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Abstract. In kinetic treatments of hydrodynamics the macroscopic variables such
as density and momentum are given by moments of distribution functions. In
discrete kinetic theory it is possible to construct a complete set of moments whose
evolution provides a complete description of the dynamics of the underlying kinetic
equation. Moreover, the collision operator is most easily specified by its action upon
moments. This paper presents the equivalent moment system for a kinetic formulation
of magnetohydrodynamics that uses vector-valued distribution functions to represent
the magnetic field. Besides leading to modest improvements in numerical stability,
this moment system is invaluable for designing new kinetic equations to model more
realistic plasma processes such as current-dependent resistivity.
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1. Introduction

Magnetohydrodynamics is a continuum description of an electrically conducting fluid

interacting with a magnetic field. The magnetic field exerts a Lorentz force on the

fluid, while the magnetic field is itself advected by, and diffuses through, the fluid. This

paper presents a development of the author’s earlier lattice Boltzmann formulation

of magnetohydrodynamics (Dellar 2002) that uses a set of vector-valued distribution

functions to represent the magnetic field. We construct bases of moments that offer

equivalent descriptions of the two- and three-dimensional vector Boltzmann equations.

These are analogous to the bases of moment for lattice Boltzmann hydrodynamics

(without a magnetic field) proposed by Vergassola et al. (1990), Frisch (1991), and

d’Humières (1992). Having constructed a basis of moments, we may specify a collision

operator through its action on the basis. This allows us to construct matrix collision

operators for the magnetic field that are analogous to the multiple relaxation time

(MRT) collision operators used in lattice Boltzmann hydrodynamics (Lallemand &

Luo 2000, d’Humières et al. 2002). These matrix collision operators offer improvements

in numerical stability over the single relaxation time magnetic collision operator used in

Dellar (2002) and later work based on the same formulation. More importantly, a matrix

collision operator for the magnetic distribution functions is necessary for simulating more

realistic plasma models, such as a current-dependent resistivity.

In the following subsections we review the construction of moment bases in discrete

hydrodynamics, the equations of magnetohydrodynamics, and the chief obstacle to

their lattice Boltzmann formulation. Section 2 introduces the evolution equation

for the vector-valued distribution functions, and reviews the derivation of resistive

magnetohydrodynamics. Section 3 constructs a basis of moments in two spatial

dimensions, which is extended to three dimensions in section 4. Sections 5 and 6

present a decomposition of the electric field tensor, and an evolution equation for its

trace. Section 7 formulates several MRT collision operators for the magnetic distribution

functions, and numerical experiments are presented in section 8.

1.1. Discrete kinetic theory for hydrodynamics

In the discrete kinetic approach to hydrodynamics, the key dependent variables are a

set of distribution functions fi(x, t) that evolve according to an equation of the form

∂tfi + ξi · ∇fi = C[fi], (1)

for i = 0, . . . , N . Each fi is the number densities of particles propagating with the

corresponding velocity ξi. Macroscopic quantities like the fluid density ρ, velocity u,

and momentum flux Π are given by moments of the fi with respect to the discrete

velocities. The particle velocities are confined to the discrete set {ξ0, . . . , ξN}, so these

moments are expressed as sums,

ρ =
N∑

i=0

fi, ρu =
N∑

i=0

ξifi, Π =
N∑

i=0

ξiξifi, (2)
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instead of the integrals of continuum kinetic theory where ξ is a continuous variable.

Taking moments of (1) gives evolution equations for the moments of the fi, the first

of which are

∂tρ+∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0. (3)

The right hand sides vanish if we assume that collisions conserve mass and momentum,∑N
i=0 C[fi] = 0 and

∑N
i=0 ξiC[fi] = 0. Higher moments are typically not conserved by

collisions. For example, Π evolves according to

∂tΠ +∇·
(

N∑
i=0

ξiξiξifi

)
=

N∑
i=0

ξiξiC[fi]. (4)

More generally, the ξi · ∇fi term in (1) implies that the evolution of each moment

involves the divergence of a higher moment. In continuum kinetic theory, where the

particle velocity is a continous variable ξ, one may define infinitely many independent

moments of the distribution function f(x, ξ, t), for instance moments with respect to

Grad’s (1949) tensor Hermite polynomials.

However, in discrete kinetic theory there can only be N + 1 independent degrees

of freedom at each point (x, t), since there are N + 1 distribution functions f0, . . . , fN .

The process of taking higher and higher moments of the fi must therefore terminate,

in the sense that the higher moments may be expressed as linear combinations of the

existing lower moments. In other words, one may introduce a basis of N+1 independent

moments, such that the distribution functions, and hence all higher moments, may be

expressed in terms of the basis.

The closed set of evolution equations for the N+1 moments in the basis then offers

a full description of the evolution of the fi that is equivalent to the discrete Boltzmann

equation (1). While the advection of particles is described simply by the left hand side of

(1), the derivation of hydrodynamics is simpler using moments. Moreover, the collision

operator C[fi] is most easily studied through its action on moments. For example, C
must annihilate the moments ρ and ρu in a mass and momentum conserving theory. A

linear collision operator, the kind commonly used in the lattice Boltzmann approach, is

completely specified by its action on a basis.

The idea that one could understand the behaviour of a discrete Boltzmann equation

like (1) through the evolution equations for a basis of moments appeared in papers

by Vergassola et al. (1990), Frisch (1991), and d’Humières (1992). All three papers

motivate their choices of moments using orthogonality, but differ in their inner products.

