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The thermal shallow water equations provide a depth-averaged description of motions in a fluid layer that permits
horizontal variations in material properties. They typically arise through an equivalent barotropic approximation of
a two-layer system, with a spatially varying density contrast due to an evolving temperature field in the active layer.
We formalise a previous derivation of the quasi-geostrophic (QG) theory of these equations, by performing a direct
asymptotic expansion for small Rossby number. We then present a second derivation as the small Rossby number limit
of a balanced model that projects out high-frequency dynamics due to inertia-gravity waves. This later derivation has
wider validity, not being restricted to mid-latitude β-planes. We also derive their local energy conservation equation
from the QG limit of a thermal shallow water pseudo-energy conservation equation. This derivation involves the
ageostrophic correction to the leading order geostrophic velocity that is eliminated in the usual derivation of a closed
evolution equation for the QG potential vorticity. Finally, we derive the non-canonical Hamiltonian structure of the
thermal QG equations from a decomposition in Rossby number of a pseudo-energy and Poisson bracket for the thermal
shallow water equations.
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1. Introduction
Shallow water equations are widely used in geophysical and planetary fluid dynamics as conceptual models for

the behaviour of rotating, stratified fluids. They offer the simplest models for interactions between waves and vortical
motions, and may be derived as amplitude equations for the vertical normal modes in continuously stratified fluids.
While standard shallow water theory applies to one or more layers of homogeneous fluid, thermal shallow water the-
ory permits horizontal variations of the thermodynamic properties of the fluid within each layer. These models were
introduced by Lavoie (1972) to describe atmospheric mixed layers over frozen lakes, and later adopted for the tropical
oceans (Schopf & Cane 1983; McCreary & Yu 1992), the coastal ocean (McCreary & Kundu 1988; McCreary et al.
1991; Røed & Shi 1999; Carbonel & Galeao 2007), and atmospheric currents (Anderson 1984). They are commonly
employed for the uppermost layer of predictive numerical ocean models using Lagrangian discretisations in the verti-
cal, such as the Miami Isopycnic Coordinate Ocean Model (MICOM) (Bleck et al. 1992), and the Generalized Ocean
Layered Model (GOLD) (Adcroft & Hallberg 2006). The thermal shallow water equations also resemble shallow water
models of moist convection (Zeitlin 2007; Bouchut et al. 2009; Lambaerts et al. 2011).

Vortical motions typically evolve on time scales much longer than those characteristic of inertia-gravity waves.
Quasi-geostrophic (QG) theory, first introduced by Charney (1948), is the simplest example of an intermediate or
balanced model that exploits this separation of time scales to produce a simplified model, while still retaining the
time evolution omitted from purely geostrophic flow. QG theory may be applied to both shallow water and three-
dimensional continuously stratified equations. It filters out inertia-gravity waves, replacing them with an elliptic rela-
tion between a materially conserved scalar, the potential vorticity, and the geostrophic streamfunction. In this respect
it closely resembles the derivation of incompressible fluid equations from compressible fluid equations, where sound
waves are filtered out in favour of an elliptic equation for the pressure.

QG equations may be derived by posing expansions of the velocity, layer depth, and other variables in a small
Rossby number, the dimensionless parameter that characterises the significance of inertia relative to the Coriolis force.
It is also necessary to assume small (order Rossby number) displacements of the layer depth, in shallow water theory,
or of the isopycnal surfaces, in the three-dimensional Boussinesq equations, from their uniform equilibrium positions
for a state of rest (Pedlosky 1987; Salmon 1998; White 2002; Majda 2003). An alternative derivation of QG theory
projects the underlying equations onto a basis of the linear wave modes for this unperturbed rest state, and retains
nonlinear interactions only between the vortical modes (Leith 1980; Salmon 1998; Majda 2003; Remmel & Smith
2009). This gives an explicit origin to the filtering out of inertia-gravity waves. The usage of the linear wave modes of
the unperturbed state as coordinates for the projection is the origin of the restriction of QG theory to small perturbations
of the isopycnals, which is logically distinct from the small Rossby number approximation (Leith 1980; Salmon
1988b). This projection approach may be used to develop QG theory on a sphere (Kuo 1959; Charney & Stern 1962;
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FIGURE 1. A two-layer system with variable density ρ(x, t) < ρ0 in the upper layer. The equivalent barotropic approximation
holds when h ≪ H , |U | ≪ |u|, ρ0 − ρ(x, t) ≪ ρ0, and allows the lower layer to be treated as quiescent.

Schubert et al. 2009; Verkley 2009), as opposed to the usual restriction to mid-latitude β-planes. Charney & Flierl
(1981), Hoskins et al. (1985) and White (2002) give broader surveys and reviews of QG theory, while Majda (2003)
gives an introduction to the rigorous mathematical theory of the QG limit.

QG theory is attractive for numerical simulation, because the time step is limited only by the maximum velocity of
the fluid, rather than by the typically much larger velocity of inertia-gravity waves. The geostrophic streamfunction
may be reconstructed from the instantaneous potential vorticity distribution via the inversion of a modified Helmholtz
operator, which is diagonalised by a Fourier or spherical harmonic transform. Numerical simulations of multi-layer QG
equations have evolved from pioneering experiments in numerical weather prediction (e.g. Charney & Phillips 1953)
to large-scale simulations of rotating stratified turbulence (e.g. Reinaud et al. 2003). The presence of only quadratic
nonlinearities in QG theory also makes them amenable to the techniques of statistical mechanics (e.g. Salmon 1998;
Majda & Wang 2006), notably the use of cumulant expansions to study zonally symmetric mean flows in geostrophic
turbulence on spheres and β-planes (Farrell & Ioannou 1993, 2003, 2007; Marston et al. 2008; Tobias et al. 2011;
Srinivasan & Young 2012).

Ripa (1996b) derived a QG form of the thermal shallow water equations, which coincide with Young’s (1994)
subinertial mixed layer model in the limit of rapid vertical mixing. In this paper, we provide a formal derivation
of these thermal QG equations from an asymptotic expansion for small Rossby number. We then present a second
derivation via a nonlinear balanced model that corresponds to a projection of the dynamics onto the slow normal
modes for perturbations around a uniform rest state in the the thermal shallow water equations. The thermal QG
equations are then the small Rossby number limit of this balanced model. We derive their local energy density and
energy flux from the QG limit of a pseudo-energy density and flux for the thermal shallow water equations. This
derivation involves the small ageostrophic correction to the leading order geostrophic velocity, the correction that is
eliminated in the derivation of the closed QG evolution equations. Finally, we derive the non-canonical Hamiltonian
structure of the thermal QG equations (as stated by Ripa 1996b) from a small Rossby number decomposition of a
pseudo-energy and Poisson bracket for the thermal shallow water equations.

2. Thermal shallow water equations
Shallow water theory describes one or more layers of inviscid fluid. Within each layer the horizontal velocity is

supposed to be depth-independent, so the fluid moves in columns. One may relax the homogeneity assumption of
standard shallow water theory, and allow the fluid properties within each layer to vary in the horizontal. This scenario
arises most naturally in an equivalent barotropic or 1 1

2 -layer configuration, as sketched in figure 1. The active upper
layer is characterised by a spatially varying, but bounded below, density contrast ∆ρ = ρ0 − ρ(x, t) from a much
deeper, quiescent lower layer with constant density ρ0. We introduce Θ = g∆ρ/ρ0 to represent this density contrast,
in the form commonly called the reduced gravity g′ for spatially homogeneous layers. The equivalent barotropic
approximation (e.g. Gill 1982) then leads to a single set of shallow water equations for the active upper layer.
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The thermal shallow water equations may be written as

∂h

∂t
+∇ · (hu) = 0, (2.1a)

∂Θ

∂t
+ (u · ∇)Θ = −κ (hΘ−H0Θ0) , (2.1b)

∂u

∂t
+ (u · ∇)u+ f ẑ × u = −∇ (Θh) +

1

2
h∇Θ, (2.1c)

where h is the depth of the active layer, u is the depth-averaged horizontal velocity, and ∇ = (∂x, ∂y)
T is the

horizontal gradient operator. These equations are written for a frame rotating with angular velocity f/2 about the
vertical axis, with ẑ being a unit vector in the z-direction. The momentum equation (2.1c) reduces to the standard
shallow water momentum equation for a homogeneous layer when the density contrast Θ is constant.

The −κ (hΘ−H0Θ0) term on the right hand side of (2.1b) models a Newtonian cooling back to an equilibrium
state with h = H0 and Θ = Θ0. A similar term was included in the mass conservation equation (2.1a) for the standard
shallow water equations by Juckes (1989); Polvani et al. (1995); Thuburn & Lagneau (1999) to model radiative cooling
in the terrestrial stratosphere, and the resulting transfer of mass between the stratosphere and the troposphere below.
The same −κ(h−H0) term in (2.1a) was used by Scott & Polvani (2008) to model the atmospheres of gas giant planets.
Making this change while keeping (2.1c) for the velocity unchanged introduces a second source term −κ(h −H0)u
into the evolution equation for the momentum hu. Our system (2.1a-c) incorporates radiative relaxation directly in the
temperature equation instead, so that mass and momentum are conserved within the active layer.

2.1. Derivation

Shallow water equations such as (2.1) may be derived by rescaling the three-dimensional fluid equations for a small
aspect ratio δ = H/L ≪ 1 between the vertical length scale H and the horizontal length scale L (e.g. Pedlosky
1987; Salmon 1998; Vallis 2006). The dominant balance in the vertical momentum equation is then the hydrostatic
balance ∂zp = −gρ that determines the pressure p in terms of the density distribution within each fluid column. We
consider the two-layer system sketched in figure 1 and suppose that ∆ρ≪ ρ0. Deviations in the position of the upper
free surface are then much smaller than deviations in the position of the interface between the two layers, so we may
approximate the upper free surface by a rigid lid at z = 0 that applies a pressure P (x, y, t) (e.g. Vallis 2006). The
pressure p(x, y, z, t) in the upper layer is then given by hydrostatic balance as

p = P (x, y, t)− g(ρ0 −∆ρ(x, y, t))z. (2.2)

We have assumed that the density contrast ∆ρ(x, y, t) is independent of depth in the upper layer, as sketched in
figure 1. Hydrostatic balance, together with continuity of pressure across the interface at z = −h(x, y, t), gives the
pressure p2 in the lower layer as

p2 = P − ρ0gz −∆ρgh. (2.3)

The equivalent barotropic approximation applies to a lower layer that is deep and quiescent, so we impose a vanishing
horizontal pressure gradient ∇⊥ p2 = 0. This determines the pressure P = gh∆ρ at the rigid lid. The pressure in the
upper layer is thus

p = ρ0[−gz +Θ(z + h)], (2.4)

where we have put Θ = g∆ρ/ρ0 as before.
In standard shallow water theory, with spatially uniform Θ, the horizontal pressure gradient ∇⊥ p = ρ0Θ∇h is in-

dependent of z. This is compatible with the assumption that the fluid moves predominantly in columns, u(x, y, z, t) =
u0(x, y, t) + O(δ2) for the horizontal velocity. This property is lost when Θ varies horizontally, since now ∇⊥ p =
ρ0 [Θ∇h+ (h+ z)∇Θ] varies with z. However, one may regard the thermal shallow water equations as a projec-
tion onto columnar motions that results from integrating the three-dimensional equations in the vertical. Inserting the
above expression for ∇⊥ p, for the case where Θ varies horizontally, into Wu’s (1981) formula for the depth-averaged
horizontal momentum equation gives

∂t(hu) +∇ · (huu) + hf ẑ × u = −
∫ 0

−h

Θ∇h+ (h+ z)∇Θ dz = −1

2
∇(h2Θ), (2.5)

after making the Boussinesq approximation, and dividing through by ρ0. An overbar denotes a vertical average, such
as u(x, y, t) = h−1

∫ h

0
u(x, y, z, t) dz. The only questionable step in the derivation of the thermal shallow water

momentum equation (2.1c) is the use of the closure relation uu = uu+O(δ4) that holds for near-columnar motions
(Su & Gardner 1969; Camassa et al. 1996; Stewart & Dellar 2010).

