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1 Introduction

The lattice Boltzmann method is now widely employed
to simulate nearly incompressible fluid flows, most com-
monly using an isothermal equation. Efforts to simulate
compressible flows with evolving temperatures at larger
Mach numbers originally met with limited success, being
far more susceptible to numerical instabilities [1, 5]. This
led to a search for alternative equilibria offering improve-
ments in numerical stability [26], but at the price of intro-
ducing unphysical artifacts such as spikes and compound
waves into the solutions of the simulated equations [7].

However, it is now recognised that the lack of numeri-
cal stability is a consequence of the particular space/time

discretisation employed in the lattice Boltzmann method,
rather than any intrinsic defect in Boltzmann equation
itself. The Boltzmann equation with a discrete velocity
space, equation (1) below, is just a finite set of hyperbolic
partial differential equations coupled by some algebraic
source terms. Using alternative space/time discretisations
designed for hyperbolic systems (for pioneering work see
Refs. [22, 25]), it is possible to simulate standard bench-
mark problems such as the first Sod [20, 32] shock tube
using a discrete velocity Boltzmann equation [9].

Before embarking on a study of Boltzmann-based meth-
ods for compressible flow, it is worth remarking that the

Copyright c© 2008 Published by Inderscience Enterprises Ltd.

1



more established total variation diminishing (TVD) or
Godunov-based methods (see e.g. Laney [20]) only at-
tempt to recover entropy-satisfying solutions of the com-
pressible Euler equations, without explicit treatment of
non-ideal effects like viscosity and heat conduction. More-
over, these methods are known to malfunction in various
scenarios due to a lack of sufficient dissipation, perhaps the
most well-known being the spurious transonic rarefaction
shocks computed by Roe’s approximate Riemann solver
[24, 27]. To take another example, a Godunov-based com-
putation in magnetohydrodynamics showed incorrect be-
haviour due to an inaccurate treatment of dissipation in
the magnetic field, as described in [8].

Xu’s [39] gas kinetic BGK scheme offers an integrated
treatment that combines the ideal Euler equations with
viscosity and heat conduction. However, this approach
reconstructs the distribution function as a truncated
Chapman–Enskog expansion, with gradients of the velocity
and temperature approximated using their values at grid
points. In other words, the only degrees of freedom are the
standard hydrodynamic variables of mass, momentum, and
energy densities at grid points. A discrete or lattice Boltz-
mann approach provides independent evolution equations
for the stress, heat flux, and higher moments of the distri-
bution function. This may offer an improved approxima-
tion to continuum kinetic theory outside the small mean-
free-path limit described by the Chapman–Enskog expan-
sion, and motivates existing applications of the standard
lattice Boltzmann method to rarefied flows of monatomic
gases at small Mach numbers. These are currently con-
fined to isothermal flows in relatively simple geometries,
but a number of lattice Boltzmann implementations have
been demonstrated that capture, at least qualitatively, sec-
ond order slip flow and the so-called Knudsen minimum in
microchannels [2, 35, 40]. However, a more satisfactory
treatment would employ larger lattices in the discrete ve-
locity space, chosen to reproduce the higher moments of
the continuum Maxwell–Boltzmann distribution function
that enter the derivation of the Burnett equations at sec-
ond order in Knudsen number. The present paper is itself
concerned with the adoption of larger lattices in discrete
velocity space, but for the different purpose of simulating
the correct energy equation for a polyatomic gas.

Turning to polyatomic gases, in any ideal gas the pres-
sure p varies according to p ∝ ργ under adiabatic changes
in the density ρ. Kinetic theory gives the relation γ =
1 + 2/D between the adiabatic exponent γ and the num-
ber D of degrees of freedom associated with molecule. This
leads to the well-known γ = 5/3 for monatomic gases, each
atom having 3 translational degrees of freedom. Much re-
cent interest has been devoted to simulating the behaviour
of gases in micro-electro-mechanical devices (MEMs). The
gas is typically air, primarily a mixture of two diatomic
gases nitrogen and oxygen. Diatomic molecules have 2 ro-
tational degrees of freedom, rotation about the line of cen-
tres being forbidden quantum-mechanically, which com-
bines with the 3 translational degrees of freedom to give
D = 5 and γ = 7/5. The commercial heat transfer fluid

known as PP10, the fluorocarbon C13F22, has γ = 1.0128
corresponding to D ≈ 39. (Equality is not exact because
the molecule comprises carbon and fluorine atoms with two
different masses.)

Being based on the kinetic theory of monatomic gases,
those with no internal degrees of freedom, the value for D
in the standard lattice or discrete Boltzmann approach is
just the number of spatial dimensions. Thus one obtains
D = 3 and γ = 5/3 from a three dimensional computa-
tion, but γ = 3 in the purely one-dimensional formulation
used in Ref. [9]. As it would be undesirable to formu-
late a lattice in 5, let alone 39, spatial dimensions merely
to simulate flow of one of the above fluids, we shall in-
vestigate approaches that allow the adiabatic exponent γ
to be varied independently of the number of spatial di-
mensions. Following earlier work on the classical kinetic
theory of polyatomic gases [12, 23, 34], Shi et al. [30] and
Kataoka and Tsutahara [14] equipped their particles with
additional internal energies to circumvent the restrictions
of the Boltzmann equation. However, Shi et al. [30] did
not attempt to obtain correct viscous and conductive be-
haviour, being satisfied with the compressible Euler equa-
tions, while Kataoka and Tsutahara [14] postulate a form
for their equilibrium distribution functions f

(0)
i that typ-

ically leads to an unnecessarily large number of particle
velocities.

Li et al. [21] developed a discrete Boltzmann approach
for simulating aeroacoustics in diatomic gases. They re-
tained the unmodified Boltzmann equation without inter-
nal energies, as presented in Sec. 2 below. Being concerned
only with simulating small amplitude sound waves (acous-
tics) they adjusted the second moment of the equilibrium
distribution to give the correct energy density for diatomic
gases. The subsequently incorrect momentum flux tensor
does not affect the propagation of sound waves, so this
approach is perfectly sufficient for the purpose of simulat-
ing aeroacoustics. It is not, however, sufficient to simulate
more general flows of diatomic gases. Li et al. [21] also im-
plemented a temperature-dependent relaxation time that
yields Sutherland’s law for the temperature-dependent vis-
cosity of a diatomic gas (see Sec. 10).