Frisch (1991) and d’Humières (1992) use an unweighted (Euclidean) inner product, on

hexagonal and D2Q9 square lattices respectively, while Vergassola et al. (1990) used

a weighted inner product that assigned less weight to the diagonal directions of the

D2Q9 lattice. As well the insight gained from replacing (1) with an equivalent system

of evolution equations for moments, it is often advantageous to design the collision

operator by specifying its action on a basis of moments. This approach has led to

the so-called multiple relaxation time (MRT) collision operators. These operators offer
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improvements in numerical stability over the widely used single relaxation time or BGK

collision operator.

1.2. Magnetohydrodynamics

Nonrelativistic magnetohydrodynamics is a continuum description of an electrically

conducting fluid whose velocity is everywhere much smaller than the speed of light.

We may thus neglect the time derivative of the electric field, or Maxwell’s displacement

current. The remaining Maxwell equations are

∂tB +∇×E = 0, ∇·B = 0, µ0J = ∇×B, (5)

where E and B are the electric and magnetic fields, J is the current, and µ0 is the

permittivity of free space. The electric field is now simply the flux that appears in the

evolution equation for the magnetic field. It is related to other quantities by Ohm’s law,

which we take to be

J = σ (E + u×B) , (6)

with conductivity σ. Ohm’s law arises from the electron momentum equation in kinetic

treatments of plasmas. The version given here is one of the simplest, and omits many

terms that become important in certain parameter regimes. For instance, it contains no

time derivatives because the electrons’ inertia has been neglected.

In theoretical treatments of magnetohydrodynamics it is common to absorb µ0 into

the definition of the magnetic field, so the Lorentz force becomes (∇×B)×B. Ohm’s

law is then written as

E + u×B = η∇×B, (7)

with the resistivity η having the dimensions of a diffusivity (length2/time). Combining

equations (5) and (7) gives an evolution equation for the magnetic field,

∂tB = ∇×(u×B− η∇×B). (8)

This is commonly rewritten as

∂tB = ∇×(u×B) + η∇2B (9)

on the assumption that ∇η = 0 (and also that ∇·B = 0).

1.3. Discrete kinetic approaches to magnetohydrodynamics

The evolution equation for B may be rewritten using the divergence of an antisymmetric

rank-2 tensor Λ,

∂tB +∇·Λ = 0, with Λαβ = −εαβγEγ. (10)

Our earlier evolution equation (3) for the momentum ρu, as derived from kinetic theory,

contained the divergence of a tensor Π =
∑

i ξiξifi that is symmetric by construction.

It is thus impossible to express the evolution of a magnetic field using scalar distribution

functions analogous to the fi used in hydrodynamics as described above.
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Chen et al. (1991) introduced distribution functions fσ
a that propagated with two

different sets of particle velocities, vσ
a and Bσ

a . The two sets of velocities provide a

continuum version of the stochastic bidirectional streaming used in lattice gas cellular

automata by Chen et al. (1988) and Chen et al. (1992). Mart́ınez et al. (1994) later

reduced the number of variables by using a sparse set of distribution functions with fσ
a

identically zero for most combinations of a and σ. The macroscopic momentum and

magnetic field in the latter model are expressed as

ρu =
∑
a,σ

vσ
af

σ
a , ρB =

∑
a,σ

Bσ
af

σ
a . (11)

The electric field tensor is given by

Λ =
∑
a,σ

vσ
aB

σ
af

σ
a , (12)

which is no longer symmetric because vσ
a and Bσ

a are different vectors. An extension of

this approach by Mendoza & Munoz (2008) uses three sets of particle velocities, vp
i , ep

ij,

and bp
ij, and two sets of distribution functions, fp

i and Gp
ij. The particle velocities are

related by bp
ij = vp

i×ep
ij, and the velocity, electric, and magnetic fields are given by

ρu =
∑
i,p

vp
i f

p
i , E =

∑
i,j,p

ep
ijG

p
ij, B =

∑
i,j,p

Bp
ijG

p
ij. (13)

Although the fields in this formulation contain three components, in the reported

computations they only depended upon two spatial coordinates.

Another approach writes B = ∇×A using a vector potential A. In two dimensions,

the induction equation reduces to an advection-diffusion equation for the z-component

Az, which is readily incorporated into a lattice gas cellular automaton (Montgomery

& Doolen 1987) or a lattice Boltzmann scheme (Succi et al. 1991). In both cases

the implementation of the Lorentz force requires a finite difference approximation to

compute B from Az.

In this paper we develop the author’s earlier formulation of magnetohydrodynamics

(Dellar 2002). This formulation uses a second, independent set of distribution functions

to evolve the magnetic field. These distribution functions take vector values to avoid

the symmetry restriction discussed under (10) above. The two sets of distribution

functions are coupled only through macroscopic quantities, the fluid velocity and the

magnetic field, at lattice points. This more modular approach makes it straightforward

to adjust the fluid and magnetic Reynolds numbers independently, is easily implemented

in three dimensions, and can be combined with any existing lattice Boltzmann

scheme for three-dimensional hydrodynamics (Breyiannis & Valougeorgis 2004, Vahala

et al. 2008, Pattison et al. 2008, Riley et al. 2008).
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2. Discrete kinetic formulation using vector distribution functions

We express the magnetic field B as the sum of a set of vector-valued distribution

functions giβ,

Bβ =
N∑

i=0

giβ, (14)

rather than by a first moment of some scalar distributions like fluid momentum. This

enables us to circumvent the enforced symmetry of the second moment of a set of scalar

distribution functions described above. The vector distribution functions are postulated

to evolve according to the vector Boltzmann equation

∂tgiβ + ξiα∂αgiβ = −1

τ

(
giβ − g

(0)
iβ

)
. (15)

The Bhatnagar, Gross & Krook (1954) or BGK collision operator on the right hand side

will be generalised later.