In Appendix A we derive the thermal shallow water equations (2.1) from Hamilton’s principle by projecting the
three-dimensional Lagrangian onto columnar fluid motions, following Miles & Salmon’s (1985) re-derivation of the
Green & Naghdi (1976) equations for weakly non-hydrostatic motions, and Dellar & Salmon’s (2005) derivation of
shallow water equations with the complete Coriolis force. This derivation guarantees that the projected equations
preserve the expected conservation laws and Hamiltonian structure of the three-dimensional equations.
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2.2. Justification for vertical averaging

McCreary & Kundu (1988), Fukamachi et al. (1995) and Eldevik (2002) postulated turbulent eddy stresses to balance
the z-dependent part of ∇⊥ p, while Young (1994) included an explicit relaxation of the horizontal velocities towards
their vertical averages in the starting point for deriving his three-dimensional subinertial model of the oceanic mixed
layer. The large mixing limit of Young’s (1994) equations coincides with the thermal QG equations. Fukamachi et al.
(1995) showed that the thermal shallow water equations capture an analogue of the ageostrophic baroclinic instability
studied by Stone (1966) for continuously stratified fluids (see also Barth 1994). In suitable dimensionless variables,
the two dispersion relations for the growth rate σ may be written as

(1 + κ2)σ2 − κ2lσ + ακ2l2 = 0, (2.6)

where k and l are wavenumbers parallel and perpendicular to the background temperature gradient, and κ2 = k2 + l2.
The constant α takes the value α = 1/3 for a continuously stratified fluid, and α = 1/4 for the thermal shallow water
equations. The two dispersion relations are otherwise identical, showing that the thermal shallow water equations offer
a single layer model that captures some aspects of baroclinic instability in continuously stratified fluids. The change in
α may be attributed to the vertical mixing implicit in the derivation of the thermal shallow water equations. Numerical
simulations of the nonlinear development of these instabilities in the thermal shallow water equations also show
reasonable agreement with three dimensional simulations, and with observations of small-scale frontal instabilities in
the ocean (McCreary et al. 1991; Barth 1994; Fukamachi et al. 1995; Shi & Roed 1999).

The assumption of large vertical mixing seems reasonable for applications of the thermal shallow water equations
to the upper oceanic mixed layer, or to the cloud decks of gas giant planets, as clouds are indicative of vertical mixing
through convection. Gierasch et al. (2000) report observations of strong moist convection in Jupiter’s atmosphere made
by the Galileo spacecraft. The combination of Jupiter’s observed surface heat flux with the opacity of its atmosphere at
depth indicates substantial convective heat transfer takes place through much of its interior (Guillot 2005). In addition,
rotation about a vertical axis will encourage columnar motion through the propagation of internal waves parallel to the
rotation axis.

The projection approach was also used by Charney (1949) in his equivalent barotropic model for a continuously
stratified atmosphere (see also Eliassen & Kleinschmidt 1957; Holton 1992). The horizontal components of the three-
dimensional velocity field are assumed to take the separable form

u(x, y, z, t) = A(z)u⊥(x, y, t) (2.7)

for some prescribed vertical structure functionA(z). Evolution equations for u⊥ are derived by vertically averaging the
three-dimensional equations. This approximation was subsequently applied to the ocean by Neumann (1960) and Salby
(1989). It has been widely used to model the Antarctic Circumpolar Current (e.g. Krupitsky et al. 1996; Ivchenko
et al. 1999; Killworth & Hughes 2002; LaCasce & Isachsen 2010) following Killworth’s (1992) observation that the
time-averaged output of the Fine Resolution Antarctic Model (FRAM Group 1991) fits the equivalent barotropic form
(2.7).

2.3. Potential vorticity

The thermal shallow water equations imply the evolution equation

∂Π

∂t
+ (u · ∇)Π =

1

2h
ẑ · (∇h×∇Θ) (2.8)

for the shallow water potential vorticity Π = h−1 (f + vx − uy). The source term on the right hand side may be
derived from the depth average of the baroclinic torque in a continuously stratified fluid (Ripa 1995).

The curl of the three-dimensional momentum equation gives

Dωa

Dt
− (ωa · ∇)u = −∇×

(
∇p

ρ

)
= −∇×

(
∇[Θ(h+ z)− gz]

1−Θ/g

)
= S, (2.9)

where u is the three-dimensional velocity field, and ωa = f ẑ+∇×u is the absolute vorticity (Vallis 2006). We have
assumed that the buoyancy Θ is an advected scalar so ∇ · u = 0, and that f is constant. There is no need to divide
by ρ to eliminate the ωa∇ · u term and obtain a material derivative for ωa/ρ. However, it is necessary to take spatial
derivatives before applying the Boussinesq approximation to ∇× (ρ−1∇p). The components of the baroclinic torque
vector on the right hand side of (2.9) are

Sx =
∂yΘ

1−Θ/g
, Sy = − ∂xΘ

1−Θ/g
, Sz =

gΘ

(g −Θ)2
ẑ · (∇h×∇Θ) . (2.10)

The Boussinesq approximation now corresponds to neglecting O(Θ/g) terms in the denominators. Moreover, the
vertical component Sz is O(Θ/g) smaller than the two horizontal components.

An evolution equation for a potential vorticity follows from taking the inner product of (2.9) with the gradient of
an advected scalar. Normally this scalar would be the buoyancy Θ, to form the Ertel potential vorticity, but in our
scenario ∇Θ has only horizontal components, while the largest component of vorticity is ωz . Instead, we use the
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quantity c = z/h(x, y, t) which becomes a Lagrangian label when the fluid is constrained to move in columns (Miles
& Salmon 1985; Ripa 1995; Dellar & Salmon 2005, and §A.2 of the Appendix) and compute the vertical average

1

h

∫ 0

−h

S · ∇c dz =
1

2h
ẑ · (∇h×∇Θ) . (2.11)

This is the source term that appears on the right hand side of (2.8). The corresponding vertical average of ωa · ∇c
gives the standard shallow water potential vorticity Π (Miles & Salmon 1985; Dellar & Salmon 2005) .

Equation (2.8) becomes easier to interpret if we consider the integral form of Ertel potential vorticity conservation,
the Kelvin theorem for conservation of circulation around any material curve lying within an isentropic surface. The
analogues of isentropic surfaces in our thermal shallow water equations are isotherms (lines of constant Θ) in the
horizontal plane, and from (2.8) we obtain an integral conservation law for the total potential vorticity inside a closed
isotherm (Dellar 2003),

d
dt

∫
S(Θ∗)

hΠ dx = 0, (2.12)

where S(Θ∗) is the material surface bounded by the Θ = Θ∗ isotherm. This is the thermal shallow water analog of
the potential vorticity impermeability property of isentropic surfaces in a stratified fluid (e.g. Vallis 2006). By Stokes’
theorem, (2.12) implies conservation of the circulation of u + R around the boundary isotherm of each material
surface S(Θ∗). The vector field R satisfying ∇3 × R = f ẑ is the vector potential for twice the angular velocity
vector, so ẑ ·∇3× (u+R) = hΠ is the integrand in (2.12). In the Appendix we relate (2.8) and (2.12) to the particle
relabelling symmetry, as modified from standard shallow water theory by the existence of an additional Lagrangian
scalar Θ. From the rest of this paper we drop the overbar on the depth-averaged horizontal velocity u in the thermal
shallow water equations.

3. Non-canonical Hamiltonian structure
Most equations used in geophysical fluid dynamics have a Hamiltonian structure, which enables their conservation

laws to be related to symmetries via Noether’s theorem (Salmon 1998; Shepherd 1990; Salmon 1988a; Morrison
1998). Equations that are derived by making approximations that preserve these symmetries will then inherit equivalent
conservation laws. The material in this section also provides the key to deriving a local energy conservation equation
for QG theory in §6.

A continuous non-canonical Hamiltonian system determines the evolution of any functional F using a Poisson
bracket {·, ·} and a Hamiltonian functional H,

dF
dt

= {F ,H} . (3.1)

The Poisson bracket is a bilinear, antisymmetric map that satisfies the Jacobi identity, {F , {G,K}}+ {G, {K,F}}+
{K, {F ,G}} = 0 for any three functionals F , G and K. This formalism offers a coordinate-independent generalisation
of classical Hamiltonian particle mechanics and canonical Hamiltonian field theory (e.g. Goldstein 1980) that allows
us to find Hamiltonian descriptions of fluid systems using Eulerian variables. For more details see Morrison (1982,
1998, 2006); Salmon (1988a, 1998); Shepherd (1990).

By introducing the dependent or field variables η, themselves functions of x and t, we write the Poisson bracket as

{F ,G} =

⟨
δF
δη

, J
δG
δη

⟩
, (3.2)

in terms of a Poisson tensor J and an inner product ⟨·, ·⟩. Variational derivatives are defined by the relation

δF = F(η + δη)−F(η) =

⟨
δF
δη

, δη

⟩
+O

(
δη2
)
, (3.3)

for arbitrary variations δη. This expression for the Poisson bracket is automatically bilinear, and is also antisymmetric
when J is either an antisymmetric matrix or an anti-selfadjoint differential operator. The Jacobi identity imposes
constraints on the η-dependence of the components of J . Considering functionals F = η(x0, t), for some fixed x0,
in (3.1) implies the evolution equation

∂η

∂t
= J

δH
δη

(3.4)

for the field variables. Non-canonical Hamiltonian systems possess an additional class of conserved quantities, the
Casimir functionals C associated with the kernel of the Poisson tensor J . The Casimir functionals are solutions of
(Morrison 1998; Salmon 1988a, 1998; Shepherd 1990; Ripa 1993)

J
δC
δη

= 0. (3.5)
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The equivalent condition in terms of the Poisson bracket is

{C,F} = 0, for all functionals F . (3.6)

Ripa (1993) described the non-canonical Hamiltonian structure of the undamped (κ = 0) thermal shallow water
equations (2.1), but only gave a long “formal proof” of the Jacobi identity. The field variables in this formulation are
η = (u, v, h,Θ)T, the Hamiltonian is

H =
1

2

∫
h|u|2 +Θh2 dx, (3.7)

and the Poisson tensor is

J = −


0 −Π ∂x −h−1Θx

Π 0 ∂y −h−1Θy

∂x ∂y 0 0
h−1Θx h−1Θy 0 0

 , (3.8)

where Θx = ∂xΘ, Θy = ∂yΘ, and Π = h−1(f + vx − uy) is the shallow water potential vorticity as in (2.8). The
corresponding Poisson bracket is

{F ,G} =

∫
Π

(
δF
δu

δG
δv

− δG
δu

δF
δv

)
+∇ ·

(
δF
δu

)
δG
δh

−∇ ·
(
δG
δu

)
δF
δh

+
∇Θ

h
·
(
δF
δu

δG
δΘ

− δG
δu

δF
δΘ

)
dx. (3.9)

These expressions reduce to the standard shallow water Poisson tensor and Poisson bracket (e.g. Shepherd 1990) on
omitting the last row and column containing the ∇Θ terms in (3.8), and the last term containing ∇Θ in (3.9).

