
To appear in Europhysics Letters https://www.epletters.net/

Electromagnetic waves in lattice Boltzmann magnetohydrody-
namics

P. J. Dellar

OCIAM, Mathematical Institute, 24–29 St Giles’, Oxford, OX1 3LB, UK. (Accepted 26 May 2010)

PACS 03.50.De – Classical electromagnetism, Maxwell equations
PACS 41.20.Jb – Electromagnetic wave propagation
PACS 47.11.-j – Computational methods in fluid dynamics

Abstract. - An existing lattice Boltzmann formulation of non-relativistic magnetohydrodynamics
represents the magnetic field using a set of vector-valued distribution functions. By expressing
the behaviour of this system using a basis of moments of the distribution functions, we derive an
evolution equation for the electric field that coincides with the combination of Maxwell’s equation,
including the displacement current, and Ohm’s law. Numerical experiments verify the propagation
of electromagnetic waves radiated from an oscillating dipolar current.

Introduction. – The lattice Boltzmann approach to
hydrodynamics has become a widely established alterna-
tive to conventional computational fluid dynamics that
uses discrete approximations of the Navier–Stokes equa-
tions. Instead, the lattice Boltzmann approach formulates
an approximation to the Boltzmann equation from the ki-
netic theory of gases that is easily discretised in space
and time, leading to efficient and readily parallelisable al-
gorithms [1–3]. Magnetohydrodynamics (MHD) is con-
cerned with the behaviour of electrically conducting flu-
ids and magnetic fields. The magnetic field is advected
by, and diffuses through, the fluid, while itself exerting
a force on the fluid. The fluid velocity is typically much
smaller than the speed of light, so it is common to em-
ploy the quasi-static or MHD approximation and neglect
Maxwell’s displacement current [4]. This approximation
was used in the design of the lattice Boltzmann MHD
scheme that forms the topic of this Letter [5]. However,
we show that the scheme in fact contains the full set of
Maxwell’s equations, including the displacement current.
This greatly expands the range of phenomena that may
be simulated using these schemes.

Lattice Boltzmann magnetohydrodynamics. –
The equations for magnetohydrodynamics in an isother-
mal fluid with constant temperature θ are

∂tρ+∇·(ρu) = 0, (1a)
∂t(ρu) +∇·(θρI + ρuu) = J×B +∇·σ, (1b)

∂tB = ∇×(u×B) + η∇2B, (1c)

where ρ is the fluid density, u the velocity, I the identity
matrix, and σ the viscous stress. The magnetic field B
exerts a Lorentz force J×B on the fluid. The evolution of
B is given by combining Maxwell’s equations,

∂tB +∇×E = 0, ∇·B = 0, ∇×B = µ0J, (2)

as simplified for non-relativistic motions (|u| � c) by ne-
glecting the displacement current, and the Ohm’s law

J = σ (E + u×B) . (3)

Here σ is the conductivity, c the speed of light, µ0 the
permeability of free space, and η = 1/(σµ0) the resistiv-
ity. The momentum equation (1b) may be rewritten in
conservation form by expressing the Lorentz force J×B as
the divergence of the Maxwell stress. This is then readily
implemented in lattice Boltzmann hydrodynamics [1–3] by
changing the equilibrium momentum flux [5].

The evolution equation for B may be rewritten as

∂tB +∇·Λ = 0, (4)

by introducing an electric field tensor Λ with components
Λαβ = −εαβγEγ . This cannot be derived from a Boltz-
mann equation with scalar distribution functions, as used
in lattice Boltzmann hydrodynamics, because Λ would be
required to be symmetric rather than antisymmetric [5].