In this paper we give a systematic treatment, first de-
riving necessary and sufficient conditions to recover the
Navier–Stokes–Fourier equations exactly, then investigat-
ing two alternative implementations. One may either use
a single set of particle to reproduce the continuity, mo-
mentum, and energy equations, or introduce a second set
of particles to reproduce only the energy equation. The
latter may be more amenable to implementation in multi-
ple space dimensions, but it is necessary to couple the two
sets of particles through the collision operator to obtain
the correct viscous heating when the Prandtl number is
set to a realistic value.

Our approach is valid in the limit of a rapid equipar-
tition of energy between the translational and rotational
degrees of freedom, for which the gas may be described
by the Navier–Stokes–Fourier equations with an arbitrary
(but constant) adiabatic exponent γ. A more sophisti-
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cated treatment with a separate evolution equation for
the internal energy becomes necessary when the timescale
for exchange of energy between translational and rota-
tional degrees of freedom is comparable to hydrodynamic
timescales. At the other extreme, when hydrodynamic
timescales are short compared with the timescale for in-
ternal energy exchange, the internal degrees of freedom
become “frozen” and the gas behaves as though it were
monatomic (e.g. [16]). In addition, real gas molecules
contain different kinds of internal degrees of freedom, or
modes. For example, a diatomic molecule has a vibra-
tional mode in addition to the rotational modes described
above. The vibrational mode is typically frozen at room
temperature, but may become excited at higher temper-
atures. This leads to an effective change in the adiabatic
exponent γ with temperature, as each additional internal
mode moves from being frozen, through evolving on a hy-
drodynamic timescale, to a rapid equipartition with the
translational degrees of freedom. The approach in this pa-
per is limited to constant γ.

2 Moments of the Boltzmann equation

The discrete Boltzmann equation is an evolution equation
for a finite set of distribution functions fi(x, t),

∂tfi + ξi · ∇fi = −1
τ

(
fi − f

(0)
i

)
. (1)

Each fi represents the number density of particles moving
with velocity ξi. On the right hand side we have written
the Bhatnagar, Gross, Krook (BGK) collision operator [3],
under which the fi relax towards some explicitly specified
equilibria f

(0)
i with a single relaxation time τ . The choice

of a BGK collision operator, and a fixed τ , is adopted
for simplicity of presentation, and will be briefly revisited
later. The common objection that the BGK collision op-
erator yields suboptimal stability with the space/time dis-
cretisation of (1) used in the lattice Boltzmann method is
not relevant for the alternative space/time discretisation
that we describe in Sec. 9 below.

The macroscopic mass (ρ), momentum (ρu), and energy
(E) densities are typically defined by moments of the dis-
tribution functions,

ρ =
N∑

i=0

fi, ρu =
N∑

i=0

ξifi, E =
1
2

N∑

i=0

|ξi|2fi, (2)

where u is the fluid velocity. The equilibria f
(0)
i are then

constructed as functions of these macroscopic quantities in
such a way that

N∑

i=0

f
(0)
i = ρ,

N∑

i=0

ξif
(0)
i = ρu,

1
2

N∑

i=0

|ξi|2f (0)
i = E . (3)

To clarify, the former equations (2) are definitions of the
quantities ρ, u, and E , while the latter equations (3) are

constraints on the functional form of the f
(0)
i expressed in

terms of the quantities ρ, u, and E . These constraints en-
sure that mass, momentum, and energy are conserved un-
der the BGK model of collisions, just as they are conserved
by Boltzmann’s original binary collision operator. Requir-
ing the existence of a solution f

(0)
i to these constraints, and

of the further constraints derived below, in turn imposes
constraints on the ξi in a more subtle manner.

From moments of the Boltzmann equation (1) we obtain
exact conservation laws for the macroscopic mass, momen-
tum, and energy densities,

∂tρ +∇·(ρu) = 0, ∂t(ρu) +∇·Π = 0, ∂tE +∇·F = 0.
(4)

The right hand sides vanish due to equations (3). The
momentum flux (or stress) tensor Π and the energy flux
vector F are identified as higher moments of the distribu-
tion functions,

Π =
N∑

i=0

ξiξifi, F =
1
2

N∑

i=0

|ξi|2ξifi. (5)

The compressible Euler equations follow from (4) when Π
and F are approximated by their equilibrium values, which
must be

Π(0) =
N∑

i=0

ξiξif
(0)
i = pI + ρuu, (6)

F (0) =
1
2

N∑

i=0

|ξi|2ξif
(0)
i = u(E + p), (7)

where p is the fluid pressure. These equations should thus
be interpreted as imposing additional constraints on the
equilibria f

(0)
i . An expression for the pressure p in terms

of the conserved quantities ρ, u, E will be given in the
following section.

The Navier–Stokes–Fourier equations follow by formu-
lating evolution equations for the higher moments, for in-
stance

∂tΠ +∇·
(

N∑

i=0

ξiξiξifi

)
= −1

τ

(
Π−Π(0)

)
, (8)

and using a Chapman–Enskog expansion to seek solutions
that vary slowly compared with the collisional timescale τ .
This is equivalent to expanding the momentum and energy
fluxes as series in a small parameter ε,

Π = Π(0) + εΠ(1) + · · · , F = F (0) + εF (1) + · · · , (9)

where ε is the ratio of τ to a characteristic hydrody-
namic timescale. The conserved quantities ρ, u, and E are
left unexpanded, since they do not evolve on a collisional
timescale. One then uses the corresponding multiple-scales
expansion of the time derivative

∂t = ∂t0 + ε∂t1 + · · · (10)

to justify replacing ∂t by ∂t0 in equation (8) and its ana-
logue for F . Further details are presented in Sec. 4 for the
momentum flux, and Sec. 5 for the energy flux.
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3 Introduction of internal energies

Comparing equations (3) and (7), we see that there is a
relation between the energy density E and the trace of the
equilibrium momentum flux tensor Π(0),

E =
1
2

N∑

i=0

|ξi|2f (0)
i =

1
2
Tr

N∑

i=0

ξiξif
(0)
i =

1
2
TrΠ(0). (11)

Substituting Π(0) = pI + ρuu as given by the compressible
Euler equations, we obtain

E =
D

2
p +

1
2
ρ|u|2, (12)

where the number of spatial dimensions D enters through
Tr I = D. Comparing equation (12) with the standard
expression for an ideal gas [19]

E =
p

γ − 1
+

1
2
ρ|u|2, (13)

establishes the relation γ = 1+2/D between D and the
adiabatic exponent γ.