Dellar (2003) later gave a much shorter proof of the Jacobi identity for the Poisson bracket (3.9) by identifying it
with the Poisson bracket for the shallow water magnetohydrodynamics equations (Gilman 2000; Dellar 2002) through
a change of variables in which Θ plays the rôle of the magnetic vector potential. An even shorter proof is available by
observing that (3.9) is the Poisson bracket for non-isentropic gas dynamics written in density, velocity, and entropy
variables (e.g. Morrison 2006). The Casimir functionals for (3.8) and (3.9) are (Holm et al. 1985; Ripa 1993; Dellar
2003)

C =

∫
hΠF (Θ) + hG(Θ) dx (3.10)

for arbitrary functions F and G. These results rely upon being able to integrate by parts over the fluid domain D
without acquiring surface terms. The necessary boundary conditions (Ripa 1993) are u · n = 0 and ∇Θ× n = 0 on
the boundary ∂D, or |u| → 0 and Θ → Θ0 (constant) as |x| → ∞.

4. Derivation of the thermal quasi-geostrophic equations by an expansion in Rossby number
We formalise the derivation of the QG limit of the thermal shallow water equations given in Ripa (1996b) by

performing a direct asymptotic expansion in a small Rossby number. We begin with the thermal shallow water equa-
tions (2.1) formulated on a mid-latitude β-plane in which we treat x, y, z as Cartesian coordinates, while taking
f = f0 + β∗y to capture the latitude-dependence of the Coriolis parameter in spherical geometry (Pedlosky 1987;
Salmon 1998; Vallis 2006; Dellar 2011). Our derivation relies upon the leading order velocity satisfying a leading or-
der geostrophic balance condition with f approximated by f0. This approximation is only valid outside the equatorial
region.

4.1. Quasi-geostrophic scaling

Following Salmon (1998), we rescale the variables in (2.1) using

x = Lx̃, u = U ũ, t = (L/U) t̃, (4.1)

where L and U are horizontal length and velocity scales respectively. The superscript tilde denotes a dimensionless
variable. We use the advective time scale L/U , so that ∂u/∂t is comparable to (u · ∇)u in the dimensionless mo-
mentum equation. We write the layer depth as

h = H0

(
1 +

f0UL

Θ0H0
η̃

)
, (4.2)

for small displacements from a mean depthH0. This scaling for η̃ is set by a leading order geostrophic balance between
the Coriolis force and the pressure gradient in (2.1c). We also set

Θ = Θ0

(
1 + 2

f0UL

Θ0H0
θ̃

)
, (4.3)

with a factor of two for future convenience in the definition of the geostrophic streamfunction.
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Substituting these scalings into (2.1) gives the dimensionless equations

Ro
(
∂η̃

∂t̃
+ ∇̃ · (η̃ũ)

)
+ Bu

(
∇̃ · ũ

)
= 0, (4.4a)

∂θ̃

∂t̃
+
(
ũ · ∇̃

)
θ̃ = −2λ

(
θ̃ +

1

2
η̃ +

Ro
Bu
η̃θ̃

)
, (4.4b)

Ro
(
∂ũ

∂t̃
+
(
ũ · ∇̃

)
ũ

)
− (1 + β̃ỹ)ṽ = −∂η̃

∂x̃
− ∂θ̃

∂x̃
− Ro

Bu

(
2θ̃
∂η̃

∂x̃
+ η̃

∂θ̃

∂x̃

)
, (4.4c)

Ro
(
∂ṽ

∂t̃
+
(
ũ · ∇̃

)
ṽ

)
+ (1 + β̃ỹ)ũ = −∂η̃

∂ỹ
− ∂θ̃

∂ỹ
− Ro

Bu

(
2θ̃
∂η̃

∂ỹ
+ η̃

∂θ̃

∂ỹ

)
, (4.4d)

with the dimensionless parameters

Ro =
U

f0L
, Bu =

(
LD

L

)2

, β̃ =
β∗L

f0
, λ =

κH0

2f0Ro
, (4.5)

where Ro is the Rossby number, Bu is the Burger number, and LD =
√
Θ0H0/f0 is the deformation radius, the

horizontal length scale on which the Coriolis force becomes comparable to the pressure gradient. We now recognise
the scalings in (4.2) and (4.3) as

h = H0

(
1 +

Ro
Bu
η̃

)
, Θ = Θ0

(
1 + 2

Ro
Bu
θ̃

)
. (4.6)

4.2. Asymptotic expansion

We now set Ro = ϵ, where ϵ is a small parameter. We also set β̃ = ϵβ, where β remains O(1) as ϵ → 0, recognising
that fractional changes in the Coriolis parameter must be small on the horizontal length scale L of the flow (Salmon
1998). We also assume that Bu and λ remain O(1) as ϵ → 0. We drop the tilde notation, with the understanding that
all variables are now dimensionless.

We expand the velocity u in powers of ϵ,

u = u0 + ϵu1 + · · · , (4.7)

while leaving the other variables η and θ unexpanded (as in Warn et al. 1995; Muraki et al. 1999; White 2002). Fol-
lowing Van Kampen’s (1985) general theory, we obtain closed evolution equations for the unexpanded slow variables
η and θ that remain valid on long time scales with t = O(1/ϵ). Pedlosky (1987) and Majda (2003) avoid this step and
expand η and θ as well, but they first supplement the continuity, momentum and temperature equations, with the exact
evolution equation for the shallow water potential vorticity Π = h−1(f + vx − uy). This supplementary equation
identifies the potential vorticity as a slow variable whose evolution should be captured by the asymptotic description.

Substituting (4.7) into (4.4) and truncating at leading order gives

∇ · u0 = 0, v0 = ∂x(η + θ), u0 = −∂y(η + θ), (4.8a)
∂tθ + (u0 · ∇) θ = −λ (2θ + η) . (4.8b)

We thus have a geostrophic flow with streamfunction ψ = η + θ. This simple expression justifies the factor of two in
(4.3), and in the second of (4.6). At next order we obtain the O(ϵ) continuity and velocity equations,

∂η

∂t
+∇ · (ηu0) + Bu (∇ · u1) = 0, (4.9a)

∂u0
∂t

+ (u0 · ∇)u0 − v1 − βyv0 = − 1

Bu

(
2θ
∂η

∂x
+ η

∂θ

∂x

)
, (4.9b)

∂v0
∂t

+ (u0 · ∇) v0 + u1 + βyu0 = − 1

Bu

(
2θ
∂η

∂y
+ η

∂θ

∂y

)
. (4.9c)

Substituting (4.8a) into (4.9), and eliminating ∇ · u1 between (4.9a) and (4.9b,c), gives

∂q

∂t
+ [ψ, q] =

1

Bu
[η, θ] , (4.10)

where the QG potential vorticity

q = ∇2ψ − η

Bu
+ βy (4.11)

is a consistent linear approximation to the shallow water potential vorticity Π , and [·, ·] is the two-dimensional Jacobian
defined by [ψ, q] = ẑ · (∇ψ ×∇q).
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Eliminating η = ψ − θ gives the closed thermal QG system

∂q

∂t
+ [ψ, q] =

1

Bu
[ψ, θ] , (4.12a)

∂θ

∂t
+ [ψ, θ] = −λ (θ + ψ) , (4.12b)

q = ∇2ψ − (ψ − θ)

Bu
+ βy. (4.12c)

The usual QG shallow water potential vorticity is modified by the additional θ/Bu term in (4.12c), which acts as an
additional source in the modified Helmholtz equation ∇2ψ − ψ/Bu = q − βy − θ/Bu. Potential vorticity is not
materially conserved, due to the additional term on the right hand side of (4.12a). However, the total potential vorticity
inside a closed isotherm (line of constant θ) is conserved (see 7.6), as for the thermal shallow water equations (c.f. §2).

5. Derivation of the thermal quasi-geostrophic equations by a projection onto vortical modes
We now present an alternative derivation of the thermal QG equations (4.12) that explicitly projects out inertia-

gravity waves. The thermal shallow water equations (2.1) support interactions between four different wave modes:
the usual two inertia-gravity waves, the vortical or Rossby wave of the standard shallow water equations, and an
additional thermal wave due to the extra temperature equation. We first seek a balanced model that describes only the
low-frequency dynamics represented by the Rossby and thermal waves by projecting out the high-frequency dynamics
associated with the inertia-gravity waves (see Leith 1980; Salmon 1998; White 2002; Majda 2003; Remmel & Smith
2009; Theiss & Mohebalhojeh 2009). Ripa (1996a) studied linear waves in the thermal shallow water equations, but
we prefer to use a different set of variables that give particularly simple forms for the different wave modes.

Following Viúdez & Dritschel’s (2004) treatment of the standard shallow water equations, we reformulate the ther-
mal shallow water equations (2.1) in terms of new variables: the potential vorticity Π , the velocity divergence D, and
the acceleration divergence γ. Writing h = H0 + η and Θ = Θ0 + θ, these new variables are given by

Π =
1

H0 + η

(
f0 + β∗y +

∂v

∂x
− ∂u

∂y

)
, (5.1a)

D = ∇ · u, (5.1b)

γ = ∇ ·
(
− (f0 + β∗y) ẑ × u− (Θ0 + θ)∇η − 1

2
(H0 + η)∇θ

)
. (5.1c)

We again consider a mid-latitude β-plane on which f = f0 + β∗y. In these new variables the thermal shallow water
equations become

∂Π

∂t
=

{
− (u · ∇)Π +

1

2

[η, θ]

(H0 + η)

}
, (5.2a)

∂θ

∂t
= {−κ (H0θ +Θ0η)− κηθ − (u · ∇) θ} , (5.2b)

∂D

∂t
= γ +

{
− (u · ∇)D −D2 + 2 [u, v]

}
, (5.2c)

∂γ

∂t
= −f20D +Θ0H0∇2D +

{
1

2
κH2

0∇
2θ +

1

2
κH0Θ0∇2η

}
+

{
−2f0β

∗yD − β∗2y2D − 2β∗ (f0 + β∗y) v + β∗Θ0
∂η

∂x
+

1

2
β∗H0

∂θ

∂x

}
+ {nonlinear terms} , (5.2d)

where [·, ·] is the two-dimensional Jacobian as above. We rewrite (5.2) in matrix form as

∂tη = −iLη + N(η) , (5.3)

where

η =


Π
θ
D
γ

 , L =


0 0 0 0
0 0 0 0
0 0 0 i
0 0 i

(
Θ0H0∇2 − f20

)
0

 , (5.4)

and N(η) is a column vector containing the terms from (5.2) in curly brackets. The linear operator L characterises
the wave modes of the undamped f -plane thermal shallow water equations. All coupling between these modes is
expressed through N(η), both the nonlinear coupling and the linear coupling through terms involving β∗ and κ. This
choice of decomposition follows the approach of Leith (1980) and Salmon (1998).
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The eigenmodes of L for an unbounded or periodic domain are the Fourier modes

η = η̂ exp (i (kx+ ly − ωt)) , (5.5)

with η̂ a constant vector. Substituting (5.5) into (5.3) and setting N = 0 gives

ωR1 = 0, ωR2 = 0, ωG± = ±
√
f20 +Θ0H0 (k2 + l2), (5.6)

with the corresponding eigenvectors

eR1 =


1
0
0
0

 , eR2 =


0
1
0
0

 , eG± =


0
0
1

∓i
√
f20 +Θ0H0 (k2 + l2)

 . (5.7)

The thermal mode with eigenvector eR2 was called the force-compensated mode by Ripa (1996a). Young & Chen
(1995) named the equivalent mode in their subinertial mixed layer equations the buoyancy-compensated mode. The
fluctuation in θ is balanced by a compensating fluctuation in η that leaves the pressure, and hence the velocity field, un-
changed. This mode has a particularly simple eigenvector eR2 in our variables Π , θ,D, γ because we have eliminated
the height η in favour of the acceleration divergence γ. The combined contribution to γ from ∇η and ∇θ vanishes
precisely because this mode is force-compensated.

