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ABSTRACT. In this paper we investigate generalizations of Kazhdan’s prop-
erty (T) to the setting of uniformly convex Banach spaces. We explain the
interplay between the existence of spectral gaps and that of Kazhdan pro-
jections. Our methods employ Markov operators associated to a random
walk on the group, for which we provide new norm estimates and conver-
gence results. They exhibit useful properties and flexibility, and allow to
view Kazhdan projections in Banach spaces as natural objects associated
to random walks on groups.

We give a number of applications of these results. In particular, we
address several open questions. We give a direct comparison of properties
(TE) and FE with Lafforgue’s reinforced Banach property (T); we obtain
shrinking target theorems for orbits of Kazhdan groups; finally, answering
a question of Willett and Yu we construct non-compact ghost projections
for warped cones. In this last case we conjecture that such warped cones
provide counterexamples to the coarse Baum-Connes conjecture.

1. INTRODUCTION

One way to investigate properties of groups, especially with a view to their
actions on Banach spaces, is through the group Banach algebras. These are
natural analytic objects encoding many properties of the group. The existence
of projections in such algebras is a particularly important and challenging
problem. For instance, the (non)existence of idempotents other than 0 and 1
in the reduced group C∗-algebra of a torsion-free group is a long-standing
conjecture of Kadison and Kaplansky. When the group is amenable (and
more generally, a-T-menable) the Kadison-Kaplansky conjecture is known
to be true. Additionally, for amenable and torsion free groups the maximal
group C∗-algebra is isomorphic to the reduced group C∗-algebra, therefore
the maximal group C∗-algebra does not have non-trivial idempotents either.

A main result of this paper is an explicit construction of proper idempo-
tents in many group Banach algebras. The construction is based on random
walks. The relation between Kazhdan projections and random walks can be
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extracted from the spectral considerations regarding Kazhdan projections for
discrete groups in the Hilbert space setting, see [72, 32]. However, spectral
theory is not available in our setting. Our construction turns out to be rele-
vant in various contexts, from expander graphs to ergodic geometry and the
Baum-Connes conjecture.

A Kazhdan projection for a locally compact group G is an idempotent in
the maximal group C∗-algebra C∗

max(G), whose image under any unitary rep-
resentation is the projection onto the space of invariant vectors. Such pro-
jections exist in C∗

max(G) if and only if the group G has Kazhdan’s property
(T) [1]. They are important for many applications. A classical consequence of
their existence is the fact that the map on K-theory induced by the canoni-
cal homomorphism C∗

max(G)→ C∗
r (G) from the maximal to the reduced group

C∗-algebra, fails to be an isomorphism for Kazhdan groups, see e.g. [20, Ch.
2, S. 4]. They play the main role in the failure of some versions of the Baum-
Connes conjecture, since projections of this type can often be shown not to be
in the image of the Baum-Connes assembly map [34]. Kazhdan projections
are the main ingredient of Lafforgue’s reinforced Banach property (T) and
allowed for the construction of the first examples of expanders with no coarse
embedding into any uniformly convex Banach space [43]. Finally, they also
play an important role in the generalization of property (T) to C∗-algebras
[14].

Spectral gaps, Markov operators and projections. At the core of our
paper is a study of a Banach space version of property (T), formulated in a
very general setting: with respect to a given family of isometric representa-
tions on Banach spaces. We prove that such a property can be characterized
in three different ways: the standard spectral gap property, the behavior of
the Markov operator on a canonical complement of the fixed vectors subspace,
and the existence of a Kazhdan projection, with an explicit formula to calcu-
late it, using Markov operators.

Indeed, given an isometric representation π of a group G on a reflexive Ba-
nach space E, the subspace Eπ of fixed vectors has a canonical π-complement,
Eπ (see Section 2.c for details). Given a probability measure µ on G, let Aµ

π

denote the Markov (averaging) operator associated to π via µ. We prove the
following.

Theorem 1.1. Let G be a locally compact group, and F a family of isometric
representations of G on a uniformly convex family E of Banach spaces. The
following conditions are equivalent:

(i) the family F has a spectral gap (see Definition 2.4);
(ii) there exists a compactly supported probability measure µ on G and

λ< 1 such that for every isometric representation π ∈F of G on E ∈ E

we have
∥∥Aµ

π|Eπ

∥∥<λ;
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(iii) there exists a compactly supported probability measure µ on G and a
number S <∞ such that for every π ∈ F the iterated Markov opera-
tors

(
Aµ
π

)k converge with speed summable to at most S to the projec-
tion Pπ onto Eπ along Eπ, that is∥∥∥(

Aµ
π

)k −Pπ

∥∥∥≤ ak ,

where
∑

k ak ≤S.

In Theorem 3.6 we give an explicit formula for the projection Pπ in terms
of the Neumann series of the Markov operator:

(1) Pπ = IE −
( ∞∑

n=0

(
Aµ
π

)n
)(

IE − Aµ
π

)
.

The hypothesis of uniform convexity is needed only in the implication (i)
⇒(ii) and (iii), for the other implications it suffices to have a family of com-
plemented representations on Banach spaces, in the sense of Definition 2.3.

When G has Kazhdan’s property (T) and E is a Hilbert space, Theorem
1.1 holds for F the family of all unitary representations of G. However, as
Theorem 1.1 is formulated in terms of a family of representations, it also
applies in the setting of Property (τ) (see Section 4.c and the corresponding
paragraph later in the Introduction), of property (T`p) introduced in [5] etc.

The equivalence in Theorem 1.1 has an effective side to it, described be-
low. Given a Kazhdan pair (Q,κ) defining the spectral gap (see Definition
2.4), the conditions (ii) and (iii) hold for a large class of measures, which we
call admissible with respect to the Kazhdan set Q. These are explicitly con-
structed by means of Q, see Definition 2.1; their particular construction is
motivated by the sought after connection with Markov operators, which can-
not function for general measures, see Remark 2.2. For every such measure
µ, a constant λ as in (ii) can be computed using the Kazhdan constant κ, the
modulus of uniform convexity of the family E and the choice of an appropri-
ate compactly supported function on G associated to µ. Property (iii) then
holds with ak = λk. Conversely, given a measure µ and λ ∈ (0,1) satisfying
either (ii) or (iii) with ak = λk, the support of µ is a Kazhdan set and its cor-
responding Kazhdan constant is 1−λ. This implication applies, for instance,
in the case of semisimple Lie groups with finite center, and their unitary rep-
resentations on Banach spaces, to any probability measure with symmetric
support not contained in a closed amenable subgroup [68, Theorem C].

One of the advantages of Theorem 1.1 is the high degree of flexibility in
ensuring uniformity of several parameters for classes of isometric represen-
tations. For instance, in the case of groups admitting finite Kazhdan sets (see
Section 3.f) this uniformity depends only on three quantities:

(a) the Kazhdan constant of the family of representations,
(b) the cardinality of the Kazhdan set Q,
(c) the modulus of uniform convexity of the Banach spaces.
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It does not even depend on the group G, as long as we can arrange the above
three items to have uniform bounds.

For applications, the existence of finite Kazhdan sets is a considerable as-
set: the averages become finite, the random walks discrete and an algorith-
mical approach and the use of computer become possible (see for instance
Theorem 3.6, Remark 3.8 and Section 5). As it turns out, the existence of
such finite sets is ensured in many cases outside the class of finitely gener-
ated groups, and in many cases the sets are described explicitly, as explained
briefly in Section 3.f.

Kazhdan projections in group Banach algebras and Lafforgue’s rein-
forced Banach property (T). The uniform convergence described in The-
orem 1.1, (iii), depending on the Kazhdan constant, the modulus of uniform
convexity of the family E , and the choice of the measure µ, shows that the
existence of a Kazhdan projection in group Banach algebras is a consequence
of a uniform version of property (TE). Property (TE) was introduced and
studied in [26, 2] as a natural generalization of property (T) from Hilbert to
Banach spaces.

Theorem 1.2 (see Theorem 4.6 and Corollary 4.7). Let G be a locally compact
group and let F be a family of isometric representations of G on a uniformly
convex family of Banach spaces. There exists a Kazhdan projection p ∈ CF (G)
if and only if the family F has a spectral gap.

In particular, if G has Kazhdan’s property (T) then there exists a Kazhdan
projection in the Lp-maximal group algebra Cp

max(G) for every 1< p <∞.

Here, CF (G) is a natural version of the maximal C∗-algebra of G for the
family F of representations, see Definition 4.1. Banach group algebras for
larger than isometric classes of representations were introduced and studied
by V. Lafforgue [43].

In the case of Hilbert spaces and unitary representations two previous
proofs are known of the general relation between property (T) and the ex-
istence of Kazhdan projections. The first is due to Akemann and Walter [1]
and it relies on positive definite functions, a tool available essentially only in
Hilbert spaces. The second proof, using minimal projections in C∗-algebras, is
due to Valette [72]. Our approach shares some elements with the latter proof.
Namely, Valette shows that property (T) is equivalent to 1 being isolated in
the spectrum of the Markov operator π(u), for every unitary representation π,
where u is the uniform measure on a symmetric generating set. The spectral
projection associated to 1 is then the Kazhdan projection, and it follows that
u, as an element of the maximal group C∗-algebra, can be realized as a norm
limit of explicit polynomials in u. In our proof, the existence of the Kazhdan
projection in the algebra is the consequence of the appropriate convergence
of a random walk. Another construction of Kazhdan projections, yielding an
explicit sequence of compactly supported functions approximating the pro-
jection, but limited to a specific class of Lie groups, has been provided by V.
Lafforgue [43].
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The topic of operator algebras on Lp-spaces is an emerging direction in
non-commutative geometry. For certain groups the construction of Lafforgue
[43] provided Kazhdan projections for maximal Lp-group algebras. Addition-
ally, an approach to the Novikov conjecture via Lp-versions of the Baum-
Connes conjecture has been recently developed by Kasparov and Yu. Theo-
rem 1.2 shows that for groups with property (T) the same obstructions as in
the Hilbert space case are likely to exist in K-theory.

Theorem 1.1 allows to compare V. Lafforgue’s definition of reinforced Ba-
nach property (T) [43] to other generalizations of property (T) to Banach
spaces, i.e. properties (TE) and FE [26,2]. The question of such a comparison
has been considered by several experts previously. In [44] it was shown that
the reinforced Banach property (T) implies FE, and in [2] it was shown that
property FE implies (TE). Since Lafforgue’s reinforced Banach property (T)
is formulated in terms of existence of Kazhdan projections in certain group
Banach algebras, Theorem 1.2 provides implications in the other direction.
We discuss this in detail in Section 4.b.

As Theorem 1.1 holds for a family of representations, it can be applied in
the context of property (τ), introduced by Lubotzky. Thus, we use Theorem
1.1 to formulate a generalization of property (τ) to uniformly convex Banach
spaces, which is consistent with a notion of expanders for Banach spaces de-
fined using Poincaré inequalities (Definition 4.9).

More precisely, for a uniformly convex Banach space E we introduce prop-
erty (τE) by the same definition as for Hilbert spaces, requiring that certain
isometric representations factoring through finite quotients of G are sepa-
rated from the trivial representation; that is, they have a uniform spectral
gap. The following is a consequence of Theorem 1.1.

Theorem 1.3. Let E be a uniformly convex Banach space, let G be a finitely
generated residually finite group and let N = {Ni} be a collection of finite index
subgroups with trivial intersection. The following conditions are equivalent:

(i) G has property (τE) with respect to N = {Ni} and a symmetric Kazh-
dan set Q;

(ii) the Cayley graphs Cay(G/Ni,Q) form a sequence of E-expanders;
(iii) there exists a Kazhdan projection p ∈ CN (E)(G).

In the Hilbert space case the algebra appearing in the condition (iii) is a
C∗-algebra. In that case the existence of the Kazhdan projection appearing in
the above theorem was hinted at in [33,34]. It is via such projections that the
main existing counter-example to the coarse Baum-Connes conjecture was
constructed, using expanders [34].

Remark 1.4. The Kazhdan set Q in Theorem 1.3 does not necessarily gen-
erate G. Examples of Kazhdan sets that are not generating exist already for
groups G and collections N having the classical property (τ). For instance,
if G = SLn(Z), a finite symmetric set generating a subgroup Zariski dense in
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SLn(R) is a Kazhdan set for an appropriate choice of N (see [11] and refer-
ences therein). See also [67] for an earlier example of non-generating Kazhdan
set for actions on expanders that are finite quotients.