Following earlier work on the classical kinetic theory of
polyatomic gases [12, 23, 34], Shi et al. [30] and Kataoka
and Tsutahara [14] circumvented this restriction on γ by
postulating an additional internal energy εi for each parti-
cle, in addition to the particle’s kinetic energy proportional
to |ξi|2. They thus replaced the previous definitions of the
macroscopic energy density and energy flux by

E =
1
2

N∑

i=0

(|ξi|2 + εi

)
fi, F =

1
2

N∑

i=0

(|ξi|2 + εi

)
ξifi.

(14)
Having postulated the expression for E , the expression for
F follows from comparing the desired energy equation

∂tE +∇·F = 0 (15)

with the Boltzmann equation (1). Note that the εi must be
prescribed constants, so that they may be taken inside spa-
tial and temporal derivatives to construct evolution equa-
tions for the moments.

To obtain the compressible Euler equations at leading
order, we require [19]

E(0) =
1
2

N∑

i=0

(|ξi|2+ εi

)
f

(0)
i =

p

γ − 1
+

1
2
ρ|u|2, (16)

F (0) =
1
2

N∑

i=0

(|ξi|2+ εi

)
ξif

(0)
i =

γ

γ − 1
pu +

1
2
ρ|u|2u.

(17)

These equations should be interpreted as constraints on
both the f

(0)
i and the internal energies εi.

For future convenience, and following standard termi-
nology in the lattice Boltzmann literature, we introduce a

temperature θ such that p = θρ. This temperature is mea-
sured in so-called energy units that absorb Boltzmann’s
constant, or the molar gas constant R. The temperature
is then equal to the square of the isothermal or Newtonian
sound speed, cs = (p/ρ)1/2 = θ1/2.

An alternative definition of temperature for a poly-
atomic gas uses only the translational degrees of freedom
[16]. This alternative definition leads to a ∇·u term in
the relation between pressure and temperature, in place of
the bulk viscous stress proportional to ∇·u that we calcu-
late below. For example, Kogan’s [15] treatment using the
translational temperature yields exactly the same expres-
sion −τρθ(5/3− γ)∇·u that we give in (23) below, but as
a non-equilibrium contribution to the pressure rather than
an isotropic contribution to the viscous stress from bulk
viscosity.

4 Calculation of the viscous stress

Following the standard Chapman–Enskog approach, we
obtain an explicit formula for the viscous stress from the
evolution equation (8) by evaluating the left hand side us-
ing the equilibrium distributions f

(0)
i , and approximating

the time derivative using the compressible Euler equations,

∂t0Π
(0) +∇·

(
N∑

i=0

ξiξiξif
(0)
i

)
= −1

τ
Π(1). (18)

The first term ∂t0Π
(0) = ∂t0 (ρuu + ρθI) evaluates to

∂t0Π
(0) = ∂t0(ρu)u + u∂t0(ρu)− uu∂t0ρ + ∂t0(ρθ)I,

= −∇·(ρuu + ρθI)u− u∇·(ρuu + ρθI)
+uu∇·(ρu)−∇·(ρθu)I− (γ − 1)(ρθ∇·u)I,

= −∇·(ρuuu)−∇(ρθ)u− u∇(ρθ)
−∇·(ρθu)I− (γ − 1)(ρθ∇·u)I, (19)

after using the Euler momentum and temperature equa-
tions in the form

∂t0(ρu) + ∇·(ρuu + ρθI) = 0,

∂t0(ρθ) + ∇·(ρθu) + (γ − 1)ρθ∇·u = 0. (20)

To cancel the ρuuu and ∇(ρθ) terms in (19) we must
choose the equilibrium distribution f

(0)
i to satisfy

N∑

i=0

ξiξiξif
(0)
i = ρuuu + ρθ (u I + cyclic) . (21)

The expression (u I + cyclic) denotes the completely sym-
metric third rank tensor with components uαδβγ +uβδγα+
uγδαβ that cannot be written in dyadic notation. Substi-
tuting (19) and (21) into (18), we obtain

Π(1)
αβ = −τρθ

(
∂uα

∂xβ
+

∂uβ

∂xα
− (γ − 1)δαβ

∂uγ

∂xγ

)
, (22)
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which is a Newtonian viscous stress with shear viscosity
µ = τρθ. It may be rewritten in a more illuminating form
as

Π(1) = −τρθ

[
(∇u) + (∇u)T − 2

3
I∇·u

]
−τρθ

(
5
3
− γ

)
I∇·u.

(23)
The first term, having zero trace, is the standard viscous
stress for a dilute monatomic gas (for which γ = 5/3) ob-
tained from classical kinetic theory. The second term is an
additional bulk viscous stress with bulk viscosity (5/3−γ)µ
that arises from changing the adiabatic exponent γ. This
definition of bulk viscosity is always positive when γ < 5/3,
corresponding to additional internal degrees of freedom
(D > 3 in γ = 1+2/D), but different authors use different
conventions for what constitutes “bulk viscosity”. Some
authors use this phrase for the whole of the isotropic term
in (22), rather than just that part adding to the traceless
first term in (23), as listed in [6].

In summary, the constraints (3), (7), and (21) on the
equilibrium distribution functions f

(0)
i are necessary and

sufficient to yield the continuity and momentum equations
with a Newtonian viscous stress as above. The only use we
have made of the energy equation is through eliminating
∂t0(ρθ) using the compressible Euler temperature equation
to derive (19).