The pair {ωR1 ,eR1} represent the low-frequency Rossby mode, the pair {ωR2 , eR2} represent the low-frequency
thermal mode, and the pairs {ωG+ , eG+} and {ωG− , eG−} represent the high-frequency inertia-gravity modes. We
call the space R spanned by the Rossby and thermal modes the slow or Rossby manifold, while we call the G space
spanned by the inertia-gravity modes the fast or inertia-gravity manifold. The manifolds R and G are orthogonal and
span the whole space, so any vector η may be decomposed uniquely into two components, η = ηR + ηG, with ηR

in R and ηG in G. This clean separation into fast and slow manifolds motivates the introduction of the Π , θ,D, γ
variables in (5.1).

We now restrict nonlinear interactions to include only the Rossby and thermal modes. A vector η̂R on the Rossby
manifold may be expressed as

η̂R =


Π̂R

θ̂R
D̂R

γ̂R

 = ŷR1eR1 + ŷR2eR2 =


ŷR1

ŷR2

0
0

 , (5.8)

where ŷR1(k, l, t) and ŷR2(k, l, t) are the coordinates of η̂R on the Rossby manifold, and hats denote a Fourier trans-
form in x and y. Transforming the lower two components of (5.8) back to physical space gives the balance relations

DR = 0 and γR = 0. (5.9)

We find evolution equations for Π̂R and θ̂R by Fourier transforming (5.3) in x and y, and substituting η̂ = η̂R as
given by (5.8), to obtain

∂tΠ̂ReR1 + ∂tθ̂ReR2 = −i
(
Π̂RL̂eR1 + θ̂RL̂eR2

)
+ N̂, (5.10)

where N̂ and L̂ are the Fourier transforms of N and L. We know from (5.6) that eR1 and eR2 are eigenvectors of L̂
with zero eigenvalues, so (5.10) reduces to

∂tΠ̂ReR1 + ∂tθ̂ReR2 = N̂. (5.11)

Projecting (5.11) onto eR1
and inverting the Fourier transform gives

∂tΠR + (uR · ∇)ΠR =
1

2

[ηR, θR]

(H0 + ηR)
, (5.12)

while projecting (5.11) onto eR2 and inverting the Fourier transform gives

∂tθR + (uR · ∇) θR = −κ (H0θR +Θ0ηR + ηRθR) . (5.13)

We thus obtain a balanced model consisting of the two evolution equations (5.12) and (5.13), and the two balance
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relations (5.9). Dropping the R subscripts for convenience, our complete balanced model is

∂Π

∂t
+ (u · ∇)Π =

1

2

[η, θ]

(H0 + η)
, (5.14a)

∂θ

∂t
+ (u · ∇) θ = −κ (H0θ +Θ0η + ηθ) , (5.14b)

∇ · u = 0, (5.14c)

(f0 + β∗y)

(
∂v

∂x
− ∂u

∂y

)
− β∗u =

3

2
∇η · ∇θ + (Θ0 + θ)∇2η +

1

2
(H0 + η)∇2θ, (5.14d)

where Π is defined by (5.1a). This generalises the δ-γ balanced model of Mohebalhojeh & Dritschel (2001) to the
thermal shallow water equations. The derivation is not restricted to mid-latitude β-planes, and provides a route towards
developing a spherical version of thermal QG theory (as in Kuo 1959; Charney & Stern 1962; Verkley 2009; Schubert
et al. 2009).

The earlier thermal QG equations now emerge as the leading order approximation to (5.14) for small Rossby num-
ber. We non-dimensionalise (5.1a) and (5.14) using the variables

x = Lx̃, u = U ũ, t = (L/U) t̃, η = (f0UL/Θ0) η̃, θ = (2f0UL/H0) θ̃, (5.15)

as in (4.1) - (4.3), to obtain the dimensionless equations(
∂

∂t̃
+
(
ũ · ∇̃

)){Ro (ṽx̃ − ũỹ) + 1 + β̃ỹ

Ro +
(
Ro2/Bu

)
η̃

}
=

1

Bu

(
[η̃, θ̃]

1 + (Ro/Bu) η̃

)
, (5.16a)

∂θ̃

∂t̃
+
(
ũ · ∇̃

)
θ̃ = −λ

(
2θ̃ + η̃ + 2

Ro
Bu
η̃θ̃

)
, (5.16b)

∇̃ · ũ = 0, (5.16c)(
1 + β̃ỹ

)(∂ṽ
∂x̃

− ∂ũ

∂ỹ

)
− β̃ũ = ∇̃

2
η̃ + ∇̃

2
θ̃

+
Ro
Bu

(
3∇̃η̃ · ∇̃θ̃ + 2θ̃∇̃

2
η̃ + η̃∇̃

2
θ̃
)
, (5.16d)

with parameters Ro, Bu, β̃, λ as in (4.5). We drop the tilde notation, with the understanding that all variables are now
dimensionless in this section. As in §4.2, we write Ro = ϵ and β̃ = ϵβ, where ϵ is a small parameter, and assume that
β, Bu and λ all remain O(1) as ϵ→ 0. Expanding u in powers of ϵ as in (4.7), at leading order we obtain the equation
set (

∂

∂t
+ (u0 · ∇)

){
∂v0
∂x

− ∂u0
∂y

− η

Bu
+ βy

}
=

1

Bu
[η, θ] , (5.17a)

∂θ

∂t
+ (u0 · ∇) θ = −λ (2θ + η) , (5.17b)

∇ · u0 = 0, (5.17c)
∂v0
∂x

− ∂u0
∂y

= ∇2η +∇2θ. (5.17d)

Equation (5.17c) allows us to introduce a geostrophic streamfunction ψ such that

u0 = −∂yψ, v0 = ∂xψ. (5.18)

Equation (5.17d) then implies that ∇2ψ = ∇2η+∇2θ, so we take ψ = η+ θ. Substituting (5.18) into (5.17a,b), and
eliminating η using η = ψ − θ, leads to our previous thermal QG equations (4.12).

6. The quasi-geostrophic limit of the thermal shallow water energy equation
The thermal QG equations (4.12) imply the local energy conservation law

∂tEQG +∇ · FQG = SQG, (6.1)

for the energy density and energy flux

EQG =
1

2

(
|∇ψ|2 + ψ2/Bu

)
, FQG = −ψ∇ψt + ψ2ẑ ×∇ (q/2− θ/Bu) , (6.2)

and a source term due to radiative damping,

SQG = −(λ/Bu)ψ (θ + ψ) . (6.3)



The quasi-geostrophic theory of the thermal shallow water equations 11

This energy equation may be derived by considering ψ∂t(q − θ/Bu). The expression EQG is identical to the energy
density for the the standard QG equations (e.g. Weinstein 1983), but the relation between ψ and the prognostic
variables has changed. For standard QG theory, McIntyre & Shepherd (1987) gave the equivalent formulae in the
infinite deformation radius (Bu → ∞) limit, while Pedlosky (1987) and Longuet-Higgins (1964) gave related formulae
for linear waves in fluids with a finite deformation radius.

However, (6.1) is not the QG limit of the corresponding local energy conservation law

∂tE +∇ · F = S, (6.4)

for the thermal shallow water equations (2.1). The thermal shallow water energy density and flux are

E =
1

2

(
h |u|2 +Θh2

)
, F = u

(
1

2
h |u|2 +Θh2

)
, (6.5)

and the source term due to radiative damping is

S = −1

2
h2κ (hΘ−H0Θ0) . (6.6)

Applying the QG scalings (4.1) - (4.3) to E, and expanding as in §4.2, leads to the expression

E(u, h,Θ) = E(0,H0,Θ0) +
H0f

2
0L

2

2

[
ϵ2|∇̃ψ̃|2 + 2ϵ(θ̃ + η̃) + ϵ2

(η̃2 + 4θ̃η̃)

Bu
+O

(
ϵ3
)]
, (6.7)

where ψ̃, η̃, θ̃ are the dimensionless variables introduced in §4. The kinetic energy, proportional to |∇̃ψ̃|2, is O
(
ϵ2
)
,

while the potential energy contains an O(ϵ) term. The kinetic energy is thus asymptotically smaller than the potential
energy, and the potential energy is itself not sign-definite. The energy difference E(u, h,Θ) − E(0,H0,Θ0) is thus
not a satisfactory measure of the magnitude of deviations from an underlying basic state with u = 0, h = H0, and
Θ = Θ0.

6.1. Available potential energy and pseudo-energy

This difficulty was first encountered by Lorenz (1955) in defining the potential energy of a disturbance to an ideal gas
in hydrostatic balance, and also arises when deriving an acoustic energy equation from the underlying energy equation
for a compressible gas (e.g. Lighthill 1978). Lorenz (1955) combined the mass conservation law with the energy
conservation law to yield a new conserved quantity, the kinetic plus available potential energy (APE) that is quadratic
to leading order in the disturbance quantities (for reviews see Winters et al. 1995; Tailleux 2013).

Shepherd (1993) gave a general discussion of the construction of an energy equation for disturbances around an
equilibrium η0 of a Hamiltonian system, which must satisfy

J
δH
δη

= 0 at η = η0. (6.8)

This condition implies δH/δη = 0 for a canonical Hamiltonian system with an invertible J . The Hamiltonian thus has
the expected Taylor expansion H(η0 + δη) = H(η0) + δη ·H′′(η0) · δη +O

(
|δη|3

)
. However, all we may conclude

from (6.8) for a non-canonical system is

δH
δη

=
δC
δη

at η = η0, (6.9)

for some Casimir functional C. Lorenz’s (1955) combination of energy conservation with mass conservation thus
generalises to finding an additional conservation law, and its associated Casimir C, for which the first variation of the
combined functional H−C, known as the pseudo-energy, vanishes at equilibrium. The same observation underlies the
energy-Casimir method for establishing the stability of non-canonical Hamiltonian systems (Arnold 1965a,b; Holm
et al. 1985; McIntyre & Shepherd 1987; Shepherd 1990; Arnold & Khesin 1998).

6.2. Pseudo-energy for the thermal shallow water equations

We follow Shepherd’s (1993) algorithm to construct a pseudo-energy for the thermal shallow water equations from the
solution of

δC
δu

=
δH
δu

= 0,
δC
δh

=
δH
δh

= H0Θ0,
δC
δΘ

=
δH
δΘ

=
1

2
H2

0 (6.10)

evaluated at the basic state u = 0, h = H0, Θ = Θ0. A solution is given by

C(h,Θ) =

∫
3

4
H0Θh+

3

8
Θ0H0h− 1

8

H0

Θ0
Θ2h dx. (6.11)

We may omit the Π -containing term in (3.10) because we evaluate the variational derivatives at a rest state with u = 0.
The corresponding disturbance pseudo-energy is

A = H(u, h,Θ)−H(0, H0,Θ0)− C(h,Θ) + C(H0,Θ0) . (6.12)
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Expanding A for small disturbances to the background state, and transforming to the dimensionless variables of (5.15),
gives the QG energy at leading order,

A = H0f
2
0L

4ϵ2

[
1

2

∫
|∇̃ψ̃|2 + ψ̃2

Bu
dx̃+O(ϵ)

]
. (6.13)

The kinetic energy and potential energy are now of the same order in ϵ, and the whole expression is positive definite.
Moreover, A is an exact invariant of the undamped (κ = 0) thermal shallow water equations. Initial disturbances to
the background state that are small, in the sense that A is small, thus remain small disturbances in the sense measured
by A. However, A does not control the amplitude of the force-compensated mode, in which the disturbances θ̃ and η̃
to Θ and h respectively occur in antiphase, and so do not alter ψ̃ = η̃ + θ̃.

