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We study Landau damping in the 1+1D Vlasov–Poisson system using a Fourier–Hermite spectral repre-
sentation. We describe the propagation of free energy in Fourier–Hermite phase space using forwards and
backwards propagating Hermite modes recently developed for gyrokinetic theory. We derive a free energy
equation that relates the change in the electric field to the net Hermite flux out of the zeroth Hermite mode.
In linear Landau damping, decay in the electric field corresponds to forward propagating Hermite modes;
in nonlinear damping, the initial decay is followed by a growth phase characterised by the generation of
backwards propagating Hermite modes by the nonlinear term. The free energy content of the backwards
propagating modes increases exponentially until balancing that of the forward propagating modes. There-
after there is no systematic net Hermite flux, so the electric field cannot decay and the nonlinearity effectively
suppresses Landau damping. These simulations are performed using the fully-spectral 5D gyrokinetics code
SpectroGK, modified to solve the 1+1D Vlasov–Poisson system. This captures Landau damping via Hou–
Li filtering in velocity space. Therefore the code is applicable even in regimes where phase-mixing and
filamentation are dominant.

1. Introduction

Many phenomena in astrophysical and fusion plasmas require a kinetic rather than a fluid description. The
fundamental quantity is the distribution function F (x,v, t) that determines the number density of particles
at position x moving with velocity v at time t. Numerical computations of the evolution of the distribution
function in its six-dimensional phase space are thus very demanding on resources. Even simulations using
the reduced five-dimensional gyrokinetic formulation (e.g. Rutherford & Frieman 1968; Taylor & Hastie
1968; Frieman & Chen 1982; Howes et al. 2006; Krommes 2012) are restricted to modest resolutions in each
dimension. For example, simulations by Highcock et al. (2011) with the gyrokinetic code GS2 (Dorland et al.
2009) used 64× 32× 14 points in physical space, and the equivalent of 24× 16 points in velocity space. This
has motivated the development of our fully spectral gyrokinetic code SpectroGK (Parker et al. 2014). A
fully spectral representation of the distribution function may be expected to make optimal use of the limited
number of degrees of freedom that are computationally feasible. Moreover, we have established that the
spectral representation in SpectroGK correctly captures Landau damping in a reduced linear problem for
ion temperature gradient driven instabilities (Parker & Dellar 2014).

The Vlasov–Poisson and Vlasov–Poisson–Fokker–Planck systems are canonical mathematical models for
kinetic phenomena in plasmas (e.g. Glassey 1996). They describe a single active species, with distribution

function F̃ (x,v, t), moving in a fixed background charge distribution, which we take to be uniform for
convenience:

∂tF̃ + v · ∇xF̃ −E · ∇vF̃ = νC̃[F̃ ], (1.1a)

E = −∇Φ, (1.1b)

−∇2Φ = 1−
∫ ∞
−∞

dv F̃ . (1.1c)

Here ∇x and ∇v denote gradients with respect to x and v, and E is the electric field derived from the
electrostatic potential Φ. The right-hand side of the Poisson equation (1.1c) contains the uniform background

charge, and the charge due to the particles described by F̃ . Physically, this system describes electron-scale
Langmuir turbulence in which the much more massive ions remain immobile. It is written in the conventional
dimensionless variables (e.g. Grant & Feix 1967) based on the electron thermal velocity Vth =

√
2kBTe/me
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and the corresponding Debye length D = Vth

√
meε0/(n0e2). These definitions differ by factors of

√
2 from

those sometimes used, but the symbols used to define them have their standard meanings. Unlike some later
work (e.g. Le Bourdiec et al. 2006) we retain the minus signs in (1.1a) and (1.1c) arising from the negative
charge of the electron.

The right-hand side of (1.1a) represents particle collisions with rate ν. Coulomb interactions between
charged particles are dominated by long-range, small-angle deflections, as reflected in the Fokker–Planck
form of the Landau collision operator (Rosenbluth et al. 1957; Helander & Sigmar 2002)

C̃[F̃ ] = ∇v ·
(
AF̃ +∇v · (DF̃ )

)
, (1.2)

where the vector A and diffusivity tensor D are linear functionals of F̃ . Lenard & Bernstein (1958) introduced
a model collision operator with A = v, and D = (1/2)I a multiple of the identity matrix. These were chosen

so that the Maxwell–Boltzmann equilibrium, F̃0 = e−v
2

/
√
π for v = |v| in our dimensionless variables,

satisfies C̃[F̃0] = 0 for this model collision operator. Kirkwood (1946) had previously introduced a slightly
more general model in which A = v−u and D = T I depend upon the local fluid velocity u and temperature
T , as given by

n =

∫ ∞
−∞

dv F̃ , nu =

∫ ∞
−∞

dv vF̃ , nT =
1

3

∫ ∞
−∞

dv |v − u|2F̃ . (1.3)

The Kirkwood collision operator vanishes for all Maxwell–Boltzmann distributions, not just those for which
u = 0 and T = 1/2. We show below that the Lenard–Bernstein and Kirkwood collision operators both

take simple diagonal forms when the v-dependence of F̃ is expressed as an expansion in Hermite functions.
This motivates our later use of a numerically convenient model collision operator that is also diagonal in a
Hermite representation.

The collisionless (ν = 0) linearised 1+1D form of the Vlasov–Poisson system with periodic boundary
conditions is a canonical mathematical model for the “filamentation” or “phase-mixing” that forms infinites-
imally fine scale structures in velocity space due to the shearing effect of the particle streaming term v ·∇xF̃ .
Landau (1946) showed that this system supports solutions of the form F̃ = F0(v) +F in which the potential
Φ decays exponentially in time (see also Balescu 1963; Lifshitz & Pitaevskii 1981). Using a Fourier transform
in space, and a Laplace transform in time, Landau obtained this solution in the form of the inverse Laplace
transform

F =
1

2πi

∫
Γ

(
F̂ (k, v, t = 0)

p+ ikv
− ikΦ∂vF0(v)

p+ ikv

)
eptdp, (1.4)

where F̂ (k, v, t = 0) denotes the Fourier transform of the initial perturbation, and Φ(k, p) the Fourier–Laplace
transform of the electrostatic potential. Substituting this expression into the Laplace transform of Poisson’s
equation,

∫∞
−∞ dv F (k, v, p) = 1/p− k2Φ(k, p), gives the Landau dispersion relation described in §4.1 for the

complex growth rate p as a function of wavenumber k. Landau’s deformation of the integration contour Γ
in (1.4) gives an analytic continuation of this dispersion relation from growing to decaying modes.

The contribution to F from the first term in the integrand of (1.4) phase-mixes but does not decay, while
at long times the contribution from the second term proportional to Φ decays exponentially at the rate
given by Landau’s dispersion relation. The perturbed distribution function F does not itself decay in time,
and so is not an eigenfunction of the system as a whole. Instead, the system has a continuous spectrum
of real eigenvalues associated with non-decaying singular eigenfunctions called Case–van Kampen modes
(van Kampen 1955; Case 1959). The Case–van Kampen modes are complete, so Landau’s solution may be
expressed as an infinite superposition of them.

Lenard & Bernstein (1958) showed that the addition of velocity-space diffusion through a Fokker–Planck

collision term νC̃[F ] with any strictly positive frequency ν > 0 permits the existence of a smooth eigenfunc-
tion whose frequency and damping rate approached those of the electric field in Landau’s solution as ν → 0.
Ng et al. (1999, 2004) showed that this collisionally regularised system in fact has a discrete spectrum of
smooth eigenfunctions that form a complete set. A subset of these eigenfunctions have eigenvalues that tend
to solutions of Landau’s dispersion relation (see §4.1) in the limit of vanishing collisions (Ng et al. 2006).
As ν → 0, the smooth eigenfunctions develop boundary layers with widths proportional to the decay rates
|γ| of the modes, in which F oscillates with a wavelength proportional to ν−1/4 (Ng et al. 2006). Landau’s
analytic continuation thus correctly computed the ν → 0 limit without explicitly introducing collisions.

Any strictly positive collision frequency ν > 0 thus suffices to change the spectrum of the integro-differential
equation from continuous to discrete. However, for numerical computations it is necessary to make the
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velocity space discrete, either through introducing a grid, or through representing F as a finite sum of
orthogonal functions (as in §3). Either approach introduces a finest resolved scale in the velocity space. The
transition from collisional to collisionless behaviour then occurs at some finite collision frequency ν∗, for
which the oscillations in the eigenfunctions are just coarse enough to be resolved (Parker & Dellar 2014).
This critical frequency ν∗ is resolution-dependent, and tends to zero in the limit of infinite resolution. When
ν < ν∗, the system’s behaviour is “collisionless”: all eigenfunctions decay more slowly than the Landau rate.
When ν = 0 the eigenfunctions are discrete Case–van Kampen modes with real eigenvalues, and hence no
decay. One cannot obtain a discrete analogue of the Landau-damped solution from a linear combination of
this finite set of eigenfunctions.

Only when ν > ν∗ do we find a decaying eigenmode in the discretised system that is resolved, and
whose decay rate approximates the Landau rate. Since ν∗ → 0 as resolution increases, the decay rate of the
slowest decaying resolved mode tends to the Landau rate with increasing velocity space resolution. We have
found that very accurate approximations to the Landau rate can be achieved with a very modest number,
around 10, degrees of freedom in velocity space by using an iterated Lenard–Bernstein collision operator
(Parker & Dellar 2014). In an alternative approach, restricted to eigenvalue problems, Siminos et al. (2011)
used a spectral deformation of the linear operator describing the evolution of the Fourier expansion of the
perturbation F ′ to construct a new eigenvalue problem for which Landau’s solution does correspond to a
decaying eigenmode.