Evolution equations for the moments of the giβ may be derived from (15). Summing

equation (15) gives an evolution equation for B in the form

∂tBβ + ∂αΛαβ = 0, (16)

where the electric tensor Λ is defined by

Λαβ =
N∑

i=0

ξiαgiβ. (17)

Equation (16) is intended to represent the Maxwell equation ∂tB + ∇×E = 0, so we

construct the collision operator to make the right hand side of (16) vanish. For the

BGK collision operator above, we require

N∑
i=0

g
(0)
iβ = Bβ. (18)

Multiplying (15) by ξiγ and summing gives an evolution equation for the tensor Λ,

∂tΛαβ + ∂γMγαβ = −1

τ

(
Λαβ − Λ

(0)
αβ

)
, (19)

where the tensor M defined by

Mγαβ =
N∑

i=0

ξiγξiαgiβ, (20)

is symmetric on its first two indices, Mγαβ = Mαγβ. The superscript (0) on Λ
(0)
αβ indicates

that is is evaluated for the equilibrium distribution, and similarly for other moments,

Λ
(0)
αβ =

N∑
i=0

ξiαg
(0)
iβ , M

(0)
αγβ =

N∑
i=0

ξiαξiγg
(0)
iβ . (21)
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2.1. Derivation of resistive magnetohydrodynamics

The equilibria given in Dellar (2002) are

g
(0)
iβ = wi

[
Bβ + θ−1ξiα (uαBβ −Bαuβ)

]
. (22)

on the D2Q5 lattice with the weights w0 = 1/3 and w1,2,3,4 = 1/6, for which θ = 1/3

(see Appendix). The first few moments of the equilibria are
N∑

i=0

g
(0)
iβ = Bβ, Λ(0) = uαBβ −Bαuβ, M (0) = θ δγαBβ. (23)

Substituting the equilibrium value Λ(0) into (16) therefore gives the induction equation

for ideal magnetohydrodynamics,

∂tBβ + ∂αΛ
(0)
αβ = 0, or ∂tB = ∇×(u×B). (24)

The first correction Λ(1) may be obtained using a Chapman–Enskog multiple-scales

expansion,

giβ = g
(0)
iβ + g

(1)
iβ + · · · , ∂t = ∂t0 + ∂t1 + · · · . (25)

These expansions are subject to the solvability condition that g
(1)
iβ and higher do not

contribute to the magnetic field,
N∑

i=0

g
(n)
iβ = 0 for n = 1, 2, . . . . (26)

The combination of the expansion of the giβ with the solvability condition is equivalent

to expanding the higher moments,

Λ = Λ(0) + Λ(1) + · · · , M = M(0) + M(1) + · · · (27)

and so on, while leaving B unexpanded.

Substituting these expansions into the evolution equation (19) for Λ and truncating

at leading order gives

Λ
(1)
αβ = −τ

(
∂t0Λ

(0)
αβ + ∂γM

(0)
γαβ

)
. (28)

This simplifies to (Dellar 2002),

Λ
(1)
αβ = −θτ∂αBβ − τ∂t0 (uαBβ −Bαuβ) = −θτ∂αBβ +O(Ma3), (29)

so the vector Boltzmann equation with the above equilibria solves the resistive MHD

induction equation in the form

∂tB = ∇×(u×B) + η∇2B, (30)

with resistivity η = θτ .

3. Moment system for D2Q5 MHD

The most common implementation of the above scheme uses a lattice with five velocities

in two dimensions, as shown in figure 1. Two copies of this lattice are used, one for each

component of the magnetic field. It is simplest to study the so-called D2Q5 lattice for

a scalar distribution function first.
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Figure 1. Two-dimensional discrete velocity lattice. The velocities in the D2Q5
lattice for the magnetic distribution functions are shown as thick lines. The additional
velocities making up the D2Q9 lattice for the hydrodynamic distribution functions are
shown as thin lines (see section 7).

3.1. Moments of the D2Q5 scalar lattice

Following the hydrodynamical terminology established in the Introduction, we consider

a set of scalar distribution functions fi for i = 0, . . . , 4. The first few moments are given

by

ρ =
4∑

i=0

fi, mx =
4∑

i=0

ξixfi, my =
4∑

i=0

ξiyfi, (31a)

Πxx =
4∑

i=0

ξixξixfi, Πyy =
4∑

i=0

ξiyξiyfi. (31b)

The quantity Πxy is identically zero, because ξixξiy = 0 for every velocity in the lattice.