5 Calculation of heat conduction and viscous heating

Similarly, we calculate the corrections to the energy flux
F (0) that are responsible for heat conduction and viscous
heating by first formulating an evolution equation for F .
Taking the 1

2 (|ξi|2 + εi)ξi moment of the Boltzmann equa-
tion gives

∂tF +∇·
(

1
2

N∑

i=0

(|ξi|2 + εi) ξiξifi

)
= −1

τ

(
F −F (0)

)
,

(24)
which, to sufficient accuracy, again simplifies to

∂t0F (0)+∇·
(

1
2

N∑

i=0

(|ξi|2 + εi) ξiξif
(0)
i

)
= −1

τ
F (1) (25)

when using the Chapman–Enskog expansion. Evaluating
∂t0F (0) step by step, we find

∂t0(ρθu) = u∂t0(ρθ) + θ∂t0(ρu)− uθ∂t0ρ,

= −u [∇·(ρuθ) + (γ − 1)ρθ∇·u]
−θ∇·(ρuu + ρθI) + uθ∇·(ρu),

= −(γ − 1)ρθu∇·u− θ∇(ρθ)−∇·(ρθuu),
(26)

and

∂t0

(
1
2 ρu|u|2)

=
1
2
|u|2∂t0(ρu) + uu · ∂t0(ρu)− u|u|2∂t0ρ,

= −1
2
|u|2∇·(ρuu + ρθI),

−uu · ∇·(ρuu + ρθI) + u|u|2∇·(ρu),

= −1
2
∇·(ρuu|u|2)− 1

2
|u|2∇(ρθ)− uu · ∇(ρθ),

= −∇·
[
1
2
ρuu|u|2 +

1
2
|u|2ρθI + ρθuu

]
,

+ρθ∇1
2
|u|2 + ρθ∇·(uu). (27)

Assembling the two halves,

∂t0 F (0)

= ∂t0

(
1
2
ρu|u|2 +

γ

γ − 1
ρθu

)

= ∇·
[
1
2
ρuu|u|2 +

1
2
|u|2ρθI +

2γ − 1
γ − 1

ρθuu +
γ

γ − 1
ρθ2I

]

+ρθ [uα∇uα + u · ∇u− (γ − 1)u∇·u] +
γ

γ − 1
ρθ∇θ,

= ∇·
[
1
2
ρuu|u|2 +

1
2
|u|2ρθI +

2γ − 1
γ − 1

ρθuu +
γ

γ − 1
ρθ2I

]

−1
τ
u ·Π(1) +

γ

γ − 1
ρθ∇θ. (28)

Choosing the f
(0)
i so that the term whose divergence

appears in (25) cancels the divergence term ∇·[ ] in (28),

1
2

N∑

i=0

(|ξi|2 + εi

)
ξiξif

(0)
i =

1
2
ρ|u|2uu +

1
2
ρθ|u|2I

+
2γ − 1
γ − 1

ρθuu +
γ

γ − 1
ρθ2I, (29)

therefore gives the desired viscous heating and conductive
heat flux,

F (1) = u ·Π(1) − γ

γ − 1
τρθ∇θ. (30)

The first term is the rate of working by viscous stresses,
while the second term gives Fourier’s law with thermal
conductivity κ = τρθγ/(γ − 1).

Given that the right hand side of (29) must be a second
rank symmetric tensor with the dimensions of ρ|u|4, a rea-
sonable alternative to the above calculation is to postulate
the functional form of (29) with four arbitrary constants
in place of 1/2, γ/(γ − 1), etc. Evaluating the left hand
side of (25) using a symbolic manipulator package, the four
constants may be adjusted to eliminate any appearance of
∇ρ in the heat flux. This procedure yields the unique co-
efficients given in (29).
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6 Constraints on the equilibria and internal energies

To summarise, the equations of mass and momentum con-
servation with a Newtonian viscous stress determine the
moments

N∑

i=0

f
(0)
i = ρ,

N∑

i=0

ξif
(0)
i = ρu,

Π(0) =
N∑

i=0

ξiξif
(0)
i = ρθI + ρuu, (31)

N∑

i=0

ξiξiξif
(0)
i = ρuuu + ρθ (u I + cyclic) .

The compressible Euler energy equation determines

1
2

N∑

i=0

(|ξi|2 + εi

)
f

(0)
i =

ρ θ

γ − 1
+

1
2
ρ|u|2, (32)

1
2

N∑

i=0

(|ξi|2 + εi

)
ξif

(0)
i =

γ

γ − 1
ρ θ u +

1
2
ρ|u|2u,

and the conductive heat flux and viscous heating together
determine

1
2

N∑

i=0

(|ξi|2 + εi

)
ξiξif

(0)
i =

1
2
ρ|u|2uu +

1
2
ρθ|u|2I (33)

+
2γ − 1
γ − 1

ρθuu +
γ

γ − 1
ρθ2I.

By contracting equations (31) on two indices, we find
that the εi-independent contributions to (32) are already
determined to be

1
2

N∑

i=0

|ξi|2f (0)
i =

D

2
ρθ +

1
2
ρ|u|2,

1
2

N∑

i=0

|ξi|2ξif
(0)
i =

1
2
ρ|u|2u +

2 + D

2
ρθu, (34)

so to satisfy equations (32) in addition we need

1
2

N∑

i=0

εif
(0)
i =

(
1

γ − 1
− D

2

)
ρθ,

1
2

N∑

i=0

εiξif
(0)
i =

(
1

γ − 1
− D

2

)
ρθu, (35)

where D is the number of spatial dimensions as before.
Since the fourth moment does not enter the momentum

equation at viscous order, there is no unique way to split
(33) between the |ξi|2 and εi contributions. However, it
might seem reasonable to adopt the γ = 5/3 value for
the |ξi|2 contribution, so that the εi are responsible for all
deviations from monatomic gas behaviour. This gives

1
2

N∑

i=0

|ξi|2ξiξif
(0)
i =

1
2
ρ|u|2uu+

1
2
ρθ|u|2I+7

2
ρθuu+

5
2
ρθ2I,

(36)

where we note that the two O(|u|2) terms arise from the
contraction on two indices of the completely symmetric
fourth rank tensor with components uαuβδγδ + · · · as re-
quired by the structure of the left hand side.

The γ-dependent contribution that remains for the εi

terms is then

1
2

N∑

i=0

|ξi|2εif
(0)
i =

(
1

γ − 1
− D

2

) (
ρθuu + ρθ2I

)
, (37)

which establishes the pattern of relations

1
2

N∑

i=0

εif
(0)
i =

(
1

γ − 1
− D

2

)
θ

N∑

i=0

f
(0)
i ,

1
2

N∑

i=0

εiξif
(0)
i =

(
1

γ − 1
− D

2

)
θ

N∑

i=0

ξif
(0)
i , (38)

1
2

N∑

i=0

εiξiξif
(0)
i =

(
1

γ − 1
− D

2

)
θ

N∑

i=0

ξiξif
(0)
i ,

between the εi moments and the lower moments appear-
ing in the continuity and momentum equations. Unfortu-
nately, taking the εi proportional to θ as suggested by this
pattern is not possible. The εi must be constants, so that
they commute with spatial and temporal derivatives, to
obtain moment equations in conservation form as above.

