fixedM and τ. The parameter λ = m∆t is now fixed as m increases and ∆t decreases. However, the du Fort–Frankel
dispersion relation (47) gives

ω∆t = cos−1
(

cos(k∆x)
√

1 +M2

)
− tan−1M = k2

2M∆x2 + O((k∆x)4). (95)

The leading term is the Schrödinger dispersion relation for a particle of mass M, so the scheme is still second-order
accurate as k∆x → 0, even for m∆t = M fixed. The change in phase over a time t = mτ is ωt = (1/2)τk2c2 + O(k4∆t2),
which tends to (1/2)τk2 as ∆t → 0 with τ and c = ∆x/∆t fixed.

Figure 5 confirms that this scaling leads to the expected second-order convergence of the numerical solutions for ψ+
towards the exact solution (93). However, Fig. 6 shows that Mn

j converges to −i/(2m)∂xψ of the exact solution with
only first-order accuracy. This lower accuracy can be attributed to the explicit scaling of −i/(2m)∂xψ with 1/m. Visually
indistinguishable results were obtained from the single three-time-level equation (77) by setting P0

j and P1
j to the exact

solution (93) at t = 0 and t = ∆t respectively.
The solution ψn

j on space-time points with j + n even is decoupled from the solution on points with j + n odd for any
scheme using the four-point stencil in Fig. 1(b). In principle, the solutions on the odd and even sets of points may drift
away from each other, but no such artifacts are visible in the wavefunctions in Fig. 3, or in the convergence behaviour. This
may be because the different spatial Fourier modes are themselves decoupled in the du Fort–Frankel scheme with periodic
boundary conditions, and the initial amplitude of the (−1) j zig-zag mode is negligibly small.

Figure 7 shows the evolution of the differences between the exact value E(HS ) = 1/(2m) and two approximations:
the discrete invariant En and the expectation E(H) =

∑
j{Pn

j [HP]n
j }/

∑
j |Pn

j |2 of the 3-point discrete Hamiltonian H. These
results are from numerical experiments with m = 4 and m = 32 on grids with 4096, 8192, 16384, 32768, and 65536 points.
The oscillations visible in E(H) have a higher frequency for the m = 32 case. Moreover, E(H) does not converge to E(HS )
with increasing resolution at fixed m, due to finite relativistic effects.

The initialisation using (33) eliminates these relativistic effects in En. Figure 7(a) shows second-order convergence of
En to E(HS ) under grid refinement for m = 4. However, the convergence behaviour for m = 32 shown in Fig. 7(b) is more
complicated. The convergence behaviour of En is shown more clearly in Fig. 8, which shows the convergence of En for
the discrete initial conditions towards E(HS ) under grid refinement for particles with masses ranging from 2 to 64. The
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Figure 5: Unsigned differences of the computed (a) ψ+ and (b) |ψ+ | from the exact solution (93) versus scaled time τ = t/m for simulations with
m ∈ {8, 16, 32, 64, 128} on grids with 256m points covering [−64, 64].
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Figure 6: Unsigned differences of the computed (a) ψ− and (b) |ψ− | from the scaled derivative of the exact solution (93) versus scaled time τ = t/m for
simulations with m ∈ {8, 16, 32, 64, 128} on grids with 256m points covering the interval [−64, 64].
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Figure 7: Convergence of the discrete E(H) (solid lines) and the discrete invariant En (dashed lines) towards E(HS ) = 1/(2m) for grids with 4096,
8192, 16384, 32768 and 65536 points. Plot (b) shows data for m = 32. Plot (a) shows data for m = 4, for which relativistic effects account for the
non-convergence of E(H).

convergence behaviour is simpler without the overall cosα prefactor in (86), for which the O(N−2) asymptotic regime is
reached for smaller N. However, the prefactor in the error in the O(N−2) asymptotic regime is made significantly smaller
by including the cosα prefactor, as shown by comparing the two plots in Figs. 8(a) and (b).

11. Conclusion

We have shown that the Du Fort–Frankel scheme for the Schrödinger equation for a non-relativistic free particle is
equivalent, under a time-dependent unitary transformation, to the Ablowitz–Kruskal–Ladik (AKL) scheme for the Klein–
Gordon equation from relativistic quantum mechanics. The AKL scheme is a variational integrator with a discrete action
principle [22]. It is stable for ∆x = c∆t. It then has the same maximum signal propagation speed c as the Klein–Gordon
equation. The conditional convergence of the Du Fort–Frankel scheme to solutions of the Schrödinger equation arises
because it is not sufficient to have a converged solution of the Klein–Gordon equation. Solutions of the latter only converge
to solutions of the Schrödinger equation in the non-relativistic limit.