In matrix notation,



ρ

mx

my

Πxx

Πyy




=




1 1 1 1 1

0 1 0 −1 0

0 0 1 0 −1

0 1 0 1 0

0 0 1 0 1







f0

f1

f2

f3

f4



. (32)

The 5×5 matrix above has full rank, its rows are linearly independent. The five moments

defined in (31) therefore form a basis. The five fi may be reconstructed uniquely from
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the values of these moments by inverting the above 5× 5 matrix to obtain



f0

f1

f2

f3

f4




=




1 0 0 −1 −1

0 1
2

0 1
2

0

0 0 1
2

0 1
2

0 −1
2

0 1
2

0

0 0 −1
2

0 1
2







ρ

mx

my

Πxx

Πyy



. (33)

Treating f0 as a special case, the distribution functions may be written compactly as

fi = 1
2
(ξi ·m + ξiξi : Π) for i 6= 0, f0 = ρ− (Πxx + Πyy) . (34)

This expression differs from the form (22) for the equilibria g
(0)
iβ that contained the

weights wi. As shown in the appendix, extending the moments for ρ and m to form

an orthogonal basis requires linear combinations of Πxx and Πyy. It therefore seems

preferable to use the nonorthogonal basis given by equations (31).

All higher moments may now be expressed in terms of the five moments defined

above. For example, ξ3
ix = ξix for every velocity in the lattice, so

4∑
i=0

ξixξixξixfi =
4∑

i=0

ξixfi = mx. (35)

Similarly, ξ3
iy = ξiy while ξ2

ixξiy = ξixξ
2
iy = 0.

3.2. A basis of moments for D2Q5 MHD

Two copies of the D2Q5 lattice makes for ten degrees of freedom, in gix for i = 0, . . . , 4

and giy for i = 0, . . . , 4. Therefore we must find ten linearly independent moments to

construct a basis.

The first two moments are the two components of the magnetic field,

Bx =
4∑

i=0

gix, and By =
4∑

i=0

giy. (36)

Another four moments are given by the four components of the electric field tensor,

Λxx =
4∑

i=0

ξixgix, Λxy =
4∑

i=0

ξixgiy, Λyx =
4∑

i=0

ξiygix, Λyy =
4∑

i=0

ξiygiy. (37)

The evolution of Λ involves the third rank tensor

Mγαβ =
4∑

i=0

ξiγξiαgiβ, (38)

as defined in (20) above. However, ξiαξiγ = 0 when α 6= γ for the D2Q5 lattice, so four

of the eight possible components of M vanish, Mxyx = Mxyy = Myxx = Myxy = 0.

Our basis therefore comprises the ten quantities

Bx, By, Λxx,Λxy,Λyx,Λyy, Mxxx,Mxxy,Myyx,Myyy, (39)
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made up of the two components of B, the four components of Λ, and the four nonzero

components of M. The vector distribution functions may be reconstructed from these

moments by applying (34) to each component,

giβ = 1
2
(ξiαΛαβ + ξiγξiαMγαβ) for i 6= 0, g0β = Bβ−(Mxxβ +Myyβ) . (40)

3.3. A closed set of evolution equations

To obtain a complete description of the dynamics, we must express the evolution of

the four nonzero components of M in terms of the lower moments. Multiplying the

vector Boltzmann equation (15) by ξiγξiµ and summing, we obtain the generic evolution

equation for the tensor M,

∂tMγαβ + ∂µNµγαβ = −1

τ

(
Mγαβ −M

(0)
γαβ

)
, (41)

which holds for any lattice. The fourth rank tensor N has components

Nµγαβ =
N∑

i=0

ξiµξiγξiαgiβ, (42)

and so is completely symmetric on its first three indices.

Specialising to the D2Q5 lattice, we note that ξiµξiγξiα = 0 unless µ = γ = α, so

Nxxxx =
4∑

i=0

ξixgix = Λxx, Nxxxy =
4∑

i=0

ξixgiy = Λxy, (43a)

Nyyyx =
4∑

i=0

ξiygix = Λyx, Nyyyy =
4∑

i=0

ξiygiy = Λyy, (43b)

with all other components vanishing.

We therefore have

∂tMxxx + ∂xΛxx = −1

τ

(
Mxxx −M (0)

xxx

)
, (44a)

∂tMxxy + ∂xΛxy = −1

τ

(
Mxxy −M (0)

xxy

)
, (44b)

∂tMyyx + ∂yΛyx = −1

τ

(
Myyx −M (0)

yyx

)
, (44c)

∂tMyyy + ∂yΛyy = −1

τ

(
Myyy −M (0)

yyy

)
, (44d)

which, together with the evolution equations for B and Λ, forms a closed system.

The equations for Λ and M alone appear to form a closed system with eight degrees

of freedom. However, B couples to the evolution equations for M through M(0), since

M
(0)
γαβ = θδγαBβ for the equilibrium distributions given above.
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4. Extension to the D3Q7 lattice

The same approach extends easily to three dimensions and the D3Q7 lattice. The

particle velocities are again aligned with the coordinate axes,

ξ0 = 0, ξ1 = x̂, ξ2 = ŷ, ξ3 = ẑ, ξ4 = −x̂, ξ5 = −ŷ, ξ6 = −ẑ. (45)

A basis of moments for the scalar distribution functions fi is given by



ρ

mx

my

mz

Πxx

Πyy

Πzz




=




1 1 1 1 1 1 1

0 1 0 0 −1 0 0

0 0 1 0 0 −1 0

0 0 0 1 0 0 −1

0 1 0 0 1 0 0

0 0 1 0 0 1 0

0 0 0 1 0 0 1







f0

f1

f2

f3

f4

f5

f6




. (46)

Inverting the abov 7× 7 matrix leads to a compact formula like (34),

fi = 1
2
(ξi ·m + ξiξi : Π) for i 6= 0, f0 = ρ− (Πxx + Πyy + Πzz) . (47)

In fact, the two formulae are identical if one writes f0 = ρ− TrΠ.