7 One dimensional, unsplit seven velocity model

Each constraint equation has only one component in one
spatial dimension. There are thus four constraints (31)
from the momentum equation, and another three, (32) and
(33), from the energy equation. This suggests choosing
seven velocities with ξi = i for i = −3, . . . , 3. The εi must
be chosen so that {εi, ξiεi, ξ

2
i εi} and {1, ξi, ξ

2
i , ξ3

i } comprise
seven linearly independent vectors in R7. These vectors are
the rows of the 7 × 7 matrix appearing below. One such
choice is εi = (0, 0, 1, 4, 1, 0, 0), motivated by the three-
velocity isothermal lattice Boltzmann equilibria. The per-
haps more natural rescaling εi = (0, 0, 1/6, 2/3, 1/6, 0, 0)
leads to a far less stable numerical scheme.

Given the εi, the constraints (31) to (33) may be written
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as a system of seven linear equations for the seven f
(0)
i ,




1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27
9 4 2 4 2 4 9
−27 −8 −2 0 2 8 27
81 16 2 0 2 16 81







f
(0)
−3

f
(0)
−2

f
(0)
−1

f
(0)
0

f
(0)
1

f
(0)
2

f
(0)
3




= ρ




1
u

u2 + θ
u3 + 3θu

u2 + 2θ/(γ − 1)
u3 + 2θu γ/(γ − 1)

u4 + θu2(5γ − 3)/(γ − 1) + 2θ2γ/(γ − 1)




. (39)

Subtracting the third row from the fifth row, and the fourth
row from the sixth row, leads to some simplification,




1 1 1 1 1 1 1
−3 −2 −1 0 1 2 3
9 4 1 0 1 4 9
−27 −8 −1 0 1 8 27
0 0 1 4 1 0 0
0 0 −1 0 1 0 0
81 16 2 0 2 16 81







f
(0)
−3

f
(0)
−2

f
(0)
−1

f
(0)
0

f
(0)
1

f
(0)
2

f
(0)
3




= ρ




1
u

u2 + θ
u3 + 3θu

θ(γ − 3)/(γ − 1)
θu(γ − 3)/(γ − 1)

u4 + θu2(5γ − 3)/(γ − 1) + 2θ2γ/(γ − 1)




. (40)

Having chosen the εi to ensure linear independence of the
rows of the matrices in (39) and (40), either system may
be solved using a symbolic manipulator to obtain seven
concrete expressions such as

f
(0)
0 =

ρ

64

(
−36 + 13|u|2 − |u|4 − 12γ − 62

γ − 1
θ

−5γ − 3
γ − 1

θ|u|2 − 2γ

γ − 1
θ2

)
. (41)

It is usually more computationally efficient to write equilib-
ria like this, one formula for each value of i, rather than as
one complicated expression involving weights wi and the ξi

that is valid for i = −3, . . . 3. One typically gains efficiency
from unrolling the resulting loop over i and precomputing
the functions of ξi as constants.

8 One dimensional, split 4+3 velocity model

The poor stability properties of the early thermal lattice
Boltzmann models led He et al. [13] to develop a split

model using an entirely separate set of distribution func-
tions to evolve the fluid’s internal energy. They used
a standard D2Q9 lattice for each distribution function,
which meant that there were no particles with speed 2
or greater to cause instability, but also that their momen-
tum equation contained artifacts due to the omission of the
ρuuu term in the third moment of the distribution func-
tion for density and momentum, our equation (21). This
omission restricted the validity of their scheme to thermal
flows at small Mach numbers, although they retained var-
ious terms such as viscous heating that would normally be
neglected in a Boussinesq limit. As a side effect, use of two
independent distribution functions, each with a BGK colli-
sion operator, enabled He et al. [13] to adjust the Prandtl
number by varying the two relaxation times independently.

The mass and momentum conservation equations, in-
cluding the Newtonian viscous stress, arise from equations
(31) that do not involve the εi. One may therefore choose
the ξi and f

(0)
i to satisfy just the continuity and momen-

tum equations, and obtain the complete energy equation
from an entirely separate set of distribution functions gi

obeying a second discrete Boltzmann equation

∂tgi + ζi · ∇gi = −1
τ

(gi − g
(0)
i ), (42)

with a possibly different set of discrete particle velocities
ζi. The two discrete Boltzmann equations for fi and gi are
coupled via the moments ρ, u, and θ evaluated at lattice
points. Achieving a realistic Prandtl number also requires
coupling the equation for the gi to the viscous stress com-
puted from fi − f

(0)
i .

The first few moments of the equilibria g
(0)
i must be

given by

1
2

N∑

i=0

g
(0)
i =

ρ θ

γ − 1
+

1
2
ρ|u|2, (43a)

1
2

N∑

i=0

ζig
(0)
i =

γ

γ − 1
ρ θ u +

1
2
ρ|u|2u, (43b)

1
2

N∑

i=0

ζiζig
(0)
i =

1
2
ρ|u|2uu +

1
2
ρθ|u|2I

+
2γ − 1
γ − 1

ρθuu +
γ

γ − 1
ρθ2I. (43c)

The left hand side of (43c) is a generic symmetric second
rank tensor, unlike equation (36) before, so the O(|u|2)
terms need not be (and are not) the contraction of a sym-
metric fourth rank tensor.

Four momentum constraints in one dimension suggest
using four particles with velocities ξi = {−2,−1, 1, 2}. In
a departure from convention, there are no rest particles in
this set of velocities. As before, the equilibria are given by
the solution

f
(0)
±2 =

1
12

ρ
(±u3 + 2u2 ± (3θ − 1)u + 2θ − 2

)
,

f
(0)
±1 = − 1

12
ρ

(±2u3 + 2u2 ± (6θ − 8)u + 2θ − 8
)
,

(44)

7



to the four linear equations (31), rewritten in matrix form
as




1 1 1 1
−2 −1 1 2
4 1 1 4
−8 −1 1 8







f
(0)
−2

f
(0)
−1

f
(0)
1

f
(0)
2


 = ρ




1
u

u2 + θ
u3 + 3θu


 . (45)

If one were to include an additional rest particle, there
would be five equilibria to be found, but still only four
constraint equations. This leaves one undetermined degree
of freedom that may be adjusted to optimise stability [10].