The above discussion is restricted to the eigenmodes of the discretised system, and whether they ap-
proximate the smooth eigenmodes that exist in the Vlasov–Poisson system regularised by Fokker–Planck
collisions. Grant & Feix (1967) showed that the decay of the electric field in a discretised collisionless system
reproduces the behaviour of the Landau solution for a finite time interval, but that the electric field begins
to grow again after a time known as the recurrence time. In §4.2.2 we show that this can be understood as
the propagation of disturbances towards higher Hermite modes, which describe finer scales in velocity space.
A simple truncation of the Hermite expansion causes these disturbances to reflect at the highest retained
Hermite mode, thereafter returning to re-excite the low Hermite modes. The recurrence time thus becomes
longer as the number of retained Hermite modes increases.

The question of how to capture Landau damping numerically also arises in the much more complex
nonlinear and multi-dimensional simulations of astrophysical and fusion plasmas, for which the canonical
model is the five-dimensional “gyrokinetic” system (e.g. Rutherford & Frieman 1968; Taylor & Hastie 1968;
Frieman & Chen 1982; Howes et al. 2006; Krommes 2012). Charged particles in magnetic fields spiral around
the field lines. When the magnetic field is sufficiently strong, the fast timescales and short lengthscales of
this “gyromotion” may be eliminated by averaging over the particle gyrations. This averaging also reduces
the dimensionality of phase space from 6 to 5, with velocity space components parallel and perpendicular to
the magnetic field.

A linearized 1+1D electrostatic version of gyrokinetics for motions parallel to a nearly uniform magnetic
field is obtained by integrating out the velocity dependence perpendicular to the magnetic field (as before)
and then taking the limit of vanishing perpendicular wavenumber. The perturbation f of the ion distribution
function f̃ = f+f0 relative to a Maxwellian f0 then evolves according to the gyrokinetic system (e.g. Pueschel
et al. 2010; Parker & Dellar 2014),

∂f

∂t
+ v

∂f

∂z
+ E

∂f0

∂v
= νC[f ], (1.5a)

E = −∂Φ
∂z
, (1.5b)

Φ =

∫ ∞
−∞

dv f, (1.5c)

where z and v are the physical space and velocity space coordinates parallel to the magnetic field, and
C[f ] is the 1D collision operator derived from C̃[F ] (see §2). The previous Poisson equation (1.1c) has been
replaced by the quasineutrality condition (1.5c). This condition holds on lengthscales much larger than the
Debye length, and on slow ion timescales for which the electrons may be assumed to adopt an instantaneous
Maxwell–Boltzmann distribution proportional to exp(eΦ/(kBTe)). The system (1.5a-c) is otherwise identical
to the perturbative form of the Vlasov–Poisson system derived in §2.

The availability of high quality numerical solutions to the 1+1D Vlasov–Poisson system makes it a good
benchmark for novel numerical algorithms, and our 5D gyrokinetic code SpectroGK was readily adapted
to solve this system instead. Due to the high dimensionality, gyrokinetic simulations can typically only afford
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relatively coarse resolution in each dimension. Our fully spectral gyrokinetic code SpectroGK thus uses a
spectral representation in each dimension to make optimal use of a limited number of degrees of freedom.
The 1+1D version of SpectroGK reduces to a Fourier–Hermite representation with spectral filtering, or
hypercollisions, to provide dissipation at the smallest resolved scales in z and v.

The use of spectral expansions of the distribution function has a long history in kinetic theory, and it is
natural to consider functions of velocity that are orthogonal with respect to the Gaussian weight function that
comprises the Maxwell–Boltzmann equilibrium distribution. Burnett (1935, 1936) used a combined expansion
in spherical harmonics and Sonine polynomials to greatly simplify the computation of the collision integrals
that arise in the calculation of the viscosity and thermal conductivity in the Chapman–Enskog expansion. The
Hermite polynomials are orthogonal with respect to a Gaussian in one dimension (Abramowitz & Stegun
1972) so Grad (1949a,b, 1958) introduced sets of tensor Hermite polynomials as a Cartesian alternative
to Burnett’s expansion. Both expansions convert an integro-differential kinetic equation into an infinite
hierarchy of partial differential equations in x and t for the expansion coefficients.

The same expansion in Hermite polynomials for velocity space, and in Fourier modes for physical space,
was used in early simulations of the 1+1D Vlasov–Poisson system, such as by Armstrong (1967), Grant &
Feix (1967) and Joyce et al. (1971), albeit with different forms of dissipation and, inevitably, much lower
resolution than is currently feasible.

However, through disappointment with the available velocity-space resolution (Gagné & Shoucri 1977),
and with higher dimensional models becoming computationally feasible, interest turned instead to particle-
in-cell (PIC) methods. These represent the distribution function using a set of macro-particles located at
discrete points (xi,vi) in phase space, each of which represents many physical ions or electrons (Dawson
1983; Hockney & Eastwood 1981; Birdsall & Langdon 2005). The method exploits the structure of the left-
hand side of the kinetic equation (1.1a) as a derivative along a characteristic in phase space. A PIC method
evolves the solution by propagating macro-particles along their characteristics, analogous to the Lagrangian
formulation of fluid dynamics. The representation of the continuous function F̃ (x,v, t) by a discrete set of
n macro-particles creates an O(1/

√
n) sampling error, sometimes called “shot noise”, that creates particular

difficulties in the tail of the distribution where F̃ is much smaller than its maximum value. An information
preservation approach has been developed to alleviate this problem in particle simulations of neutral gases
(Fan & Shen 2001) but it has not yet been employed for plasmas.

Instead, more recent multi-dimensional gyrokinetics codes have returned to Eulerian representations of
velocity space, using fixed grids either for parallel velocities (Jenko et al. 2000; Peeters et al. 2009) or for
pitch angles (Fahey & Candy 2004; Dorland et al. 2009). However Hermite polynomials have been used to
develop reduced kinetic (Zocco & Schekochihin 2011) and gyrofluid models (Hammett et al. 1993; Parker &
Carati 1995), as well as the Hermite expansion coefficients being used to characterize velocity space behaviour
(Schekochihin et al. 2014; Kanekar et al. 2014; Plunk & Parker 2014) in analogy with Kolmogorov’s 1941
theory of hydrodynamic turbulence expressed using the energy spectrum in Fourier space. This has reignited
interest in using Hermite polynomials for computation in new reduced-dimension (Hatch et al. 2013; Loureiro
et al. 2013) gyrokinetics codes, and the fully five-dimensional SpectroGK. A comparison betweent a PIC
code and a Fourier–Hermite code shows that the latter is much more computationally efficient for the 1+1D
Vlasov–Poisson system when high accuracy is desired (Camporeale et al. 2013).

In this paper we illustrate the solution of the Vlasov–Poisson system with the Fourier–Hermite method
using a modified version of the SpectroGK gyrokinetics code. We demonstrate that a velocity space form
of the Hou & Li (2007) spectral filter suffices to prevent recurrence and result in correct calculations even
in regimes where filamentation and Landau damping are dominant. We derive the 1+1D system in §2 and
the Fourier–Hermite spectral representation in §3, before studying nonlinear Landau damping and the two-
stream instability in §4. (The linear behaviour of these systems is derived in Appendix A.) We conclude in
§5.

2. The 1+1D Vlasov–Poisson system

We derive a 1+1D form of the Vlasov–Poisson system (1.1) by seeking solutions which have spatial
dependence in the z direction only, and integrating over the velocity components v⊥ perpendicular to the z
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direction. The reduced distribution function f̃(z, v, t) =
∫

d2v⊥ F̃ (x,v, t) obeys the system

∂f̃

∂t
+ v

∂f̃

∂z
− E∂f̃

∂v
= νC[f̃ ], (2.1a)

E = −∂Φ
∂z
, (2.1b)

−∂
2Φ

∂z2
= 1−

∫ ∞
−∞

dv f̃ , (2.1c)

where v and E are the components of v and E in the z direction, and C[f̃ ] =
∫

d2v⊥ C̃[F̃ ]. We take the
domain of the problem to be (z, v) ∈ Ω×R where Ω = [0, L], and consider periodic boundary conditions for
f̃ in space, while in velocity space f̃(z, v, t) → 0 as |v| → ∞. The integral of the right hand side of (2.1c)
over Ω must vanish, so that Φ and E = −∂zΦ are both periodic functions of z on Ω. This is equivalent
to requiring overall charge neutrality. A detailed discussion of other boundary conditions may be found in
Heath et al. (2012).

It is useful to consider the decomposition f̃ = f0 + f where f0(v) is a stationary, spatially-uniform
distribution function satisfying

1 =

∫ ∞
−∞

dv f0. (2.2)

The system (2.1a-c) then becomes

∂f

∂t
+ v

∂f

∂z
− E∂f0

∂v
− E∂f

∂v
= νC[f ], (2.3a)

E = −∂Φ
∂z
, (2.3b)

∂2Φ

∂z2
=

∫ ∞
−∞

dv f, (2.3c)

and the overall charge neutrality condition becomes∫ L

0

dz

∫ ∞
−∞

dv f(z, v, t) = 0. (2.4)

Equation (2.3a) implies that this condition holds for all subsequent times, provided it holds initially. The
decomposed system (2.3) holds for any decomposition satisfying (2.2), but it is particularly useful for small
perturbations about an equilibrium. If |f | � |f0| and |∂vf | � |∂vf0|, the linearized system is readily obtained
by neglecting the single nonlinear term −E∂vf in (2.3a). However, provided f̃ remains non-negative, there
is no requirement for f to be smaller than f0. The decomposition f̃ = f0 + f just expresses the solution to
the inhomogeneous linear equation (2.1c) as the sum of a particular integral f0 and complementary function
f , so that f and Φ satisfy the homogeneous relation (2.3c).