Turning to the vector distribution functions, we need three copies of the D3Q7

lattice, making 21 degrees of freedom in the giα. As before, these are made up from

three degrees of freedom in the magnetic field B, nine degrees of freedom in the tensor Λ,

and another nine degrees of the freedom in the nonzero components of the M tensor.

These last are again the components for which the first two indices are equal,

Mxxx, Mxxy, Mxxz, Myyx, Myyy, Myyz, Mzzx, Mzzy, Mzzz. (48)

These moments evolve according to (no implied summation on α)

∂tMααβ + ∂αΛαβ = −1

τ

(
Mααβ −M

(0)
ααβ

)
, (49)

the three-dimensional generalisation of (44). The reconstruction of the giβ from the

moments is given by

giβ = 1
2
(ξiαΛαβ + ξiγξiαMγαβ) for i 6= 0,

g0β = Bβ − (Mxxβ +Myyβ +Mzzβ) . (50)

5. Decomposition of the tensor Λ

This discrete kinetic formulation for the magnetic field was motivated by the equivalence

of two different expressions for the evolution of the magnetic field,

∂tB +∇×E = 0 ⇔ ∂tB +∇·Λ = 0, (51)

when Λ is a purely antisymmetric tensor with components Λαβ = −εαβγEγ. The

equilibrium value Λ
(0)
αβ = uαBβ −Bαuβ is indeed antisymmetric.
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However, carrying out the Chapman–Enskog expansion to first order in section 2.1

gave

Λαβ = Λ
(0)
αβ + Λ

(1)
αβ +O(τ 2),

= (uαBβ −Bαuβ)− θτ∂αBβ − τ∂t0 (uαBβ −Bαuβ) +O(τ 2), (52)

and the term −θτ∂αBβ is not antisymmetric.

We should thus decompose Λ into its symmetric and antisymmetric parts, and

identify the electric field with the antisymmetric part. Thus a more accurate statement

is

Eγ = −1
2
εγαβΛαβ. (53)

The remaining symmetric part, given by 1
2

(
Λ + ΛT

)
may be further decomposed into

an isotropic part, proportional to Tr Λ, and a symmetric traceless tensor. Thus we may

write

Λαβ = −εαβγEγ + 1
3
δαβΛγγ + 1

2

(
Λαβ + Λβα − 2

3
δαβΛγγ

)
. (54)

This is the decomposition of a general rank-2 tensor that is irreducible under rotations.

6. Evolution of the trace of Λ

Taking the trace of the Chapman–Enskog expansion (52) of the electric field tensor gives

Tr Λ = Λαα = −θτ∇·B +O(τ 2). (55)

The trace of Λ therefore acts as a proxy for the ∇·B = 0 constraint. In numerical

experiments, Tr Λ(0) ≈ 0 is maintained up to numerical round-off error (Dellar 2002).

Collecting together the previous equations gives a system for the evolution of the

six moments Λxx, Λyy, Λzz, Mxx, Myy, Mzz,

∂tΛxx + ∂xMxxx = −1

τ
Λxx, (56a)

∂tMxxx + ∂xΛxx = −1

τ
(Mxxx − θBx) , , (56b)

and similarly with x replaced by y or z. Taking the time derivative of (56a), eliminating

∂xtMxxx using (56b), then eliminating ∂xMxxx using (56a) again gives

Λxx + 2τ∂tΛxx + τ 2∂ttΛxx = −τθ ∂xBx + τ 2∂xxΛxx. (57)

Adding this to the equivalent equations for Λyy and Λxx gives

(1 + τ∂t)
2 Tr Λ = −τθ∇·B + τ 2 (∂xxΛxx + ∂yyΛyy + ∂zzΛzz) . (58)

The differential operator (1 + τ∂t)
2 has homogeneous solutions exp(−t/τ) and

t exp(−t/τ). The Chapman–Enskog expansion seeks solutions that vary slowly over

timescales much longer than τ , for which it is valid to replace (1 + τ∂t)
2T by T .

Substituting the leading order approximation Λxx = Λ
(1)
xx = −τθ∂xBx, and similarly

for Λyy and Λzz, gives

T = −τθ∇·B− τ 3θ (∂xxxBx + ∂yyyBy + ∂zzzBz) +O(τ 4), (59)
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consistent with the findings of section 6 of Dellar (2002). The latter were derived by

continuing the Chapman–Enskog expansion of the giβ to third order.