Remark 1.5. A consequence of Theorem 1.3 is a modified estimate of rapid
mixing of random walks for expanders coming from groups with property (T).
Indeed, for a regular graph Γ on n vertices such that the normalized adjacency
matrix Â has the second and the last eigenvalues at most α in absolute value,
it is known [36, Theorem 3.2] that for every positive integer k,

(2) ‖Âkp−u‖1 ≤
p

nαk,

where p ∈ Rn+ is an arbitrary probability distribution (i.e. the sum of its non-
negative coordinates is 1) and u is the uniform probability distribution (i.e.
all its coordinates are equal). In other words, the random walk converges in
`1 to the uniform distribution exponentially fast with base α, but the speed is
slowed down by a multiplicative factor of square of the number of vertices.

For expanders coming from finite quotients of a group G with property (T),
the multiplicative factor in n can be improved. Indeed, it follows from Remark
2.6, (i), from Theorem 1.1, and from Hölder’s inequality that given a finite set
S generating G, for every ε ∈ (

0, 1
2
)

there exists α = α(ε,G) such that on any
Cayley graph Γ of a finite quotient G/N with respect to the image of S, the
rapid mixing on Γ can be estimated as follows:

(3) ‖Âkp−u‖1 ≤ nεαk, ∀k ∈N,

where n = |G/N|, Â is the normalized adjacency matrix of Γ and α is the con-
stant provided by the effective version of Theorem 1.1, (iii), for isometric rep-
resentations of G on Lp–spaces, with p = 1

1−ε . Moreover, according to Remark
1.4, the same result can be obtained for random walks restricted to certain
edges, i.e. for Â the normalized matrix of the adjacency only by edges labeled
by elements in a proper subset Q ⊂ S, provided that Q is a Kazhdan set.

The right choice of ε in (3) is decided by the value p ∈ [1,2] yielding the
minimal value for α ∈ (0,1).

Applications to ergodic theory. Another area in which Theorem 1.1 finds
natural applications is ergodic theory. Consider, for instance, a group with
property (T) acting ergodically on a probability space (X ,ν), and let f be an
arbitrary function in L2(X ). If the two operators appearing in the equality
(1) are applied to f , then the left hand side becomes

∫
X f dν, and the entire

formula becomes a von Neumann-type theorem, in which an exact explicit
formula is provided, instead of just an estimate for the remainder.

Thus, while for ergodic actions of amenable groups the best way to average
is via sequences of Følner sets, for ergodic actions of groups with property (T)
a most effective averaging is via sequences of measures with compact support
approximating the Kazhdan projection.

Ergodic theory is a natural setting in which Theorem 1.1 can be applied.
We use the theorem to investigate shrinking target problems, which ask how
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often does a typical orbit of an action hit a sequence of shrinking subsets. This
problem for orbits of cyclic (or uniparameter) groups in locally symmetric
spaces, and for shrinking sequences of neighborhoods of a cusp, has been
thoroughly investigated and answered in [71, 40]. In the latter paper was
formulated the problem of finding similar results for shrinking sequences
of neighborhoods of a point. The case of rank 1 locally symmetric spaces has
been settled [71,50], but the problem remains open in the case of higher rank.
Theorem 1.1 allows to provide quantitative estimates in terms of random
walks for the behavior of an ergodic action of a group with property (T) with
respect to a shrinking target. For instance, we have the following theorem
(see Section 5).

Theorem 1.6 (see Theorem 5.3). Let G be a locally compact group, and Γ a
lattice in it. Let {Ωn} be a sequence of measurable subsets in G/Γ.

Assume that a locally compact group Λ with property (T) acts ergodically
on G/Γ. Let µ be a probability measure on Λ admissible with respect to some
Kazhdan set, and let Xn be the random variable representing the n-th step of
the random walk defined by µ.

(i) If
∑

nν(Ωn) is finite then for almost every x ∈G/Γ∑
n∈N

P (Xn(x) ∈Ωn)<∞.

(ii) If
∑

nν(Ωn) is infinite then for every ε> 0 and for almost every x ∈G/Γ,

(4)
∑

n≤N
P (Xn(x) ∈Ωn)= SN +O

(
Sε

N
)

,

where SN =∑
n≤N ν(Ωn). In particular, for infinitely many n ∈N,

P (Xn(x) ∈Ωn)> ν(Ωn)−O
(
ν(Ωn)ε

)
.

Note that the error term estimate above, O
(
Sε

N
)
, can only be obtained, as

far as we know, using the fact that property (T) is equivalent to the simi-
lar property for unitary actions on Lp–spaces (see Remark 2.6), (i)) and the
equivalence in Theorem 1.1 for actions on Lp–spaces.

Moreover, when Λ is endowed with a word metric distΛ corresponding to
an arbitrary compact generating set, in the theorem above one may obtain an
estimate similar to the one in (4) for the smaller probabilities

P (Xn(x) ∈Ωn,distΛ(Xn, e)≥ an) ,

where a > 0 is a constant depending on the choice of the word metric and of µ.
These results apply for instance when G is a semisimple group, Γ a lattice

in G and Λ an infinite subgroup of G, or when G/Γ is the n-dimensional torus
and Λ is a subgroup of SLn(Z).

Theorem 1.6 has several applications, explained in Section 5. We mention
here only one of them. Consider the symmetric space P s = SO(s)\G and the
locally symmetric space P s/SL(s,Z). Let D be the common dimension of P s
and P s/SL(s,Z), and let x be an arbitrary point in the latter space. For a
fixed slope that is maximal singular (see the end of Section 5 for a definition)
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there exists a constant a > 0 such that the following holds. Almost every
horosphere H in P s with point at infinity of the fixed given slope, and almost
every point h on H , have the property that the projection of the annulus
H ∩ [B(h,n)\ B(h,an)] in P s/SL(n,Z) intersects the shrinking ball B(x,n1/D)
for infinitely many n. The same holds if one replaces the condition above
with the one that the projection of H ∩[B(h,n)\ B(h,an)] in P s/SL(n,Z) rises
infinitely many times into the cusp at a height between η lnn and η lnn+
1
nδ , where the height in the cusp is measured by a certain fixed Busemann
function, δ can be any number in (0,1), and the constant η depends on the
choice of δ and of the Busemann function measuring the height.

For further details and applications we refer to the end of Section 5.

Obstructions to the coarse Baum-Connes conjecture. The final appli-
cation we present concerns obstructions to the coarse Baum-Connes conjec-
ture. In [33, 34] it was shown that the coarse Baum-Connes conjecture fails
for coarse disjoint unions of expander graphs arising from an exact group
with property (T). The reason is the existence of a certain Kazhdan-type
projection, a non-compact ghost projection, which is a limit of finite propa-
gation operators. Until now such ghost projections were constructed only for
expanders. Willett and Yu formulated the following

Problem 1.7 ([74, Problem 5.4]). Find other geometric examples of ghost pro-
jections.

Motivated by their question we construct non-compact ghost projections
for warped cones [64].

Let G be a finitely generated group acting ergodically by probability pre-
serving Lipschitz homeomorphisms on a compact metric probability measure
space (M,dist,m). Assume that the measure m is upper uniform, i.e. it is
distributed uniformly over M with respect to the metric, see Definition 6.1.
Denote by O =OG(M) the warped cone associated to the action of G on M, as
defined in Section 6.a (see also [64]).

Theorem 1.8 (see Theorem 6.6). If the action of G on (M,m) has a spectral
gap then there exists a non-compact ghost projection G ∈B(L2(O )) which is a
limit of finite propagation operators.

We also conjecture that such warped cones with non-compact ghost projec-
tions as provided by Theorem 1.8 are counterexamples to the coarse Baum-
Connes conjecture. Warped cones in many ways exhibit a behavior similar to
that of box spaces, however one expects that the fact that the class of warped
cones is so rich might lead to examples with interesting new features.
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2. PRELIMINARIES

2.a. Uniform convexity. Let (E,‖ · ‖E) be a reflexive Banach space, and let
B(E) be the algebra of bounded linear operators on E. The modulus of con-
vexity of E is the function δE : [0,2]→ [0,1] defined by

δE(t)= inf
{
1−

∥∥∥v+w
2

∥∥∥ ; ‖v‖ = ‖w‖ = 1,‖v−w‖ ≥ t
}

.

The Banach space E is said to be uniformly convex if δE(t)> 0 for every t > 0.
A family E = {E i}i∈I of Banach spaces is uniformly convex if the function

δE (t) = infi∈I δE i (t), called the modulus of convexity of the family E , satisfies
δE (t)> 0 for every t > 0.

2.b. Admissible measures. Compactly supported probability measures on
topological groups and the corresponding random walks are central objects
in our arguments. We introduce some notation and several standing assump-
tions on such measures.

Consider G a locally compact group, endowed with a (left invariant) Haar
measure η. For any function f : G →C we denote γ · f (g)= f (γ−1 g), γ, g ∈G.

We consider two particular cases, before introducing the notion of admis-
sible measure in full generality. Let Q be a compact subset of G.

Continuous admissible measures. Let α,β : G → [0,∞) be continuous func-
tions with compact support satisfying∫

αdη= 1 and β(g)≥ s ·α(g), ∀s ∈Q, g ∈G .

We also assume that α(e) > 0. Another continuous function, whose compact
support contains Q, can then be defined by the formula

(5) ρ = α+β
M(α,β)

, where M(α,β)=
∫

G
(α+β)dη.

We call a decomposition as in (5) an (α,β)-decomposition of ρ.
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The function ρ gives rise to a probability measure µ on G defined by setting
dµ= ρdη.

Discrete admissible measures. Now consider functions with finite support
α,β : G → [0,∞). With the above conditions formulated for such α and β,
we define ρ as in (5), where M(α,β) = ∑

g∈suppα∪suppβ
[
α(g)+β(g)

]
, and the

formula (5) is again called an (α,β)-decomposition of ρ.
As ρ has finite support and

∑
g∈suppρ ρ(g) = 1, it gives rise to a purely

atomic probability measure on G.

Definition 2.1. A measure µc (respectively µd) will be called a continuous
admissible measure with respect to Q (respectively, discrete admissible mea-
sure with respect to Q) if it is defined by a continuous density ρ (respectively,
a finitely supported function ρ) admitting an (α,β)-decomposition.

A probability measure µ on G will be called admissible with respect to
Q if there exists t ∈ [0,1] such that µ = tµc + (1− t)µd, where µc and µd are,
respectively, continuous and discrete admissible measures with respect to Q.

The normalizing factor of the function ρ and its associated continuous or
discrete measure µ is the infimum of M(α,β), taken over all (α,β)-decompositions
of ρ, with Q fixed. This factor will be denoted either Mρ or Mµ, depending on
the object referred to.

The normalizing factor of an admissible measure µ = tµc + (1− t)µd is the
number

Mµ =
(

t
Mµc

+ 1− t
Mµd

)−1
.

Admissible measures always exist on a locally compact group. We expect
that the arguments presented in this paper would, with some modifications,
work for a larger class of measures. However, the above setting allows to
identify a continuous admissible measure µ naturally, via the density ρ, with
an element of the group algebra Cc(G) (respectively the group ring CG, in the
discrete case), which is crucial for further applications.

The set Q will usually be a Kazhdan set (see Definition 2.4). Since such
sets can be finite even for Lie groups (see Section 3.f), it is useful to work
with measures having an atomic part even in the Lie group setting. When
µ is continuous, hence entirely defined by a density ρ with respect to the
Haar measure η, we sporadically replace µ by ρ in the whole notation and
terminology.

The following was pointed out to us by the referee.

Remark 2.2. The definition of admissible measures can be motivated by con-
sidering the case of Hilbert spaces and unitary representations of a finitely
generated group G. Note that, given an element u ∈ CG defined as the
uniform probability measure on a finite symmetric generating set S, as in
[32, 72], the associated random walk does not necessarily converge to the
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Kazhdan projection even if 1 is an isolated point in the spectrum of u. How-
ever, it does converge if −1 does not belong to the spectrum of u. The lat-
ter condition is equivalent to the property that the Cayley graph of G with
respect to S is not bi-colorable [32, Proposition II]. For instance, if G has
property (T), the Cayley graph of G ×Z/2Z is bi-colorable, while the Cayley
graph of G itself is not bi-colorable, provided that G does not have non-trivial
finite quotients. The spectrum of a Markov operator associated to an admis-
sible measure automatically does not contain −1, which in the Hilbert space
case explains from the point of view of spectral theory the convergence of the
associated random walk to the Kazhdan projection and provides additional
motivation for using admissible measures.