For comparison, the corresponding linear 1+1D form of the gyrokinetic equations originally targetted by
SpectroGK is

∂f

∂t
+ v

∂f

∂z
+ E

∂f0

∂v
= νC[f ], (2.5a)

E = −∂Φ
∂z
, (2.5b)

Φ =

∫ ∞
−∞

dv f. (2.5c)

The nonlinear term in (2.3a) does not appear even in the nonlinear gyrokinetic system under the standard
ordering that takes lengthscales in z, oriented along the background magnetic field, to be much larger than
lengthscales in the perpendicular directions.

The Vlasov–Poisson system (2.1a-c) conserves the total particle number N , momentum P , and energy H,
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as given by

N =

∫ L

0

dz

∫ ∞
−∞

dv f̃(z, v, t), (2.6)

P =

∫ L

0

dz

∫ ∞
−∞

dv vf̃(z, v, t), (2.7)

H =
1

2

∫ L

0

dz

∫ ∞
−∞

dv v2f̃(z, v, t) +
1

2

∫ L

0

dz |E(z, t)|2, (2.8)

provided the collision operator satisfies the three integral conditions ν
∫

dv C[f̃ ] = 0, ν
∫

dv vC[f̃ ] = 0,

ν
∫

dv v2C[f̃ ] = 0. These hold for the Landau collision operator, and its simplified Kirkwood form. The
Lenard–Bernstein collision operator only conserves N , which is sufficient to preserve the overall charge
neutrality condition (2.4) if it holds initially.

More generally, smooth solutions of the collisionless (ν = 0) Vlasov–Poisson system conserve the family
of Casimir invariants

Q =

∫ L

0

dz

∫ ∞
−∞

dv c(f̃), (2.9)

where c(f̃) is any function of f̃ alone. Conservation of N corresponds to taking c(f̃) = f̃ . Another conserved
quantity of this form is the spatially-integrated Boltzmann entropy, conventionally written as

H[f̃ ] =

∫ L

0

dz

∫ ∞
−∞

dv f̃ log f̃ , (2.10)

for which c(f̃) = f̃ log f̃ .
In conjunction with the decomposition f̃ = f0 + f it is useful to consider the spatially-integrated relative

entropy (e.g. Bardos et al. 1993; Pauli 2000)

R[f̃ |f0] =

∫ L

0

dz

∫ ∞
−∞

dv

[
f̃ log

(
f̃

f0

)
− f̃ + f0

]
. (2.11)

This quantity has been employed to establish rigorous hydrodynamic limits of the Boltzmann equation
(Bardos et al. 1993; Lions & Masmoudi 2001; Golse & Saint-Raymond 2004), to establish the existence and
long-time attracting properties of steady solutions of the Vlasov–Poisson system (Bouchut 1993; Dolbeault
1999) and for other plasma applications (Krommes & Hu 1994; Hallatschek 2004). Expanding (2.11) for
small perturbations f = f̃ − f0 � f0 gives

R[f̃ |f0] =

∫ L

0

dz

∫ ∞
−∞

dv
f2

2f0
+O

(
f3
)
, (2.12)

so the relative entropy provides a positive-definite quadratic measure of small perturbations from a uniform

state. Writing f =
√

2f0 h, leads to R[f̃ |f0] =
∫ L

0
dz

∫∞
−∞ dv |h|2 + O

(
h3
)

coinciding at leading order with

the squared L2 norm of the disturbance.
However, the relative entropy alone is not conserved in a plasma, because f0 couples to the electric

field through the −E∂vf0 term in (2.3a). Evaluating R[f̃ |f0] for the dimensionless Maxwell–Boltzmann

distribution f0 = e−v
2

/
√
π gives

R[f̃ |f0] = H[f̃ ] +

∫ L

0

dz

∫ ∞
−∞

dv

[(
1

2
logπ− 1

)
f̃ + v2f̃ + f0

]
, (2.13)

so the free energy per unit length, defined as

Wexact =
1

L

[
1

2
R[f̃ |f0] +

1

2

∫ L

0

dz |E|2
]
,

=
1

L

[
1

2
H[f̃ ] +

1

2

(
1

2
logπ− 1

)
N +H +

1

2

∫ L

0

dz 1

]
,

(2.14)

is a conserved quantity in the absence of collisions. Approximating the relative entropy by its quadratic first
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term (2.12) gives a quadratic approximation to the free energy per unit length

W = Wf +WE ,

Wf =
1

2L

∫ L

0

dz

∫ ∞
−∞

dv
f2

2f0
,

WE =
1

2L

∫ L

0

dz |E|2.

(2.15)

We use the free energy per unit length because we will show in §3.1.1 below that Wf and WE may then
be expressed neatly in terms of the Fourier–Hermite expansion coefficients of f using Parseval’s theorem.
However, we later refer to these quantities as simply the “free energy” for brevity. The extra factor of 1/2 in

Wf arises because our dimensionless Maxwell–Boltzmann distribution f0 = e−v
2

/
√
π implies a dimensionless

temperature of 1/2 in the thermodynamic relation between energy and entropy.

3. Fourier–Hermite spectral representation

We solve the Vlasov–Poisson system (2.3) using a Fourier–Hermite representation of f . We represent the
z-dependence using a standard Fourier series, which has well known properties, and we use an expansion
in Hermite functions for the v-dependence. We first introduce the Hermite polynomials Hm and normalized
Hermite functions φm defined by

Hm(v) = (−1)mev
2 dm

dvm

(
e−v

2
)
, φm(v) =

Hm(v)√
2mm!

, (3.1)

for m = 0, 1, 2, . . .. The φm are orthonormal with respect to the weight function e−v
2

/
√
π, equal to our dimen-

sionless Maxwell–Boltzmann distribution. Introducing the dual Hermite functions φm(v) = e−v
2

φm(v)/
√
π

thus establishes the bi-orthonormality conditions∫ ∞
−∞

dv φn(v)φm(v) = δnm for m,n > 0. (3.2)

Each φm satisfies the velocity space boundary conditions φm(v) → 0 as v → ±∞. They form a complete
set for functions f(v) that are analytic in a strip centred on the real axis and satisfy the decay condition
|f(v)| < c1 exp (−c2v2/2) for some constants c1 > 0 and c2 > 1 (Holloway 1996; Boyd 2001) so we may
expand

f(v) =

∞∑
m=0

amφm(v), with am =

∫ ∞
−∞

dv f(v)φm(v). (3.3)

This is an asymmetrically weighted Hermite expansion, in the terminology of Holloway (1996). The symmetric
expansion uses the orthogonal functions ψm(v) = exp(−v2/2)ψm(v)π−1/4. In kinetic theory problems one
may choose the Gaussian weight function in the Hermite orthogonality condition to differ from the Maxwell–
Boltzmann distribution (Tang 1993; Schumer & Holloway 1998), but Le Bourdiec et al. (2006) found that
taking the two Gaussians to be the same gives optimal accuracy. The expansion (3.3) then coincides with
the expansion originally introduced by Grad (1949a,b, 1958).

The symmetrically weighted Hermite function ψm(v) oscillates with characteristic wavelength π(2/m)1/2,
so functions with larger m represent finer scale structures in v. Truncating the sum in (3.3) after the first
Nm terms,

f(v) =

Nm−1∑
m=0

amφm(v), (3.4)

thus restricts f to vary on a finite range of scales in v. This expression is equivalent to representing f by its

values at the roots of the Hermite polynomial HNm . The spacing between these roots decrease as N
−1/2
m as

Nm →∞, giving finer discretisations of the function f .
Hermite functions with adjacent m values satisfy the recurrence relation

vφm(v) =

√
m+ 1

2
φm+1(v) +

√
m

2
φm−1(v), (3.5)
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and their derivatives may be expressed as

dφm
dv

= −
√

2(m+ 1)φm+1,
dφm

dv
=
√

2mφm−1. (3.6)

These relations allow us to develop a pure spectral discretisation of the Vlasov–Poisson system in velocity
space. Once initial conditions have been expressed as coefficients in a Hermite expansion, we do not need a
collocation grid in v analogous to that required to compute the nonlinear term N in z below. We later use
initial conditions that have simple expressions as truncated Hermite expansions, such as the Maxwellian in
§4.2, but generically one must evaluate the Hermite transform of the initial conditions (see Parker & Dellar
(2014) for details).

3.1. Discretized system

We solve (2.3) using the Fourier–Hermite representation

f(z, v, t) =

Nm−1∑
m=0

Nϑ∑
j=−Nϑ

ajm(t)eikjzφm(v), (3.7)

with kj = 2πj/L. The coefficients are given by

ajm(t) =
1

L

∫ L

0

dz

∫ ∞
−∞

dv f(z, v, t)e−ikjzφm(v). (3.8)

Substituting (3.7) into the Vlasov–Poisson system (2.3) and applying the operator

1

L

∫ L

0

dz

∫ ∞
−∞

dv e−ikjzφm(v) (3.9)

gives the discrete system

dajm
dt

+ ikj

(√
m+ 1

2
aj,m+1 +

√
m

2
aj,m−1

)
+
√

2Êjδm1 + Njm = Cjm, (3.10a)

Êj = −ikjΦ̂j , (3.10b)

−k2
j Φ̂j = aj0, (3.10c)

where Êj and Φ̂j are the Fourier expansion coefficients of E and Φ. The system holds for |j| 6 Nϑ and
m < Nm, and is closed by setting aj,−1 = 0 and aj,Nm

= 0. The nonlinear term N is the discrete Fourier
convolution

Njm =
√

2m

Nϑ∑
j′=−Nϑ

Êj′aj−j′,m−1, (3.11)

and the collision term is

Cjm =
1

L

∫ ∞
−∞

dv

∫ L

0

dz e−ikjzφm(v) νC[f ], (3.12)

The model collision operators we consider can all be written as Cjm = νcjmajm for a family of constants
cjm.

