uses discrete approximations ol the INavier—otokes equa- b 18 given Dy combining Maxwell’'s equations,
tions. Instead, the lattice Boltzmann approach formulates
To appeawir Eurdiphysiés Beftersm cquation from the ki OB+ Viships'y /wwiv-epletterS.net): ()
netic theory of gases that is easily discretised in space
and time, leading to efficient and readily parallelisable al-
gorithms [1-3]. Magnetohydrodynamics (MHD) is con-
cerned with the behaviour of electrically conducting flu- J=0(E+uxB). (3)
ids and magnetic fields. The magnetic field is advected
by, and diffuses through, the fluid, while itself exerting Here o is the conductivity, ¢ the speed of light, pug the
a force on the fluid. The fluid velocity is typically much permeability of free space, and n = 1/(opug) the resistiv-
smaller than the speed of light, so if is common to em-_ ity. The momentum equation (1b) mgy be rewritten in
Electromagnetico waves.in.dattice.Boltzman. magaﬁlﬁaia y&e cjye IxB as
Maxwell’s displacement current [4]. This approximation the divergence of the Maxwell stress. This is then readily
NAMIES used in the design of the lattice Boltzmann MHD implemented in lattice Boltzmann hydrodynamics [1-3] by
scheme that forms the topic of this Letter [5]. However, changing the equilibrium momentum flux [5].
P. J. D¥eShew that the sch.eme iI'l fact cogtains the full set of The evolution equation for B may be rewritten as
Maxwell’s equations, including the displacement current.
OCIA M Wi theapidti cokprwslsuthe 2pang S @hesio0afior dh@IXNALB, UK. OB ¥ Nebpred 26 May 2010) (4

be simulated using these schemes.

as simplified for non-relativistic motions (|u| < ¢) by ne-
glecting the displacement current, and the Ohm’s law

by introducing an electric field tensor A with components

Lattice Boltzmann magnetohydrodynamics. — Aap = —€apyE,. This cannot be derived from a Boltz-

P%cgqg% tlzé)ﬂsljborg lassica Oe]llec %Iéla%%%lﬁ%l,in %%w?g%gﬂgﬁtlomann equation with scalar distribution functions, as used

i ixil Y ¢ on GC%‘ magietl V%Vg §r0pagat10n in lattice Boltzmann hydrodynamics, because A would be

ant temperature, ¢ are o .. . . ) . .
omputatronal methods i Huid dynamics — required to be symmetric rather than antisymmetric [5].
Abstract. - An existing lattich Beltkingom) ferifplation of Ig))l-rglaghl%tﬁg %z}ga tt‘lcc y%?%@n %nncsfot.“mulatlor} of magnetohy-
o . . ' . oé' namic ig I use dlllstr?ilb tion functions f¢ labelled
repres n(tﬁ &Xg_r@a%g%ﬁ}c_’_ﬁﬁ%t)lbglglggt 2t yggtor—valuiqbd)lbtrl u 1Xn?i11111n.c%1 ng. | By expressin . . a
the be%avio r of this systém using a basis of mdments of the dl@%‘l‘})‘ﬁﬁdﬂ%%l%@,t &J‘H@?ﬁ%@ with two different sets of
evolution equation f@téne_fegéﬁ(@ KdR) chdt Yoiides withlde c&%ﬁ@@i&?@%b@%eﬁﬂhbﬁ@ﬁéﬁ§ the unwanted symmetry

including the displacement current, and Ohm’s law. Numerical experiments verify the propagation
of electromagnetic waves radiated from an oscillating dipolaf) ctlrrent.
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for A, and was inspired by the stochastic bidirectional
streaming used in lattice gas cellular automata [8,9]. A
later variation by Mendoza & Munoz [10] uses three sets of
particle velocities, v}, ef;, and b};, and two sets of distri-
bution functions, f,p and G7;. The particle velocities are
related by bf = v erJ, and the velocity, electric, and
magnetic ﬁelds are given by

pu—Zv , E= Zeprj,

i,3,p
This formulation was used to simulate Maxwell’s equations
coupled to a two-fluid plasma model. The current was
given locally by J = > _ gsnsu, in terms of the two species’
charges qs, number densities ng, and velocities us.
Another approach writes B = Vx(A,2) in two dimen-
sions. The resulting advection-diffusion equation for A, is
readily incorporated into lattice gas cellular automata [11]
and lattice Boltzmann schemes [1,12]. The magnetic field
is then recovered using finite difference approximations.
Dellar [5] introduced a separate set of distribution func-
tions for the magnetic field alone. These distributions were
allowed to take vector values, hence avoiding the symme-
try problem, and postulated to evolve according to the

vector Boltzmann equation
1
Le-a),
N. The &,

where ¢ = 0,..., , are a discrete set of particle
velocities, such as those given in (34) below. The zeroth
moment of (6) gives (4) for the magnetic field B and elec-
tric field tensor A given by