7. An algorithm for magnetohydrodynamics with a matrix collision

operator for the magnetic field

Magnetohydrodynamics is the study of the coupled behaviour of electrically conducting

fluids and magnetic fields. The magnetic field exerts a Lorentz force J×B on the fluid,

as well as being advected by the fluid. Thus the complete set of equations describing

isothermal magnetohydrodynamics with temperature θ and dynamic viscosity µ is

∂tρ + ∇·(ρu) = 0, (60a)

∂t(ρu) + ∇·(ρuu + θρ I) = J×B +∇· (µ (∇u + (∇u)T
))
, (60b)

∂tB = ∇×(u×B) + η∇2B. (60c)

The Lorentz force may be written as (minus) the divergence of the Maxwell stress, so

the inviscid momentum equation takes the standard conservation form

∂t(ρu) +∇·Π(0) = 0, with Π(0) = θρ I + ρuu + 1
2
|B|2 I−BB. (61)

The standard lattice Boltzmann formulation of isothermal hydrodynamics may therefore

be readily adapted to include the Lorentz force by choosing the equilibria f
(0)
i to satisfy

N∑
i=0

f
(0)
i = ρ,

N∑
i=0

ξif
(0)
i = ρu,

N∑
i=0

ξiξif
(0)
i = Π(0). (62)

Suitable equilibria for the D2Q9 lattice illustrated in figure 1 are given by

f
(0)
i = Wi

[
ρ

(
2− 3

2
|ξi|2

)
+ 3 (ρu) · ξi +

9

2
Π(0) :ξiξi −

3

2
Tr Π(0)

]
(63)

where Π(0) is given by (61). The weights for the D2Q9 lattice are W0 = 4/9,

W1,2,3,4 = 1/9, and W5,6,7,8 = 1/36, and the temperature θ = 1/3 in lattice units.

The equilibria in (63) coincide with the expressions given in Dellar (2002), and with the

standard D2Q9 isothermal equilibria from Qian et al. (1992) when B = 0.

The lattice Boltzmann algorithm for magnetohydrodynamics therefore involves the

simultaneous solution of the two discrete Boltzmann equations

∂tfi+ξi ·∇fi = −1

τ

(
fi − f

(0)
i

)
, ∂tgi+ξi ·∇gi = − 1

τb

(
gi − g

(0)
i

)
. (64)

The two equations are coupled because the f
(0)
i contain B =

∑
i gi, and the g

(0)
i contain

u = (1/ρ)
∑

i ξifi.

Equations (64) are usually implemented computationally as

f i(x + ξi∆t, t+ ∆t) = f i(x, t)−
∆t

τ + 1
2
∆t

(
f i(x, t)− f

(0)
i (x, t)

)
, (65a)

gi(x + ξi∆t, t+ ∆t) = gi(x, t)−
∆t

τb + 1
2
∆t

(
gi(x, t)− g

(0)
i (x, t)

)
. (65b)
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These expressions were derived by integrating equations (64) along characteristics for a

timestep ∆t, followed by the change of variables proposed by He et al. (1998)

f i = fi − 1

2

∆t

τ

(
fi − f

(0)
i

)
, gi = gi − 1

2

∆t

τb

(
gi − g

(0)
i

)
. (66)

Although these equations are linearly stable for any positive values of τ and τb, the f i

and gi oscillate around their equilibrium values when τ < 1
2
∆t or τb <

1
2
∆t. In other

words, the f i and gi are over -relaxed past equilibrium. This over-relaxation can trigger

the onset of nonlinear instability.

Greater stability may be obtained in lattice Boltzmann simulations of

hydrodynamics by noting that most discrete velocity lattices contain additional

degrees of freedom, call non-hydrodynamic or “ghost” variables, alongside the density,

momentum, and momentum flux. The momentum flux Π must be over-relaxed to

achieve low viscosities, but the ghosts may be safely relaxed monotonically towards

equilibrium. One may design a collision operator that applies a short relaxation time to

the momentum flux, giving a low viscosity, but a longer relaxation time to the ghosts.

This is the essence of the so-called multiple relaxation time (MRT) collision operators

(Lallemand & Luo 2000, d’Humières et al. 2002). An earlier and simpler idea simply sets

the ghosts to their equilibrium values after each collision (Higuera et al. 1989, McNamara

et al. 1995). This corresponds to a relaxation time of 1
2
∆t for the ghosts in the discrete

formulation of (65).

Applying the second idea to magnetohydrodynamics, we relax the momentum flux

towards its equilbrium value Π(0),

Π̃ = Π− ∆t

τ + 1
2
∆t

(
Π−Π(0)

)
, (67)

then reconstruct the post-collision distribution functions f̃i from ρ, u and Π̃ using

f̃i = Wi

[
ρ

(
2− 3

2
|ξi|2

)
+ 3 (ρu) · ξi +

9

2
Π̃ :ξiξi −

3

2
Tr Π̃

]
. (68)

Collisions conserve ρ and u so there are no tildes on these variables. Finally, we stream

the post-collision distribution functions by setting

f i(x + ξi∆t, t+ ∆t) = f̃i(x, t). (69)

The magnetic field only enters through the definition of Π(0), everything else is as it

would be in pure hydrodynamics.

So far, this is similar to the work of Pattison et al. (2008) and Riley et al.

(2008). These authors used an MRT collision operator for the hydrodynamic distribution

functions, but retained the BGK or single relaxation time collision operator of (65b) for

the magnetic distribution functions.