The system (3.10) is a hierarchy of evolution equations for the Fourier–Hermite expansion coefficients
ajk(t). Coupling between different Fourier–Hermite modes arises from particle streaming and velocity deriva-
tives via the relations (3.5) and (3.6), and from the nonlinear term involving the electric field. The linear
electric field term −E∂vf0 only appears in (3.10a) for m = 1 because ∂vf0 = −

√
2φ1(v) is a single Hermite

function. The system is closed by setting to zero the term aj,Nm
which appears in the particle streaming in

the highest moment equation. One would obtain exactly the same equations for an infinite spatial domain
using a continuous Fourier transform, except k would be a continuous variable.

Calculating the nonlinear convolution (3.11) directly for each jm pair requires O(NmN
2
k ) operations, where

we introduce Nk = 2Nϑ + 2 for later convenience, but this is reduced to O(NmNk logNk) operations if it is
calculated pseudospectrally by collocation on a grid in z-space using fast Fourier transforms. This requires a
discrete version of (3.7) and (3.8). Specifically, we replace the z integral in (3.8) by a sum over Nk uniformly
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spaced grid points zl = lL/Nk,

ajm(t) =
1

Nk

Nk−1∑
l=0

∫ ∞
−∞

dv f(zl, v, t)e
−ikjzlφm(v), (3.13)

while leaving the v integral untouched. Conversely, we require (3.7) to hold at each zl,

f(zl, v, t) =

Nm−1∑
m=0

Nϑ∑
j=−Nϑ

ajm(t)eikjzlφm(v). (3.14)

This discrete transform pair in z and k expresses the resolution of the identity formula for Fourier modes,

δjj′ =
1

Nk

Nk−1∑
l=0

ei(kj−k′j)lL/Nk . (3.15)

The nonlinear term is then calculated as

Njm = −i
√

2m Fjl
{
F−1
ln

(
knΦ̂n

)
F−1
ln′ (an′,m−1)

}
, (3.16)

where Fjl and F−1
ln denote the discrete Fourier transform pair

Fjl =
1

Nk

Nk−1∑
l=0

e−ikjzl , F−1
ln =

Nk−1∑
n=0

eiknzl . (3.17)

We take Nk = 2Nϑ + 2 = 2n for computational efficiency (see §3.2.3) but we set to zero the coefficient of the
“zig-zag” Fourier mode that takes the value (−1)l at the collocation point zl. This leaves 2Nϑ + 1 nonzero
Fourier coefficients with wavenumbers kj arranged symmetrically about 0.

3.1.1. Discrete free energy equations

Inserting the spectral representation (3.7) into the quadratic free energy expressions WE and Wf from
(2.15) and applying Parseval’s theorem gives

Wf =
1

2L

∫ L

0

dz

∫ ∞
−∞

dv
f2

2f0
=

1

4

Nϑ∑
j=−Nϑ

Nm−1∑
m=0

|ajm|2, (3.18)

WE =
1

2L

∫ L

0

dz |E|2 =
1

2

Nϑ∑
j=−Nϑ

|Êj |2. (3.19)

The moment equations (3.10a) imply evolution equations for WE and Wf . Multiplying the m = 0 moment
equation by a∗j0/k

2
j , using (3.10b) and (3.10c) to insert the electric field, adding the result to its complex

conjugate and summing over j gives

dWE

dt
+ F = 0, (3.20)

where

F = Re

 Nϑ∑
j=−Nϑ
j 6=0

ia∗j0aj1

kj
√

2

 . (3.21)

We show in §4.2.2 that ia∗j0aj1 is the flux of free energy between the first two Hermite moments. The energy
in the electric field thus only decays through a net forward Hermite flux from m = 0 to m = 1, and only
grows through a net backwards flux from m = 1 to m = 0.

Multiplying (3.10a) by a∗jm, adding the result to its complex conjugate, and summing over m and j gives

dWf

dt
−F + T = C, (3.22)
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where

T =
1

2
Re

 Nϑ∑
j=−Nϑ

Nm−1∑
m=0

a∗jmNjm

 (3.23)

is the rate of change of the quadratic approximation to the exact free energy Wexact due to the nonlinear
term. The rate of loss of free energy through collisions is

C =
1

2
ν

Nϑ∑
j=−Nϑ

Nm−1∑
m=0

cjm|ajm|2, (3.24)

which is non-positive when the cjm 6 0.
Combining (3.20) and (3.22) gives the global budget equation

d

dt
(Wf +WE) + T = C, (3.25)

and introducing the time-integrated sources and sinks

WN =

∫ t

0

dt′ T (t′), (3.26)

S =

∫ t

0

dt′ C(t′), (3.27)

gives the conservation equation

d

dt
(Wf +WE +WN − S) = 0. (3.28)

In the linear case without collisions (for which T = C = 0), this expresses the exact conservation of the
truncated free energy W = Wf +WE by the truncated moment system. More generally, T and WN account
for the O(f3) terms omitted by replacing the exact free energy Wexact defined in (2.14) by its quadratic
approximation Wf +WE .

3.2. Algorithm description

We now discuss details of the algorithm to solve the system (3.10), which may be written schematically as

da

dt
= A [a] , (3.29)

where a denotes the set of coefficients ajm. Given an algorithm for forming the right-hand side, we use the
third-order Adams–Bashforth scheme described in §3.2.1 to advance the coefficients ajm in time. To form A,
we must determine the electric field, calculate the nonlinear term, and control the growth of fine scales in
physical and velocity space due to the nonlinear term and particle streaming respectively. These are discussed
in §§3.2.2–3.2.4. We describe the parallelization and communication patterns of the code in §3.2.5.

As noted in §2, the Vlasov–Poisson system is very similar to the long perpendicular wavelength limit of the
gyrokinetic equations. We may therefore solve it by making two modifications to our 5D spectral gyrokinetics
code SpectroGK, as described in §3.2.5. These changes do not affect the key algorithms or structure of the
code, so the benchmark problems in §4 serve to validate these aspects of SpectroGK.

3.2.1. Time integration

We compute approximate solutions of (3.29) using the explicit third-order Adams–Bashforth scheme

ai+1 = ai + ∆t

(
23

12
A
[
ai
]
− 4

3
A
[
ai−1

]
+

5

12
A
[
ai−2

])
, (3.30)

where ai denotes the coefficients ajm at the ith time level, and ∆t is the timestep. SpectroGK also imple-
ments a variable time-spacing version of this formula that allows the timestep to change during execution.

This Adams–Bashforth scheme is stable and accurate for non-dissipative wave phenomena, with third-
order accuracy in amplitude and wave speed. It is appropriate for problems like ours where the calculation
of A dominates the computation work. Durran (1991, 1999) defines the “efficiency factor” of a numerical
integration scheme to be the maximum stable timestep for an oscillatory test problem divided by the number
of evaluations of A per timestep. By this measure Adams–Bashforth is the most efficient third-order scheme.
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While it has a smaller stable timestep than other schemes such as the Runge–Kutta family, it only requires
one A evaluation per timestep.

The main disadvantage of the third-order Adams–Bashforth scheme is that it requires three past values
at each timestep, so we must amend the scheme for the first and second timesteps as fewer past values are
available. We use the explicit Euler method for the first timestep, and the second-order Adams–Bashforth
method, which requires only one previous value, for the second timestep.

In principle, this reduces the global time accuracy to only second order, since the first Euler timestep
alone contributes an O(∆t2) global error. However, for typical simulation parameters and initial conditions,
this error is in fact smaller than the error accumulated over the subsequent third-order Adams–Bashforth
timesteps. The fastest timescales in the system arise from coupling between Fourier–Hermite modes with
frequencies ω = k

√
m/2. Let ω0 be the typical frequency of the modes that are nonzero in the initial

conditions, ωtyp a typical frequency for the dominant modes in the subsequent evolution, and ωmax =

kmax

√
mmax/2 the highest frequency present in the simulation. The accumulated amplitude error after a

time T is then

E =
T

∆t

3

8
(ωtyp∆t)4 +

1

4
(ω0∆t)3 +

1

2
(ω0∆t)2,

using the amplitude errors for the explicit Euler and Adams–Bashforth methods (Durran 1999, Table 2.2).

The maximum stable timestep is ∆t = α/ωmax, with α ≈ 0.723 for the third order Adams–Bashforth
method (Durran 1999). The error after n characteristic times (T = n/ωtyp) using this timestep is thus

E =
3

8
nα3(ωtyp/ωmax)3 +

1

4
α3(ω0/ωmax)3 +

1

2
α2(ω0/ωmax)2,

which is dominated by the first term whenever ωtyp > (ω2
0ωmax)1/3n−1/3. The error due to the first explicit

Euler timestep is thus negligible if the initial conditions contain only slowly evolving modes (as do ours)
and the system is not heavily over-resolved so that ωtyp is not small compared with ωmax in the sense made
precise by the previous inequality.

3.2.2. Calculation of the electric field

The Fourier expansion coefficients Ej of the electric field are readily obtained from (3.10b) and (3.10c) as
Ej = 0 if kj = 0, and Ej = iaj0/kj otherwise. By working with the Fourier–Hermite expansion coefficients
we reduce the computation of the net charge density

∫∞
−∞ dv f to an evaluation of the Hermite coefficients

aj0, and the solution of Poisson’s equation to a division by k2
j . The elimination of a numerical quadrature

over v reduces inter-processor communication, as described in §3.2.5.