The separate energy equation requires three constraints
(43a-c), suggesting a separate set of three particle velocities
ζi = {−1, 0, 1} that does include a rest particle to maintain
symmetry. Writing the three constraint equations (43) in
matrix form gives




1 1 1
−1 0 1
1 0 1







g
(0)
−1

g
(0)
0

g
(0)
1




= ρ




u2 + 2θ/(γ − 1)
u3 + 2θuγ/(γ − 1)

u4 + θu2(5γ − 3)/(γ − 1) + 2θ2γ/(γ − 1)




=




S
V
T


 . (46)

The symbols S, V , T denote scalar, vector, and ten-
sor quantities of the right hand side respectively (though
only the x and xx components are present in this one-
dimensional formulation). This particularly simple system
has the solution

g
(0)
−1 =

1
2

(T − V ) , g
(0)
0 = S − T, g

(0)
+1 =

1
2

(T + V ) .

(47)

9 Numerical implementation

The standard lattice Boltzmann method approximates the
system of partial differential equations

∂tfi + ξi · ∇fi = −1
τ

(
fi − f

(0)
i

)
(48)

by the set of algebraic equations

f i(x + ξi∆t, t + ∆t)− f i(x, t) = − ∆t

τ + ∆t/2

(
(f i − f

(0)
i

)
.

(49)
The f i are related to the fi by

f i = fi +
∆t

2τ

(
fi − f

(0)
i

)
, (50)

which renders (49) a second order accurate and fully ex-
plicit approximation to (1). Equation (49) may be derived
by integrating (1) along characteristics for a time interval

∆t using the trapezium rule [13]. However, although equa-
tion (49) is second order accurate for ∆t ¿ τ , equation
(49) causes the nonequilibrium part f i − f

(0)
i to oscillate

at every timestep when τ < 1
2∆t. By contrast, the original

partial differential equation (1) always causes fi − f
(0)
i to

decay monotonically towards zero on a timescale τ .
Moreover, when using particles with speeds 2 and larger,

as needed to reproduce thermal behaviour, some informa-
tion propagates 2 or more grid points per timestep un-
der (49). Although the advective part of (49) is neu-
trally stable, consisting only of shifting data between grid
points, it would not be surprising if the coupled system be-
came unstable through violating the spirit of the Courant–
Friedrichs–Lewy (CFL) stability condition – that informa-
tion should propagate no further than one grid spacing per
timestep.

This heuristic argument is not the whole story, because
one isothermal D2Q13 scheme is stable enough to perform
useful computations [38], and linearly stable D1Q5 schemes
may be found for general barotropic equations of state [10].
However, Lallemand and Luo [18] found that the thermal
D2Q13 scheme is linearly unstable due to an interaction be-
tween the energy flux and the shear stress. They proposed
using a conventional finite difference method for the en-
ergy equation instead, but their finding of instability only
applies to the standard space/time discretisation (49).

We therefore adopt an alternative space/time discreti-
sation that does not suffer from either of these possible
sources of instability. Using Strang splitting [33] we com-
bine a solution of the advection equation ∂tfi +ξi ·∇fi = 0
from the Beam–Warming method [20, 37] with an exact so-
lution of the collision equation. This splitting procedure
resembles the “spin steps” used to implement the Coriolis
force in a lattice Boltzmann ocean model [28]. The so-
lution fnew

i to the discrete Boltzmann equation (1) after
a timestep ∆t is given by three steps, with intermediate
values f?

i and f??
i ,

f?
i = f

(0)
i + (fi − f

(0)
i ) exp

(
−1

2
∆t

τ

)
, (51a)

f??
i (x) = f?

i (x)− 1
2
|ξi|∆t

∆x

(
3f?

i (x)− 4f?
i (x−∆x)

+f?
i (x− 2∆x)

)

+
1
2

(
|ξi|∆t

∆x

)2 (
f?

i (x)− 2f?
i (x−∆x)

+f?
i (x− 2∆x)

)
, (51b)

f
(new)
i = f

(0)
i + (f??

i − f
(0)
i ) exp

(
−1

2
∆t

τ

)
. (51c)

The Beam–Warming formula (51b) is written for ξi > 0,
and combines a second-order accurate upwind first differ-
ence for the advection with an upwind second difference for
stability. For ξi < 0 one should replace x−∆x by x+∆x,
replace x − 2∆x by x + 2∆x, and reverse the sign of the
first term.
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Since f
(0)
i depends only on the quantities ρ, u and θ that

are conserved under collisions, steps (51a) and (51c) give
the exact solution to the system of ordinary differential
equations

∂tfi = −1
τ

(fi − f
(0)
i ) (52)

over a time interval 1
2∆t. In particular, these steps ensure

that f
(new)
i → f

(0)
i as τ → 0 even when ∆t À τ . This so-

called asymptotic preserving property ensures that small τ
values do not impose a stability constraint on the timestep
∆t. However, there is an accuracy constraint due to the
splitting of the coupled advection and collision equation
(1) into three separate steps. The use of two collision steps
(51a) and (51c), each for times 1

2∆t, gives a splitting error
of O(∆t2). The overall scheme thus has second-order ac-
curacy in time. The two collision steps may be combined
into one for an efficient implementation, except when the
solution at a particular time n∆t for integer n is required
for output.

It is worth emphasising that the above split scheme leads
to accurate results when ∆t ≈ τ , with little benefit from
taking ∆t ¿ τ , but the splitting error leads to overly diffu-
sive behaviour when ∆t À τ . Unlike the standard lattice
Boltzmann scheme (49), the split scheme does not capture
the correct behaviour of slowly varying solutions of the
discrete Boltzmann PDE (48) when ∆t À τ . This lim-
itation is shared by other approximations to the discrete
Boltzmann PDE, such as finite volume approximations to
the isothermal discrete Boltzmann PDE on unstructured
meshes [36]. It is perhaps a less severe restriction for sim-
ulations of compressible flow with shocks, since substan-
tially more dissipation is required to resolve shocks than
is required to resolve shear layers in incompressible flows.
The thickness of shocks is proportional to the viscosity µ,
while the thickness of shear layers is proportional to µ1/2.
In other words, the resolution of shocks in a compressible
flow requires a grid-scale Reynolds number of order unity,
in the absence of some kind of solution-adaptive dissipa-
tion.