N N
B=> g, A=) &a.
=0 i=0

The right hand side of (4) vanishes provided the equilib-
(0)

ZBPGP (5)

,J,p

ogi+& Vg = (6)

(7)

rium distributions g, ' are chosen to satisfy

Z g(0)

The combination of (6) and the equilibrium distributions

(9)

leads to the induction equation (1c) for resistive magneto-
hydrodynamics under a Chapman—Enskog expansion [5].
Each discrete velocity &, has an associated weight w;, as
in (34) below, and the lattice constant 6 is defined by

(8)

g —w; (B+07',-(uB-Bu))

N
> wig€, = oL (10)

i=0

Moment equations for the magnetic distribution
functions. — The analysis of lattice Boltzmann equa-
tions for hydrodynamics benefits from introducing a basis

of moments of the distribution functions. The first few
moments are hydrodynamic quantities such as p and u.
These may be completed in various ways to form a basis of
moments [1,13-16]. Evolution equations for the moments
then offer a complete description of the lattice Boltzmann
equation, one that leads naturally to a derivation of hy-
drodynamics. The collision operator is also more easily
specified by its action on a basis of moments.

Dellar [17] introduced a similar basis of moments for the
vector Boltzmann equation (6). The first two moments B
and A are defined by (7). The electric field tensor A in
turn evolves according to

DA+ VM = % (A=), (11)

where the 3rd-rank tensor M is given by

N
M= Z £.€:8i
i=0

The components Mz, with o # 8 vanish for the D2Q5
and D3Q7 lattices commonly used for the magnetic distri-
bution functions [17]. The non-vanishing components of
M, together with B and A, form a basis for the magnetic
distribution functions. The non-vanishing components of
M evolve according to (no implied summation on «)

(12)

1
OtMaap + Oalap = —— (Maaﬂ M((x(())z)ﬁ) (13)

and the g; may be reconstructed from the moments by [17]

= (Ewt af t+ fvyfwz fya[}) for ¢ 7£ 0,
Bﬁ - (Mafxﬂ + Myyg + Mzzﬁ) .

g9is

gog = (14)

Evolution of the electric field. — We use this sys-
tem of moment equations to investigate the behaviour of
the electric field tensor A in more detail than the earlier
calculations that led merely to resistive magnetohydrody-
namics [5,17]. The components A,g evolve according to

Mg + 0y Myop = —l(A - A9). (15)
vityap p af af

The tensor A does not remain antisymmetric as it evolves,
because M is not antisymmetric on its last two indices
[17]. The physical electric field vector must thus be recon-
structed from the antisymmetric component of A through

E, = —1e,03Map. This vector E evolves according to
O Ey — %EvaﬁauMuaﬁ = _%<Ev - E§O))~ (16)

So far we have retained the BGK or single-relaxation-
time collision operator on the right hand side of the vector
Boltzmann equation (6). However, we are free to choose a
collision operator that assigns a relaxation time to M that
is much shorter than the relaxation time for A, and hence
for E. To sufficient accuracy, we may then take

Myop = M) = 08,0Bp. (17)

©w
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This is justified more formally in the next section.
Substituting (17) into (16) gives

1
OHE - 10VxB = ——(E - EO). (18)
T
Further substituting E(©) = —uxB, we obtain
1 1

with the speed of light given by ¢ = (%0)1/2. We have thus

recovered the combination of Maxwell’s equation
1

fc—QatEnLVxB = uoJ, (20)

including the displacement current term, and Ohm’s law

J=0(E+uxB) (21)
with conductivity
1
HoCT T

Here € is the permittivity of free space, and egpug = ¢ 2.

Chapman—Enskog expansion. — More formally,
(19) may be derived from a Chapman—Enskog expansion
that treats B and A on an equal basis. The resistive MHD
induction equation follows from posing the multiple scales
expansion [5]

(

gi=gV+rgW 4 9 =0 470+, (23)
together with the solvability condition
N
Sg =0, forn=12,.... (24)

=0

In other words, the higher terms ggn) for n > 1 make no
contribution to the magnetic field B.

The combination of the expansion (23) and the solvabil-
ity condition (24) is equivalent to expanding the moments

A=A 4+ 7AD 4.0 M=MO 4 7MD 4. (25)

while leaving B unexpanded. One then recovers the re-
sistive MHD induction equation from the leading-order
approximation to the evolution equation for A,

ND:ﬂ(@¢@+VM@) (26)
In terms of van Kampen’s theory for the elimination of
fast variables, B is a slow variable while A and M are
fast [18-20]. The elimination procedure, which is equiv-
alent to the multiple-scales approach, constructs a closed
evolution equation for B by finding successively more ac-
curate expressions for the fast variables A and M in terms
of the slow variable B and its spatial derivatives.