3.2.3. Nonlinear term and dealiasing

As described in §3 we calculate the nonlinear term (3.16) using fast Fourier transforms to convert between
expansion coefficients at a discrete set of wavenumbers kj = 2πj/L and function values at a uniformly
spaced collocation grid zl = lL/Nk. We use the FFTW library (Frigo & Johnson 2005), which implements
unnormalized discrete Fourier transforms, i.e. the analogue of (3.17) without the factor 1/Nk in the definition
of Fjl, for which the forward transform of eikjzl has magnitude Nk rather than unity.

This pseudospectral approach reduces the cost of computing the nonlinear term to O(NmNk logNk),
instead of O(NmN

2
k ), but it creates a source of error due to aliasing between different wavenumbers. The

product of two truncated Fourier series that occurs in (3.16) creates terms involving ei(kn+kn′ )zl . However,
only terms with |kn+kn′ | 6 kNϑ

can be represented on the collocation grid. The remaining terms are omitted
from the original convolution in (3.11), but on the collocation points zl they are indistinguishable from Fourier
modes with wavenumbers kn+kn′ ∓kNϑ

. This aliasing of wavenumbers outside the truncation onto retained
wavenumbers creates errors in the coefficients of the retained wavenumbers. It may be removed by setting
the coefficients for the highest third of wavenumbers to zero before the nonlinear term is calculated (Orszag
1971; Boyd 2001). This “two-thirds rule” removes all spurious contributions from aliasing for quadratic
nonlinearities, such as the Fourier convolution (3.11). All wavenumbers with |kn + kn′ | > kNϑ

now map onto
wavenumbers that are eliminated by the filter.

The abrupt transition from unmodified Fourier coefficients to those that are set to zero acts like a re-
flecting boundary condition for the typical Kolmogorov-like nonlinear cascade of disturbances towards larger
wavenumbers. This will distort the higher resolved wavenumbers unless their Fourier coefficients are already
negligible at the two-thirds rule cut-off point. Instead, we employ the smooth non-reflecting cut-off provided
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by the Hou & Li (2007) filter that multiplies the expansion coefficients ajm by

exp
(
−36(|kj |/kmax)36

)
. (3.31)

This filter is highly selective in wavenumber space, yet applying it at every timestep provides sufficient
dissipation to replace both the two-thirds rule dealiasing, and the hyperviscous dissipation usually employed
to prevent an accumulation of free energy at the finest resolved scales.

3.2.4. Recurrence and velocity space dissipation

The shear in phase space due to the particle streaming term v∂zf tends to form fine scale structures in
velocity space, as shown by the solution f(z, v, t) = f(z−vt, v, 0) of the free-streaming equation ∂tf+v∂zf =
0. For any discretization of velocity space, these structures become unresolvable after some finite, resolution-
dependent time.

The v∂zf term creates the linear coupling between coefficients with adjacent m values in (3.10a). We show
in §4.2.2 that this coupling may be interpreted as a propagation of disturbances towards larger m values
that continues until they encounter the truncation condition ajNm

= 0. As for the two-thirds rule mentioned
above, this condition appears as a reflecting boundary condition that creates disturbances propagating in
the reverse direction towards low m values. They eventually reach m = 0 to create a spurious increase in the
amplitude of the electric field, a phenomenon known as recurrence (Grant & Feix 1967).

The recurrence may be suppressed using collision terms Cjm = νcjmajm on the right hand side of (3.10a)
chosen to ensure that the coefficients ajm reach negligibly small values before m reaches Nm. The Lenard–
Bernstein (1958,“LB”) and Kirkwood (1946) collision operators correspond to

νcLB
jm = −νm, and νcKirkwood

jm = −νmI{m>3}, (3.32)

where I{m>3} denotes the indicator function that is unity for m > 3, and zero otherwise. This ensures that
the Kirkwood collision operator conserves momentum (m = 1) and energy (m = 2) as well as particle number
(m = 0). We show in Parker & Dellar (2014) that using these collision operators requires a large Nm ∼ 100
to attain sufficient damping at the largest retained m for a ν value small enough to leave the behaviour at
low m unaffected. Conversely, the iterated Lenard–Bernstein “hypercollision” operator with coefficients

νchyper
jm = −ν(m/Nm)αajm (3.33)

and α = 6 was effective for computing the correct growth and decay rates in the linear gyrokinetic model
with velocity space resolution as low as Nm = 10. Moreover, these rates were insensitive to the value of ν,
provided ν took values within a range bounded below by the critical collision frequency ν∗. Since ν∗ ∼ 1/Nα

m

the scaling with 1/Nα
m in (3.33) allows the same value of ν to be used for different resolutions. We have

also used this operator for nonlinear simulations of the Vlasov–Poisson system. However, the implied Nm
dependence of the collision frequency is designed to give convergence to the collisionless limit as Nm →∞,
and complicates a numerical convergence study between different finite values of Nm. Instead, we applied
the velocity-space analogue of the Hou & Li (2007) filter

exp
(
−36(m/(Nm − 1))36

)
(3.34)

to damp the ajm coefficients at every timestep. This strongly damps the coefficients of roughly the highest
third of the Hermite modes, while having negligible effect upon modes with lower m values. We refer to
the velocity space scales that correspond to the Hermite modes with significant damping as the “collisional
scales”.

3.2.5. SpectroGK

We adapted our 5D spectral gyrokinetics code SpectroGK to solve Vlasov–Poisson system, which re-
quired two modifications. Firstly, we replaced the gyrokinetic quasineutrality condition (1.5c) with the Pois-
son equation (2.3c). This is straightforward as the inverse Laplacian operator is diagonal in a Fourier basis.
Secondly, we inserted the nonlinear term (3.16) which is absent in the standard gyrokinetic equations, as
solved by SpectroGK.

SpectroGK is a descendant of the codes GS2 (Dorland et al. 2009) and AstroGK (Numata et al. 2010)
that use grids instead of spectral representations in velocity space, and for the spatial coordinate parallel to
the magnetic field, and inherits their parallelization scheme (for details see Parker et al. 2014). The basic idea
is to divide the five-dimensional array of spectral expansion coefficients evenly between processors, so that
the expansion coefficients for different parallel wavenumbers all lie on the same processor. Each processor
also keeps a local copy of the smaller, three-dimensional electromagnetic field. For the 1+1D Vlasov–Poisson
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Figure 1. The first Fourier component of the electric field versus time for (a) linear and (b) nonlinear simulations.

system we therefore divide the ajm between processors over m, such that all ajm with the same m are
assigned to the same processor. This is optimal because the calculation of the nonlinear term (3.16) via fast
Fourier transforms requires global sums over all coefficients ajm with the same m.

The streaming term and the nonlinear term both couple coefficients with adjacent values of m. When these
adjacent values fall on different processors, some communication of the vectors {ajm : |j| 6 Nϑ} between
nearest neighbours is required. Finally, we calculate the solution of the discrete Poisson equation (3.10c) and
the corresponding electric field on the processor that holds the vector {aj0 : |j| 6 Nϑ}, then broadcast the
solution to all other processors. Here, the Hermite representation eliminates the approximation of the integral
in (2.3c) by a finite sum over grid points that would require a parallel reduction operation to compute.

4. Numerical results

We present the solution of the linearized and nonlinear Vlasov–Poisson system with SpectroGK for two
standard test problems, nonlinear Landau damping and the two-stream instability. Following the conventions
used in previous work, we compute solutions in a box of length L = 4π so wavenumbers are integer multiples
of 1/2. We first study Landau damping using the initial conditions

f̃(v) = f0(v)(1 +A cos kz), (4.1)

where f0 = e−v
2

/
√
π is our dimensionless Maxwell–Boltzmann distribution, as modulated by a spatial

perturbation with amplitude A = 1/2 and wavenumber k = 1/2.

4.1. Linear Landau damping

The linearized system obtained by neglecting the term −E∂vf in (2.3a) exhibits linear Landau damping,
as described in the Introduction. The electric field decays exponentially over time, at a rate given by the
dispersion relation

D(ω) = k3 + 2k + 2ωZ(ω/k) = 0, (4.2)

where Z(ζ) = π−1/2
∫

dv e−v
2

/(v−ζ) is the plasma dispersion function, the Hilbert transform of the Maxwell–
Boltzmann distribution (Fried & Conte 1961). The roots ω appear in complex-conjugate pairs, ω = ±ωR+iγ,
corresponding to leftward and rightward propagating waves with the same decay rate.

Figure 1(a) shows the evolution in time of |Ê1|, the lowest positive Fourier coefficient of the electric field,
in a linear simulation with the Hou–Li filter (3.34) applied in m. The computed frequency ωR = 1.415
and damping rate γ = −0.153 are in agreement with the roots of the analytical dispersion relation (4.2)
and previous simulations by Cheng & Knorr (1976). Figure 2(a) shows the corresponding evolution of the
free energy contributions Wf from the distribution function and WE from the electric field, and the time-
integrated collisional sink S defined by (3.27). After an initial transient, by t = 20 the system has entered a
collisionless regime in which WE decays at the Landau rate with a superimposed oscillation due to beating
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Figure 2. Free energy contributions in the linear case. Line style corresponds to resolution: Nm = 128 (dot-dash),
Nm = 256 (dash), Nm = 512 (solid). Note that WE in (a) is the same for all resolutions.

between the two counter-propagating modes, while Wf oscillates in antiphase to WE without decaying. This
is reminiscent of the Landau (1946) Laplace transform solution (1.4).

This collisionless regime lasts until the free energy in the distribution function propagates to sufficiently
large m that it reaches collisional scales, and is then damped by Hou & Li (2007) filter. This occurs at the
cross-over of Wf and S in figure 2(a), around times 18, 25, and 40 for the three different resolutions with
Nm = 128, 256, and 512. The system then enters an asymptotic regime in which both WE and Wf decay at
the Landau rate, the regime described by Ng et al. (1999) for the linear Vlasov–Poisson system with small
Fokker–Planck collisionality.