2.c. Groups and representations. Let G be a locally compact group. An
isometric representation π : G → B(E) of G on a Banach space E is said to
be continuous if it is continuous with respect to the strong operator topology.
Equivalently, every orbit map is continuous, see [2, Lemma 2.4]. Throughout
the article we restrict our attention to representations that are continuous in
the above sense, without mentioning this further.

Consider the subspace of E consisting of vectors invariant under π,

Eπ = {
v ∈ E : πgv = v for every g ∈G

}
.

The dual space E∗ is naturally equipped with a contragradient represen-
tation π : G → B(E∗), defined by the formula πg = π∗

g−1 . Note that π is iso-
metric if π is, but not necessarily continuous. If E is reflexive we define a
subspace Eπ =Ann

(
(E∗)π

)
, where Ann denotes the annihilator: the set of all

functionals in E = E∗∗ that vanish identically on (E∗)π. Both Eπ and Eπ are
π–invariant closed subspaces of E.

Definition 2.3. A representation π : G →B(E) is complemented if

(6) E = Eπ⊕Eπ.

A family of complemented representations is called a complemented family.

Examples of complemented representations include isometric representa-
tions on reflexive Banach spaces [4] (in particular, on uniformly convex Ba-
nach spaces [2, Section 2.c]), and representations of small exponential growth
of certain Lie groups on Banach spaces with non-trivial Rademacher type
[43].

A representation π : G →B(E) is uniformly bounded if ‖π‖ = supg∈G ‖πg‖B(E) <
∞. For any such representation π, a new norm can be defined on E, equiva-
lent to the initial one, by the formula

(7) ‖v‖π = sup
g∈G

‖πgv‖.

As observed in [2, Proposition 2.3], the modulus of convexity of the norm ‖·‖π
satisfies δ‖·‖π(t)≥ δ‖·‖

(
t‖π‖−1)

for every t > 0.
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2.d. Spectral gaps and uniform property (TE). Throughout the section,
G is a locally compact group and E a Banach space.

A representation π of G on E has almost invariant vectors if for every ε>
0 and every compact subset S in G there exists v ∈ E, ‖v‖ = 1, such that
sups∈S ‖v−πsv‖ ≤ ε.
Definition 2.4. (i) A complemented representation π : G → B(E) has a

spectral gap if the restriction of π to Eπ does not have almost invari-
ant vectors, i.e. if there exists a constant κ > 0 and a compact subset
Q in G such that for every v ∈ Eπ

sup
s∈Q

‖v−πsv‖ ≥ c‖v‖ .

Any such pair (Q,κ) is called a Kazhdan pair for π, κ is called a Kazh-
dan constant, and Q a Kazhdan set.

(ii) We say that a complemented family F of representations on a family
of Banach spaces has a spectral gap if there exist Q and κ > 0 as
above such that (Q,κ) is a Kazhdan pair for every π ∈ F . We call
(Q,κ) a Kazhdan pair for F .

If F is a family of representations closed under direct sums then the ex-
istence of a spectral gap for each π in F is equivalent to the existence of a
spectral gap for the entire family.

In the particular case when F is composed of all the unitary representa-
tions of a group G, the Kazhdan constant in the sense of the above definition
is the classical Kazhdan constant associated to a Kazhdan set, see [6]. In that
case, every generating set of G is a Kazhdan set, but the converse is true only
for sets with non-empty interior. See Section 3.f.

The following definition introduces versions of Kazhdan property (T) for
Banach spaces.

Definition 2.5. Let E be a family of Banach spaces and let E ∈ E .
(i) G has property (TE) if each isometric representation π of G on E

has a spectral gap [2]. More generally, G has property (TE ) if every
isometric representation of G on any E ∈ E has a spectral gap.

(ii) G has property (TE) uniformly if the family of all isometric represen-
tations of G on E has a spectral gap. More generally, G has property
(TE ) uniformly if the family of all isometric representations of G on
all Banach spaces E ∈ E has a spectral gap.

Remarks 2.6. (i) It was proved in [2] that if G has property (T) then
it has property (TE) for E = Lp(X ,ν), 1 ≤ p < ∞. Moreover, there
exists a Kazhdan pair (Q,κ) common to all isometric representations
on Lp(X ,ν), with 1≤ p ≤ 2 and such that for p > 2,

(
Q, 2

pκ
)

is a Kazh-
dan pair for isometric representations on Lp(X ,ν). The former fol-
lows from standard embedding results [73], while the latter can be
deduced from estimates of the Mazur map [8, page 198].
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(ii) In [5] property (T`p) was studied systematically. It yields a larger
class than that of groups with property (T), containing for instance
irreducible lattices in products of locally compact second countable
groups, one with property (T) and the other with no non-trivial finite
dimensional unitary representation.

3. RANDOM WALKS, PROJECTIONS AND SPECTRAL GAPS

3.a. The Markov operator Aµ
π and its properties. Let π : G →B(E) be a

uniformly bounded representation of G on a Banach space E, and let µ be a
probability measure on G. The operator Aµ

π : E → E, defined by the Bochner
integral

Aµ
πv =

∫
G
πgv dµ(g)

is called the Markov operator associated to the random walk on G determined
by µ. By standard properties of the Bochner integral, we have that Aµ

π is a
bounded operator as well.

The operator Aµ
π can also be defined for bounded representations that are

not uniformly bounded, provided that the support of µ is compact.

General properties of Aµ
π. In the following lemma we collect several standard

properties that we will need later, of the operator Aµ
π for an isometric repre-

sentation π. Denote by µ the measure obtained from µ by pre-composing with
the map s 7→ s−1 in G and post-composing with the conjugation in C.

Lemma 3.1. Let µ be a probability measure on G. Then

(i)
(
Aµ
π

)∗ = Aµ

π
,

(ii) Aµ∗ν
π = Aµ

πAν
π,

(iii) πg Aµ
π = Ag·µ

π for every g ∈G,
(iv) Aµ

π = I on Eπ,
(v) Aµ

π(Eπ)⊆ Eπ.

Properties of Aµ
π with respect to a lattice. Consider now a locally compact

group G with a finitely generated lattice Γ, i.e. a finitely generated sub-
group Γ such that G/Γ has a finite G–invariant measure induced by the Haar
measure.

Let π be a continuous isometric representation of G on a reflexive Banach
space E. Denote by π|Γ the restriction of π to the lattice Γ. The inclusion of Γ
into G gives rise to two decompositions,

(8) E = Eπ⊕Eπ = Eπ|Γ⊕Eπ|Γ.

Since π|Γ=π|Γ, the subspaces above satisfy Eπ ⊆ Eπ|Γ and Eπ|Γ ⊆ Eπ.

Lemma 3.2. There is a direct sum decomposition Eπ = Eπ|Γ⊕
(
Eπ∩Eπ|Γ).

Proof. Let v ∈ Eπ. Then v = w+ z, where w ∈ Eπ|Γ and z ∈ Eπ|Γ. Thus z =
v−w ∈ Eπ by (8). �
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The above decomposition is preserved by π|Γ but in general not preserved
by π.

Now choose a fundamental domain ∆ for Γ in G and renormalize the Haar
measure η on G so that η(∆) = 1. For the purposes of the next statement
denote by A∆π the Markov operator associated to the measure determined by
the (possibly discontinuous) characteristic function of ∆ as a density function.
The next proposition shows that the restriction of A∆π to Eπ is concentrated
on Eπ|Γ.

Proposition 3.3. Let v ∈ Eπ∩Eπ|Γ. Then A∆πv = 0.
In particular, given v ∈ Eπ we have A∆πv = A∆πw, where w ∈ Eπ|Γ is as in the

previous lemma.

Proof. Observe that A∆πv ∈ Eπ. Indeed, for any h ∈G,

πh A∆πv =
∫
∆
πhgv dη(g)=

∫
h∆
πgv dη(g)

= ∑
γ∈Γ

∫
h∆∩∆γ

πgv dη(g)= ∑
γ∈Γ

∫
h∆γ−1∩∆

πgγvdη(g)

where in the last equality the change of variable g 7→ gγ−1 and the unimodu-
larity of G (due to the existence of a lattice) were used.

The above and the fact that v is fixed by Γ imply that

πh A∆πv = ∑
γ∈Γ

∫
h∆γ−1∩∆

πgvdη(g)=
∫
∆
πgv dη(g)= A∆πv .

Since A∆πv ∈ Eπ∩Eπ, the assertion follows. �

3.b. Proof of Theorem 1.1. Our central result establishes a connection be-
tween Kazhdan constants, convergence of iterated Markov operators, and
projections onto the subspace of invariant vectors.

Theorem 1.1. Let G be a locally compact group, and F a family of isometric
representations of G on a uniformly convex family E of Banach spaces. The
following conditions are equivalent:

(i) the family F has a spectral gap;
(ii) there exists a compactly supported probability measure µ on G and

λ< 1 such that for every isometric representation π ∈F of G on E ∈ E

we have
∥∥Aµ

π|Eπ

∥∥<λ;
(iii) there exists a compactly supported probability measure µ on G and a

number S <∞ such that for every π ∈ F the iterated Markov opera-
tors

(
Aµ
π

)k converge with speed summable to at most S to the projec-
tion Pπ onto Eπ along Eπ.

Detailed statements and proofs of the implications composing Theorem 1.1
appear in the next three sections: (i) =⇒ (ii) in section 3.c; (ii) =⇒ (iii) in
section 3.d; and (iii) =⇒ (i) in section 3.e.
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Note that even though the above theorem is stated for isometric represen-
tations, it is automatically true for classes of uniformly bounded representa-
tions with a common upper bound on norms. This follows from the renorm-
ings associated to uniformly bounded representations (7).

3.c. From Kazhdan pairs to contracting Markov operators. In this sec-
tion, given a Kazhdan pair, we provide a construction of a Markov operator
with an effective estimate on the norm on the subspace Eπ. The proof we
provide relies on uniform convexity.

Theorem 3.4. Let G be a locally compact group and F a family of isometric
representations of G on a uniformly convex family E of Banach spaces. Assume
that F has a spectral gap and let (Q,κ) be a Kazhdan pair for F .

For every Q–admissible measure µ on G, and for every isometric represen-
tation π ∈F we have

(9)
∥∥Aµ

π|Eπ

∥∥≤ 1− 2
Mµ

δE (κ) .

Proof. First assume that µ is a continuous admissible probability measure on
G. Let π be an isometric representation of G on E with a spectral gap. Since µ
is admissible we can choose an (α,β)-decomposition for the density ρ defining
µ, as in Section 2.b. We will use α as the upper subscript in reference to the
Markov operator associated to the measure determined by the density α.

Let v ∈ Eπ be a unit vector. By Lemma 3.1, Aα
πv ∈ Eπ. Fix s ∈Q such that∥∥Aα

πv−πs Aα
πv

∥∥≥ κ∥∥Aα
πv

∥∥ .

We have

(10) Aµ
πv =

(
Aµ
πv−

(
Aα
πv+ As·α

π v
M(α,β)

))
+

(
Aα
πv+πs Aα

πv
M(α,β)

)
.

We estimate the norm of the first summand in (10) as follows.∥∥∥∥Aµ
πv− 1

M(α,β)
(
Aα
πv+ As·α

π v
)∥∥∥∥=

∥∥∥∥∫
G
πgv

(
ρ− α+ s ·α

M(α,β)

)
dη

∥∥∥∥
≤

∫
G

∥∥πgv
∥∥∣∣∣∣ρ− α+ s ·α

M(α,β)

∣∣∣∣ dη

=
∫

G
ρ− α+ s ·α

M(α,β)
dη

= 1− 2
M(α,β)

,

where in the last but one equality we used the fact that ρ ≥ α+s·α
M(α,β) , which

follows from the properties of the (α,β)-decomposition.
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By the uniform convexity of E, the norm of the second summand in (10) is
bounded as follows

1
M(α,β)

∥∥(
Aα
πv+πs Aα

πv
)∥∥= 2

∥∥Aα
πv

∥∥
M(α,β)

∥∥∥∥ Aα
πv+πs Aα

πv
2

∥∥Aα
πv

∥∥
∥∥∥∥

≤ 2
M(α,β)

(1−δE(κ)) .