Maxwell’s equations follow from treating both B and A
as unexpanded slow variables, while M alone is fast. This
is equivalent to adding the extra solvability condition

N
Y e =0, forn=1,2,...
1=0

(27)

so the higher terms gz(n) for n > 1 make no contribution
to either A or B. Equation (18) then follows from substi-
tuting the leading order term M(®) of the expansion

M=MO 4 MDD 4. (28)
into the exact evolution equation (15) for A. This is closer
to the derivation of isothermal hydrodynamics from a lat-
tice Boltzmann equation, in which both p and u are taken
to be slow variables, while the momentum flux is fast.

Numerical implementation. — Integrating the
Boltzmann equation (6) along its characteristics for a
timestep At using the trapezium rule [21] gives

gi(x + giAt7 t+ At) = gi(x7 t)

At _ ©)
o T%At (gi(x7 t)—g (%, t)) , (29)

1At (0)
3 (8-e”).
T

This change of variables, given by He et al. [21] for lat-
tice Boltzmann hydrodynamics, leads to a second-order
accurate explicit scheme that is linearly stable for 7 > 0.
The combination (29) and (30) is readily generalised to
matrix collision operators by replacing each eigenvalue 7
with 7 + 2At. For a more general formula see ref. [22].
The antisymmetric part of the tensor A contains the
electric field, via Ey, = —%€,03A03. Although the equilib-

where
(30)

rium value A(©) is exactly antisymmetric, a non-zero sym-
metric component of A arises during evolution under (15).
The trace of A is related to the V-B = 0 constraint, while
the remaining symmetric, traceless part has no obvious
physical interpretation [17].

It is therefore useful to choose a collision operator in
which both M and the symmetric part of A are relaxed
towards equilibrium with very short relaxation times 7js
and 7, while the antisymmetric part of A is relaxed on
the time 7 determined by the conductivity o using (22).
This collision operator is most easily computed through
its action on the moments [15,22,23]. In discrete form,
the post-collisional values of the moments are given by

At

=

= (= =0
- E-(E-EV) = 31
( >T+%Af (31)
_ _ At

N = Ny —Ngy——— ) 32
(s) (s) <>E+%At (32)

_ o At
M = M—(M-M©®) —— 33
( >TM+%At ( )
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Fig. 1: Decaying electric and magnetic energies in a wave.

Here K(S) = %K—i—%KT is the symmetric part of the tensor A.
We then reassemble A’ from E and KI(S)7 and reconstruct
the post-collisional distribution functions g;’ from B, A’
and M’ using (14). This allows a slight refinement of the
earlier analysis, in which E is kept as a slow variable while
the symmetric part of A is fast.

The computations reported below were all performed
using three copies of the D3Q7 lattice, one for each mag-
netic field component. The lattice velocity vectors are

50 = Oa £1 = i:v
54 = -, 55 = _:07 56 =—Z.

ey
Il
<
22%
w
N

(34)

and the weights are wyg = 1/4 and w; = 1/8 for i # 0. The
lattice constant is § = 1/4. The algorithm is thus fully
three-dimensional, even though the computations below
are performed on NV x 1 x 1 and N x N x 1 lattices with
only one point in the suppressed dimensions.

Electromagnetic waves. — Taking the time deriva-
tive of (19) for a fluid at rest gives a telegraph equation [24]
for the electric field after eliminating 0,B = —VxE,

1 1
—25)ttE+V><V><E:—TBtE (35)
c c2r
Taking the divergence of (35) shows that V-E remains zero
if it is zero initially. In fact, plane electromagnetic waves

have both k-E = 0 and k-B = 0. The dispersion relation
for solutions proportional to expli(kz — wt)] is

i 1
S ¥
w 2T ¢ 472

As 7 — oo we recover the dispersion relation w = +ck for
undamped electromagnetic waves.

Figure 1 shows the interchange and decay of energy
between the spatial averages ||B||?> and ¢~2||E|> in a
numerical simulation of an electromagnetic wave start-
ing from the initial conditions E, = sin(4nz) and B, =
—FE./c. The total energy decays correctly in proportion

(36)
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Fig. 2: Magnetic field component B, at time t = 1.0

to exp(—t/7). The simulation used 2048 points in the
interval [0,1) with damping parameter 7 = 100 in dimen-
sionless units where the speed of light ¢ = 8=1/2.