The time taken for the free energy in the distribution function to reach collisional scales increases with
the maximum number of Hermite modes Nm, so the simulation does not converge with increasing Nm in
the conventional sense. Indeed, the free energy Wf (3.18) is always dominated by the retained modes with
largest m. However, the behaviour of the lower modes shared by multiple simulations with increasing Nm
does converge. In particular, the electric field (zeroth mode) converges, as indicated by the superimposed
time traces of WE for the different values of Nm in figure 2(a). We return to this notion of convergence in
§4.2.1.

Both WE and Wf oscillate as they decay due to the presence of two counter-propagating modes with the
same decay rate. The discretized system for a single wavenumber kj is equivalent to the matrix initial value
problem

∂f

∂t
= Mf, (4.3)

for an Nm × Nm matrix M . The exact solution may be written using the Nm eigenvalues (−iωl) and
eigenvectors xl of M as f(z, v1, t)

:
f(z, vn, t)

 =

Nm∑
l=1

αlxle
i(kjz−ωlt). (4.4)

The coefficients are αl = y∗l β/(y
∗
l xl) where yl is the lth eigenvector of the adjoint matrix M∗, and β =

(f(z, v1, 0), . . . , f(z, vn, 0)T. The dominant eigenvalues ofM also occur in the frequency pair±ωR+iγ. Generic
initial conditions excite both dominant eigenmodes and after sufficiently long time lead to an oscillation with
frequency 2ωR via the interference pattern of the two modes. For example, the modulus squared of the electric
field may be written as

|E|2 =
∣∣∣E(L)ei(kz−(ωR+iγ)t) + E(R)ei(kz−(−ωR−iγ)t)

∣∣∣2 ,
=
(
|E(L)|2 + |E(R)

2 |2 + 2Re(E(L)∗E(R)e2iωRt)
)
e2γt, (4.5)
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(b) k = 1.0
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(c) k = 1.5
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Figure 3. Evolution of the amplitudes of the first four Fourier components of the electric field.

for constants E(L) and E(R). We may thus determine the frequency of the dominant mode pair from the
solution of an initial value problem.

We obtain smooth decay by choosing initial conditions which do not project onto one of the dominant
modes, i.e. by setting αl = 0 for that mode. The resulting evolution of the free energy contributions shows a
smooth exponential decay with no oscillations after an initial transient, see figure 2(b), because the long-time
behaviour is dominated by a single travelling wave. However, there is now no convergence even of the electirc
field with increasing Nm, because the removed mode xl has fine scale structure in velocity space, even though
the initial conditions remain a spatially-modulated Maxwell–Boltzmann distribution. The initial conditions
are thus significantly different for different velocity space resolutions.

4.2. Nonlinear Landau damping

We now present simulations of nonlinear Landau damping (e.g. Grant & Feix 1967; Cheng & Knorr 1976; Zaki
et al. 1988; Manfredi 1997; Nakamura & Yabe 1999; Filbet et al. 2001; Heath et al. 2012). We first benchmark
SpectroGK by reproducing known features of the solution and demonstrating convergence, before giving
a description of the system in terms of the evolution of the Fourier–Hermite expansion coefficients.

Figure 1(b) shows the evolution in time of |Ê1|, the dominant Fourier component of the electric field, at
early times. Figure 3 shows the evolution of the four longest wavelength Fourier modes |Ê1| to |Ê4|. Both
are in close agreement with previous simulations (e.g. Heath et al. 2012).

Figure 4 shows time slices of the perturbed distribution f(z, v, t), which again are in agreement with
previous simulations (e.g. Le Bourdiec et al. 2006). Phase space shearing at early times leads to a striped,
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(a) t = 1 (b) t = 5

(c) t = 10 (d) t = 20

(e) t = 40 (f) t = 60

Figure 4. Time slices of the distribution function perturbation f(z, v, t) computed with (Nk, Nm) = (256, 2048). The
distribution is plotted on z-collocation points using the discrete Fourier transform of the Fourier–Hermite coefficients,
and at a uniform grid of 2048 points with v ∈ [−3, 3] using (3.14) to define a continuous function of v.
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(a) (b)

Figure 5. Evolution in time of (a) the different contributions to the free energy, and (b) their time derivatives.

highly-oscillatory pattern in velocity space that is characteristic of phase mixing (and is indeed similar to the
linear Landau damping case plotted in Heath et al. 2012). However, nonlinear effects are visible as the stripes
are not straight lines, but show wave-like oscillations in z with wavenumber k = 0.5. These undulations of
the contour lines of constant f appear larger in amplitude at larger |v|. At about t = 30, the oscillations in
the region |v| ∈ (1, 2) roll up to form vortex-like structures that propagate in the direction of the shear, see
figure 4(e). By t = 60 the shear has elongated these structures to the box scale, see figure 4(f), and they
then persist, flowing in the direction of the shear in the region |v| ∈ (1, 2). The region v ∈ (−1, 1) retains the
striped pattern characteristic of linear phase mixing, but also shows a clear oscillation in z with wavenumber
k = 0.5.

Figure 5(a) shows the evolution of the free energy contributions WE , Wf , WN , and S. Figure 5(b) shows

their corresponding time derivatives ẆE , Ẇf , T , and C, and the error |E| = |ẆE + Ẇf + T − C| in the
instantaneous free energy conservation equation (3.25). This error decreases with decreasing timestep (not
shown). Thse plots show that the various free energy contributions reach steay states after long times. In
particular, the collisional sink C tends to zero, so that no free energy is removed from the system by collisions.
Instead, the free energy is simply exchanged between Wf , WN , and WE . Moreover, figure 5(b) shows that

Ẇf and T have approximately equal amplitudes but opposite signs. There are thus only small changes in

the electric field free energy, as ẆE ≈ −Ẇf − T .

4.2.1. Convergence

We now investigate the convergence behaviour by making a series of runs with successively doubled
resolutions, Nm ranging from 48 to 6144, and Nk ranging from 32 to 1024 (recall Nk = 2Nϑ + 2). At a
fixed time, we first compare the Fourier–Hermite coefficients of a run to those of the best resolved run with
(Nk, Nm) = (1024, 6144). That is, if ajm and ājm are the Fourier–Hermite modes of the two runs, we define
the error to be the sum of the squared differences in the expansion coefficients,

∆ =

Nϑ∑
j=−Nϑ

Nm−1∑
m=0

|ajm − ājm|2, (4.6)

where the coefficients of the modes omitted from the less resolved run are set to zero. This error is related
to a weighted integral of the squared difference of the distribution functions via Parseval’s theorem,

∆ =
1

L

∫ L

0

dz

∫ ∞
−∞

dv
|f(z, v)− f̄(z, v)|2

f0
, (4.7)

where f and f̄ are the distribution functions with expansion coefficients ajm and ājm. The f0 in the de-
nominator exaggerates errors in the velocity tail of the distribution where f0 is small. Convergence in this
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Figure 6. Hermite spectra with Hou–Li filtering at (a) t = 10 and (b) t = 40. The vertical lines are at m = 2Nm/3
for each resolution. All spectra are for wavenumber k1 with Nk = 257.

weighted L2 norm implies convergence in the L1 norm,

1

L

∫ L

0

dz

∫ ∞
−∞

dv
∣∣f(z, v)− f̄(z, v)

∣∣
6

(∫ ∞
−∞

dv f0

)1/2
(

1

L

∫ L

0

dz

∫ ∞
−∞

dv
|f(zl, v)− f̄(zl, v)|2

f0

)1/2

, (4.8)

by the Cauchy–Schwarz inequality, and
∫∞
−∞ dv f0 = 1 for the Maxwell–Boltzmann distribution.

However, the sum over the full range of j and m in (4.6) turns out not to be useful. Figures 6(a) and
6(b) show the Hermite spectra |a1m|2 for the lowest Fourier mode at two times t = 10 and t = 40 for three
different Hermite truncations Nm ∈ {1024, 2048, 4096}. The distribution function perturbations f(z, v, t) for
these two times are shown in figures 4(c) and 4(e). At t = 10 the Hermite spectra show the exponential decay
with m typical of spectral expansions of real analytic functions. However, the regularity of the solution at
the later time t = 40, corresponding to the top of the roll-over in the electric field in figure 1(b), is sufficiently
poor that the spectra are essentially flat, and show no systematic decay with increasing m before they are
cut off by the Hou–Li filter.

Instead, we therefore calculate an error

∆′ =

N∗ϑ∑
j=−N∗ϑ

N∗m−1∑
m=0

|ajm − ājm|2 (4.9)

over a small set of expansion coefficients set by N∗ϑ = 8 and N∗m = 3. Figure 7 shows the error (4.9) for the
same two times t = 10 and t = 40. The solution at the earlier time t = 10 has little structure in z, which
may be captured by a small number of Fourier modes, beyond which increasing Nk has little effect upon the
error. There is finer structure in v, but again 768 Hermite modes are sufficient to capture it, and a further
increase in Nm does not reduce the error.

At the later time t = 40, the structure in z is still captured by 64 Fourier modes, beyond which there is
no improvement. The scheme appears to converge algebraically with increasing Nm for Nm > 384 provided
Nk > 64. We do not see the usual exponential convergence of a spectral expansion because the limiting
solution has such poor regularity, as shown by the lack of decay of the expansion coefficients in figure 6(b)
with increasing m.