The first lattice Boltzmann formulation of magnetohy-
drodynamics [6, 7] used distribution functions fσa labelled
by two indices that propagated with two different sets of
particle velocities. This breaks the unwanted symmetry
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for Λ, and was inspired by the stochastic bidirectional
streaming used in lattice gas cellular automata [8, 9]. A
later variation by Mendoza & Muñoz [10] uses three sets of
particle velocities, vpi , epij , and bpij , and two sets of distri-
bution functions, fpi and Gpij . The particle velocities are
related by bpij = vpi×epij , and the velocity, electric, and
magnetic fields are given by

ρu =
∑
i,p

vpi f
p
i , E =

∑
i,j,p

epijG
p
ij , B =

∑
i,j,p

Bp
ijG

p
ij . (5)

This formulation was used to simulate Maxwell’s equations
coupled to a two-fluid plasma model. The current was
given locally by J =

∑
s qsnsus in terms of the two species’

charges qs, number densities ns, and velocities us.
Another approach writes B = ∇×(Azẑ) in two dimen-

sions. The resulting advection-diffusion equation for Az is
readily incorporated into lattice gas cellular automata [11]
and lattice Boltzmann schemes [1,12]. The magnetic field
is then recovered using finite difference approximations.

Dellar [5] introduced a separate set of distribution func-
tions for the magnetic field alone. These distributions were
allowed to take vector values, hence avoiding the symme-
try problem, and postulated to evolve according to the
vector Boltzmann equation

∂tgi + ξi · ∇gi = −1
τ

(
g − g(0)

i

)
, (6)

where i = 0, . . . , N . The ξi are a discrete set of particle
velocities, such as those given in (34) below. The zeroth
moment of (6) gives (4) for the magnetic field B and elec-
tric field tensor Λ given by

B =
N∑
i=0

gi, Λ =
N∑
i=0

ξigi. (7)

The right hand side of (4) vanishes provided the equilib-
rium distributions g(0)

i are chosen to satisfy

N∑
i=0

g(0)
i = B. (8)

The combination of (6) and the equilibrium distributions

g(0)
i = wi

(
B + θ−1ξi · (u B−B u)

)
(9)

leads to the induction equation (1c) for resistive magneto-
hydrodynamics under a Chapman–Enskog expansion [5].
Each discrete velocity ξi has an associated weight wi, as
in (34) below, and the lattice constant θ is defined by

N∑
i=0

wiξiξi = θI. (10)

Moment equations for the magnetic distribution
functions. – The analysis of lattice Boltzmann equa-
tions for hydrodynamics benefits from introducing a basis

of moments of the distribution functions. The first few
moments are hydrodynamic quantities such as ρ and u.
These may be completed in various ways to form a basis of
moments [1,13–16]. Evolution equations for the moments
then offer a complete description of the lattice Boltzmann
equation, one that leads naturally to a derivation of hy-
drodynamics. The collision operator is also more easily
specified by its action on a basis of moments.

Dellar [17] introduced a similar basis of moments for the
vector Boltzmann equation (6). The first two moments B
and Λ are defined by (7). The electric field tensor Λ in
turn evolves according to

∂tΛ +∇·M =
1
τ

(
Λ− Λ(0)

)
, (11)

where the 3rd-rank tensor M is given by

M =
N∑
i=0

ξiξigi. (12)

The components Mαβγ with α 6= β vanish for the D2Q5
and D3Q7 lattices commonly used for the magnetic distri-
bution functions [17]. The non-vanishing components of
M, together with B and Λ, form a basis for the magnetic
distribution functions. The non-vanishing components of
M evolve according to (no implied summation on α)

∂tMααβ + ∂αΛαβ = −1
τ

(
Mααβ −M (0)

ααβ

)
, (13)

and the gi may be reconstructed from the moments by [17]

giβ = 1
2 (ξiαΛαβ + ξiγξiαMγαβ) for i 6= 0,

g0β = Bβ − (Mxxβ +Myyβ +Mzzβ) . (14)

Evolution of the electric field. – We use this sys-
tem of moment equations to investigate the behaviour of
the electric field tensor Λ in more detail than the earlier
calculations that led merely to resistive magnetohydrody-
namics [5, 17]. The components Λαβ evolve according to

∂tΛαβ + ∂γMγαβ = −1
τ

(
Λαβ − Λ(0)

αβ

)
. (15)

The tensor Λ does not remain antisymmetric as it evolves,
because M is not antisymmetric on its last two indices
[17]. The physical electric field vector must thus be recon-
structed from the antisymmetric component of Λ through
Eγ = − 1