10 Changing the Prandtl number

Using the unsplit approach of Sec. 7 with the BGK collision
operator leads to non-equilibrium momentum and energy
fluxes given by

Π(1) = −µ
[
(∇u) + (∇u)T−(γ−1)I∇·u]

,

F (1) = u ·Π(1) − κ∇θ, (53)

with viscosity µ = τρθ and thermal conductivity κ =
µγ/(γ − 1). This corresponds to a Prandtl number Pr =
(ν/κ) · (γ− 1)/γ of unity in standard kinetic theory usage,
but the true value of the Prandtl number should be close
to 2/3, and exactly 2/3 for a gas of Maxwell molecules.

To adjust the value of κ independently of the µ appear-
ing inside Π(1) in the second of equations (53), thus leaving

the viscous heating correct, it is necessary to adopt a colli-
sion operator that is non-diagonal in the basis of moments
with respect to the particle velocity ξi. In continuum ki-
netic theory there is no difficulty because it is standard to
use moments with respect to the so-called peculiar veloc-
ity c = ξi − u instead. This separates the u · Π(1) and
−κ∇θ contributions of the energy flux, so one may use
various extensions of the BGK collision operator such as
the Gross–Jackson [11] or Shakhov S-model [29] that allow
arbitrary Prandtl number, yet are diagonal in a basis of
moments with respect to the peculiar velocity. Transform-
ing back to a basis of moment with respect to ξi yields a
non-diagonal collision operator, but one that can still be
solved exactly using exponentials. Further investigation,
and a detailed study of the splitting method, will presented
elsewhere.

In addition, a constant value for the collision time τ ,
adopted here for simplicity, gives a dynamic viscosity
µ = τρθ that is proportional to the product of density
and temperature. This is an artifact of the BGK collision
operator. The viscosity in a dilute monatomic gas is pro-
portional to θ1/2 and independent of density. At fixed tem-
perature, the longer mean free path in a lower density gas
precisely compensating for the smaller number of atoms
per unit volume transporting momentum. The tempera-
ture dependence for diatomic gases is commonly modelled
by Sutherland’s law,

µ = µref

(
θ

θref

)3/2
θref + θS

θ + θS
. (54)

Here µref is the viscosity at a reference temperature θref ,
and θS is a constant (equivalent to 111 Kelvin for air).
Sutherland’s law asymptotes to the monatomic gas be-
haviour at high temperatures, µ ∼ θ1/2 when θ À θS.
A more accurate simulation would take the energy and
momentum relaxation times to be separate functions of
the density and temperature at lattice points, chosen to
give the desired functional dependence of the viscosity and
thermal conductivity on temperature (as in [21]).

11 Numerical results

Figure 1 shows the results of simulating Sod’s first shock
tube problem [20, 32] using the unsplit seven velocity
model of Sec. 7 with γ = 5/3. The initial conditions for
this benchmark problem correspond to a stationary gas
with density and pressure given by

ρ = 1.0 and p = 1.0 for x < 0,

ρ = 0.125 and p = 0.1 for x > 0.
(55)

The computation was performed on the domain −0.5 ≤
x < 0.5 using 4096 points and periodic boundary condi-
tions. There is thus a second backwards-facing shock tube
at the periodic boundary, but the two Riemann fans have
not had time to interact by the time t = 0.1 shown in the
figure. The computations used a BGK collision operator
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with τ = 10−4, and a timestep ∆t set by the maximum
Courant number 3∆t/∆x = 0.9. For these parameter val-
ues the ratio ∆t/τ ≈ 0.8 is not especially small, but the so-
lution was left virtually unchanged by taking much smaller
timesteps.

The solution computed with fixed τ is in close agreement
with a reference solution of the compressible Euler equa-
tions computed using the second order accurate extension
by Kurganov and Tadmor [17] of the local Lax–Friedrichs
(or Rusanov) scheme. The system of ordinary differen-
tial equations arising from this semi-discrete scheme was
solved using a second order, total variation diminishing,
Runge–Kutta integrator [31]. The discrete Boltzmann so-
lution shows a small velocity overshoot due to insufficient
dissipation at the shock, and a velocity perturbation near
the contact discontinuity.

Total variation diminishing (TVD) methods for compu-
tational gas dynamics capture shocks without overshoots,
and without excessive global dissipation, by increasing the
dissipation in the neighbourhood of large spatial gradients
(see e.g. Laney [20]). The so-called entropic lattice Boltz-
mann methods achieve a similar goal by adjusting the re-
laxation time depending upon the non-equilibrium part of
the distribution functions, which in turn depends upon lo-
cal spatial gradients (see e.g. Boghosian et al. [4]). A
fully competitive Boltzmann scheme for polyatomic gases
is likely to require the implementation of an entropic ap-
proach to improve shock capturing in comparison with
computations using a uniform relaxation time as presented
here.

Figure 2 compares the non-equilibrium momentum and
energy fluxes Πxx−Π(0)

xx and Fx−F (0)
x with their Navier–

Stokes–Fourier values,

ΠNSF
xx −Π(0)

xx = −(4/3)τρθux,

FNSF
x −F (0)

x = −(4/3)τρθuux − (5/2)τρθθx,
(56)

as computed from the numerical values of ρ, u, and θ, and
second order centred differences for their derivatives. The
actual non-equilibrium fluxes are in close agreement with
their Navier–Stokes–Fourier values, except in the region of
the contact discontinuity where Πxx −Π(0)

xx has the wrong
sign compared with the Navier–Stokes viscous stress. The
true solution should have spatially uniform velocity at the
contact discontinuity, which is marked by a jump in density
only, so the Navier–Stokes viscous stress should vanish.
The discrepancy may be due to finite Knudsen number
(finite τ) effects, or a consequence of initialising with the
piecewise constant initial data (55).