The two inequalities together give∥∥Aµ
πv

∥∥≤ 1− 2
M(α,β)

+ 2
M(α,β)

(1−δE(κ))

≤ 1− 2
M(α,β)

δE(κ).

Passing to the infimum over all (α,β)-decompositions of ρ gives the estimate∥∥Aµ
πv

∥∥≤ 1− 2
Mµ

δE(κ).

The same calculation as above gives the same estimate when µ is a discrete
admissible measure. Given any admissible measure µ = tµc + (1− t)µd, t ∈
[0,1], for µc and µd admissible continuous and admissible discrete probability
measures, respectively, we have∥∥Aµ

π

∥∥≤ t
∥∥Aµc

π

∥∥+ (1− t)
∥∥Aµd

π

∥∥ .

This yields the required conclusion. �

In the case of a finite Kazhdan set, we obtain the following.

Corollary 3.5. Let G be a locally compact group and let F be a family of iso-
metric representations of G on a uniformly convex family E of Banach spaces
such that κ> 0 is a Kazhdan constant for a finite Kazhdan set Q, and let g ∉Q.
Let µ be the uniform probability measure on Q g∪{g}. Then for every isometric
representation π ∈F we have∥∥Aµ

π|Eπ

∥∥≤ 1− 2
#Q+1

δE (κ).

Proof. The uniform measure on Q g∪ {g} admits an (α,β)-decomposition with
α the Dirac mass at g ∈ G and β the characteristic function of Q g. This
decomposition also gives Mµ ≤ #Q+1 and the estimate follows. �

3.d. From contracting Markov operators to projections. Recall that
the Neumann series of an operator T is the series

∑∞
n=0 Tn. It is convergent if

‖T‖ < 1 and in that case it is the inverse of I −T. This allows to give an ex-
plicit formula for the projection onto invariant vectors in terms of the Markov
operator.

Theorem 3.6. Let G be a locally compact group and µ a probability mea-
sure on G. Let F be a complemented family of isometric representations of
G on a family of Banach spaces E . If there exists λ < 1 such that for every
representation π ∈F on E ∈ E we have

∥∥Aµ
π|Eπ

∥∥≤λ then for every π ∈F
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(i) the operator

Pπ = IE −
( ∞∑

n=0

(
Aµ
π

)n
)(

IE − Aµ
π

)
is the projection E → Eπ along Eπ onto the subspace of invariant vec-
tors of the representation π;

(ii) the iterated average operator
(
Aµ
π

)k converges to Pπ exponentially
fast, uniformly over F ,∥∥∥(

Aµ
π

)k −Pπ

∥∥∥≤λk.

Proof. (i). The operator I − Aµ
π is invertible on Eπ and its inverse on Eπ is

given by the Neumann series(
IEπ

− Aµ
π

)−1 =
∞∑

n=0

(
Aµ
π

)n .

With this in mind we proceed to show that Pπ is well-defined. We observe
that for every v ∈ E we have

(
IE − Aµ

π

)
v ∈ Eπ. Indeed, using the decomposition

(6) we can write v = z+w uniquely, where z ∈ Eπ and w ∈ Eπ. We have(
IE − Aµ

π

)
v = w− Aµ

πw ∈ Eπ,

since
(
IE − Aµ

π

)
z = 0, by Lemma 6. Since (I − Aµ

π)v ∈ Eπ and the Neumann
series of Aµ

π converges on Eπ, we see that Pπ is well-defined and bounded.
Observe also that since

(
I − Aµ

π

)
z = 0 for z ∈ Eπ, we have Pπz = z. On the

other hand, if w ∈ Eπ then( ∞∑
n=0

(
Aµ
π

)n
)(

IE − Aµ
π

)
w = w,

and, consequently, Pπw = 0. Therefore, given any vector v = z+w as above
we have Pπ(z+w)= z.

(ii). Observe Pπ is a norm limit of operators Pπ,k, defined by truncating
the Neumann series to its k-partial sum, and Pπ,k = (

Aµ
π

)k+1. We prove the
inequality by induction on k. For k = 1 we can write∥∥Aµ

π−Pπ

∥∥= sup
{∥∥Aµ

πw
∥∥ : w ∈ Eπ, z ∈ Eπ,‖z+w‖ = 1

}≤λ.

Assume that the inequality is proven for k. Since Aµ
π ◦Pπ = Pπ and since

the image of
(
Aµ
π

)k −Pπ is in Eπ, we can write∥∥∥(
Aµ
π

)k+1 −Pπ

∥∥∥=
∥∥∥(

Aµ
π

)k+1 − Aµ
π ◦Pπ

∥∥∥≤λ
∥∥∥(

Aµ
π

)k −Pπ

∥∥∥≤λk+1.

�

In the particular case of finite Kazhdan sets, one can replace the iteration
of an average operator by products of average operators. Indeed, let G be a
locally compact group and let F be a family of isometric representations of G
on a uniformly convex family of Banach spaces, F admitting a Kazhdan pair
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(X ,κ) with X = {x1, . . . , xN }. Let Sn be a sequence of finite sets constructed in
one of the following manners

(a) Sn = X ∪Yn, where Yn = {y1, . . . , yM} is an arbitrary subset of M ele-
ments in G, where M is fixed;

(b) Sn = Xn ∪Yn, where Yn = {y1, . . . , yN } and Xn = {
yixi y−1

i : 1≤ i ≤ N
}
.

Let µn be the atomic uniform measure on the set Sn.

Corollary 3.7. For the sequence of measures µn constructed above and for
every representation π ∈F we have∥∥Aµ1

π Aµ2
π · · ·Aµn

π −Pπ

∥∥≤
(
1− 2

N
δE(κ/3)

)n
.

Proof. For Sn = X ∪Yn the Kazhdan constant is at least κ. Let now Sn =
Xn ∪Yn. For every v ∈ Eπ,‖v‖ = 1, there exists x ∈ X such that ‖πxv− v‖ ≥ κ.
The triangle inequality allows to write, for the corresponding element y ∈ Yn
that

κ≤ ‖πyv−v‖+‖πy−1 v−v‖+‖πyxy−1 v−v‖.

It follows that at least one of the terms in the sum above is larger than κ
3 .

Therefore in this case the Kazhdan constant is at least κ
3 . This, Corollary 3.5

and an easy induction on n yields the inequality. �

Remark 3.8 (Constructing almost invariant vectors). The convergence with
controlled speed of iterated Markov operators to the projection onto the space
of fixed vectors allows to produce almost invariant vectors with an arbitrarily
small degree of almost invariance. In particular, it allows to design a non-
deterministic algorithm which, given a vector, never stops if the vector has
no component in the subspace of fixed vectors, while if it stops it produces
an almost invariant unit vector with the desired degree of almost invariance
(equivalently, an approximation with the desired order of error of a fixed unit
vector).

The estimates on the norm of Markov operators also allow to compute ex-
plicit mixing times, which would again be uniform for all vectors in Eπ.

Note that this can be achieved not only for finitely generated groups, but
also for topological groups that admit finite Kazhdan sets (see section 3.f).

3.e. From projections to spectral gaps. Finally, we show that a summa-
ble convergence of

(
Aµ
π

)k to the projection onto the subspace of fixed points
implies the existence of a spectral gap.

Theorem 3.9. Let µ be a compactly supported probability measure on G and
F be a complemented family of isometric representations of G on a family E of
Banach spaces. Assume that there exists a number S<∞ such that for every
representation π ∈ F on E ∈ E the iterated Markov operators

(
Aµ
π

)k converge
to a bounded operator P and

(i) Eπ ⊆ kerP ,
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(ii) the convergence has speed summable to at most S, i.e. there exists a
sequence of positive numbers ak such that the series

∑
k∈N ak converges

to a finite number ≤S and

(11)
∥∥∥(

Aµ
π

)k −P
∥∥∥≤ ak.

Then the family F has a spectral gap and
(
suppµ, 1

1+S
)

is Kazhdan pair.

Proof. Denote Q = suppµ. Let π ∈ F be an isometric representation of G on
E ∈ E and v ∈ Eπ be an arbitrary unit vector. Let σv = supg∈Q ‖πgv−v‖. Then

(12)
∥∥Aµ

πv−v
∥∥≤σv.

For every positive integer k we can then write∥∥∥(
Aµ
π

)k v−v
∥∥∥≤ ∥∥Aµ

πv−v
∥∥+ k−1∑

i=1

∥∥∥(
Aµ
π

)i+1 v− (
Aµ
π

)i v
∥∥∥

≤ ∥∥Aµ
πv−v

∥∥(
1+

k−1∑
i=1

∥∥∥(
Aµ
π

)i |Eπ

∥∥∥)

≤σv

(
1+

k−1∑
i=1

ak

)
.

Then
1≤

∥∥∥(
Aµ
π

)k v−v
∥∥∥+∥∥∥(

Aµ
π

)k v
∥∥∥≤σv (1+S)+ak.

Since the above is true for every k ∈N we obtain

σv ≥ 1
1+S

.

�

The above estimates have several interesting consequences. The first is
that as soon as the upper bounds αk =

∥∥∥(
Aµ
π

)k −P
∥∥∥ compose a convergent

series, they must be decreasing exponentially, P must be the projection onto
Eπ along Eπ, and we are in the presence of a spectral gap.

Another consequence of the previous results is that the Kazhdan constant
and the norm

∥∥Aµ
π|Eπ

∥∥ are closely related. We will state this result for finite
Kazhdan sets and uniform measures, since in this case the formulation is
particularly concise. The general case can be deduced in the same manner.

Theorem 3.10. Let G be a locally compact group and let F be a family of iso-
metric representations of G on a family E of uniformly convex Banach spaces.
Assume that F has a spectral gap and let (Q,κ) be a Kazhdan pair for F ,
where Q is finite. If µ is the uniform measure on Q g∪ {g}, for an arbitrary
element g ∈G then for every representation π ∈F we have

1−κ≤ ∥∥Aµ
π|Eπ

∥∥≤ 1− 2
#Q+1

δE(κ).
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Proof. The upper bound follows from Theorem 1.1, in particular Corollary
3.5. To prove the lower bound note that for a unit vector v ∈ Eπ the inequality
(12) yields

1−σv = ‖v‖−σv ≤ ‖Aµ
πv‖.

Passing to the supremum over v ∈ Eπ of norm 1 on both sides we obtain the
claim. �

Remark 3.11. In the particular case when E is a family of Hilbert spaces
the lower bound on the Kazhdan constant in terms of the norm of the Markov
operator κ≥ 1−∥∥Aµ

π|Eπ

∥∥ can be improved to

κ≥
p

2
√

1−∥∥Aµ
π|Eπ

∥∥ .

This is obtained using the argument in [68, p. 842].

A problem formulated by Serre and de la Harpe-Valette [15, 31] asks to
compute explicit Kazhdan (sets and) constants, for unitary representations
on Hilbert spaces. In the case of representations on uniformly convex Banach
spaces, Theorem 3.10 implies the following.

Corollary 3.12. Let G be a locally compact group and let F be a comple-
mented family of isometric representations of G on Banach spaces for which Q
is a finite Kazhdan set. Then for every ε> 0 there exists an integer m ∈N such
that (Q

m
,1−ε) is a Kazhdan pair for F , where Q =Q∪ {e}.

Proof. Given µ the uniform probability measure on Q and π an arbitrary rep-
resentation in F , by Corollary 3.7 we have

∥∥∥(
Aµ
π

)k |Eπ

∥∥∥ =
∥∥∥Aµk

π |Eπ

∥∥∥ ≤ λk for

some λ ∈ (0,1), where µk =µ∗·· ·∗µ. Since the support of the probability mea-
sure µk is X = Q

k
, the argument in the proof of Theorem 3.9, which yields

the inequality in Theorem 3.10, implies that the Kazhdan constant for X is
at least 1−λk. �

We additionally remark that in an appropriate setting one can even achieve
similar results for families of groups, provided the constants appearing in the
above statements can be arranged to be uniform.

3.f. Finite Kazhdan sets. For many applications the existence of finite Kazh-
dan sets is a considerable asset, as the averages become finite, the random
walks discrete, and an algorithmical approach and the use of computer be-
come possible (see for instance Theorem 3.6, Remark 3.8 and Section 5). As it
turns out, the existence of such finite sets is granted in many cases. Shalom
formulated a property that he called the strong property (T) (st.pr. (T)), re-
quiring the existence of a finite Kazhdan set, and proved that many property
(T) groups satisfy it. This theme meets another more recent one, which is the
existence of a spectral gap of Hecke operators [9,10].