2εγαβΛαβ . This vector E evolves according to

∂tEγ − 1
2εγαβ∂µMµαβ = −1

τ

(
Eγ − E(0)

γ

)
. (16)

So far we have retained the BGK or single-relaxation-
time collision operator on the right hand side of the vector
Boltzmann equation (6). However, we are free to choose a
collision operator that assigns a relaxation time to M that
is much shorter than the relaxation time for Λ, and hence
for E. To sufficient accuracy, we may then take

Mµαβ = M
(0)
µαβ = θ δµαBβ . (17)

p-2



Electromagnetic waves in lattice Boltzmann magnetohydrodynamics

This is justified more formally in the next section.
Substituting (17) into (16) gives

∂tE− 1
2θ∇×B = −1

τ

(
E−E(0)

)
. (18)

Further substituting E(0) = −u×B, we obtain

− 1
c2
∂tE +∇×B =

1
c2τ

(E + u×B) , (19)

with the speed of light given by c = ( 1
2θ)

1/2. We have thus
recovered the combination of Maxwell’s equation

− 1
c2
∂tE +∇×B = µ0J, (20)

including the displacement current term, and Ohm’s law

J = σ(E + u×B) (21)

with conductivity

σ =
1

µ0c2τ
=
ε0
τ
. (22)

Here ε0 is the permittivity of free space, and ε0µ0 = c−2.

Chapman–Enskog expansion. – More formally,
(19) may be derived from a Chapman–Enskog expansion
that treats B and Λ on an equal basis. The resistive MHD
induction equation follows from posing the multiple scales
expansion [5]

gi = g(0)
i + τg(1)

i + · · · , ∂t = ∂t0 + τ∂t1 + · · · , (23)

together with the solvability condition

N∑
i=0

g(n)
i = 0, for n = 1, 2, . . . . (24)

In other words, the higher terms g(n)
i for n ≥ 1 make no

contribution to the magnetic field B.
The combination of the expansion (23) and the solvabil-

ity condition (24) is equivalent to expanding the moments

Λ = Λ(0) + τΛ(1) + · · · , M = M(0) + τM(1) + · · · , (25)

while leaving B unexpanded. One then recovers the re-
sistive MHD induction equation from the leading-order
approximation to the evolution equation for Λ,

Λ(1) = −τ
(
∂t0Λ(0) +∇·M(0)

)
. (26)

In terms of van Kampen’s theory for the elimination of
fast variables, B is a slow variable while Λ and M are
fast [18–20]. The elimination procedure, which is equiv-
alent to the multiple-scales approach, constructs a closed
evolution equation for B by finding successively more ac-
curate expressions for the fast variables Λ and M in terms
of the slow variable B and its spatial derivatives.

Maxwell’s equations follow from treating both B and Λ
as unexpanded slow variables, while M alone is fast. This
is equivalent to adding the extra solvability condition

N∑
i=0

ξig
(n)
i = 0, for n = 1, 2, . . . , (27)

so the higher terms g(n)
i for n ≥ 1 make no contribution

to either Λ or B. Equation (18) then follows from substi-
tuting the leading order term M(0) of the expansion

M = M(0) + τMM(1) + · · · , (28)

into the exact evolution equation (15) for Λ. This is closer
to the derivation of isothermal hydrodynamics from a lat-
tice Boltzmann equation, in which both ρ and u are taken
to be slow variables, while the momentum flux is fast.

Numerical implementation. – Integrating the
Boltzmann equation (6) along its characteristics for a
timestep ∆t using the trapezium rule [21] gives

gi(x + ξi∆t, t+ ∆t) = gi(x, t)

− ∆t
τ + 1

2∆t

(
gi(x, t)− g(0)

i (x, t)
)
, (29)

where
gi = gi −

1
2

∆t
τ

(
gi − g(0)

i

)
. (30)

This change of variables, given by He et al. [21] for lat-
tice Boltzmann hydrodynamics, leads to a second-order
accurate explicit scheme that is linearly stable for τ ≥ 0.
The combination (29) and (30) is readily generalised to
matrix collision operators by replacing each eigenvalue τ
with τ + 1

2∆t. For a more general formula see ref. [22].
The antisymmetric part of the tensor Λ contains the

electric field, via Eγ = − 1
2εγαβΛαβ . Although the equilib-

rium value Λ(0) is exactly antisymmetric, a non-zero sym-
metric component of Λ arises during evolution under (15).
The trace of Λ is related to the ∇·B = 0 constraint, while
the remaining symmetric, traceless part has no obvious
physical interpretation [17].