A second Casimir satisfying the conditions (6.10) is

CR =

∫ √
ΘΘ0 hH0 dx. (6.14)

The general pseudo-energy definition (6.12) then takes the form proposed by Ripa (1995) and Røed (1997),

AR =
1

2

∫
h|u|2 +

(√
Θh−

√
Θ0H0

)2
dx, (6.15)

which combines the kinetic energy with a measure of the disturbance potential energy. Røed (1997) named the latter
“available gravitational energy” following the work of Holliday & McIntyre (1981) and Andrews (1981) for continu-
ously stratified fluids. The available gravitational energy may be computed locally for a fluid column, unlike Lorenz’s
(1955) available potential energy that is defined relative to the potential energy minimising rearrangement of the fluid
in the whole domain. Expanding AR for small deviations in h and Θ, and transforming to dimensionless variables
gives an expression that coincides with our pseudo-energy (6.13) at leading order, but this approach has not previously
been used in the derivation of a QG theory. The pseudo-energy (6.15) is a sum of squares, while the pseudo-energy
defined using the Casimir (6.11) only has this property for small disturbances to the background state. In the following
we use AR instead of the A constructed from the Casimir in (6.11), because AR gives simpler intermediate expres-
sions. Our final results, which depend only upon expansions truncated at O(ϵ2) for small disturbances, are identical
whether one uses the Casimir from (6.11) or (6.14) to construct a pseudo-energy.

6.3. The quasi-geostrophic limit of the pseudo-energy flux for the thermal shallow water equations

The pseudo-energy (6.15) may be written as AR =
∫
EP (x, t)dx. The pseudo-energy density

EP =
1

2
h|u|2 + 1

2

(√
Θh−

√
Θ0H0

)2
, (6.16)

satisfies the local conservation equation
∂tEP +∇ · F P = SP , (6.17)

with pseudo-energy flux

F P = u

(
1

2
h|u|2 +Θh2 −

√
ΘΘ0 hH0

)
, (6.18)

and a source term due to radiative damping,

SP =
1

2
κh (hΘ−H0Θ0)

(√
Θ0/ΘH0 − h

)
. (6.19)

We now apply the QG scaling to EP , F P , and SP . We non-dimensionalise using (4.1) - (4.3), and then drop the tilde
notation with the understanding that all variables in this section are now dimensionless. Expanding as in §4.2 with
u0 = −∂ψ/∂y, v0 = ∂ψ/∂x, and η = ψ − θ, and dividing by U/L gives

∂EP

∂t
+∇ · F P = SP , (6.20)

where

EP =
1

2
H0f

2
0L

2ϵ2
(
|∇ψ|2 + ψ2

Bu
+O(ϵ)

)
, (6.21a)

SP = −H0f
2
0L

2ϵ2
(
λ

Bu
ψ (θ + ψ) +O(ϵ)

)
, (6.21b)

and

F P = H0f
2
0L

2ϵ2
(
u0

(
1

2
|∇ψ|2 + ψ

ϵ
+

1

Bu

(
ψ2 + ψθ − 3

2
θ2
))

+ u1ψ +O(ϵ)

)
. (6.21c)

The term proportional to ψu0 = −∇ × (ẑ ψ2/2) has zero divergence, so may be omitted from F P . The vanishing
of this otherwise asymptotically large term is essential for the rigorous mathematical theory of the QG limit (Majda
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2003). Eliminating u1 using the thermal shallow water momentum equations (4.9b,c) gives

F P = H0f
2
0L

2ϵ2
(
−ψ∇ψt + ψ2ẑ ×∇

(
q

2
− θ

Bu

)
+O(ϵ)

)
, (6.22)

which explains the origin of the time derivative term ψ∇ψt. We thus recover the local thermal QG energy conservation
equation

∂

∂t

(
|∇ψ|2

2
+

ψ2

2Bu

)
+∇ ·

(
−ψ∇ψt + ψ2ẑ ×∇

(
q

2
− θ

Bu

))
= − λ

Bu
ψ (θ + ψ) (6.23)

at leading order in ϵ by applying the QG scalings to the local thermal shallow water pseudo-energy conservation
equation (6.17). Although the derivation of the thermal QG equations (4.12) eliminates the ageostrophic velocity u1,
we must calculate u1 to obtain the thermal QG energy equation as a limit of the corresponding thermal shallow water
pseudo-energy equation. Setting θ = 0 and λ = 0 in (6.23) gives the local energy conservation law for the QG form
of the standard shallow water equations (e.g. Pedlosky 1987).

7. Non-canonical Hamiltonian structure of the thermal quasi-geostrophic equations
The undamped thermal QG equations (4.12) with λ = 0 have a non-canonical Hamiltonian structure, as given by

Ripa (1996b). The field variables are η = (q, θ)T, and the Hamiltonian for an infinite domain is

HQG =
1

2

∫
|∇ψ|2 + ψ2

Bu
dx. (7.1)

The Hamiltonian for a bounded domain contains additional terms (e.g. Holm 1986; Ripa 1993, 1996b) that enforce
the constraints derived by McWilliams (1977) for the circulations around each connected component of the boundary.
The variational derivatives of HQG are

δHQG

δq
= −ψ, δHQG

δθ
=

ψ

Bu
. (7.2)

The evolution equations for q and θ may thus be written in matrix notation as

∂η

∂t
= JQG

δHQG

δη
, with JQG = −

(
[q, ·] [θ, ·]
[θ, ·] 0

)
. (7.3)

The corresponding Poisson bracket is

{F ,G} =

∫
q

[
δF
δq
,
δG
δq

]
+ θ

([
δF
δq
,
δG
δθ

]
+

[
δF
δθ
,
δG
δq

])
dx. (7.4)

Morrison & Hazeltine (1984) derived this Poisson bracket for two-dimensional reduced magnetohydrodynamics, in
which θ is the magnetic flux function, verified that it satisfies the Jacobi identity, and found its Casimir functionals

CQG =

∫
qF (θ) +G(θ) dx, (7.5)

for arbitrary functions F (θ) and G(θ). Taking G(θ) = 0, and F (θ) = H(θ − θ∗) to be the step function that is unity
for θ ⩾ θ∗ and zero otherwise, we find from (7.5) that the total potential vorticity inside any contour of constant θ is
conserved, in the sense that

d
dt

∫
S(θ∗)

q dx = 0, (7.6)

where S(θ∗) is the material surface bounded by the θ = θ∗ contour.

7.1. Derivation of the thermal quasi-geostrophic Hamiltonian and Poisson bracket

We now derive this Hamiltonian structure from the pseudo-energy (6.15) and Poisson bracket (3.9) of the undamped
thermal shallow water equations. Bokhove (2002) gave such a derivation for the standard shallow water equations
using variables similar to those in §5, but we prefer to follow the simpler change of variables used by Tassi et al.
(2009) for an analogous derivation of the Charney–Hasegawa–Mima equation in plasma physics.

We first make a change of variables (u, h,Θ) 7→
(
Π , D, ȟ, Θ̌

)
defined by

Π =
1

h

(
f0 + β∗y +

∂v

∂x
− ∂u

∂y

)
, D = ∇ · u, ȟ = h, Θ̌ = Θ, (7.7)

which corresponds to a Helmholtz decomposition of u with potentials hΠ and D. This decomposition has the unique
inverse

u = ẑ ×∇∆−1(Π ȟ− f0 − β∗y) +∇∆−1D, h = ȟ, Θ = Θ̌, (7.8)
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where the Green’s function ∆−1 for the two-dimensional Laplacian is defined by

∆−1F = − 1

2π

∫
ln |x− x′|F (x′) dx′. (7.9)

We introduce the hat notation for ȟ and Θ̌ so that Fȟ = δF/δȟ denotes the variational derivative of F with respect to
ȟ keeping Π , D and Θ̌ fixed, while Fh denotes the variational derivative keeping u and Θ fixed.

In terms of these new variables, the pseudo-energy (6.15) becomes

AR =

∫
1

2
ȟ
(
|∇∆−1(Π ȟ− f0 − β∗y)|2 + 2

[
∆−1(Π ȟ− f0 − β∗y),∆−1D

]
+ |∇∆−1D|2

)
+

1

2
Θ̌ȟ2 −

√
Θ̌Θ0ȟH0 +

1

2
Θ0H

2
0 dx, (7.10)

using the result |ẑ×∇a+∇b|2 = |∇a|2+2 [a, b]+ |∇b|2 for all scalar fields a and b. The Poisson bracket becomes

{F ,G} =

∫
Π
{
[FD,GD] +

[
FΠ /ȟ,GΠ /ȟ

]
+∇FD · ∇

(
GΠ /ȟ

)
−∇GD · ∇

(
FΠ /ȟ

)}
+ Fȟ∇

2GD − Gȟ∇
2FD

+
1

ȟ

{
GΘ̌

[
Θ̌,FΠ /ȟ

]
−FΘ̌

[
Θ̌,GΠ /ȟ

]
+ FΘ̌∇Θ̌ · ∇GD − GΘ̌∇Θ̌ · ∇FD

}
dx, (7.11)

where FD = δF/δD etc. We now apply the QG scalings to (7.10) and (7.11) using (4.1), scaling h with H0 and Θ
with Θ0. This equates to scaling Π with f0/H0, D with U/L, ȟ with H0, and Θ̌ with Θ0. We drop the tilde notation,
with the understanding that all variables are now dimensionless, and decompose the dimensionless variables as

u = u0 + ϵu1, h = 1 +
ϵ

Bu
η, Θ = 1 + 2

ϵ

Bu
θ, (7.12)

where ϵ = Ro, u0 = −∂ψ/∂y, v0 = ∂ψ/∂x, η = ψ − θ, and Ro and Bu are defined in (4.5). This corresponds to the
following decomposition in our dimensionless new variables

Π = 1 + ϵq, D = ϵD1, ȟ = 1 +
ϵ

Bu
η, Θ̌ = 1 + 2

ϵ

Bu
θ, (7.13)

where q = ∇2ψ − η/Bu + βy, D1 = ∇ · u1, and β = β̃/ϵ = β∗L2/U . Then the pseudo-energy (7.10) becomes

AR = H0f
2
0L

4ϵ2
[
1

2

∫
|∇∆−1(q + η/Bu − βy)|2 + ψ2

Bu
dx+O(ϵ)

]
, (7.14)

since
∫
[a, b] dx = 0 for all scalar fields a and b for which the integral over the boundary vanishes. Similarly the

thermal shallow water Poisson bracket (7.11) becomes

{F ,G} =
1

H0f0L4

[
1

ϵ3

∫
q [FD1 ,GD1 ] +∇FD1 · ∇Gq −∇GD1 · ∇Fq

+BuFη∇2GD1 − BuGη∇2FD1 dx+
1

ϵ2

∫
q∇FD1 · ∇Gq

−q∇GD1 · ∇Fq +
1

Bu
∇GD1 · ∇ (ηFq)−

1

Bu
∇FD1 · ∇ (ηGq)

+Fθ∇θ · ∇GD1 − Gθ∇θ · ∇FD1 dx+
1

ϵ

∫
q [Fq,Gq] + Gθ [θ,Fq]

−Fθ [θ,Gq] +
q

Bu
∇GD1

· ∇ (ηFq)−
q

Bu
∇FD1

· ∇ (ηGq)