In [68], Y Shalom proved st.pr. (T) for groups of k–points of a simply con-
nected, semisimple, almost k-simple group of rank at least 2 (where k is a
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locally compact non-discrete field), with explicit descriptions of finite Kazh-
dan sets and their corresponding constants. Theorem C in [68] implies that
in a semisimple Lie group with finite center, every finite symmetric set not
contained in a closed amenable subgroup is a Kazhdan set. In a second paper
[69], Shalom proved that any connected Lie group with property (T) that does
not have R/Z as a quotient has st. pr (T).

In the case of a compact group G, st. pr (T) has a very interesting equiv-
alent. In that case, for the regular representation of G on L2(G), when the
measure µ is supported on a finite symmetric set

{
g±1

1 , . . . , g±1
m

}⊂G, the aver-
aging operator 2mAµ

π is also known as the Hecke operator and is sometimes
also denoted zg1,...,gm . This operator is said to have a spectral gap if its norm
on the space L0

2(G) of functions orthogonal to the constants is at most 2m−ζ.
The following double implication, which essentially amounts to an equiv-

alence between spectral gap and
{
g±1

1 , . . . , g±1
m

}
being a Kazhdan set, then

holds:

(i) if the Hecke operator zg1,...,gm satisfies
∥∥zg1,...,gm

∥∥ ≤ 2m−ζ on L0
2(G),

where ζ> 0, then
(
{g1, . . . , gm} ,

√
ζ/m

)
is a Kazhdan pair;

(ii) given a Kazhdan pair (Q,ε), and an arbitrary g ∉Q, the Hecke oper-
ator z{g}∪Q g has spectral gap with ζ≥ 2m−2+

p
4−κ2.

Results of Bourgain and Gamburd [9,10] then give, via the equivalence de-
scribed above, many explicit finite Kazhdan sets for the groups SU(d), with
Kazhdan constants explicitly computable from constants appearing in a cer-
tain noncommutative Diophantine property satisfied by the given set.

4. KAZHDAN PROJECTIONS IN BANACH ALGEBRAS

4.a. Group Banach algebras and projections. Let G be a locally compact
group and denote by Cc(G) the group algebra of compactly supported contin-
uous functions on G with convolution. Let F be a family of representations
π : G →B(E), by bounded operators on Banach spaces E in a given family E .
For the purposes of this section we also assume that F contains the trivial
representation on at least one E ∈ E .

Assuming that for each f ∈ Cc(G), sup
{‖π( f )‖B(E) : π ∈F

}<∞, we equip
the algebra Cc(G) with the norm ‖ f ‖F = supπ∈F ‖π( f )‖B(E).

Definition 4.1. The algebra CF (G) is the completion of Cc(G) in the norm
‖ ·‖F .

If π ∈F whenever π ∈F and the class E is stable under complex conjuga-
tion then CF (G) admits a natural involution.

The classical example of algebra of type CF (G) is the maximal group C∗-
algebra C∗

max(G), corresponding to F being the family of all unitary repre-
sentations of G. Other examples include the following algebras.
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• The Lp-maximal group algebra, where p ∈ (1,∞), denoted by Cp
max(G).

This algebra corresponds to the class F of all isometric representa-
tions of G on Lp-spaces.

• Uniformly bounded group algebras, corresponding to the choice of
F as a class [E ;k] composed of all the uniformly bounded represen-
tations of G on E ∈ E satisfying ‖π‖ ≤ k, where k ≥ 1 and E is a
uniformly convex family of Banach spaces.

• Small exponential growth group algebras. The following classes of
representations and algebras were introduced by Lafforgue in [43].
Let ` be a continuous length function on G, and let E be a family
of Banach spaces closed under duality and complex conjugation. A
representation π : G → B(E) on E ∈ E is said to have (s, c)–small
exponential growth, for some s, c > 0, if ‖πg‖ ≤ ces`(g) for every g ∈G.
We denote the class of all such representations by L (`, s, c), and we
call the algebra CL (`,s,c)(G) a small exponential growth algebra.

The algebra Cp
max(G) is an immediate natural generalization of the max-

imal group C∗–algebra, see [59, 27]. Such algebras are relevant for an Lp–
approach to the Novikov and the Baum-Connes conjectures [37,19].

The algebra C[E ;k] and the corresponding notions of property (T) for uni-
formly bounded representations are related to a conjecture of Y. Shalom that
every hyperbolic group has a proper affine action on a Hilbert space with lin-
ear part uniformly bounded, see [56, Problem 14] and [54] for related results.
This conjecture has attracted a lot of interest lately.

Definition 4.2. A Kazhdan projection in CF (G) is a central idempotent p ∈
CF (G) such that π(p)=Pπ for every representation π ∈F .

Kazhdan projections are important already in the setting of unitary repre-
sentations [20,35]. Their existence in certain algebras CL (`,s,c)(G) is also par-
ticularly significant, as they are used by V. Lafforgue to define strong Banach
property (T). The latter property is relevant to the Baum-Connes conjecture,
see [45,60].

Definition 4.3 ([43]). The group G has the strong Banach property (T) for
E , denoted (TBan

E
), if for every continuous length function ` on G there exists

s > 0 such that for every c > 0 the algebra CL (`,s,c)(G) contains a Kazhdan
projection.

In the case of representations with small exponential growth we record the
following

Theorem 4.4. Let G be a locally compact group, and E a class of Banach
spaces closed under duality and complex conjugation.

(i) The following are equivalent:
(a) G has the property (TBan

E
);

(b) for every continuous length function `, there exists s > 0 such that
for every c > 0, L (`, s, c) is complemented, and there exists ρ ∈
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Cc(G) satisfying
∫

G ρdη= 1, and λ< 1, such that
∥∥Aρ

π|Eπ

∥∥< λ for
every π ∈L (`, s, c);

(c) for every continuous length function `, there exists s > 0 such that
for every c > 0, L (`, s, c) is complemented, and there exists ρ and
λ as above such that ρn converge exponentially fast to some ele-
ment p ∈ CL (`,s,c)(G),∥∥ρn − p

∥∥
L (`,s,c) ≤λn .

(ii) If G has the property (TBan
E

) then for the corresponding ` and s and

an arbitrary c > 0, the pair
(
suppρ, 1−λ

aρ

)
is a Kazhdan pair for the

family F =L (`, s, c), where aρ =
∫ ∣∣ρ(g)

∣∣ dη(g).

Remark 4.5. The main difference in comparison to Theorem 1.1, is that the
Markov operators are defined by signed measures. It is unclear if ρ can al-
ways be chosen to be non-negative in this setting. In all the cases in which
Kazhdan projections have been constructed in the small exponential growth
algebras, they are in fact limits of positive functions with compact support
and of integral 1 [43,46,66].

Proof. (ia) ⇒ (ib). The fact that L (`, s, c) is complemented follows from the
fact that E is closed under duality. There exist pn ∈ Cc(G) of integral 1 con-
verging to p in CL (`,s,c)(G). Therefore, one can choose ρ = pn for n large
enough.

(ib) ⇒ (ic) is proved exactly as the similar implication in Theorem 1.1.
(ic) ⇒ (ia) is straightforward.
(ii) Using the equivalence (ia) ⇔ (ic) and the argument in the proof of 3.9,

one obtains the required conclusion. �

In the case of isometric representations we have the following characteri-
zation of the existence of Kazhdan projections.

Theorem 4.6. Let F be a family of isometric representations of a locally com-
pact group G on a uniformly convex family E . There exists a Kazhdan projec-
tion in CF (G) if and only if the family F has a spectral gap.

Moreover, p is always a limit of a sequence of positive probability measures.

Proof. Let Q be a Kazhdan set for F , and let ρ ∈ Cc(G) be a density function
of a continuous admissible measure µ with respect to Q. It suffices to show
that

{
ρk}

k∈N is a Cauchy sequence with respect to the norm ‖ ·‖F .
For any representation π ∈ F and m < n we again have that the image of

IE − (
Aµ
π

)n is in Eπ and∥∥π(
ρm)−π(

ρn)∥∥
B(E) =

∥∥(
Aµ
π

)m (
IE − (

Aµ
π

)n−m)∥∥
≤ ∥∥Aµ

π|Eπ

∥∥m ∥∥IE − (
Aµ
π

)n−m∥∥
≤ 2

∥∥Aµ
π|Eπ

∥∥m
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Since the last term satisfies a uniform estimate
∥∥Aµ

π|Eπ

∥∥m ≤ λm for some λ ∈
(0,1) and every π ∈F , the sequence ρk is indeed a Cauchy sequence in the F

norm, as claimed,
∥∥ρm −ρn∥∥

F ≤λm. There exists a limit, denoted p, which is
the required Kazhdan projection. Indeed, a similar estimate as above shows
that ‖ρ2m −ρm‖F ≤ 2‖ρm‖F → 0, hence p is an idempotent. Finally, since
π(p) commutes with π(g) = πg for every g ∈ G and every π in F , we see that
p is central.

The converse follows from Theorem 4.4, (ii). It was also proved in [43]. �

As an application, we have the following generalization of the existence of
Kazhdan projections to the class of Lp-maximal group algebras.

Corollary 4.7. If F is the family of all isometric representation of G on E
then then there exists a Kazhdan projection in CF (G) if and only if G has
uniform property (TE).

In particular, if G has Kazhdan’s property (T) then for every 1< p <∞ there
exists a Kazhdan projection in the Lp-maximal group algebra Cp

max(G).

All the statements in Theorems 4.4 and 4.6 are also true, with the appro-
priate changes, in the more general case of uniformly bounded representa-
tions.

In the case of finitely generated groups it was shown in [42] that property
(TE) is equivalent to the fact that for every isometric representation π of G
on E the projection onto Eπ is in the closure of {π( f ) : supp f <∞}⊆B(E).

4.b. Relations between versions of property (T) for Banach spaces.
The above results have another important consequence: for uniformly convex
Banach spaces they put on the common ground the reinforced Banach prop-
erty (TBan

E
), introduced by V. Lafforgue in [43] and the properties (TE) and

FE, introduced in [26,2]. We refer to [55] for a survey of these properties. The
question of such a relation was considered by several experts. In particular,
it appeared as Question 1.10 in [16].

To make a direct comparison consider a uniformly convex family E of Ba-
nach spaces, closed under duality and complex conjugation, and the class F

of all isometric representations of G on all E ∈ E .
Recall that G has property FE for a Banach space E if every continu-

ous affine isometric action of G on E has a fixed point [26, 2]. Equivalently,
H1(G,π) = 0 for every isometric representation π of G on E. We will say that
G has property FE for a family of Banach spaces E if G has property FE for
every E ∈ E .

It follows from the results of this paper that we have the implications:
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Lafforgue’s (TBan
E

)

Kazhdan projection in CF (G) uniform (TE )

FE (TE )

Theorem 4.6

[44] [2]

(by def.) (by def.)

As mentioned earlier, uniformity of property (TE ) is automatic if the class
E is closed under taking infinite direct sums and then the vertical arrow on
the right is an equivalence. We also remark that Lafforgue’s proof of the first
implication (TBan

E
) =⇒ FE does in fact use linearly growing representations

in an essential way [44].
We also observe that the existence of a Kazhdan projection in CF (G) does

not in general imply FE . The reason is the existence of hyperbolic groups
with property (T). Such groups all have (TLp) for every 1 < p <∞, but for
p > 2 sufficiently large every hyperbolic group admits an unbounded, or even
a proper affine isometric action on some Lp-space [12,75,52].

Remark 4.8 (Uniform property FE). We take this opportunity to remark
that it is possible also to define uniform property FE, as we very briefly de-
scribe here. Consider a discrete group G. Property FE is the same as van-
ishing of H1(G,π) for every isometric representation π of G on E. That is, the
codifferential δπ : E → kerdπ is onto, where kerdπ is the space of 1-cocycles
equipped with a norm induced by restricting the cocycle to the generating
set S and viewing it as a function in `2(S)⊗E = `2(S;E). This on the other
hand is equivalent to the adjoint map δ∗π : (kerdπ)∗ → E∗ being bounded be-
low, i.e.