It is therefore useful to choose a collision operator in
which both M and the symmetric part of Λ are relaxed
towards equilibrium with very short relaxation times τM
and τs, while the antisymmetric part of Λ is relaxed on
the time τ determined by the conductivity σ using (22).
This collision operator is most easily computed through
its action on the moments [15, 22, 23]. In discrete form,
the post-collisional values of the moments are given by

E
′

= E−
(
E−E

(0)
) ∆t
τ + 1

2∆t
, (31)

Λ
′
(s) = Λ(s) − Λ(s)

∆t
τs + 1

2∆t
, (32)

M ′ = M−
(

M−M(0)
) ∆t
τM + 1

2∆t
. (33)
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Fig. 1: Decaying electric and magnetic energies in a wave.

Here Λ(s) = 1
2Λ+ 1

2Λ
T

is the symmetric part of the tensor Λ.
We then reassemble Λ ′ from E

′
and Λ

′
(s), and reconstruct

the post-collisional distribution functions gi
′ from B, Λ ′

and M ′ using (14). This allows a slight refinement of the
earlier analysis, in which E is kept as a slow variable while
the symmetric part of Λ is fast.

The computations reported below were all performed
using three copies of the D3Q7 lattice, one for each mag-
netic field component. The lattice velocity vectors are

ξ0 = 0, ξ1 = x̂, ξ2 = ŷ, ξ3 = ẑ,

ξ4 = −x̂, ξ5 = −ŷ, ξ6 = −ẑ. (34)

and the weights are w0 = 1/4 and wi = 1/8 for i 6= 0. The
lattice constant is θ = 1/4. The algorithm is thus fully
three-dimensional, even though the computations below
are performed on N × 1× 1 and N ×N × 1 lattices with
only one point in the suppressed dimensions.

Electromagnetic waves. – Taking the time deriva-
tive of (19) for a fluid at rest gives a telegraph equation [24]
for the electric field after eliminating ∂tB = −∇×E,

1
c2
∂tt E +∇×∇×E = − 1

c2τ
∂t E. (35)

Taking the divergence of (35) shows that∇·E remains zero
if it is zero initially. In fact, plane electromagnetic waves
have both k ·E = 0 and k ·B = 0. The dispersion relation
for solutions proportional to exp[i(kx− ωt)] is

ω = − i
2τ
±
√
k2c2 − 1

4τ2
. (36)

As τ →∞ we recover the dispersion relation ω = ±ck for
undamped electromagnetic waves.

Figure 1 shows the interchange and decay of energy
between the spatial averages ||B||2 and c−2||E||2 in a
numerical simulation of an electromagnetic wave start-
ing from the initial conditions Ez = sin(4πx) and By =
−Ez/c. The total energy decays correctly in proportion
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Fig. 2: Magnetic field component Bx at time t = 1.0

to exp(−t/τ). The simulation used 2048 points in the
interval [0, 1) with damping parameter τ = 100 in dimen-
sionless units where the speed of light c = 8−1/2.

Radiation from an oscillating line dipole. –
Next, we compute the electromagnetic field radiated by
an oscillating current dipole extending along the z-axis,

µ0J =
2√
π `2

x

`
exp

(
−x

2 + y2

`2

)
Θ(t) sin(ωt) ẑ. (37)

This current distribution has ∇·J = 0, so there are no ac-
companying charge oscillations, and is normalised so that
the integral of µ0Jz over the half-plane x > 0 equals unity.