However, exactly the same steps may be applied to the vector distribution functions

that carry the magnetic field. We relax the electric field tensor towards its equilibrium

value,

Λ̃ = Λ− ∆t

τb + 1
2
∆t

(
Λ− Λ(0)

)
, (70)
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reconstruct the post-collision distribution functions g̃i from B and Λ̃,

g̃i = wi

(
B + 3 ξi · Λ̃

)
, (71)

and stream

gi(x + ξi∆t, t+ ∆t) = g̃i(x, t). (72)

The reconstruction (71) implicitly sets the moment M to its equilibrium value M(0), just

as (68) implicitly sets the three ghost variables on the D2Q9 lattice to their equilibrium

values (which are zero in the approach of Dellar (2003)). More generally, we may also

relax M towards its equilibrium value,

M̃ = M− ∆t

τm + 1
2
∆t

(
M−M(0)

)
, (73)

using a relaxation time τm that differs from τb, and then reconstruct using (40) or (50),

gi =
1

2

(
ξi · Λ̃ + ξiξi : M̃

)
for i 6= 0, g0 = B− Tr M̃. (74)

In a slight abuse of notation, we write Tr M̃ for the vector with components [Tr M̃]β =

M̃ααβ obtained by contracting M̃ on its first two indices.

8. Numerical experiments

We tested the schemes described above in simulations of the reconnection of magnetic

islands through the doubly-periodic coalescence instability, as described in Longcope

& Strauss (1993), Marliani & Strauss (1999), and Dellar (2002). In two-dimensional

incompressible magnetohydrodynamics it is convenient to express the velocity and

magnetic field as u = (−∂yϕ, ∂xϕ, 0) and B = (−∂yψ, ∂xψ, 0), where ϕ and ψ

are the streamfunction and magnetic flux function respectively. These vector fields

automatically satisfy ∇·u = 0 and ∇·B = 0. The numerical experiments reported

below began with the initial conditions

ψ = sin(π(x+ y)) sin(π(x− y)), ϕ = 2× 10−3 exp(−10(x2 + y2)), (75)

in the doubly periodic domain −1 ≤ x, y ≤ 1. The initial magnetic field corresponds

to an array of islands, with currents directed alternately into and out of the xy plane.

The velocity perturbation disturbs the symmetry of the array, and neighbouring pairs

of islands with aligned currents then attact each other, and eventually merge through

resistive reconnection. The initial velocity perturbation above is 20 times larger than

that used previously. This reduces the time spent in the initial linear phase of the

instability.

Figure 2 shows the evolution of the magnetic field lines during a typical numerical

experiment on a 128×128 grid with Mach number Ma =
√

3/64 ≈ 0.027, and diffusivities

ν = η = 1/150. The magnetic flux function ψ was reconstructed with spectral accuracy

from the magnetic field components Bx and By at grid points, as described in Dellar

(2002). Figure 3 shows the corresponding evolution of the peak current and peak
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Figure 2. Evolution of the magnetic field lines during coalescence. Positive contours
are shown solid (—) and negative contours are shown dotted (- - -).
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Figure 3. Evolution of the peak current and peak vorticity during coalescence with
diffusivities ν = η = 1/150.

vorticity. The nonlinear phase of the instability triggers a large growth in these peak

values, corresponding to regions of intense current where the magnetic field lines are

squeezed together before merging through resistive diffusion. The value ν = η = 1/150

for the diffusivities is close to the stability limit on a 1282 grid with BGK collision

operators for both the hydrodynamic and the magnetic distribution functions.

Applying the multiple relaxation time (MRT) collision operator described above to

the hydrodynamic distribution functions offers a large gain in stability. This collision

operator sets the three ghost modes on the D2Q9 lattice to their equilibrium values

(zero) at every timestep. The simulation then remains stable with ν = η = 1/575, with

the same Mach number and grid resolution as before, and with the same BGK collision

operator applied to the magnetic distribution functions. While this offers close to a

factor of four decrease in the diffusivities, it is worth emphasising that the experiments

with ν = η = 1/575 are stable on a 1282 grid, but they are not converged. Figure 4

shows the peak current for numerical experiments on grids with 1282, 2562, 5122, and

10242 points. The peak current on the 1282 grid is artifically lowered by the finite spatial

resolution.

Perhaps surprisingly, setting the M tensor to equilibrium at every timestep as

well causes a substantial reduction in stability. The stability threshold is then around

ν = η = 1/175, which is only a small improvement over the original implementation

using BGK collision operators for both the fluid and the magnetic distribution functions.

By carefully tuning the relaxation time for the M tensor in (73) it is possible to

improve slightly upon the stability of the hybrid scheme that uses an MRT collision

operator for the hydrodynamic distribution functions and the BGK collision operator

for the magnetic distribution functions. Figure 5 shows the evolution of the peak current

and vorticity for a simulation with ν = η = 1/600, which was made stable by choosing
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Figure 4. Evolution of the peak current with diffusivities ν = η = 1/575 at various
spatial resolutions. The 1282 simulation is stable, but it is not well-resolved.

τm = 0.05 as the relaxation time for M. For comparison, the relaxation time for Λ was

τb = 0.005 for this grid resolution and Mach number.

One small benefit of adopting an MRT collision operator for the magnetic

distribution functions is a lowering of the already low value for ∇·B, as measured by the

trace of the electric field tensor. Figure 6 shows the evolution of the peak value of Tr Λ,

scaled in relation to the peak of Λxy − Λyx. The current is given by scaling Λxy − Λyx

with a constant factor that depends upon the collision time τb, the grid resolution, and

the Mach number. The data in figure 6 therefore serve as a consistent approximation to

the relative magnitude of ∇·B and |∇×B|. Both schemes are thus shown to maintain

∇·B ≈ 0 with a very small error, much smaller than the spatial truncation error, but

the magnetic MRT collision operator leads to even smaller values of ∇·B.