∥∥δ∗ϕ∥∥ ≥ Cπ

∥∥ϕ∥∥ for every ϕ ∈ (kerdπ)∗ and a uniform Cπ > 0. This
fact is used extensively in [3,54] and we refer the reader to those articles for
details. We can now make the folllowing definition: G has uniform property
FE if G has property FE and, additionally, there exists C > 0 such that for
each isometric representation π of G on E we have Cπ > C > 0. We note how-
ever that such a uniform choice of Cπ appearing in the second condition is
equivalent to having a uniform spectral gap for all isometric representations
on E. Thus uniform property FE is simply property FE with the additional
condition that property (TE) (implied by FE) is satisfied uniformly.

4.c. Expanders and property (τ) for Banach spaces. Existence of Kazh-
dan projections is particularly important in connection to the topic of ex-
pander graphs. Indeed, it is via such projections that the main existing
counter-example to the coarse Baum-Connes conjecture was constructed, us-
ing expanders [34]. Our results allow to connect a Banach space generaliza-
tion of the notion of expanders to the existence of a Kazhdan projection.

The most natural way of defining expanders in the Banach space context
is via Poincaré inequalities.

Definition 4.9. Given a uniformly convex Banach space E, a sequence {Γi}i∈N
of graphs is a sequence of E-expanders if it satisfies a Poincaré inequality for
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E-valued functions uniformly; that is, there exists a constant κ > 0 such that
the Poincaré inequality∑

v∈Γi

‖ f (v)−M f ‖2
E ≤ κ ∑

v∼u
‖ f (v)− f (u)‖2

E

holds for every f :Γi → E for every i ∈N.

As in the classical case, a way of constructing expanders is by means of
a version of property (τ) of A. Lubotzky [47, 48]. Thus, let G be a finitely
generated group and Q a finite subset of G. Assume that G is residually
finite, and consider a sequence N = {Ni}i∈N of finite index normal subgroups,
satisfying

⋂
i∈NNi = {e}. Let qi : G →G/Ni be the quotient map for every i ∈N.

For v,u ∈ G/Ni we write v ∼ u if v and u are joined by an edge in the Cayley
graphs Cay(G/Ni, qi(Q)).

Given a uniformly convex Banach space E, we denote by N (E) the fam-
ily of representations π(i) of G on the spaces `2(G/Ni,E) given by π(i)

g f (v) =
f (g−1v). The projection E → Eπ(i)

is simply given by the average Mi f = [G :
Ni]−1 ∑

v∈G/Ni f (v).

Definition 4.10. Let E be a uniformly convex Banach space. A residually
finite finitely generated group G has property (τE) with respect to N if the
family N (E) has a spectral gap.

The following statement is an application of Theorem 1.1 and shows that
property (τE) gives the right kind of generalization of property (τ) to the set-
ting of uniformly convex spaces, and it yields a Kazhdan projection.

Theorem 1.3. Let E be a uniformly convex Banach space, G be a finitely
generated residually finite group and let N = {Ni} a collection of finite index
subgroups with trivial intersection. The following conditions are equivalent:

(i) G has property (τE) with respect to N = {Ni} and a symmetric Kazh-
dan set Q;

(ii) the Cayley graphs Cay(G/Ni,Q) form a sequence of E-expanders;
(iii) there exists a Kazhdan projection p ∈ CN (E)(G).

Note that in the case when E is a Hilbert space the algebra CN (E)(G) is a
C∗-algebra. In that case the existence of the Kazhdan projection appearing
in the above theorem was hinted at in [33,34].

Remark 4.11. We also point out that in the setting of uniformly convex Ba-
nach spaces one more characterization of property (τE) is true, namely that G
has (τE) with respect to {Ni} if and only if the cohomology H1(G,π)= 0, where
π=⊕π(i). The proof given for Hilbert spaces in [49] can be copied verbatim to
the above setting as it uses only the Open Mapping Theorem and basic norm
estimates.

5. APPLICATIONS TO ERGODIC THEORY

In this section, we study properties of a measure preserving ergodic action
of a locally compact group G on a probability space (X ,ν). One of the first
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theorems in this setting, due to Oseledec [58], states that the powers ρk of an
arbitrary density function of a probability measure µ on G form an ergodic
sequence:

π(ρk) f −→
∫

X
f dν(x),

both ν-almost everywhere and in Lp(X ,ν). See e.g. [51] for an overview.
A special case of Theorem 1.1 is a quantitative ergodic estimate for ac-

tions with a spectral gap. Consider a collection E of uniformly convex Banach
spaces, and a number p in (1,∞). Theorem 1.1 implies that if (Q,κ) is a Kazh-
dan pair for the family F of isometric representations of G on Lp(X ,ν;E),
with E ∈ E , induced by the measure preserving action of G, then for every
Q–admissible probability measure µ,

(13)
∥∥∥∥Aµk

π f −
∫

X
f dν

∥∥∥∥
p
≤λk‖ f ‖p,

where λ < 1 depends only on p, the normalizing factor of µ, the modulus of
convexity of E , and κ.

By a standard Borel–Cantelli argument, it follows that for almost every
x ∈ X there exists kx such that for k ≥ kx∣∣∣∣Aµk

π f (x)−
∫

X
f
∣∣∣∣≤λk‖ f ‖p ,

where λ ∈ (0,1) is a constant slightly larger than the one in (13).
In the particular case of E = {R} and of a group G with Kazhdan’s property

(T), by Remark 2.6, (i), the same measure µ on G satisfies (13) for all p ∈
(1,∞), with λ ∈ (0,1) depending continuously on p and converging to 1 at ∞.

Such estimates can be used for instance for shrinking target problems of
orbits of subgroups that have property (T). The shrinking target problems
are yet another way of understanding measure preserving ergodic actions of
groups on (metric) measure spaces. They are particularly significant in the
case of actions of subgroups H of Lie groups G on quotients G/Γ, where Γ is
a lattice in G. For semisimple Lie groups G and finite volume quotients G/Γ,
the shrinking target problems can be classified following the position of the
“target”, which can be in the boundary at infinity or inside G/Γ; or following
the type of subgroup H acting on G/Γ. Most existing results study actions of
amenable subgroups H of G (most often, cyclic or one dimensional). The ear-
liest results have been proved for targets at infinity and geodesic flows (i.e.
actions of one dimensional subgroups H composed of semisimple elements).
The problem of finding the generic behavior of geodesic rays with respect to
a shrinking target situated in a cusp was completely settled in [71, 40]. The
argument in [40] uses theorems of Howe-Moore type and fast decay of corre-
lation coefficients, and the fact that the characteristic function of a neighbor-
hood of a cusp may be replaced by a smooth function, without significant loss
of information.



28 CORNELIA DRUŢU AND PIOTR W. NOWAK

When the “target” is not at infinity, but inside G/Γ, the problem becomes
that of finding the generic behavior of orbits of H in terms of distance to a
fixed point; for instance, of finding the generic speed at which an orbit of
H approaches that point. In this case, the methods based on Howe-Moore
theorems fail. Still, the generic behavior of geodesic rays with respect to
a point in locally symmetric spaces of rank one has been found in [71, 50],
using methods specific to rank one. The higher rank case remains open. The
question in full generality, of measuring the rate at which a typical orbit
approaches a point in G/Γ, has been asked by Kleinbock and Margulis in
[40].

Here we show that, as Theorem 1.1 provides a good way to average in a
group H with property (T) (average that, in many ways, plays the part of
the average on Følner sets for amenable groups), it also allows to answer
shrinking target problems for orbits of subgroups H of G that have property
(T), in terms of the above mentioned average and, due to Remark 2.6, (i),
provide an estimate of the error term that is, in a way, the best possible.

Let (Y ,ν) be a probability space. For every integrable function f on Y we
denote by M f its mean, that is M f = ∫

Y f dν. Let Φ= { fn : Y →R+ ; n ∈N} be
a sequence of non-negative integrable functions on Y . For N ∈N consider the
partial sums of series

ΣN
Φ (y)=

N∑
i=1

f i(y) and EN
Φ =

N∑
i=1

M f i.

Lemma 5.1 ([41], Chapter 1, Lemma 10 in [70]). Let Y be as above and let p
be a positive real number larger than 1.

(i) For µ–almost every y ∈Y we have liminfN→∞
ΣN
Φ (y)
EN
Φ

<∞.
(ii) Assume that M fn ≤ 1 for every n ∈N and that there exists C > 0 such

that for every N > M ≥ 1,

(14)
∫

Y

∣∣∣∣∣ N∑
i=M

f i(y)−
N∑

i=M
M f i

∣∣∣∣∣
p

dµ≤ C
N∑

i=M
M f i.

Then for every ε> 0 one has that for µ–almost every y ∈Y

ΣN
Φ (y)= EN

Φ +O
((

EN
Φ

)1/p
log1+1/p+ε

(
EN
Φ

))
.

Proof. The proof follows verbatim the one of Lemma 10 in [70], except that
on top of page 48 one has to apply Hölder’s inequality instead of the Cauchy-
Schwartz inequality. �

Let G be a locally compact group, and Γ a lattice in it. We consider G/Γ
endowed with the probability measure ν induced by the Haar measure on G,
properly renormalized.

We now consider another locally compact group Λ with property (T), S a
Kazhdan set of Λ, and µ a probability measure on Λ admissible with respect
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to S. Assume that Λ acts on G/Γ by transformations preserving ν, and that
the action is ergodic.

Examples 5.2. (i) When G is a semisimple group and Γ is an irreducible
lattice in G, every infinite subgroup Λ of G acts ergodically on G/Γ
[76].

(ii) When G = Rn, Γ = Zn, with n ≥ 2, every subgroup Λ of SLn(Z) con-
taining a matrix whose eigenvalues are not roots of unity acts ergod-
ically on G/Γ=Tn [38, Ex. 4.2.11]

Denote by Xn the random variable representing the n-th step of the ran-
dom walk on Λ determined by the measure µ. For every x ∈ G/Γ we write
Xn(x) to signify the element in G/Γ obtained by applying the group element
Xn in Λ to x.

Let p be a positive number larger than 1, and let π be the standard rep-
resentation of the group Λ by linear isometries on the Banach space E =
Lp (G/Γ). We consider the action of Λ on E to the right, that is g · f = f ◦ g.
In particular, for f = 1Ω the characteristic function of a measurable set Ω,
g · 1Ω = 1g−1Ω .

Because the action of Λ is ergodic, the space Eπ is composed of constant
functions, while Eπ is composed of functions of the form f − M f , for every
f ∈ Lp (G/Γ) (due to the fact that the dual of Lp (G/Γ) can be identified with
Lq (G/Γ), where 1

p + 1
q = 1). As Λ has property (T), it follows, by Theorem 1.1

and [2, Theorem A], that there exists λ ∈ (0,1) depending on the Kazhdan
constant of S and on p, such that

∥∥Aµ
π|Eπ

∥∥≤λ .
Let h be a non-negative integrable function on G/Γ. For an arbitrary prob-

ability measure α onΛ, if we consider the function f = Aα
π (h) then by Fubini’s

Theorem we can write

M( f )=
∫

G/Γ
f (x)dν(x)=

∫
G/Γ

[∫
Λ

h◦ g(x)dα(g)
]

dν(x)

=
∫
Λ

[∫
G/Γ

h(gx)dν(x)
]

dα(g)= M(h) .

In particular, the above is true for the function f = Aµn

π (1Ω), where Ω is a
measurable set in G/Γ. Note that for x ∈G/Γ, we have that

f (x)=P (Xn(x) ∈Ω) .

Consider now a sequence (Ωn)n∈N of measurable sets in G/Γ , and the se-
quences of measurable functions hn = 1Ωn and fn = Aµn

π

(
1Ωn

)
. We prove that
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the hypotheses of Lemma 5.1 are satisfied. The left hand side of the inequal-
ity (14) can be bounded as follows∥∥∥∥∥ N∑

i=M

(
Aµi

π hi −Mhi

)∥∥∥∥∥
p

≤
N∑

i=M
λi ‖hi −Mhi‖p

≤
(

N∑
i=M

λqi

)1/q (
N∑

i=M
‖hi −Mhi‖p

p

)1/p

.

The first inequality above uses the property that on the subspace Eπ, com-
posed of functions of the form f −M f , the norm of Aµi

π is bounded by λi, the
second uses Hölder’s inequality.

Elementary calculations yield the following inequality (see for instance
[23, §4])

|a−b|p ≤ ap +bp + (
1+ p2p)

max
(
ap−1b , abp−1)

for every a,b ∈R+ .