Radiation from an oscillating line dipole. —
Next, we compute the electromagnetic field radiated by
an oscillating current dipole extending along the z-axis,

T T +y2
/“LOJ \/762 eXp ( T

This current distribution has V-J = 0, so there are no ac-
companying charge oscillations, and is normalised so that
the integral of ugJ, over the half-plane x > 0 equals unity.
This current source was included by choosing the equi-
librium electric field in the collision operator to be

(7/€0)J

The evolution equation (18) for the electric field then coin-
cides with Maxwell’s equation (20) for the desired current
distribution. The electric field E defined by moments of
the g, in the numerical implementation now differs from
the physical electric field E. The two are related by

L(At/eo)d

> O(t)sin(wt) 2. (37)

E®Y =E - (38)

E=E+ (39)
as given by a moment of (30). To achieve second-order
accuracy we must reconstruct E from E using this formula.

Figures 2 to 4 show the non-zero components B, B,,
and F, of the electromagnetic field at dimensionless time
t = 1.0. The domain is the unit square z,y € [0,1) and
¢ = 8 /2 as before. The fields shown were computed
using the 3D lattice Boltzmann algorithm on N x N x 1
grids with parameters ¢ = 0.05 and w = 67. The other
three components of the electromagnetic field remain 0
to round-off error. Figure 5 shows that these solutions

p-4



Electromagnetic waves in lattice Boltzmann magnetohydrodynamics

1.0 -3
-4
0.8 1 4
13
0.6 l 5,
(mw) :
0.4 1 10
: -1
0.2 ] )
-3
0k : : : : - -4
0 0.2 0.4 0.6 0.8 1.0

Fig. 3: Magnetic field component B, at time ¢t = 1.0
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Fig. 4: Electric field component E. at time t = 1.0
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Fig. 5: Second order convergence of fields computed on N x N
grids towards the spectrally accurate reference solutions.

converge with the expected second-order accuracy to ref-
erence solutions that are converged to 12 digits accuracy,
and hence may be treated as exact in comparison.

Reference solutions. — The homogeneous Maxwell
equations may be satisfied by writing B = VxA and E =
—V¢ — 0:A. If the scalar potential ¢ and vector potential
A satisfy the Lorenz gauge condition V-A+(1/¢?)d;¢ = 0,
the inhomogenous Maxwell equations decouple into sepa-
rate wave equations for A and ¢, [4]

1 1
gattA — VQA = ,U()J, g@ttd) — VQ(b = ,0/60. (40)

By Fourier transforming in space, and restricting the
right hand side to have a time-dependence proportional
to O(t) sin(wt), where O(t) is the Heaviside step function,
the solution of these wave equations may be expressed us-
ing the solution G of the ordinary differential equation

1 d*G

— —— + k*G = sin(wt) (41)

c
with initial conditions G= G’= 0 at t = 0. This solution is

1 (sin(kct) — tkecos(kct))

ns if w = ke,
G(t;k,c,w) =

c kesin(wt) — wsin(kct) otherwise

A k2¢? — w? .

(42)

The solution to the first of (40) may then be written as

A(kv t) = po jO(k) G(t; |k, c,w), (43)
where A(k,t) is the Fourier transform of A(x,t), and
Jo(k) is the Fourier transform of the spatial-only part of
J(x,t) = Jo(x)O(t)sin(wt). The magnetic field is then
computed from B = ikxA. The time derivative 0; A that
appears in the electric field is given by
WAk, t) = po Jo(k) G'(t; |k, ¢, w), (44)
where G'(t; |k|, ¢, w) is the time derivative of the function
defined in (42). Accurate numerical solutions to Maxwell’s
equations may thus be computed using fast Fourier trans-
forms (FFTs). In this example, solutions with 12 digits
accuracy were achieved using just 128 x 128 Fourier modes.

Conclusion. — A lattice Boltzmann scheme that rep-
resents the magnetic field as the sum of a set of vector-
valued distribution functions [5] has been widely used to
simulate non-relativistic magnetohydrodynamics. The full
behaviour of the distribution functions may be found from
the evolution equations for a basis of moments [17]. We
have shown that the evolution equation for the electric
field, under a suitable collision operator, coincides com-
pletely with that given by Maxwell’s equations, includ-
ing Maxwell’s displacement current, in combination with
Ohm’s law. We therefore recover the full relativistic set of
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Maxwell’s equations from a scheme designed only for non-
relativistic MHD. This is essentially because a kinetic for-
mulation must involve a first order hyperbolic system with
source terms. Although derived for vacuum, the scheme
may be extended to simulate media with varying perme-
ability 4 by adjusting the relation between M(® and B.
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