This current source was included by choosing the equi-
librium electric field in the collision operator to be

E(0) = E− (τ/ε0) J. (38)

The evolution equation (18) for the electric field then coin-
cides with Maxwell’s equation (20) for the desired current
distribution. The electric field E defined by moments of
the gi in the numerical implementation now differs from
the physical electric field E. The two are related by

E = E + 1
2 (∆t/ε0) J, (39)

as given by a moment of (30). To achieve second-order
accuracy we must reconstruct E from E using this formula.

Figures 2 to 4 show the non-zero components Bx, By,
and Ez of the electromagnetic field at dimensionless time
t = 1.0. The domain is the unit square x, y ∈ [0, 1) and
c = 8−1/2 as before. The fields shown were computed
using the 3D lattice Boltzmann algorithm on N×N×1
grids with parameters ` = 0.05 and ω = 6π. The other
three components of the electromagnetic field remain 0
to round-off error. Figure 5 shows that these solutions
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Fig. 3: Magnetic field component By at time t = 1.0
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Fig. 4: Electric field component Ez at time t = 1.0
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Fig. 5: Second order convergence of fields computed on N ×N
grids towards the spectrally accurate reference solutions.

converge with the expected second-order accuracy to ref-
erence solutions that are converged to 12 digits accuracy,
and hence may be treated as exact in comparison.

Reference solutions. – The homogeneous Maxwell
equations may be satisfied by writing B = ∇×A and E =
−∇φ− ∂tA. If the scalar potential φ and vector potential
A satisfy the Lorenz gauge condition∇·A+(1/c2)∂tφ = 0,
the inhomogenous Maxwell equations decouple into sepa-
rate wave equations for A and φ, [4]

1
c2
∂ttA−∇2A = µ0J,

1
c2
∂ttφ−∇2φ = ρ/ε0. (40)

By Fourier transforming in space, and restricting the
right hand side to have a time-dependence proportional
to Θ(t) sin(ωt), where Θ(t) is the Heaviside step function,
the solution of these wave equations may be expressed us-
ing the solution G of the ordinary differential equation

1
c2

d2G

dt2
+ k2G = sin(ωt) (41)

with initial conditions G= G′= 0 at t = 0. This solution is

G(t; k, c, ω) =


1

2k2
(sin(kct)− tkc cos(kct)) if ω = kc,

c

k

kc sin(ωt)− ω sin(kct)
k2c2 − ω2

otherwise.

(42)
The solution to the first of (40) may then be written as

Ã(k, t) = µ0 J̃0(k)G(t; |k|, c, ω), (43)

where Ã(k, t) is the Fourier transform of A(x, t), and
J̃0(k) is the Fourier transform of the spatial -only part of
J(x, t) = J0(x)Θ(t) sin(ωt). The magnetic field is then
computed from B̃ = ik×Ã. The time derivative ∂tÃ that
appears in the electric field is given by

∂tÃ(k, t) = µ0 J̃0(k)G′(t; |k|, c, ω), (44)

where G′(t; |k|, c, ω) is the time derivative of the function
defined in (42). Accurate numerical solutions to Maxwell’s
equations may thus be computed using fast Fourier trans-
forms (FFTs). In this example, solutions with 12 digits
accuracy were achieved using just 128×128 Fourier modes.

Conclusion. – A lattice Boltzmann scheme that rep-
resents the magnetic field as the sum of a set of vector-
valued distribution functions [5] has been widely used to
simulate non-relativistic magnetohydrodynamics. The full
behaviour of the distribution functions may be found from
the evolution equations for a basis of moments [17]. We
have shown that the evolution equation for the electric
field, under a suitable collision operator, coincides com-
pletely with that given by Maxwell’s equations, includ-
ing Maxwell’s displacement current, in combination with
Ohm’s law. We therefore recover the full relativistic set of
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Maxwell’s equations from a scheme designed only for non-
relativistic MHD. This is essentially because a kinetic for-
mulation must involve a first order hyperbolic system with
source terms. Although derived for vacuum, the scheme
may be extended to simulate media with varying perme-
ability µ by adjusting the relation between M(0) and B.
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