This allows us to write∫
|hi −Mhi|pdν(x)≤

∫
hp

i dν(x)+Mhi
p +CpMhi

∫
hp−1

i dν(x)≤ (2+Cp)Mhi ,

where Cp = 1+ p2p. In the last inequality above we used the facts that hi is
the characteristic function of a set, hence hαi = hi for every α ≥ 1, and that
Mhi ∈ (0,1), therefore Mhi

β ≤ Mhi for every β≥ 1.
We may therefore write∥∥∥∥∥ N∑

i=M

(
Aµi

π hi −Mhi

)∥∥∥∥∥
p

p

≤ 2+Cp

(1−λq)p/q

N∑
i=M

Mhi .

Lemma 5.1 then implies the following.

Theorem 5.3. Let G be a locally compact group, and Γ a lattice in it. Let {Ωn}
be a sequence of measurable subsets in G/Γ.

Assume that a locally compact group Λ with property (T) acts ergodically
on G/Γ. Let µ be a probability measure on Λ that is admissible with respect to
a Kazhdan set, and let Xn be the random variable representing the n-th step
of the random walk defined by µ.

(i) If
∑

nν(Ωn) is finite then for almost every x ∈G/Γ∑
n∈N

P (Xn(x) ∈Ωn)<∞.

(ii) If
∑

nν(Ωn) is infinite then for every ε> 0 and for almost every x ∈G/Γ,∑
n≤N

P (Xn(x) ∈Ωn)= SN +O(Sε
N ) ,

where SN =∑
n≤N ν(Ωn). In particular,

P (Xn(x) ∈Ωn)> ν(Ωn)−O
(
ν(Ωn)ε

)
for infinitely many n ∈N.
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A particular case of the above is when Ωn is the ball around an arbitrary
fixed point x0 and of radius rn. In that case, for D the dimension of G/Γ and
dist a distance on G/Γ induced by a left invariant Riemannian distance on G,
if

∑
n rD

n is infinite, then for every ε> 0, almost every x ∈G/Γ satisfies∑
n≤N

P (dist(Xn(x), x0)≤ rn)= RN +O
(
Rε

N
)
,

where RN =∑
n≤N rD

n . While if
∑

n rD
n is finite then the above sum of probabil-

ities is also finite.
Since Λ has property (T), it is compactly generated. Let distΛ be an arbi-

trary word metric on it, corresponding to the choice of a compact generating
set. Let α be a probability measure on Λ with compact support generating
Λ as a semigroup, and let Xn be the corresponding random walk. Since Λ is
non-amenable, according to [39,29] there exists a > 0 such that almost surely

(15) lim
n→∞

distΛ(e, Xn)
n

= 2a.

This implies that
µn (∆n)≥ 1−εn,

where ∆n = {g ∈Λ : distΛ(e, g)> an} and limn→∞ εn = 0.

Consider the sequence of probability measures ηn = 1
µn (∆n)

µn|∆n . The pre-

vious argument, with the sequence µn replaced by ηn, gives the same results
as above, but with P (Xn(x) ∈Ωn), replaced by P (Xn(x) ∈Ωn,distΛ(Xn, e)≥ an),
respectively with P (dist(Xn(x), x0)≤ rn) replaced by P(dist(Xn(x), x0)≤ rn,
distΛ(e, Xn)≥ an).

We now provide a sample of applications of Theorem 5.3, to emphasize the
type of information this theorem provides.

As recalled in the beginning of the section, most of the previously known
shrinking target results concerned geometric objects such as geodesics and,
later on, unipotent orbits, also called horocycles in the literature. Our re-
sults allow to provide information about another significant set of geometric
objects: the horospheres.

Recall that in a CAT(0) space X , every geodesic ray ρ : [0,∞) → X defines
a Busemann function fρ(x) = limt→∞

[
dist(x,ρ(t))− t

]
. Its open sublevel sets

fρ < a, with a ∈ R, coincide with the union of open balls B(ρ(t), t+ a) and
are called open horoballs determined by ρ; the topological boundary of an
open horoball is a level hypersurface fρ = a, and it is called horosphere. Two
geodesic rays at finite Hausdorff distance determine the same collection of
horoballs and horospheres, possibly corresponding to different parameters
a ∈ R [13]. The point at infinity ρ(∞) ∈ ∂∞X is called the point at infinity of
the horoball (horosphere).

In the particular case when X is a symmetric space of non-compact type
and of rank at least two, it is known that its group of isometries G does not act
transitively on ∂∞X : the quotient ∂∞X /G can be identified with a spherical
simplex of maximal dimension in the spherical building structure of ∂∞X .
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The image of ρ(∞) in ∂∞X /G is called the slope of ρ (respectively of the point
at infinity of the horoball/horosphere). When ρ(∞) is one of the vertices of
the simplex ∂∞X /G, we say it is maximal singular. For more information we
refer the reader to [13].

In rank one symmetric spaces the stabilizers of horospheres are nilpotent
groups, in higher rank on the other hand they are more complicated, with
semisimple subgroups and unipotent radicals. Moreover the horospheres
have explicit descriptions in terms of flags from the flag boundary (see for
instance [25, §3] for descriptions of horospheres and their stabilizers in some
particular cases).

As mentioned before, while for amenable groups, in all the von Neumann
type theorems or Birkhoff type theorems the right approach is to consider
limits, either in L2–norm or pointwise, of averages on Følner sets (in partic-
ular on balls, when the groups have sub-exponential growth), in the opposite
case of property (T) groups it seems more appropriate to consider limits of
averages with respect to sequences of measures approximating the Kazhdan
projection. Many stabilizers of horospheres in higher rank have property (T)
(in particular those we consider below), therefore the averages provided by
the sums in Theorem 5.3 are an appropriate approach for them.

With these observations, we proceed to examine the particular case when
G = SL(s,R), with s ≥ 3, and Γ= SL(s,Z). The symmetric space corresponding
to G is P s = SO(s)\SL(s,R), which can be identified to the space of positive
definite quadratic forms of volume 1 with the action of G by isometries to the
right. Consider the locally symmetric space Tn = Pn/Γ and π : Pn → Tn the
natural projection. In the applications of Theorem 5.3, there are two types of
choices involved:

(i) the choice of the sequence of shrinking sets (Ωn);

(ii) the choice of a Kazhdan set Q for the acting group Λ, and of a mea-
sure µ, admissible with respect to Q, determining the random walk.

As far as the choice (i) is concerned, we only consider two cases:
[Ω.A] Consider as basepoint x0 in Ts the image by π of the canonical qua-

dratic form q0(x)= x2
1+·· ·+x2

s on Rs, and consider the standard metric defined
on P s, and the metric it induces on Ts (see [24,25]).

Given D the dimension of P s and Ts, consider rn = 1
n1/D , and Bn the ball

in P s centered in q0 and of radius rn. For n large enough both Bn and π(Bn)
have measure ³ 1

n .
The fact that a quadratic form q satisfies π(q) ∈ π(Bn) implies that there

exists a basis {v1, . . . ,vn} of Zn that is orthogonal with respect to the bilinear
form defined by q, and such that q(vi) = λi ∈ [e−rn , ern ]. For simplicity we
replace π(Bn) with a set Ωn ⊂Ts of approximately the same volume, defined
by the condition that a quadratic form q satisfies π(q) ∈ Ωn if there exists
γ ∈ Γ such that for every vector v ∈ Rs, q(v) ∈ [e−rn , ern ]‖γv‖2. In particular∣∣q(v)−‖γv‖2∥∥≤ (rn + o(rn))‖γv‖2. We call such a form an rn– almost rational
form.
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A consequence of almost rationality is for instance an estimate for the con-
vergence to zero of the gaps between successive values in q(Zn), for an irra-
tional positive definite quadratic form q. It was conjectured by Davenport
and Lewis [22] that for such a form given s ∈ q(Zn) and n(s) the minimum
of q(Zn)∩ (s,∞), the gap n(s)− s converges to 0 as s → ∞. The conjecture
was settled by Bentkus and Götze for s ≥ 5 [7,28]. For an rn–almost rational
form, for every ε> 0 the value s0 such that n(s)− s < ε for s ≥ s0 must satisfy
s0 ≥ 1−ε

2 n1/D .

[Ω.B] Consider one of the Busemann functions defined in [25, §3.2], say
fr1(q) =

√
s

s−1 lnq(es). Its restriction to Ts seen as a fundamental domain in
P s is also a Busemann function, corresponding to a geodesic ray contained in
Ts [25, §3.6]. Let us denote the latter Busemann function f̄ , and let (Ωn) be
a sequence of thinner and thinner slices of level sets, defined by −rn − εn ≤
f̄ ≤ −rn. A standard calculation of volume implies that in order to obtain a
slice of volume 1

n , one has to choose εn = 1
nδ for some δ ∈ (0,1) and rn = η lnn,

where η depends on s, on the choice of δ and of the ray defining the Busemann
function.

In relation with the choice (ii), we begin by recalling that any symmetric
set not contained in a closed amenable subgroup is a Kazhdan set for Λ [68,
Theorem C]. We shall mainly consider the following types of choices:

[Q.1] The group Λ is G, and Q is a compact set generating G (possibly a
ball for some left-invariant metric on G).

[Q.2] The group Λ is the stabilizer of a horosphere in the symmetric space
X associated to G, with basepoint of maximal singular slope, and Q is a com-
pact set generating it.

Note that as the action of G on X is to the right, as defined in [25, §3],
when Λ is the stabilizer of a horosphere fρ = 0, for an arbitrary quadratic
form q, qΛ is the horosphere fρ = a containing q, and qΛg, for g ∈ G, is the
image by the isometric action of g of the horosphere fρ = a; for every n ∈ N,
qQn g is a large compact subset of the latter.

In what follows we describe how various choices produce different signifi-
cant results:

Choices [Q.1] and [Ω.A]: Given a random walk on the group G, the proba-
bilities that at step n ∈ [1, N] the corresponding quadratic form is 1

n1/D –almost
rational sum up to a value of ln N +O(lnε N), for any ε> 0. In particular in-
finitely many times such a probability is above 1

n .

Choices [Q.2] and [Ω.i], for i ∈ {A,B}: Let x be an arbitrary point in
Ts. Almost every horosphere H in the symmetric space P s (H with point
at infinity of a fixed given slope that is maximal singular), and almost ev-
ery point h ∈ H , have the property that the π projection of the annulus
H ∩ [B(h,n)\ B(h,an)] inside Ts intersects the shrinking ball π

(
B(x,n1/D)

)
for infinitely many n (where a > 0 is the constant provided by (15) for the
group Λ). The same holds if one replaces the condition above with the one
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that the π projection of H ∩ [B(h,n)\ B(h,an)] rises infinitely many times
into the cusp of Ts at a height between η lnn and η lnn+ 1

nδ , where the height
in the cusp is measured by a certain fixed Busemann function (the constant
η depending on this choice).

A general version of the result, for horospheres in general symmetric spaces,
can likewise be obtained.

A number theoretical interpretation of the above (for appropriate choices
of x ∈ Ts, the maximal singular slope and the Busemann function on Ts) is
that for every 1 ≤ k < s, for almost every k–dimensional subspace W in Rs,
there exist a sequence (qn) of quadratic forms farther and farther away from
q0, with restrictions to W of the same volume, and 1

n1/D –almost rational (re-

spectively, such that for some primitive vector v ∈Zn , q(v) ∈
[

1
nξ

(
1− κ

nδ

)
, 1

nξ

]
,

where δ ∈ (0,1), κ depends on s, ξ> 0 depends on δ and s).

6. GHOST PROJECTIONS FOR WARPED CONES

In this section we construct new examples of non-compact ghost projec-
tions. Such projections associated to expanders are the source of all known
bounded geometry counterexamples to the coarse Baum-Connes conjecture
[33, 34, 74]. In fact, no examples of ghost projections other than the one de-
scribed in [33], [74, Examples 5.3] were known until now.

Warped cones are unbounded spaces constructed by successive approxima-
tions of an action of a group on some space. They share certain characteristics
with box spaces (i.e., sequences of finite quotients of a group) and in this sense
our construction is analogous to the construction of ghost projections for ex-
panders. Note however, that for our construction the acting group has to be
neither residually finite nor with properties (T) or (τ) – the existence of the
ghost projection is solely a consequence of the spectral gap of the action. A
spectral gap for a single representation is a weaker condition than property
(τ). There are many examples of actions with a spectral gap: see for instance
[51, Example 11.3] for actions of non-amenable algebraic groups, and [21] for
actions on tori and nil-manifolds. Clearly, if G has property (T) then every
probability preserving action of G has a spectral gap.