4.2.2. Hermite flux

We now describe the behaviour of the system in Fourier–Hermite phase space with a view to explaining
two nonlinear effects: firstly that, after its initial decay, the electric field grows again in the absence of linear
instability; and secondly that the electric field does not decay at long times.
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(a) Convergence with Nk at t = 10 (b) Convergence with Nm at t = 10

(c) Convergence with Nk at t = 40 (d) Convergence with Nm at t = 40

Figure 7. Convergence of the coefficients of the lowest (N∗
ϑ , N

∗
m) = (8, 3) modes for nonlinear Landau damping.

Equation (3.18) expresses the quadratic approximation Wf to the free energy of the distribution function
as a sum of the |ajm|2. By writing ãjm = (i sgn kj)

majm, Zocco & Schekochihin (2011) showed that the first
three terms in (3.10a) imply

dãjm
dt

+ |kj |
(√

m+ 1

2
ãj,m+1 −

√
m

2
ãj,m−1

)
= 0, (4.10)

for m > 2 in the linearized system with no collisions. The ãjm thus remain real if they are real initially. This
requires the initial perturbation f(z, v, 0) to be even in z (as a−j,m = ajm) and in v (as ajm = 0 for m odd).
By multiplying this equation by ãjm, Zocco & Schekochihin (2011) showed that the free energy density in
Fourier–Hermite space evolves according to the discrete conservation law

1

2

dã2
jm

dt
+
(
Γj,m+1/2 − Γj,m−1/2

)
= 0, (4.11)

with flux

Γj,m−1/2 = |kj |
√
m/2 ãjmãj,m−1 = kj

√
m/2 Im

(
a∗jmaj,m−1

)
. (4.12)

We set Γj,−1/2 = 0 for consistency with aj,−1 = 0.
If ãjm varies slowly in m, in the sense that ãjm ≈ ãj,m+1, (4.11) may be approximated by the conservation

law

1

2

∂ã2
jm

∂t
+
∂ΓSV

jm

∂m
= 0, (4.13)
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with the flux

ΓSV
jm = |kj |

√
m/2 ã2

jm = |kj |
√
m/2 |ajm|2. (4.14)

Equation (4.13) may be rewritten (
1

2

∂

∂t
+ |kj |

∂

∂
√

2m

)(√
2mã2

jm

)
= 0, (4.15)

showing that the free energy density propagates along the characteristics
√
m =

√
m0+

√
2|kj |t with constant

m0. If we further assume that the ãjm correspond to an eigenfunction in time with growth rate γ, so
(d/dt)|ãjm|2 = 2γ|ãjm|2, (4.13) gives the spectrum

|ãjm|2 =
Cj√
2m

exp

(
−2
√

2γm1/2

|kj |

)
, (4.16)

for constants Cj , which is in excellent agreement with the numerical eigenvectors of the discrete system
(Parker & Dellar 2014).

However, this approximation relies upon the ãjm being slowly varying in m, in the sense that ãjm ≈ ãj,m+1.
Following a standard result in the numerical analysis of finite difference approximations to partial differen-
tial equations (e.g. Mesinger & Arakawa 1976; Strikwerda 2004) equation (4.11) also supports alternating
solutions, sometimes called parasitic solutions, with ãjm ≈ −ãj,m+1 that propagate in the reverse direction.
These correspond to writing ãjm = (−1)mâjm. In these variables, (4.10) becomes

dâjm
dt
− |kj |

(√
m+ 1

2
âj,m+1 −

√
m

2
âj,m−1

)
= 0, (4.17)

with the sign reversed. By assuming that âjm, rather than ãjm, varies slowly in m one may derive an analogue
of (4.13) in which the flux has the opposite sign, and an analogue of (4.15) describing propagation of free
energy along the reversed characteristics

√
m =

√
m0 −

√
2|kj |t for constant m0.

Schekochihin et al. (2014) and Kanekar et al. (2014) therefore introduced the decomposition ãjm = ã+
jm +

(−1)mã−jm in terms of

ã+
jm =

1

2
(ãjm + ãj,m+1) , ã−jm = (−1)m

1

2
(ãjm − ãj,m+1) . (4.18)

Substituting into (4.11) gives

d(ã±jm)2

dt
± |kj |

(
(sm+2 + sm+1)ã±j,m+1ã

±
jm − (sm+1 + sm)ã±j,m−1ã

±
jm

)
± |kj |(−1)m

(
(sm+2 − sm+1)ã∓j,m+1ã

±
jm − (sm+1 − sm)ã±jmã

∓
j,m−1

)
= 0,

(4.19)

where we set ã±j,−1 = ãj0/2 for consistency with aj,−1 = 0. The constants are sm =
√
m/2, and their

differences sm+2 − sm+1 and sm − sm−1 are both O(1/
√
m). We can write the first term as a difference

Γ±j,m+1/2 − Γ±j,m−1/2 between two fluxes, in different directions for ã+
jm and ã−jm, but the second term does

not have this structure. Thus for large m, the evolution of the free energy decouples into a “phase-mixing”
plus (+) mode that propagates from low to high m, and a “phase-unmixing” minus (−) mode that propagates
from high to low m.

We compare the actual Hermite flux Γjm to its slowly varying approximation ΓSV by defining the normal-
ized flux

Γ̂jm =
Γjm
ΓSV
jm

=
sgn kj Im

(
a∗j,m+1ajm

)
|ajm|2

=
ãj,m+1ãjm

ã2
jm

=
(ã+
jm)2 − (ã−jm)2

(ã+
jm + (−1)mã−jm)2

. (4.20)

The approximation Γjm ≈ ΓSV
jm is thus valid when |ã+

jm| � |ã−jm|. We use this normalized Hermite flux to
describe the transfer of free energy in phase space. This quantity is of particular interest in determining the
behaviour of the electric field, as we recall from §3.1.1 that the electric field only grows or decays as the
result of net flux between the m = 0 and m = 1 Hermite coefficients.

The nonlinear Vlasov–Poisson system (3.10) may be rewritten in terms of the ã± as

dã±jm
dt

+ S±jm +B±jm +N±jm = 0, (4.21)
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where the streaming term is

S±jm =± 1

2
|kj |

(
(sm+2 + sm+1)ã±j,m+1 − (sm+1 + sm)ã±j,m−1

)
± 1

2
|kj |(−1)m

(
(sm+2 − sm+1)ã∓j,m+1 − (sm+1 − sm)ã∓j,m−1

)
,

(4.22)

and the contribution from the electric field is

B±jm = ∓δm0 + δm1

|kj |
√

2

(
ã+
j0 + ã−j0

)
. (4.23)

The nonlinear term is

N±jm = ±
Nϑ∑

j′=−Nϑ

iÊj−j′
[
(Dm+1

jj′ +Dm
jj′)ã

±
j′,m−1 + (−1)m(Dm+1

jj′ −Dm
jj′)ã

∓
j′,m−1

]
, (4.24)

where the electric field may be written in terms of ã± as

iÊj =

{
−(ã+

j0 + ã−j0)/kj , j 6= 0,

0, j = 0,
(4.25)

and where Dm
jj′ =

√
m/2(sgn kj)

m(sgn kj′)
m−1. When sgn(kj) = sgn(kj′), the sum and difference Dm+1

jj′ ±
Dm
jj′ are O(

√
m) and O(1/

√
m) respectively. Conversely, when sgn(kj) = −sgn(kj′), the sum and difference

Dm+1
jj′ ±Dm

jj′ are O(1/
√
m) and O(

√
m) respectively.

The free energy equation corresponding to (4.21) is

1

2

d(ã±jm)2

dt
+ ã±jmS

±
jm + ã±jmB

±
jm + ã±jmN

±
jm = 0. (4.26)

In figures 8 and 9 we plot the Hermite spectra (ã±jm)2 against Hermite index and time for the first wavenumber

k = 0.5. In the linear system the equations for the ã±jm decouple, except for the electric field term for m = 0

and m = 1, and for the O(1/
√
m) smaller cross-coupling term in the second line of (4.19). Moreover the

plus and minus modes propagate along the characteristics
√
m =

√
m0 ±

√
2|kj |t. In the linear case with

the Hou–Li filter (figures 8a and b) the free energy propagates very clearly along the forward characteristics√
m =

√
m0+

√
2|kj |t until it reaches collisional scales at largem, and is damped. Some forward propagation is

visible in the (−) mode associated with ã−jm due to the O(1/
√
m) coupling between the two modes. However,

the amplitude of this backward propagating mode is smaller at larger m, and is always significantly smaller
than the amplitude of the (+) mode at the same m and t.

