Decomposition numbers for symmetric groups

Karin Erdmann
University of Oxford, UK
erdmann@maths.ox.ac.uk

FPSAC, July 2009

Representations of symmetric groups

$G=\mathcal{S}_{n}, \quad V=$ finite-dimensional K-vector space.

Representation $=$ group homomorphism $\rho: G \rightarrow G L(V)$.
$V=G$-module $\quad[v g:=(v)(g \rho), g \in G, v \in V$.
$\Omega^{\{2\}}=2$-element subsets of $\{1,2, \ldots, n\}$.
$K=\mathbb{Z}_{2}$.
$K \Omega^{\{2\}}=M^{(n-2,2)}$ permutation module of \mathcal{S}_{n}.

$$
\{i, j\} g=\{(i) g,(j) g\}
$$

Qu. Composition factors? Same for $M^{(n-3,3)}$?

Qu. Same for eg $M^{(n-5,3,2)}$?

Specht modules

λ partition of $n, \quad S^{\lambda}:=$ Specht module.

- characteristic-free.
- explicit: submodule of permutation module.

Eg $S^{(n)}=$ the trivial module.

$$
\begin{aligned}
\Omega=\{1,2, \ldots, n\}, \quad K \Omega & =\operatorname{Span}\left\{v_{i}\right\} \cong M^{(n-1,1)} . \\
S^{(n-1,1)} & \cong\left\{\sum_{i} c_{i} v_{i}: \sum_{i} c_{i}=0\right\} \subset K \Omega .
\end{aligned}
$$

- $K=\mathbb{C}: \quad S^{\lambda}$ is simple. $\chi^{\lambda}=$ the character of S^{λ}
- $\operatorname{char}(K)=p>0$:

If μ is p -regular, S^{μ} has a unique simple quotient D^{μ}.
$\beta^{\mu}=$ the Brauer character of D^{μ}.

$$
\left[\beta^{\mu}(g)=\operatorname{tr}_{D^{\mu}}(g) \text { if } g \in \mathcal{S}_{n}\right. \text { is p-regular]. }
$$

μ is p-regular if it does not have p equal parts: $6551 \vdash 17$ is 3 -regular, but is not 2-regular.
g is p-regular if p does not divide any cycle length of g.

Decomposition numbers

$d_{\mu, \lambda}:=\left[S^{\mu}: D^{\lambda}\right]=\# D^{\lambda}$ in a composition series of S^{μ},
Decomposition number.

On p-regular elements of \mathcal{S}_{n},

$$
\chi^{\lambda}=\sum_{\mu} d_{\lambda, \mu} \beta^{\mu}
$$

EX $\quad D^{(n)}=$ trivial module.

$$
\left[S^{(n-1,1)}: D^{(n)}\right]= \begin{cases}1 & p \mid n \\ 0 & \text { else }\end{cases}
$$

If $p \mid n$ then $\chi^{(n-1,1)}=\beta^{(n-1,1)}+\beta^{(n)}$.

Decomposition matrix

The decomposition matrix $D=\left[d_{\mu, \lambda}\right]_{\lambda \vdash n, \mu \vdash_{p n} n}$.

- $d_{\lambda, \mu} \neq 0 \Rightarrow \lambda \geq \mu$
- $d_{\mu, \mu}=1$.
D is upper uni-triangular.

Some examples See Pictures.

Problem Find decomposition numbers!!

Column removal

Example $p=2$
$\ldots=\left(S^{(5,3)}: D^{(6,2)}\right)=\left(S^{(4,2)}: D^{(5,1)}\right)=\left(S^{(3,1)}: D^{(4,0)}\right)=1$
General Assume $\hat{\lambda}[\hat{\mu}]$ is obtained from $\lambda[\mu]$ by removing the first column.

Theorem [G.D.James] If λ, μ have n non-zero parts and $|\lambda|=|\mu|$ then

$$
\left(S^{\lambda}: D^{\mu}\right)=\left(S^{\bar{\lambda}}: D^{\widehat{\mu}}\right)
$$

Similarly 'row removal' \& removal of 'blocks', [S. Donkin]).

Proof (Column removal) The same holds for $G L_{n}$. Prove this, then apply Schur functor.
$G L_{n}$: Write $\lambda=\lambda_{n}\left(1^{n}\right)+\hat{\lambda}$, factorize the Schur polynomial:
$s_{\lambda}=\left(s_{\left(1^{n}\right)}\right)^{\lambda_{n}} \cdot s_{\hat{\lambda}}$.
Similarly for the formal characters of simple modules. Cancel the determinant part.

Two-part partitions

- $\quad \lambda$ with r parts and $d_{\lambda, \mu} \neq 0 \Rightarrow \mu$ has $\leq r$ parts.

Theorem [G.D. James '76] $r=2$:

$$
\left(S^{(n-k, k)}: D^{(n-j, j)}\right)= \begin{cases}1 & \binom{n-2 j+1}{k-j} \equiv 1(\bmod p) \\ 0 & \text { else }\end{cases}
$$

[Column removal]: Get two quarter-infinite matrices which contain the decomposition matrices for all 2-part partitions.