Although these computations are all two-dimensional, two-dimensional MHD

in some ways more closely resembled three-dimensional hydrodynamics than two-

dimensional hydrodynamics. The Lorentz force provides a source of vorticity, analogous

to the vortex stretching term in three-dimensional hydrodynamics, that is absent

in two-dimensional hydrodynamics. The configuration in the numerical simulations

is designed to create large peak vorticities and currents through the action of the

coalescence instability. For example, the numerical simulations with η = ν = 1/575

achieve peak currents and vorticities roughly four times larger than the simulations

with η = ν = 1/150.

9. Conclusions

We have developed an equivalent moment system for the vector Boltzmann equation that

was designed to evolve a magnetic field. The basis of moments comprises the magnetic
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Figure 5. Evolution of the peak current and peak vorticity during coalescence with
diffusivities ν = η = 1/600 and MRT collision operators for both fluid and magnetic
distribution functions.
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Figure 6. Evolution of the ratio of the peak of Λxx + Λyy to the peak of Λxy − Λyx,
which represents the ratio of ∇·B to |∇×B|. Both simulations were performed
on a 1282 grid with ν = η = 1/575, and an MRT collision operator for the
hydrodynamic distribution functions. The second MRT collision operator for the
magnetic distribution function lowers the already low value of TrΛ, which serves as a
consistent approximation to ∇·B.
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field B, the electric field tensor Λ, and the non-vanishing components of the third rank

tensor M. We have also derived formulae for reconstructing the vector distribution

functions giβ from these moments. These formulae allow the collision operator to be

specified in the basis of moments.

The original formulation of the vector Boltzmann equation was motivated by the

correspondence

∂tB +∇×E = 0 ⇔ ∂tB +∇·Λ = 0 with Λαβ = −εαβγEγ. (76)

In other words, Λ was assumed to be a purely antisymmetric tensor with components

derived from E. The equilibrium value Λ(0) = uB −Bu is indeed antisymmetric, but

the antisymmetry of Λ is not preserved by its evolution under the vector Boltzmann

equation. In particular, the Chapman–Enskog expansion enabled us to calculate the

first correction Λ(1) with components

Λ
(1)
αβ = −τθ∂αBβ +O(Ma3), (77)

so Λ(0) + Λ(1) contains a mix of symmetric and antisymmetric parts. Thus a more

accurate statement for reconstructing the electric field from the Λ tensor is

Eγ = −1
2
εγαβΛαβ. (78)

The non-zero symmetric component of Λ was harmless in the author’s earlier

formulation of resistive MHD with constant resistivity. The resulting evolution equation

for B only differs from its intended form by terms proportional to ∇·B, which is

maintained at a vanishingly small level. However, when attempting to simulate a

more realistic plasma, it is necessary to separate out the antisymmetric part of Λ,

corresponding to the physically relevant electric field, from the symmetric part. This

may be achieved using a more general matrix collision operator in place of the simple

BGK collision operator.

For example, a simple extension of Ohm’s law (7) would allow the resistivity η to

be a function of the local current density,

E + u×B = η(|∇×B|)∇×B, (79)

analogous to the dependence of the viscosity on the strain rate in a generalised

Newtonian fluid. Inserting a spatially varying η, and hence a spatially varying τb,

into the earlier BGK or single-relaxation-time version of the vector Boltzmann equation

leads to an evolution equation of the form

∂tB = ∇×(u×B) +∇· (η∇B) . (80)

This differs by a term proportional to ∇η from the physically correct form

∂tB = ∇×(u×B)−∇× (η∇×B) . (81)

A lattice Boltzmann formulation of (81) without the spurious ∇η term may be achieved

by using a matrix collision operator that applies a spatially varying relaxation time only

to the antisymmetric part of the Λ tensor. A detailed implementation will be presented

in a future paper.
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Appendix: Orthogonal bases for the D2Q5 lattice

Lattice Boltzmann equilibria are commonly expressed as polynomials in the particle

velocities ξi, multiplied by some weights wi. For example, the equilibria for the magnetic

distribution functions were given by

g
(0)
iβ = wi

(
Bβ + θ−1ξiαΛ

(0)
αβ

)
, (A.1)

where the lattice constant θ is determined by the relation

4∑
i=0

wiξiαξiβ = θδαβ. (A.2)

The weights for the D2Q5 lattice are w0 = 1/3 and w1,2,3,4 = 1/6, for which θ = 1/3.

In lattice Boltzmann formulations of hydrodynamics it is conventional to use second

moments with respect to the polynomials ξiαξiβ−θδαβ. These polynomials are orthogonal

to unity, which gives the density moment, through property (A.2). For example, the

equilibria for the hydrodynamic distribution functions fi are given in section 7 by

contracting the desired moments with the tensor Hermite polynomials 1, ξi, ξiξi − 1
3
I.

However, no choice of weights in the D2Q5 lattice makes the second moments ξ2
ix−θ

and ξ2
iy − θ orthogonal to each other, as well as orthogonal to the density. Mutually

orthogonal second moments may only be found using linear combinations of ξ2
ix and ξ2

iy,

(1 + λ)ξ2
ix − λξ2

iy − 1
3
, (1 + λ)ξ2

ix − λξ2
iy − 1

3
, (A.3)

with λ = 1
2
(±3−1/2 − 1). It thus seems preferable to use non-orthogonal moments with

respect to ξ2
ix and ξ2

iy, as in section 3.1 onwards.
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