The required unitary transformation is a discrete analog of the transformation introduced by Pauli [2] to recover the
Schrödinger equation as describing slowly varying solutions of the Klein–Gordon equation in the non-relativistic limit. It
is equivalent to a shift in the zero-point of the energy so that the positive energy branch of the Klein–Gordon equation has
its minimum energy at zero, rather than at mc2. We have shown that the same transformation can be motivated using the
interaction picture of quantum mechanics, by decomposing the relativistic Hamiltonian into a multiple of the relativistic
rest energy,H0 = mc2I2, and a remainderHI . Moreover, the matrix element ⟨HI⟩ coincides with the matrix element ⟨HS ⟩
for the Schrödinger equation when ψ− is related to ψ+ by the slowly varying relation (33).

The AKL scheme for the Klein–Gordon equation is in turn unitarily equivalent to the Feynman checkerboard model, to
a one-dimensional quantum lattice gas algorithm, to a “quantum lattice Boltzmann equation,” and to the one-dimensional
discrete time quantum walk [22, 25–30]. These are all discretisations of the one-dimensional Dirac equation, which is a
first-order hyperbolic system for a pair of variables u and d, in contrast to the second-order scalar Klein–Gordon equation.
These discretisations thus give a unitary evolution of u and d from time level n to time level n + 1, in contrast to the AKL
scheme that determines u at time level n + 1 in terms of the single variable u at the two preceding times n and n − 1. This
reformulation as a first-order system gives a simple interpretation of the discrete invariant found by Wu [10] as describing
conservation of the total probability

∑
j{|un

j |2 + |dn
j |2} for the two variables in this formulation, not just of

∑
j |un

j |2 alone. A
further unitary transformation gives a decomposition of the original Du Fort–Frankel scheme into discrete ψ± variables.
These lead more easily to the non-relativistic limit, in which |ψ−|/|ψ+| ∼ |p|/mc ≪ 1, than the formulation in the u and d
variables that have comparable magnitudes. Any scheme that generates unitary evolution between two time levels through
an operator with no explicit time dependence has a second discrete invariant, the matrix element of the evolution operator
itself [22]. Expressing this invariant in the discrete ψ± variables, and converting from the normalisation by ||ψ+||2+ ||ψ−||2 of
the relativistic 2-component wavefunction to the non-relativistic normalisation by ||ψ+||2 in the Schrödinger equation, gave
a discrete invariant En that approximates the expectation of the non-relativistic Schrödinger Hamiltonian operatorHS .
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Figure 8: Convergence of the discrete invariant En towards E(HS ) = 1/(2m) with increasing number of grid points N for different particle masses
m ∈ {2, 4, 8, 16, 32, 64}. Plot (a) uses (86) and plot (b) uses (86) without the cosα prefactor. Plot (a) also shows the errors due to omitting the normalisation
correction via (87). The thicker dashed line shows E(H) for the 3-point finite difference (FD) Hamiltonian (5).
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A. Appendix. The five-point leapfrog, Harmuth, and Perring–Skyrme schemes

The five-point leapfrog schemes for the Schrödinger and Klein–Gordon equations proposed by Harmuth [5] can simi-
larly be transformed into each other. Consider the five-point leapfrog scheme (6) with an additional constant potential V in
the form

i
(
ψn+1

j − ψn−1
j

)
= −1

λ

(
ψn

j+1 − 2ψn
j + ψ

n
j−1

)
+ Vψn

j . (96)

This scheme uses all five points shown in Fig. 1(b), including the central point ψn
j omitted from the schemes discussed in

the main text. If we choose the potential V = M2∆t2 − 2, the substitution ψn
j = exp(iπn/2)un

j transforms (96) into

un+1
j − 2un

j + un−1
j =

1
λ

(
un

j+1 − 2un
j + un

j−1

)
− M2∆t2un

j . (97)

This is Harmuth’s [5] leapfrog scheme for the Klein–Gordon equation with no potential. It is also the linearisation of
Perring & Skyrme’s [38] scheme for the sine-Gordon equation. The particle mass M and λ are independent parameters in
this scheme, with λ = ∆x2/(c∆t)2 instead controlling the ratio of the space and time steps. The dispersion relation for (97)
is

sin2(ω∆t/2) =
1
λ

sin2(k∆x/2) +
1
4

M2∆t2. (98)

The scheme is only stable when the right hand side is less than or equal to 1 for all k, which requires λ ≥ (1−M2∆t2/4)−1.
When M > 0 the maximal propagation speed of disturbances in the numerical scheme is thus ∆x/∆t = cλ−1/2, which
is strictly larger than the maximum propagation speed c in the Klein–Gordon equation. For example, Perring & Skyrme
[38] ran their simulations with ∆x/∆t = c/0.95. By contrast, the Du Fort–Frankel and Ablowitz–Kruskal–Ladik schemes
described in the main text are stable with ∆x/∆t = c.
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[36] Lax, P.D., Richtmyer, R.D.. Survey of the stability of linear finite difference equations. Comm Pure Appl Math 1956;9:267–293.
[37] Richards, A.. University of Oxford Advanced Research Computing. Technical note doi:10.5281/zenodo.22558; 2015.
[38] Perring, J., Skyrme, T.. A model unified field equation. Nucl Phys 1962;31:550–555.

17