+
η

Bu
Gθ∇θ · ∇FD1 −

η

Bu
Fθ∇θ · ∇GD1 dx+O(1)

]
, (7.15)

using the transformations

δF
δΠ

=
H0

ϵf0L2

δF
δq
,

δF
δD

=
1

ϵUL

δF
δD1

,
δF
δȟ

=
Bu

ϵH0L2

δF
δη
,

δF
δΘ̌

=
Bu

2ϵΘ0L2

δF
δθ
. (7.16)

The evolution of any functional F is given by dF/dt = {F ,H} = {F ,AR}, since AR only differs from the
Hamiltonian H by the addition of a Casimir. Non-dimensionalising as above, and dropping the tildes, we obtain the
dimensionless equation

dF
dtnd

= {F ,And}nd, (7.17)

where And = AR/(H0f
2
0L

4ϵ2) is the dimensionless pseudo-energy, and {·, ·}nd = ϵH0f0L
4{·, ·} is the dimension-

less Poisson bracket. Retaining only the leading order term in And gives the dimensionless QG Hamiltonian,

And =
1

2

∫
|∇∆−1(q + η/Bu − βy)|2 + ψ2

Bu
dx+O(ϵ) = HQG +O(ϵ), (7.18)
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since q + η/Bu − βy = ∇2ψ. Since δAnd/δD1 = 0, we may neglect all terms in {·, ·}nd that contain variational
derivatives with respect to D1. This removes many otherwise formally large terms at O(ϵ−2) and O(ϵ−1) from the
dimensionless Poisson bracket {·, ·}nd. Retaining only the largest surviving term gives

{F ,G}QG =

∫
q [Fq,Gq] + Gθ [θ,Fq]−Fθ [θ,Gq] dx. (7.19)

This becomes synonymous with the Poisson bracket (7.4) for the undamped thermal QG equations after an integration
by parts, since

∫
a [b, c] dx =

∫
b [c, a] dx for all scalar fields a, b, c for which the integral over the boundary vanishes.

8. Conclusion
Thermal shallow water theory extends the ubiquitous workhorse of geophysical and planetary fluid dynamics by

allowing horizontal variations of thermodynamic properties, such as potential temperature, within each layer. It offers
single active layer descriptions of phenomena arising from differential heating and cooling in winds over lakes (Lavoie
1972), tropical oceans (Schopf & Cane 1983; McCreary & Yu 1992), oceanic mixed layers (Young 1994; Young &
Chen 1995; Bleck et al. 1992), and coastal or boundary currents and fronts in the atmosphere (Anderson 1984) and
oceans (McCreary & Kundu 1988; McCreary et al. 1991; Røed & Shi 1999; Eldevik 2002; Carbonel & Galeao 2007).
Thermal shallow water theory has close connections with shallow water models of moist convection (Zeitlin 2007;
Bouchut et al. 2009; Lambaerts et al. 2011), and also with shallow water magnetohydrodynamics (Gilman 2000) in
which the advected scalar becomes the flux function for a horizontal magnetic field (Dellar 2002, 2003).

We have developed the theory of the QG limit of the thermal shallow water equations, as originally derived by
Ripa (1996b). The thermal QG equations possess a baroclinic instability (Fukamachi et al. 1995; Ripa 1999) and thus
capture at least some of the properties of a continuously stratified fluid within a single active layer. The corresponding
instability only exists for two or more layers in the standard shallow water and QG theories. We have provided a more
formal derivation of the QG equations as an expansion in a small Rossby number, an expansion that retains additional
terms needed for the interpretation of the QG energy equation (see below). We have also derived a more accurate
nonlinear balanced model by projecting onto the slow normal modes of the thermal shallow water equations. This
balanced model reduces to the QG theory for small disturbances, and offers a route towards formulating a thermal QG
theory on a sphere.

We have derived the QG local energy conservation equation from the QG limit of the local conservation of pseudo-
energy in the thermal shallow water equations. The thermal QG evolution equations (4.12) form a closed system
that does not involve the ageostrophic velocity u1. However, we needed to calculate u1 to interpret the QG energy
flux as the limit of a pseudo-energy flux for the thermal shallow water equations. Finally, we derived a Hamiltonian
and Poisson bracket for the thermal QG equations using a small Rossby number decomposition of a pseudo-energy
and Poisson bracket for the thermal shallow water equations. The QG theory shares the non-canonical Hamiltonian
structure of two-dimensional reduced magnetohydrodynamics (Morrison & Hazeltine 1984) and Gilman’s (1967) QG
magnetohydrodynamics, further cementing the parallels between the thermal and magnetohydrodynamic extensions
of the shallow water equations (Dellar 2003).

In future work we will explore the rôle of the temperature field in the self-organisation of geostrophic turbulence
on β-planes and spheres. We will use these equations to model the formation and persistence of zonal jets in the
atmospheres of gas giant planets, and in terrestrial oceans.

We thank L.N. Chapman, R. Salmon, A.L. Stewart and W.R. Young for useful conversations. This work was sup-
ported by the Engineering and Physical Sciences Research Council through a Doctoral Training Grant award to E.S.W.
and an Advanced Research Fellowship [grant number EP/E054625/1] to P.J.D.

Appendix A. Variational derivation of the thermal shallow water equations
We derive the undamped thermal shallow water equations (2.1) from Hamilton’s principle, that the evolution of a

mechanical system makes the action

S =

∫
L dτ (A 1)

stationary over all variations that vanish at the end-points of the integration in τ . The Lagrangian for a three-dimensional
Boussinesq fluid in a frame rotating with constant angular velocity Ω3 = Ωẑ is (Eckart 1960; Salmon 1982, 1983,
1988a, 1998)

L =

∫
1

2

∣∣∣∣∂x3

∂τ
+Ω3 × x3

∣∣∣∣2 − 1

2
|Ω3 × x3|2 −Θ(a3)z + p (a3, τ)

[
∂ (x, y, z)

∂ (a, b, c)
− 1

ρ0

]
da3. (A 2)

Fluid elements are described by their positions x3 (a3, τ) as functions of the Lagrangian labels a3 = (a, b, c) and
time τ . The subscript three denotes a three-component vector, e.g. x3 = (x, y, z), while un-subscripted vectors such
as x = (x, y) are purely horizontal. We use τ to emphasise that partial time derivatives ∂/∂τ are taken at fixed particle
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labels a3, as opposed to fixed positions x3. Thus ∂/∂τ = ∂/∂t+ (u3 · ∇3) corresponds to a material derivative, and
u3 = ∂x3/∂τ is the Eulerian fluid velocity seen in the rotating frame. We use a coordinate system in which the
geopotential gradient ∇3Φ = −gẑ is vertically upward, and the horizontal coordinates x and y are tangent to the
surfaces of constant geopotential (e.g. Dellar 2011).

The first term in (A 2) is the kinetic energy seen in an inertial frame. The second term subtracts the contribution
to the kinetic energy that gives rise to the centrifugal force, since this is conventionally included in the gravitational
potential energy appearing in the third term. We assign the labels a3 so that the density ρ is given by the reciprocal of
the Jacobian of the label to particle map,

1

ρ
=
∂ (x, y, z)

∂ (a, b, c)
. (A 3)

The fourth term thus enforces incompressibility by imposing ρ = ρ0 is constant using the pressure p (a3, τ) as a
Lagrange multiplier (Eckart 1960). The buoyancy Θ is an advected scalar, ∂Θ/∂τ = 0, so we write Θ = Θ(a3) with
no τ dependence, as in Seliger & Whitham’s (1968) treatment of the entropy for a compressible fluid. We absorb the
gravitational acceleration g into Θ, as in the main text. Taking variations of the action, defined by (A 1) and (A 2),
separately with respect to p and x3 yields the three-dimensional Boussinesq equations.

A.1. Shallow water scaling

We consider a thin layer of fluid between a rigid surface at z = 0, and a free surface at z = h(x, y, t). This is config-
uration with the free surface at the top, because it is the one used in previous Lagrangian derivations of the shallow
water equations (Salmon 1983, 1988a; Miles & Salmon 1985). Our expression (A 2)for the Lagrangian implicitly
imposes the correct free-surface boundary condition that the external fluid above z = h(x, y, t) does no work on the
layer (Miles & Salmon 1985; Stewart & Dellar 2010).

We introduce the non-dimensionalisation

x3 = L (x̃, ỹ, δz̃) , u3 = U (ũ, ṽ, δw̃) , τ = (L/U) τ̃ , Ω3 = Ωẑ, Θ = Θ0Θ̃,

p = 2ΩULρ0p̃, a3 = ρ
1/3
0 L

(
ã, b̃, δc̃

)
, h = δLh̃, L = 2δΩUL4ρ0L̃. (A 4)

HereL is the horizontal length scale,H is the vertical length scale, and their ratio δ = H/L≪ 1 is the small parameter
that characterises the shallowness of the layer. The magnitude of the angular velocity is denoted by Ω, Θ0 is a typical
value of Θ, U is a horizontal velocity scale, and tildes denote dimensionless variables. The incompressibility condition
becomes

∂ (x̃, ỹ, z̃)

∂(ã, b̃, c̃)
= 1, (A 5)

and the dimensionless Lagrangian is

L̃ =

∫
1

2
Ro

{(
∂x̃

∂τ̃

)2

+

(
∂ỹ

∂τ̃

)2

+ δ2
(
∂z̃

∂τ̃

)2
}

+
1

2

(
∂ỹ

∂τ̃
x̃− ∂x̃

∂τ̃
ỹ

)
−Bu

Ro
Θ̃ (ã3) z̃ + p̃ (ã3, τ̃)

[
∂ (x̃, ỹ, z̃)

∂(ã, b̃, c̃)
− 1

]
dã3, (A 6)

where Ro = U/ (2ΩL) and Bu = Θ0H/
(
4Ω2L2

)
. The dimensionless rotation rate becomes Ω̃ = 1 under these

scalings. We now drop the O
(
δ2
)

term, and assume that Ro and Bu remain O(1) as δ → 0. We also drop the tilde
notation, with the understanding that all variables in this appendix are now dimensionless.

A.2. Restriction to columnar motion

We follow Salmon (1983, 1988a); Miles & Salmon (1985) and restrict the fluid to columnar motion by writing the
horizontal particle positions and the buoyancy as x = x (a, b, τ) , y = y (a, b, τ) ,Θ = Θ(a, b) with no dependence
on the vertical Lagrangian label c. Equation (A 5) then simplifies to

∂ (x, y)

∂ (a, b)

∂z

∂c
= 1. (A 7)

We assign the labels c so that c = 0 on z = 0 and c = 1 on the free surface z = h. Equation (A 7) then gives

z = h(a, b, τ)c, where h (a, b, τ) =
∂ (a, b)

∂ (x, y)
. (A 8)

We substitute (A 8) into the Lagrangian (A 6), having dropped the O
(
δ2
)

term, and we discard the term multiplied by
the pressure, since the incompressibility constraint is now automatically satisfied. Performing the c integration gives
the two-dimensional thermal shallow water Lagrangian

LSW =
1

2

∫
Ro

{(
∂x

∂τ

)2

+

(
∂y

∂τ

)2
}

+

(
∂y

∂τ
x− ∂x

∂τ
y

)
− Bu

Ro
Θ(a, b)h da. (A 9)
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From now on u = (u, v) = (∂x/∂τ, ∂y/∂τ), where ∂/∂τ is now defined by ∂/∂τ = ∂/∂t+ (u · ∇).