Example $\quad p=2$ and n even. See pcitures file.
$r \geq 3$ open.

Blocks

If λ, μ are in different blocks, then $d_{\lambda, \mu}=0$.

Nakayama conjecture
λ and γ are in the same p-block
$\Leftrightarrow \quad \lambda, \gamma$ have the same p-core and the same p-weight;
$\Leftrightarrow \lambda, \gamma$ are in the same 'block' of the decomposition matrix.

Display partitions in B on an abacus with p runners, with $\geq p w$ beads. See the Pictures file.

Equivalences

Suppose $B=B_{\kappa, w}$ is obtained from $\bar{B}=B_{\rho, w}$ by swapping runners $i, i+1$.

- Assume $\#$ beads on runners $i, i+1$ differ by $\geq w$.

Theorem [J. Scopes] Swapping runners induces
(i) a bijection on partitions,
(ii) preserves p - regularity and decomposition numbers.

The block algebras B and \bar{B} are Morita equivalent.
For a fixed w, only finitely many blocks (up to Morita equivalence) as n varies.

The first example in the pictures file satisfies the assumption. The second example does not.

The decomposition map

Let $R^{n}:=\sum_{\lambda \vdash n} \mathbb{Z} \chi^{\lambda}, \quad R_{b r}^{n}:=\sum_{\mu \vdash_{p} n} \mathbb{Z} \beta^{\mu}$. Decomposition map:

$$
\xi: R^{n} \rightarrow R_{b r}^{n}, \quad \text { restrict to } \mathrm{p} \text {-regular elements }
$$

Recall On p-regular elements, $\chi^{\lambda}=\sum_{\mu} d_{\lambda, \mu} \beta^{\mu}$.
Decomposition numbers: express the kernel of ξ w.r.to bases χ^{λ} and β^{μ}.

Question Other descriptions of $\operatorname{ker}(\xi)$?
$\wedge=\oplus_{n \geq 0} \wedge^{n}$ symmetric functions, characteristic isomorphism

$$
\text { char: } \begin{aligned}
& \wedge \rightarrow R:=\oplus_{n \geq 0} R^{n} \\
& \operatorname{char}\left(s_{\lambda}\right)=\chi^{\lambda}
\end{aligned}
$$

- $M=G L_{n}$-module, $M^{F}=$ its Frobenius twist $\Rightarrow \quad \operatorname{char}\left(\chi_{M^{F}}\right)$ is in $\operatorname{ker}(\xi)$.

DEF: $\quad \psi^{p}: \wedge \rightarrow \wedge, \quad x_{i} \rightarrow x_{i}^{p}$, ring homomorphism. Then $\psi^{p}\left(\chi_{M}\right)=\chi_{M^{F}}$

Via char : $\wedge \stackrel{\sim}{\rightarrow} R$, get ring homomorphism $\psi^{p}: R \rightarrow R$.

Theorem $\quad R^{n}$ has \mathbb{Z}-basis

$$
\left\{\psi^{p}\left(\chi^{\lambda}\right) \cdot \chi^{\mu}: \mu \text { p-regular }\right\}
$$

The subset of those with $\lambda \neq \emptyset$ are a \mathbb{Z} basis for $\operatorname{ker}(\xi)$.

Proof via symmetric functions. If χ^{γ} occurs in $\psi^{p}\left(\chi^{\lambda}\right) \cdot \chi^{\mu}$ then $\gamma \geq \lambda^{p} \cup \mu$. And $\chi^{\lambda^{p} \cup \mu}$ occurs with multiplicity ± 1]
δp-singular $\Rightarrow \delta=\lambda^{p} \cup \mu . \delta \quad \leftrightarrow \quad$ row $\left[d_{\delta, *}\right]$ of D

EX $\quad p=2, n=4$.

$$
\begin{aligned}
\psi^{2}\left(\chi^{(2)}\right) & =\chi^{(4)}-\chi^{(3,1)}+\chi^{(2,2)} \\
\psi^{2}\left(\chi^{(1)}\right) \cdot \chi^{(2)} & =\chi^{(4)}+\chi^{(2,2)}-\chi^{\left(2,1^{2}\right)} \\
\psi^{2}\left(\chi^{\left(1^{2}\right)}\right) & =\chi^{(2,2)}-\chi^{\left(2,1^{2}\right)}+\chi^{\left(1^{4}\right)}
\end{aligned}
$$

Question at the beginning:
$M^{(n-k, k)}$ has Specht filtration with Specht quotients

$$
S^{(n)}, S^{(n-1,1)}, S^{(n-2,2)}, \ldots, S^{(n-k, k)}
$$

Add corresponding rows of the decomposition matrix. [Depends on 2-adic expansion of n]
$M^{(n-5,3,2)}$ has Specht filtration, quotients from LR rule. Decomposition numbers not known.