6.a. Warped cones as metric measure spaces. Let (M,dist,m) be a com-
pact metric space endowed with a probability measure, and let G be a finitely
generated group acting on M by bi-Lipschitz homeomorphisms preserving
the measure. Assume moreover that the action of G is ergodic. Throughout
this section we consider G endowed with a finite, symmetric generating set
S. We denote by |g| the word length with respect to S of g ∈G.

We add a mild assumption on the measure, requiring in some sense its
uniform distribution with respect to the metric.

Definition 6.1. A measure m on a metric space (M,dist) is called upper uni-
form if limR→0 supx∈M m (B (x,R))= 0.
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Let Cone(M) = M × (1,∞) denote the truncated Euclidean cone over M,
equipped with the measure ν which is a product measure of m and the Le-
besgue measure. The restriction of the metric distCone(M) on Cone(M) to M×
{t} is equal to tdist. The part corresponding to the interval [0,1], both for the
Euclidean cone, and for the warped cone defined below, is irrelevant for our
purposes, since we are interested in large scale properties, and removing this
part simplifies certain estimates.

The notion of a warped cone, denoted by O = OG(M), was first defined in
[64]. It is the space M × (1,∞) endowed with the metric distO that is the
largest metric satisfying

distO (x, y)≤ distCone(M)(x, y) and distO (x, sx)≤ 1,

for every x, y ∈ O and s ∈ S. We endow O with the product measure ν of m
and the Lebesque measure.

For t ≥ 1 we denote by Ot the part of the warped cone O that corresponds
to M× (t,∞).

In [64] it is shown that the warped metric from x to y is the infimum over
all sums

(16)
k−1∑
i=0

dist(g ixi, xi+1)+|g i|,

taken over finite sequences x = x0, x1, . . . , xk = y in M and g0, . . . , gk−1 in G.
Moreover, if dist(x, y)O ≤ n, where n ∈N, then we can choose k ≤ n+1. Thus a
warped cone is a metric space that interpolates between orbits of the action
at t = 1 and the group G with the word metric at t =∞.

If Cone(M) has bounded geometry (e.g. M embeds into a finite-dimensional
Euclidean space) (see [53,63]) and G acts on Cone(M) by bi-Lipschitz homeo-
morphisms then OG(M) has bounded geometry [64].

The following statement describes the relation of a ball in the warped met-
ric to a ball in the Euclidean cone.

Lemma 6.2. Assume that G acts on M by bi-Lipschitz maps. Then for each
R > 0 there exists T > 0 such that every ball of radius R in the warped cone O ,
with center an arbitrary point x ∈O , satisfies

BO (x,R)⊆ ⋃
|g|≤R

BCone(M)(gx,T).

Proof. We use the definition of the warped metric as infimum of finite sums of
the form described in (16). Consider the case g0 = e. The other case is proved
analogously and is omitted. We have x1 ∈ B(x0,R). The next step in the chain
is realized by g1x1, for some group element g1 ∈ BG(e,R1), where in this case
we set R1 = R. Then x2 ∈ X is such that the inequality

dist(x2, g1x1)≤ R2 = R−dist(x0, x1)−|g1|
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is satisfied. Observe now that

dist(g1x0, x2)≤ dist(g1x0, g1x1)+dist(g1x1, x2)
≤ Lg1 dist(x0, x1)+R2

≤ Lg1 R1 +R2,

so that x2 ∈ B(g1x0,Lg1 R1 +R2), where Lg denotes the Lipschitz constant of
the transformation of M associated to g. Following these estimates for g2 and
x3 we observe that x3 ∈ B(g2x0,Lg2 g1 R1 +Lg2 R2 +R3). In general, for every
i = 0,1, . . . ,k there exists T(g i) such that xi+1 ∈ BCone(M)(g ix,T(g i)), where the
radii T(g i) depend on R and the Lipschitz constants of the transformations of
M associated to g i, but can be chosen independently of x. All possible choices
for g i have to satisfy |g i| ≤ R. Therefore setting T = sup {T(g) : |g| ≤ R} we
obtain the claim. �

Note that if the action of G on M is isometric then we can take T = R in
Lemma 6.2.

x0
x1

g1x1

x2

g2x2

g1x0

B0 = B(x0,R0)

B1 = B(g1x1,R1)

B2 = B(g2x2,R2)

B(g1x0,Lg1 R1 +R2)

g1

g2

FIGURE 1. A possible path realizing a distance ≤ R in the
warped metric. The length of this path is dist(x0, x1)+ |g1| +
dist(g1x1, x2)+|g2| ≤ R.

Lemma 6.3. For every R,ε> 0 there exists t ∈ (1,∞) such that

ν (BO (x,R))≤ ε,
for every x ∈Ot.
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Proof. Let T > 0 and x = (y, s) ∈ Ot. Every ball BCone(M)(x,T) is contained in
a product B(y, r)× [s−T, s+T], where r can be chosen with an upper bound
depending only on T and s. Then

ν(BCone(M)(x,T))≤ 2Tm(B(y, r)),

which tends to zero uniformly as t →∞, by the upper uniformity of the mea-
sure m. By the previous lemma we also have

ν(BO (x,R))≤ ∑
|g|≤R

ν
(
BCone(M)(gx,T)

)≤ 2Tm(B(y, r))|BG(e,R)|,

which again tends to zero uniformly when t →∞, as R and T are fixed. �

6.b. Finite propagation operators on a warped cone. Consider a locally
compact metric measure space (X ,dist,m). An X-module is a (separable)
Hilbert space H equipped with a representation of C0(X ). An operator T ∈
B(H) has finite propagation if there exists S > 0 such that for φ,ψ ∈ C0(X )
satisfying dist(suppφ,suppψ)> S we have φTψ= 0.

The space H = L2(O ,ν) is equipped with the standard, faithful represen-
tation of C0(O ) by multiplication operators and thus naturally becomes an
O -module.

The action of G on O preserves the measure ν and induces a unitary repre-
sentation π of G on L2(O ,ν)' L2 (M× (1,∞)) defined by πg f (x, t)= f (g−1x, t).

Proposition 6.4. For every g ∈ G the operator πg has bounded propagation
on L2(O ,ν).

In particular, the Markov operator Aµ
π has bounded propagation for any

choice of a probability measure µ supported on a finite generating set S of G.

Proof. Assume that φπgψ 6= 0 for φ,ψ ∈ C0(O ). This is possible only if suppφ∩
g−1(suppψ) 6= ;. This however implies that distO (suppφ,suppψ)≤ |g|. �

6.c. Noncompact ghost projections. The notion of ghost operator was in-
troduced by G. Yu (unpublished).

Definition 6.5. Given a metric measure space (X ,dist,ν), an operator T ∈
B (L2(X ,ν)) is said to be a ghost if for every R,ε> 0 there exists a bounded set
B ⊆ X such that for ψ ∈ L2(X ,ν) satisfying ‖ψ‖ = 1 and suppψ ⊆ B(x,R) for
some x ∈ X \ B we have ‖Tψ‖ ≤ ε.

Ghost operators are operators that are locally invisible at infinity [17].
Such operators are intrinsically connected to large scale geometric features of
the space [17,18,65]. Non-compact ghost projections are central objects in the
context of the Baum-Connes conjecture, see below. We refer to [33,34,63,74]
for a detailed discussion.

Define G : L2(O ,ν)→ L2(O ,ν) by setting

G f (x, t)=
∫

M×{t}
f (y, t)dm(y)
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for every (x, t) ∈ M × (1,∞). The map G is the orthogonal projection onto the
subspace V composed of functions that are constant on M × {t} for every t ∈
(1,∞). The subspace V is a copy of L2(1,∞) embedded in L2(O ,ν).

Theorem 6.6. Let (M,dist,m) be a compact metric space endowed with a
probability measure, and let G be a finitely generated group acting on M er-
godically by bi-Lipschitz homeomorphisms preserving the measure. If the ac-
tion of G on M has a spectral gap then G ∈B(L2(O ,ν)) is a non-compact ghost
projection that is a norm limit of finite propagation operators.

Proof. The projection G is not compact since its range is infinite-dimensional.
The action has a spectral gap therefore, by Theorems 1.1 and 3.6, for every
probability measure µ on G admissible with respect to a finite generating set
and of density function ρ, there exists λ< 1 such that the following holds. For
every t > 1 we have∥∥∥π(ρk) f|M×{t} −G f (·, t)

∥∥∥2

L2(M,m)
≤λ2k ∥∥ f|M×{t}

∥∥2
L2(M,m) .

Using Fubini’s theorem we conclude that∥∥∥π(ρk)−G
∥∥∥

B(L2(O ,ν))
≤λk,

where π(ρk)= (
Aµ
π

)k has finite propagation by Proposition 6.4.
It remains to show that G is a ghost. Let R,ε > 0. For every δ > 0 there

exists t > 0 such that ν(BO (p,R))≤ δ for every p ∈Ot, by lemma 6.3. Consider
f ∈ L2(O ,ν) such that supp f ⊆ B(p,R) for some p ∈Ot. For every s ∈ (t,∞) the
projection G satisfies

G f (x, s)2 =
(∫

M×{s}
f (y, s)dm(y)

)2

= m (supp f ∩ (M× {s}))2
(

1
m (supp f ∩ (M× {s}))

∫
supp f∩M×{s}

f (y, s)dm(y)
)2

≤ m(supp f ∩ (M× {s}))2
∫

supp f∩M×{s}
f (y, s)2 dm(y)

≤ m(supp f ∩ (M× {s}))2.

The above implies, by integration and Fubini’s theorem, that ‖G f ‖2 ≤ ν (supp f )2 ≤
ν(BO (p,R))2 ≤ δ2. �

We point out that although Theorem 6.6 is formulated for Hilbert spaces,
the same proof gives a straightforward stronger version. Namely, provided
that the action on the Bochner space L2(M,m;E) has a spectral gap we ob-
tain that the projection from L2(O ,ν;E) onto L2([1,∞);E) is a non-compact
ghost projection which is a limit of finite propagation operators. At present,
however, ghost projections on non-Hilbert spaces do not have applications
similar to the ones on Hilbert spaces. We also point out that very likely, the
construction admits a generalization to a foliated versions of the warped cone
[61].
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There are many group actions to which the above theorem applies, in par-
ticular actions on compact groups of finitely generated (free) subgroups. This
latter type of constructions were motivated by the Ruziewicz problem (see
[9,10] and references therein). Thus, Theorem 6.6 applies for instance to cer-
tain warped cones OFn (SU(2)), where the free group Fn is a subgroup of SU(2)
generated by elements of a specific type [9].

6.d. The coarse Baum-Connes conjecture. Consider now an X -module
H, which is ample; that is, no non-zero element of C0(X ) acts on H as a
compact operator. The Roe algebra C∗(X ) of a space X is the closure of locally
compact finite propagation operators on H. An operator T on an X -module H
is locally compact if for every f ∈ C0(X ) the operators f T and T f are compact.
Recall that the coarse Baum-Connes conjecture predicts that for a metric
space X of bounded geometry, the coarse assembly map

(17) lim
d→∞

K∗(Pd(X )) −→ K∗(C∗(X )),

from the coarse K-homology of X to the K-theory of the Roe algebra, is an
isomorphism. Above, Pd(X ) is the Rips complex at scale d ≥ 0. If true for a
finitely generated group G with a finite classifying space, the coarse Baum-
Connes conjecture implies the Novikov conjecture on the homotopy invari-
ance of higher signatures via a descent principle, see [62, Theorem 8.4].

Counterexamples to the coarse Baum-Connes conjecture were constructed
in [33,34]. It was proved there that the coarse assembly map is not surjective
for X a coarse disjoint union of expanders obtained as quotients of an exact
group with property (T). The reason is the existence of a non-compact ghost
projection G which is a limit of finite propagation operators. The K-theory
class represented by G⊗ p in K∗(C∗(X )), where p is a rank one projection, is
not in the image of the coarse assembly map. At present such expanders pro-
vide the only known bounded geometry counterexamples to the coarse Baum-
Connes conjecture.

Let G, M satisfy the assumptions of Theorem 6.6.

Conjecture 6.7. The coarse assembly map (17) is not surjective for the warped
cone X =OG M.
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