A.3. Derivation of the mass and momentum equations

Differentiating the definition of h(a, b, τ) in (A 8) with respect to τ gives

− 1

h

∂h

∂τ
=
∂ (a, b)

∂ (x, y)

(
∂ (u, y)

∂ (a, b)
+
∂ (x, v)

∂ (a, b)

)
= ∇ · u, (A 10)

using the chain rule for Jacobians. The definition of ∂/∂τ as a Lagrangian derivative then gives the thermal shallow
water continuity equation (2.1a). The temperature equation (2.1b), with κ = 0, follows directly from the assumption
that Θ = Θ(a, b) with no explicit τ -dependence.

The thermal shallow water Lagrangian (A 9) depends on the time-dependent map a → x not only explicitly, but
also implicitly via the Jacobian of this map that appears in h. Miles & Salmon (1985) derived the formula∫

Fδh da =

∫
1

h
∇
(
h2F

)
· δx da. (A 11)

Using this formula to take variations of (A 9) with respect to x, and integrating by parts, gives

δ

∫
LSW dτ =

∫ ∫ {
−Ro

∂2x

∂τ2
δx− Ro

∂2y

∂τ2
δy +

(
∂y

∂τ
δx− ∂x

∂τ
δy

)
− 1

2

Bu
Ro

1

h
∇
(
h2Θ(a, b)

)
· δx

}
da dτ. (A 12)

Invoking Hamilton’s principle, we obtain the equation

Ro
∂u

∂τ
+ ẑ × u = −Bu

Ro

(
1

2h
∇
(
h2Θ

))
, (A 13)

which coincides with (2.1c) after recalling the definition of ∂/∂τ as a material time derivative, re-dimensionalising
using (A 4), and replacing 2Ω by f .

A.4. The thermal shallow water potential vorticity equation

We now follow Salmon (1983, 1998) in deriving a potential vorticity equation from the particle relabelling symmetry of
the Lagrangian (A 9). According to Hamilton’s principle, the action must be stationary under infinitesimal relabellings
of the form a → a′ = a+ δa (a, b, τ), provided that δa vanishes at the end-points of the τ integration. We consider
labellings that leave the layer depth h, as defined by (A 8), unchanged. The chain rule for Jacobians then implies

∂ (a′, b′)

∂ (a, b)
=
∂ (a′, b′)

∂ (x, y)

∂ (x, y)

∂ (a, b)
= 1, so

∂ (δa)

∂a
+
∂ (δb)

∂b
= 0. (A 14)

We may thus introduce a streamfunction δΨ(a, b, τ) such that

δa = −∂ (δΨ)

∂b
, δb =

∂ (δΨ)

∂a
. (A 15)

Putting a = a′ − δa in the change of variables formula gives

∂x

∂τ

∣∣∣∣
a′

=
∂x

∂τ

∣∣∣∣
a

+
∂x

∂a

∂a

∂τ

∣∣∣∣
a′

+
∂x

∂b

∂b

∂τ

∣∣∣∣
a′
, (A 16)

so the variations in ẋ = ∂x/∂τ and Θ due to relabelling are

δẋ =
∂x

∂τ

∣∣∣∣
a′

− ∂x

∂τ

∣∣∣∣
a

= −
{
∂x

∂a

∂ (δa)

∂τ
+
∂x

∂b

∂ (δb)

∂τ

}
, (A 17a)

δΘ = Θ|a′ − Θ|a = −∂ (δΨ)

∂b

∂Θ

∂a
+
∂ (δΨ)

∂a

∂Θ

∂b
=
∂ (δΨ,Θ)

∂ (a, b)
. (A 17b)

We now consider variations of the two-dimensional thermal shallow water Lagrangian (A 9) due to this relabelling.
Noting that h is unchanged by relabelling, we find

δ

∫
LSW dτ =

∫ {∫
pxδẋ+ pyδẏ −

1

2

Bu
Ro
h
∂ (δΨ,Θ)

∂ (a, b)
da
}

dτ, (A 18)

where the canonical momenta are

px =
δLSW

δẋ
= Ro

∂x

∂τ
− 1

2
y, and py =

δLSW

δẏ
= Ro

∂y

∂τ
+

1

2
x. (A 19)

Substituting for δẋ using (A 17a), integrating by parts with respect to τ and a, substituting for δa using (A 15), and
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integrating by parts again with respect to a, we obtain

δ

∫
LSW dτ = −

∫ {∫ [
∂

∂τ

{
∂

∂a

(
px
∂x

∂b
+ py

∂y

∂b

)
− ∂

∂b

(
px
∂x

∂a
+ py

∂y

∂a

) }
−1

2

Bu
Ro

∂ (h,Θ)

∂ (a, b)

]
δΨ da

}
dτ, (A 20)

where we assume that δa vanishes at the end-points of the τ integration, and that δΨ vanishes at the end-points of the
a integration. Hamilton’s principle thus implies the evolution equation

∂Π

∂τ
=

1

2

Bu
Ro

∂ (h,Θ)

∂ (a, b)
(A 21)

for the dimensionless potential vorticity

Π =
∂ (px, x)

∂ (a, b)
+
∂ (py, y)

∂ (a, b)
=

1

h

(
1 + Ro

(
∂v

∂x
− ∂u

∂y

))
. (A 22)

Rewriting (A 21) in Eulerian variables gives the dimensionless form of (2.8),

∂Π

∂t
+ (u · ∇)Π =

1

2

Bu
Ro

1

h

∂ (h,Θ)

∂ (x, y)
. (A 23)

REFERENCES

ADCROFT, A. & HALLBERG, R. 2006 On methods for solving the oceanic equations of motion in generalized vertical coordinates.
Ocean Model. 11, 224–233.

ANDERSON, D. L. T. 1984 An advective mixed-layer model with applications to the diurnal cycle of the low-level East-African
jet. Tellus, Ser. A 36, 278–291.

ANDREWS, D. G. 1981 A note on potential energy density in a stratified compressible fluid. J. Fluid Mech. 107, 227–236.
ARNOLD, V. I. 1965a Conditions for nonlinear stability of stationary plane curvilinear flows of ideal fluid. Dokl. Akad. Nauk. SSSR

162, 975–978.
ARNOLD, V. I. 1965b Variational principle for three-dimensional steady-state flows of an ideal fluid. Prikl. Math. I Mech. 29,

846–851.
ARNOLD, V. I. & KHESIN, B. A. 1998 Topological Methods in Hydrodynamics. Springer.
BARTH, J. A. 1994 Short-wave length instabilities on coastal jets and fronts. J. Geophys. Res. 99, 16095–16115.
BLECK, R., ROOTH, C., HU, D. & SMITH, L. T. 1992 Salinity-driven thermocline transients in a wind- and thermohaline-forced

isopycnic coordinate model of the North Atlantic. J. Phys. Oceanogr. 22, 1486–1505.
BOKHOVE, O. 2002 Balanced models in geophysical fluid dynamics: Hamiltonian formulation, constraints and formal stability.

In Large-Scale Atmosphere-Ocean Dynamics 2: Geometric Methods and Models (ed. J. Norbury & I. Roulstone), pp. 1–64.
Cambridge University Press.

BOUCHUT, F., LAMBAERTS, J., LAPEYRE, G. & ZEITLIN, V. 2009 Fronts and nonlinear waves in a simplified shallow-water
model of the atmosphere with moisture and convection. Phys. Fluids 21, 116604.

CAMASSA, R., HOLM, D. D. & LEVERMORE, C. D. 1996 Long-time effects of bottom topography in shallow water. Physica D
98, 258–286.

CARBONEL, H. A. A. C. & GALEAO, N. C. A. 2007 A stabilized finite element model for the hydrothermodynamical simulation
of the Rio de Janeiro coastal ocean. Comm. Num. Meth. Eng. 23, 521–534.

CHARNEY, J. G. 1948 On the scale of atmospheric motions. Geof. Publ. 17, 3–17.
CHARNEY, J. G. 1949 On a physical basis for numerical prediction of large-scale motions in the atmosphere. J. Atmos. Sci. 6,

372–385.
CHARNEY, J. G. & FLIERL, G. R. 1981 Oceanic analogues of large-scale atmospheric motions. In Evolution of Physical Oceanog-

raphy (ed. B. A. Warren & C. Wunsch), pp. 504–549. Massachusetts Institute of Technology Press.
CHARNEY, J. G. & PHILLIPS, N. A. 1953 Numerical integration of the quasi-geostrophic equations for barotropic and simple

baroclinic flows. J. Meteor. 10, 71–99.
CHARNEY, J. G. & STERN, M. E. 1962 On the stability of internal baroclinic jets in a rotating atmosphere. J. Met. 19, 159–172.
DELLAR, P. J. 2002 Hamiltonian and symmetric hyperbolic structures of shallow water magnetohydrodynamics. Phys. Plasmas 9,

1130–1136.
DELLAR, P. J. 2003 Common Hamiltonian structure of the shallow water equations with horizontal temperature gradients and

magnetic fields. Phys. Fluids 15, 292–297.
DELLAR, P. J. 2011 Variations on a beta-plane: derivation of non-traditional beta-plane equations from Hamilton’s principle on a

sphere. J. Fluid Mech. 674, 174–195.
DELLAR, P. J. & SALMON, R. 2005 Shallow water equations with a complete Coriolis force and topography. Phys. Fluids 17,

106601.
ECKART, C. 1960 Variation principles of hydrodynamics. Phys. Fluids 3, 421–427.
ELDEVIK, T. 2002 On frontal dynamics in two model oceans. J. Phys. Oceanogr. 32, 2915–2925.
ELIASSEN, A. & KLEINSCHMIDT, E. 1957 Dynamical meteorology. In Handbuch der Physik, vol. 48, pp. 1–154. Springer.
FARRELL, B. F. & IOANNOU, P. J. 1993 Stochastic forcing of the linearized Navier–Stokes equations. Phys. Fluids A 5, 2600–

2609.
FARRELL, B. F. & IOANNOU, P. J. 2003 Structural stability of turbulent jets. J. Atmos. Sci. 60, 2101–2118.



The quasi-geostrophic theory of the thermal shallow water equations 19

FARRELL, B. F. & IOANNOU, P. J. 2007 Structure and spacing of jets in barotropic turbulence. J. Atmos. Sci. 64, 3652–3665.
FRAM GROUP 1991 An eddy-resolving model of the Southern Ocean. EOS, Trans. Amer. Geophys. Union 72, 169–170.
FUKAMACHI, Y., MCCREARY, J. P. & PROEHL, J. A. 1995 Instability of density fronts in layer and continuously stratified models.

J. Geophys. Res. 100, 2559–2577.
GIERASCH, P. J., INGERSOLL, A. P., BANFIELD, D., EWALD, S. P., HELFENSTEIN, P., SIMON-MILLER, A., VASAVADA, A.,

BRENEMAN, H. H., SENSKE, D. A. & TEAM, I. GALILEO 2000 Observation of moist convection in Jupiter’s atmosphere.
Nature 403, 628–630.

GILL, A. E. 1982 Atmosphere Ocean Dynamics. Academic Press.
GILMAN, P. A. 1967 Stability of baroclinic flows in a zonal magnetic field: Part I. J. Atmos. Sci. 24, 101–118.
GILMAN, P. A. 2000 Magnetohydrodynamic “shallow water” equations for the solar tachocline. Astrophys. J. Lett. 544, 79–82.
GOLDSTEIN, H. 1980 Classical Mechanics, 2nd edn. Addison–Wesley.
GREEN, A. E. & NAGHDI, P. M. 1976 A derivation of equations for wave propagation in water of variable depth. J. Fluid Mech.