Figures 3 and 4 show the corresponding data for a di-
atomic gas with γ = 7/5. The previous initial conditions
were scaled by a factor of 1/4 in the pressure to achieve a
stable computation,

ρ = 1.0 and p = 0.25 for x < 0,

ρ = 0.125 and p = 0.025 for x > 0.
(57)

There is no fixed relation between the temperature and the
particle velocities in discrete kinetic theory, since the dis-

(a)
−0.2 −0.1 0 0.1 0.2
0

0.2

0.4
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ρ
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conventional

(b)
−0.2 −0.1 0 0.1 0.2

0

0.2

0.4
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conventional

(c)
−0.2 −0.1 0 0.1 0.2
0

0.2

0.4

0.6

0.8

1

x
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Boltzmann
conventional

Figure 1: Comparison of (a) the density, (b) the veloc-
ity, and (c) the pressure for Sod’s first shock tube problem
with γ = 5/3 at time t = 0.1. Results from the unsplit
Boltzmann scheme are shown solid, and a conventional nu-
merical solution for the inviscid problem is shown dotted.
There is a small velocity overshoot at the shock, and a
bump at the contact discontinuity near x = 0.07.
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(a)
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(b)
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Figure 2: Comparison of (a) the viscous stress, and (b) the
diffusive energy flux, for the same computation as Fig. 1.
The non-equilibrium parts of Πxx and Fx are shown solid,
and the Navier–Stokes–Fourier values for these quantities
obtained from the computed values of ρ, u, θ are shown
dotted. There is good agreement apart from the viscous
stress near the contact discontinuity, where the true solu-
tion should have spatially uniform velocity.

crete equilibria f
(0)
i are not constrained by the functional

form of the continuum Maxwell–Boltzmann distribution
involving the ratio |ξ − u|2/θ. Conversely, it is reasonable
to expect that some relation between the square root of
temperature, or isothermal sound speed, and the particle
velocities will be necessary for stability. For instance, sta-
bility would be highly unlikely if the sound speed exceeded
the fastest particle speed. One may recover the solution
of the original unscaled problem by suitably scaling the
fluid velocity, timescale, and transport coefficients in the
simulation.

Again, there is reasonable agreement between the dis-
crete Boltzmann solution, performed on a grid of 8192
points with τ = 10−4 as before, and the reference so-
lution of the inviscid equations. A perturbation in ve-

locity near the contact discontinuity is no longer notice-
able, compare Fig. 1(b) with Fig. 3(b), but discrepancies
in the non-equilibrium fluxes near the contact discontinu-
ity are noticeably larger. The latter may be partly because
the magnitudes of the Navier–Stokes–Fourier viscous stress
and energy flux are roughly a factor of 8 smaller due to the
rescaling of temperature and velocity in (57).

The split 4+3 velocity model developed in Sec. 8 turns
out to be much less stable than the unsplit 7 velocity
model. Figure 5 shows a comparison of the density com-
puted using both the split 4+3 velocity and unsplit 7 veloc-
ity models. However, even with γ = 5/3 and the rescaled
temperature, it was necessary to smooth out the initial
data using a tanh function so that the initial gradient was
no more than 50 in modulus. Both computations used a
grid with 4096 points, τ = 10−4, and maximum Courant
number of 0.9. However, the split model uses 50% longer
timesteps because the maximum particle speed is 2, rather
than 3, in the CFL stability criterion.

12 Conclusion

We have derived a set of moment equations leading to
the compressible Navier–Stokes–Fourier equations with ar-
bitrary adiabatic exponent γ, and a correct, Galilean-
invariant viscous stress and energy flux. For general γ
the usual monatomic gas relations E = 1

2TrΠ and F =
1
2Tr (

∑
i ξiξiξifi) do not hold, so it is necessary to in-

troduce additional degrees of freedom to satisfy the con-
straints on E and F independently of those for the mo-
mentum flux Π and complete third moment

∑
i ξiξiξifi.

One may either assign additional internal energies to
particles, allowing the moments of fi in the energy equa-
tion to be adjusted independently of those in the momen-
tum equation, or introduce a completely separate set of
distribution functions gi for just the energy equation. In
either case, there are seven moment constraints in one spa-
tial dimension, requiring at least seven different particle
velocities to satisfy them. By contrast, five particle veloc-
ities are sufficient to reproduce the Navier–Stokes–Fourier
equations with the natural γ = 3 for one-dimensional ki-
netic theory [9]. The unsplit 7 velocity model developed in
Sec. 7 stably simulates the first Sod shock tube problem for
both γ = 5/3 (monatomic) and γ = 7/5 (diatomic). The
split 4+3 velocity model is noticeably less stable, but al-
lows the use of longer timesteps. However, the space/time
discretisation in Sec. 9 using Strang splitting and Beam–
Warming advection is just one of many possible numerical
implementations.

In discrete kinetic theory there is no fixed relation be-
tween the sound speed, as given by the temperature, and
the particle speeds. The temperature θ is a free param-
eter in all the discrete equilibrium distributions given in
this paper. The fluid velocity and the sound speed may
thus both be rescaled with respect to the particle speeds
without changing the Mach number, the ratio of the fluid
velocity to the sound speed. The finite particle speeds thus
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Figure 3: Comparison of (a) the density, (b) the velocity,
and (c) the pressure for Sod’s first shock tube problem with
γ = 7/5 at time t = 0.2. The pressure and temperature
have been scaled by a factor of 1/4 to bring them inside the
stability window of the discrete Boltzmann scheme, which
has the effect of halving the velocity. Results from the
unsplit Boltzmann scheme are shown solid, and a conven-
tional numerical solution of the inviscid problem is shown
dotted.
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Figure 4: Comparison of (a) the viscous stress, and (b)
the diffusive energy flux, for the same problem. The non-
equilibrium parts of Πxx and Fx are shown solid, and
the Navier–Stokes–Fourier values for these quantities com-
puted from the numerical values of ρ, u, θ are shown dot-
ted. There is reasonable agreement except near the contact
discontinuity (x ≈ 0.08), where the true solution should
have spatially uniform velocity.

place no restriction on the flows that may be simulated.
When extending to two or more spatial dimensions, the

number of degrees of freedom needed to satisfy the moment
constraints is typically few than the number needed for
isotropy. For example, in two dimensions the split model
requires 10 degrees of freedom for the momentum equation,
with distribution functions fi, and another 6 for the en-
ergy equation with distribution functions gi. Existing lat-
tice Boltzmann models [21, 38] using the so-called D2Q13
square lattice could be adapted to simulate the density and
momentum equations in the split model. The second dis-
crete Boltzmann equation for the gi could be implemented
on the common D2Q9 lattice, as in the Boussinesq-like
thermal lattice Boltzmann model of He et al. [13]. This
leaves 6 degrees of freedom that could in principle be cho-
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Figure 5: Comparison of density between the split 4+3
velocity and unsplit 7 velocity models for the same ini-
tial conditions corresponding to a smoothed out Sod shock
tube with rescaled temperature, as in equation (57).

sen arbitrarily, but may be tuned to optimise stability [10].
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