In figures 8(c,d) we show the corresponding plots with no Hou–Li filter to provide dissipation at large
m. Now the free energy in the (+) mode reflects at the truncation point aNm

= 0, which imposes a no-
flux boundary condition, turning into a (−) mode that propagates backwards along

√
m =

√
m0 −

√
2|kj |t

characteristics until it returns to the lowest m modes. Again, some (+) mode is excited by the O(1/
√
m)

cross-coupling, but it has a significantly smaller amplitude than the (−) mode at the same m and t.
Figures 9(a,b) show the corresponding data for the j = 1 modes in a nonlinear simulation. The nonlinear

term (4.24) introduces Fourier mode coupling where free energy in other wavenumbers excites both ã+ and
ã− at j = 1. The free energy propagates on the characteristics

√
m =

√
m0±

√
2|k|t throughout phase space,

rather than only near the characteristics originating from the initial conditions, as in figures 8(a-d). This
suggests that the backwards propagating (−) modes that cause the increase in the electric field are excited
by the nonlinear term. However it remains possible that this backwards flux is generated by the O(1/

√
m)

cross-coupling term in (4.22). To confirm that this effect is due to the nonlinear term, we show in figure 10(a)
the time series of the two contributions

∑
m(ã+

1,m)2 and
∑
m(ã−1,m)2 to the free energy from the forwards

and backwards modes. After t = 20, when the electric field grows, the contribution
∑
m(ã−1m)2 to the free

energy from the (−) mode grows exponentially. This shows the increase in free energy is due to a term of
the form ã−ã−ã+, as in the nonlinear term in the ∂t(ã

−
jm)2 equation (4.26), not a term of the form ã−ã+

from the cross-coupling.
Turning to the absence of Landau damping at long times, figure 5 shows that the free energy contributions

reach a steady state in which there is very little collisional damping. Moreover, figure 10(a) shows that the
the free energy contributions from ã± balance in the nonlinear regime when t & 40, showing there is little
net flux towards fine scales velocity space. However, this is only a statement about k = 0.5, so in figure 10(b)
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(a) log(|ã+
1m|2), Hou–Li filtering (b) log(|ã−

1m|2), Hou–Li filtering

(c) log(|ã+
1m|2), no velocity space dissipation (d) log(|ã−

1m|2), no velocity space dissipation

Figure 8. The amplitudes of the forwards and backwards propagating modes for k = 0.5 in the linearized system
with and without velocity space dissipation.

we plot the time mean of the normalized Hermite flux (4.20) over the interval t ∈ [40, 80] for all phase
space. While the normalized Hermite flux is the ratio of two time-dependent functions, it behaves well under
averaging because the denominator |ajm|2 is largely constant over t ∈ [40, 80]. Figure 10 shows that there is
no systematic Hermite flux towards fine scales. However the growth or decay of the electric field over long
timescales requires a net Hermite flux to persist over long timescales; similarly collisional damping requires
a systematic flux to fine scales. Therefore by generating a backward Hermite flux which on average balances
with the forward flux, the nonlinearity has effectively suppressed Landau damping.

4.3. Two-stream instability

We now demonstrate the capabilities of SpectroGK for a non-Maxwellian background f0 by studying the
two-stream instability benchmark (Grant & Feix 1967; Denavit & Kruer 1971; Cheng & Knorr 1976; Zaki
et al. 1988; Klimas & Farrell 1994; Nakamura & Yabe 1999; Pohn et al. 2005; Heath et al. 2012). We change
the background distribution to

f0 =
2v2

√
π

exp(−v2), (4.27)

which may be written as the sum of two Hermite functions,

f0 =
√

2φ2(v) + φ0(v), (4.28)
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(a) log(|ã+
1m|2) (b) log(|ã−

1m|2)

Figure 9. The amplitudes of the forwards and backwards propagating modes for k = 0.5 in the nonlinear system.
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Figure 10. (a) Contributions
∑

m(ã+
1m)2 and

∑
m(ã−

1m)2 to the free energy from forwards and backwards
propagating modes. (b) Time-averaged normalized Hermite flux for the interval t ∈ [40, 80].

so (2.2) holds, and the previous moment equations (2.3a) become

E
∂f0

∂v
= −

(
2
√

3φ3(v) +
√

2φ1(v)
)
E. (4.29)

This yields an extra source term in the Fourier–Hermite moment system, so (3.10a) becomes

dajm
dt

+ ikj

(√
m+ 1

2
aj,m+1 +

√
m

2
aj,m−1

)
+
√

2Êjδm1 + 2
√

3Êjδm3 + Njm = Cjm, (4.30)

with equations (3.10b) and (3.10c) for the electric field remain unchanged.
As before, we take our initial conditions to be

f̃(v) = f0(v)(1 +A cos kz), (4.31)

with A = 0.05 and k = 0.5. This describes two counter-streaming electron beam with a small initial pertur-
bation, as shown in figure 11(a). The new source term in (4.30) introduces a linear instability for k2 < 2 (see
appendix A). The perturbation is unstable and grows exponentially until the nonlinear term becomes im-
portant and saturates the linear growth. The distribution function approaches a Bernstein–Greene–Kruskal
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(1957) state after long times, as shown in figure 11. The convergence plots in figure 12 show convergence
with increasing Nm and Nk, and are very similar to the earlier nonlinear Landau damping case.

The approach to a Bernstein–Greene–Kruskal state is in agreement with O’Neil’s (1965) theory of non-
linear Landau damping in the regime where the nonlinear bounce time (Ek)−1/2 is much shorter than the
characteristic linear decay time, and with previous numerical simulations (Manfredi 1997; Brunetti et al.
2000). However, the latter were run for over 1000 wave periods, much longer than our simulation. Moreover,
the Bernstein–Greene–Kruskal state is subject to a sideband instability, and only persists in our, and earlier,
simulations because the wavelength of the initial perturbation is the longest wave permitted in the simulation
domain (Brunetti et al. 2000; Danielson et al. 2004).

5. Conclusion

In this work we have illustrated the usefulness of a Fourier–Hermite spectral expansion for simulating
the 1+1D Vlasov–Poisson system. The Fourier–Hermite representation presented in §3 yields an attractive
moment-based formulation, which we implemented using a modified version of our SpectroGK gyrokinetics
code. The fine scales in velocity space that arise from particle streaming were successfully controlled by a
Hermite version of the Hou & Li (2007) spectral filter, as previously employed in simulations of hydrody-
namicss. This filtering eliminates recurrence, meaning the method is successful even when phase mixing and
filamentation are dominant effects. This is particularly important in regimes like nonlinear Landau damping
where the nonlinearity generates structure at fine scales (see Figure 6) which must be distinguishable from
recurrence effects.

In §4 we replicated well-known results for nonlinear Landau damping and the two-stream instability, and
demonstrated convergence of SpectroGK in both space and velocity space. This benchmarks SpectroGK
against solutions obtained by early low-resolution Fourier–Hermite simulations (e.g. Armstrong 1967; Grant
& Feix 1967), by PIC codes (e.g. Denavit & Kruer 1971), by finite element methods (e.g. Zaki et al. 1988), and
by recent discontinuous Galerkin simulations (Heath et al. 2012). However, we do not obtain the exponential
convergence with increasing number of Hermite modes usually expected for spectral methods. This is due
to the poor regularity of the nonlinear solutions at later times, as illustrated by the transition from an
exponentially decaying to a flat Hermite spectrum in figure 6. A functional-analytic framework for solutions
with such poor regularity was recently developed by Mouhot & Villani (2011) as part of their proof of
the persistence of phase mixing in the nonlinear Vlasov–Poisson system for sufficiently small amplitude
perturbations.

Finally, we studied the flow of free energy in Fourier–Hermite phase space using tools recently developed
by Schekochihin et al. (2014) and Kanekar et al. (2014) for the gyrokinetic equations. We expressed the
distribution function as combination of forwards and backwards propagating modes in Hermite space, the
difference of which represents the net flux of free energy towards fine scales, or the net rate of phase mixing.
This net Hermite flux out of the lowest m = 0 Hermite mode is associated with the change in the energy of
the electric field via the free energy evolution equation (3.20). We showed that the growth in the electric field
seen at t = 20 is due to the generation of backwards propagating modes by the nonlinear term. Both the
electric field and the free energy in backwards propagating modes grow exponentially until the free energy
content of forwards and backwards propagating modes comes into balance. Thereafter, there is no systematic
net flux towards fine scales in velocity space (high Hermite modes) which suggests that nonlinearity does
suppress phase mixing for sufficiently large amplitude perturbations.
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(a) t = 0 (b) t = 20

(c) t = 40 (d) t = 60

(e) t = 100 (f) t = 160

Figure 11. Time slices of the full distribution function for the two-stream instability in (z, v) space, calculated with
(Nk, Nm) = (128, 4096) and plotted on the Fourier collocation points and a uniform grid of 4096 points for v ∈ [−3, 3].
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(a) Convergence with Nk at t = 10 (b) Convergence with Nm at t = 10

(c) Convergence with Nk at t = 40 (d) Convergence with Nm at t = 40

Figure 12. Convergence for the two-stream instability on the lowest (N∗
ϑ , N

∗
m) = (8, 3) modes.

Appendix A. Linear dispersion relation

To illustrate the appearance of a linear instability for the non-Maxwellian equilibrium (4.27), we derive
the linear dispersion relation based on the first four Hermite moments in (3.10a) or (4.30). This may be
viewed as a simple collisionless fluid model that is sufficient to determine regions of linear instability.

The linear equation is parameterized by k, so we solve for time eigenfunctions of the form am(k, t) =
ām(k)e−iωt. We take the first four moment equations to be

−iω ik 0 0

i
(
k√
2

+
√

2
k

)
−iω ik 0

0 ik −iω ik
√

3/2

iβ2
√

3/k 0 ik
√

3/2 −iω




a0

a1

a2

a3

 = 0, (A 1)

where β = 0 for the nonlinear Landau-damping problem, and β = 1 for the two-stream instability. This
yields the dispersion relation

ω4 − (3k2 + 1)ω2 + 3k2
(
k2 + 2− 4β

)
/4 = 0, (A 2)

with solutions

ω2 =
1

2

[
(3k2 + 1)±

√
(3k2 + 1)2 − 3k2(k2 + 2− 4β)

]
. (A 3)
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Figure 13. Dispersion relation for the two stream instability: frequency (left) and growth rate (right) against

wavenumber k. The small circle on the k-axis marks the wavenumber k =
√

2.

The plasma is stable if ω2 is real and non-negative, that is if

(3k2 + 1)2 > (3k2 + 1)2 − 3k2
(
k2 + 2− 4β

)
> 0. (A 4)

The first inequality comes from comparing the two terms in (A 3), while the second ensures the discriminant
is non-negative. For nonlinear Landau-damping (β = 0), both inequalities hold for all k and all modes are
linearly stable. For the two-stream instability (β = 1), modes corresponding to the + sign in (A 3) are stable,
while modes corresponding to the − sign are unstable for wavenumbers 0 < k <

√
2. The dispersion relation

for the two stream instability is shown in figure 13.
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