78, 237–246.
GUILLOT, T. 2005 The interiors of giant planets: Models and outstanding questions. Annu. Rev. Earth Planet. Sci. 33, 493–530.
HOLLIDAY, D. & MCINTYRE, M. E. 1981 On potential energy density in an incompressible, stratified fluid. J. Fluid Mech. 107,

221–225.
HOLM, D. D. 1986 Hamiltonian formulation of the baroclinic quasigeostrophic fluid equations. Phys. Fluids 29, 7–8.
HOLM, D. D., MARSDEN, J. E., RATIU, T. & WEINSTEIN, A. 1985 Nonlinear stability of fluid and plasma equilibria. Phys. Rep.

123, 1–116.
HOLTON, J. R. 1992 An Introduction to Dynamic Meteorology, 3rd edn. Academic Press.
HOSKINS, B. J., MCINTYRE, M. E. & ROBERTSON, A. W. 1985 On the use and significance of isentropic potential vorticity

maps. Q. J. R. Meteorol. Soc. 111, 877–946.
IVCHENKO, V. O., KRUPITSKY, A. E., KAMENKOVICH, V. M. & WELLS, N. C. 1999 Modeling the Antarctic Circumpolar

Current: A comparison of FRAM and equivalent barotropic model results. J. Mar. Res. 57, 29–45.
JUCKES, M. 1989 A shallow water model of the winter stratosphere. J. Atmos. Sci. 46, 2934–2956.
KILLWORTH, P. D. 1992 An equivalent-barotropic mode in the Fine Resolution Antarctic Model. J. Phys. Oceanogr. 22, 1379–

1387.
KILLWORTH, P. D. & HUGHES, C. W. 2002 The Antarctic Circumpolar Current as a free equivalent-barotropic jet. J. Mar. Res.

60, 19–45.
KRUPITSKY, A., KAMENKOVICH, V. M., NAIK, N. & CANE, M. A. 1996 A linear equivalent barotropic model of the Antarctic

Circumpolar Current with realistic coastlines and bottom topography. J. Phys. Oceanogr. 26, 1803–1824.
KUO, H. L. 1959 Finite-amplitude three-dimensional harmonic waves on the spherical earth. J. Meteorol. 16, 524–534.
LACASCE, J. H. & ISACHSEN, P. E. 2010 The linear models of the ACC. Prog. Oceanogr. 84, 139–157.
LAMBAERTS, J., LAPEYRE, G., ZEITLIN, V. & BOUCHUT, F. 2011 Simplified two-layer models of precipitating atmosphere and

their properties. Phys. Fluids 23, 046603.
LAVOIE, R. L. 1972 A mesoscale numerical model of lake-effect storms. J. Atmos. Sci. 29, 1025–1040.
LEITH, C. E. 1980 Nonlinear normal mode initialization and quasi-geostrophic theory. J. Atmos. Sci. 37, 958–968.
LIGHTHILL, J. 1978 Waves in Fluids. Cambridge University Press.
LONGUET-HIGGINS, M. S. 1964 On group velocity and energy flux in planetary wave motions. Deep Sea Res. 11, 35–42.
LORENZ, E. N. 1955 Available potential energy and the maintenance of the general circulation. Tellus 7, 157–167.
MAJDA, A. 2003 Introduction to PDEs and Waves for the Atmosphere and Ocean. American Mathematical Society.
MAJDA, A. & WANG, X. 2006 Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University

Press.
MARSTON, J. B., CONOVER, E. & SCHNEIDER, T. 2008 Statistics of an unstable barotropic jet from a cumulant expansion. J.

Atmos. Sci. 65, 1955–1966.
MCCREARY, J. P., FUKAMACHI, Y. & KUNDU, P. K. 1991 A numerical investigation of jets and eddies near an eastern ocean

boundary. J. Geophys. Res. 96, 2515–2534.
MCCREARY, J. P. & KUNDU, P. K. 1988 A numerical investigation of the Somali Current during the Southwest Monsoon. J.

Marine Res. 46, 25–58.
MCCREARY, J. P. & YU, Z. 1992 Equatorial dynamics in a 2 1

2
-layer model. Prog. Oceanogr. 29, 61–132.

MCINTYRE, M. E. & SHEPHERD, T. G. 1987 An exact local conservation theorem for finite-amplitude disturbances to non-parallel
shear flows, with remarks on Hamiltonian structure and Arnol’d’s stability theorems. J. Fluid Mech. 181, 527–565.

MCWILLIAMS, J. C. 1977 A note on a consistent quasigeostrophic model in a multiply connected domain. Dynam. Atmos. Oceans
1, 427–441.

MILES, J. & SALMON, R. 1985 Weakly dispersive nonlinear gravity waves. J. Fluid Mech. 157, 519–531.
MOHEBALHOJEH, A. R. & DRITSCHEL, D. G. 2001 Hierarchies of balance conditions for the f-plane shallow-water equations. J.

Atmos. Sci. 58, 2411–2426.
MORRISON, P. J. 1982 Poisson brackets for fluids and plasmas. In Mathematical Methods in Hydrodynamics and Integrability in

Dynamical Systems (ed. M. Tabor & Y. M. Treve), AIP Conference Proceedings, vol. 88, pp. 13–46. New York, American
Institute of Physics.

MORRISON, P. J. 1998 Hamiltonian description of the ideal fluid. Rev. Mod. Phys. 70, 467–521.
MORRISON, P. J. 2006 Hamiltonian fluid dynamics. In Encyclopedia of Mathematical Physics (ed. J.-P. Francoise, G. L. Naber &

S. T. Tsou), vol. 2, pp. 593–600. Elsevier.
MORRISON, P. J. & HAZELTINE, R. D. 1984 Hamiltonian formulation of reduced magnetohydrodynamics. Phys. Fluids 27,

886–897.
MURAKI, D. J., SNYDER, C. & ROTUNNO, R. 1999 The next-order corrections to quasigeostrophic theory. J. Atmos. Sci. 56,

1547–1560.
NEUMANN, G. 1960 On the dynamical structure of the Gulf Stream as an equivalent-barotropic flow. J. Geophys. Res. 65, 239–247.
PEDLOSKY, J. 1987 Geophysical Fluid Dynamics, 2nd edn. Springer.



20 E. S. Warneford and P. J. Dellar

POLVANI, L. M., WAUGH, D. W. & PLUMB, R. A. 1995 On the subtropical edge of the stratospheric surf zone. J. Atmos. Sci. 52,
1288–1309.

REINAUD, J. N., DRITSCHEL, D. G. & KOUDELLA, C. R. 2003 The shape of vortices in quasi-geostrophic turbulence. J. Fluid
Mech. 474, 175–192.

REMMEL, M. & SMITH, L. 2009 New intermediate models for rotating shallow water and an investigation of the preference for
anticyclones. J. Fluid Mech. 635, 321–359.

RIPA, P. 1993 Conservation laws for primitive equations models with inhomogeneous layers. Geophys. Astrophys. Fluid Dynam.
70, 85–111.

RIPA, P. 1995 On improving a one-layer ocean model with thermodynamics. J. Fluid Mech. 303, 169–201.
RIPA, P. 1996a Linear waves in a one-layer ocean model with thermodynamics. J. Geophys. Res. 101, 1233–1245.
RIPA, P. 1996b Low frequency approximation of a vertically averaged ocean model with thermodynamics. Rev. Mex. Fı́s. 41,

117–135.
RIPA, P. 1999 On the validity of layered models of ocean dynamics and thermodynamics with reduced vertical resolution. Dynam.

Atmos. Oceans 29, 1–40.
RØED, L. P. 1997 Energy diagnostics in a 1 1

2
-layer, nonisopycnic model. J. Phys. Oceanogr. 27, 1472–1476.

RØED, L. P. & SHI, X. B. 1999 A numerical study of the dynamics and energetics of cool filaments, jets, and eddies off the Iberian
Peninsula. J. Geophys. Res. 104, 29,817–29,841.

SALBY, M. L. 1989 Deep circulations under simple classes of stratification. Tellus A 41, 48–65.
SALMON, R. 1982 The shape of the main thermocline. J. Phys. Oceanogr. 12, 1458–1479.
SALMON, R. 1983 Practical use of Hamilton’s principle. J. Fluid Mech. 132, 431–444.
SALMON, R. 1988a Hamiltonian fluid mechanics. Ann. Rev. Fluid Mech. 20, 225–256.
SALMON, R. 1988b Semigeostrophic theory as a Dirac-bracket projection. J. Fluid Mech. 196, 345–358.
SALMON, R. 1998 Lectures on Geophysical Fluid Dynamics. Oxford University Press.
SCHOPF, P. S. & CANE, M. A. 1983 On equatorial dynamics, mixed layer physics and sea-surface temperature. J. Phys. Oceanogr.

13, 917–935.
SCHUBERT, W. H., TAFT, R. K. & SILVERS, L. G. 2009 Shallow water quasi-geostrophic theory on the sphere. J. Advances

Modeling Earth Systems 1, 2.
SCOTT, R. K. & POLVANI, L. M. 2008 Equatorial superrotation in shallow atmospheres. Geophys. Res. Lett. 35, L24202.
SELIGER, R. L. & WHITHAM, G. B. 1968 Variational principles in continuum mechanics. Proc. R. Soc. Lond. A 305, 1–25.
SHEPHERD, T. G. 1990 Symmetries, conservation laws, and Hamiltonian structure in geophysical fluid dynamics. Adv. Geophys.

32, 287–338.
SHEPHERD, T. G. 1993 A unified theory of available potential energy. Atmosphere-Ocean 31, 1–26.
SHI, X. B. & ROED, L. P. 1999 Frontal instabilities in a two-layer, primitive equation ocean model. J. Phys. Oceanogr. 29,

948–968.
SRINIVASAN, K. & YOUNG, W. R. 2012 Zonostrophic instability. J. Atmos. Sci. 69, 1633–1656.
STEWART, A. L. & DELLAR, P. J. 2010 Multilayer shallow water equations with complete Coriolis force. Part 1. Derivation on a

non-traditional beta-plane. J. Fluid Mech. 651, 387–413.
STONE, P. H. 1966 On non-geostrophic baroclinic stability. J. Atmos. Sci. 23, 390–400.
SU, C. H. & GARDNER, C. S. 1969 Korteweg-de Vries equation and generalizations III. Derivation of the Korteweg-de Vries

equation and Burgers equation. J. Math. Phys. 10, 536–539.
TAILLEUX, R. 2013 Available potential energy and exergy in stratified fluids. Annu. Rev. Fluid Mech. 45, 35–58.
TASSI, E., CHANDRE, C. & MORRISON, P. J. 2009 Hamiltonian derivation of the Charney–Hasegawa–Mima equation. Phys.

Plasmas 16, 082301.
THEISS, J. & MOHEBALHOJEH, A. R. 2009 The equatorial counterpart of the quasi-geostrophic model. J. Fluid Mech. 637,

327–356.
THUBURN, J. & LAGNEAU, V. 1999 Eulerian mean, contour integral, and finite-amplitude wave activity diagnostics applied to a

single-layer model of the winter stratosphere. J. Atmos. Sci. 56, 689–710.
TOBIAS, S. M., DAGON, K. & MARSTON, J. B. 2011 Astrophysical fluid dynamics via direct statistical simulation. Astrophys. J.

727, 127.
VALLIS, G. K. 2006 Atmospheric and Oceanic Fluid Dynamics. Cambridge University Press.
VAN KAMPEN, N. G. 1985 Elimination of fast variables. Phys. Rep. 124, 69–160.
VERKLEY, W. T. M. 2009 A balanced approximation of the one-layer shallow-water equations on a sphere. J. Atmos. Sci. 66,

1735–1748.
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