
N-COVERS OF HYPERELLIPTIC CURVES

N. BRUIN AND E.V. FLYNN

Abstract. For a hyperelliptic curve C of genus g with a divisor class of order n = g + 1, we shall consider
an associated covering collection of curves Dδ , each of genus g2. We describe, up to isogeny, the Jacobian

of each Dδ via a map from Dδ to C, and two independent maps from Dδ to a curve of genus g(g − 1)/2.

For some curves, this allows covering techniques that depend on arithmetic data of number fields of smaller
degree than standard 2-coverings; we illustrate this by using 3-coverings to find all Q-rational points on a

curve of genus 2 for which 2-covering techniques would be impractical.

1. Description of the Jacobian of the Covering Curves

We shall consider a hyperelliptic curve of genus g = n− 1 ≥ 1, of the form

(1) C : Y 2 = F (X) = G(X)2 + kH(X)n, where G(X) is of degree n = g + 1 and H(X) is of degree 2,

and where G(X),H(X), k are defined over the ring of integers O of a number field K. Here, and elsewhere,

we shall adopt the usual convention that C is used to denote the non-singular curve, even though the equation

given in (1) is singular; for the practical purpose of points on C, we can take these to be the affine (X, Y )

satisfying (1), together with ∞+,∞−, which will be distinct points on this non-singular curve. We shall

assume that F (X) has nonzero discriminant, which implies that resultant(G(X),H(X)) is also nonzero.

Equation (1) is a classical model of a hyperelliptic curve whose Jacobian J has an element of order n defined

over K, namely the divisor class D = [(X1, G(X1))+(X2, G(X2))−∞+−∞−] ∈ J(K), where X1, X2 are the

roots of H(X). This can be seem immediately from the fact that nD is the divisor of the function Y −G(X).

By rewriting (1) as (Y + G(X))(Y − G(X)) = kH(X)n, we see that each factor of the left hand side is

‘almost’ an nth power, which gives rise to the following covering curves.

Lemma 1. Let C be as in (1), with G(X),H(X), k defined over O, the ring of integers of a number field K.

Let S be the smallest set of primes of O for which resultant(2G(X), kH(X)) ∈ O∗
p for all p 6∈ O, and let

K(S, n) = {δ ∈ K∗/(K∗)n : vp(δ) mod n = 0, for all p 6∈ S}. If (X, Y ) ∈ C(K) then there exist δ ∈ K(S, n),

U ∈ K such that (X, U) lies on the curve of genus g2:

(2) Dδ : 2δUnG(X) = δ2U2n − kH(X)n.

The map φ : (X, U) 7→ (X, δUn −G(X)) is from Dδ to C, and is an unramified cover of degree n.

Proof The condition on resultant(2G(X), kH(X)) gives, for any (X, Y ) ∈ C(K) and any p 6∈ O:
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X ∈ O =⇒ min(vp(2G(X)), vp(kH(X))) = 0 =⇒ min(vp(2G(X)), vp(kH(X)n)) = 0

=⇒ min(vp((Y + G(X))− (Y −G(X))), vp((Y + G(X))(Y −G(X)))) = 0

=⇒ min(vp(Y + G(X)), vp(Y −G(X))) = 0.

Since also vp(k) = 0 and (Y +G(X))(Y −G(X)) = kH(X)n, we must have vp(Y +G(X)), vp(Y −G(X)) ∈ nZ.

A similar argument applied to 1/X shows the same to be true when X 6∈ O. It follows that there exist

δ ∈ K(S, n), U ∈ K for which Y + G(X) = δUn, and so Y −G(X) = kH(X)n/(δUn). Taking the difference

of these equations, and then multiplying through by δUn, gives the equation (2) above for Dδ. Finally, the

curve Dδ can be rewritten as: (δUn −G(X))2 = G(X)2 + kH(X)n, so that the given map φ is from Dδ to C

and is clearly unramified and of degree n = g +1. We can apply Hurwitz’ formula (see [17], Theorem II.5.9):

2(genus(Dδ)− 1) = 2deg(φ)(genus(C)− 1) to conclude that the genus of Dδ is g2. �

The map φ above gives that, up to isogeny, the Jacobian of C occurs as a factor of the Jacobian of Dδ. In

[16], this cofactor is studied in an analytic setting. In [15], algebraic tools are developed to describe isogeny

factors of more general abelian varieties.

Let us for the moment consider a general hyperelliptic curve C/P1 over an algebraically closed field K with

an unramified cyclic degree n cover D/C. Then the cover D/P1 can be obtained by composing the covers

D/C and C/P1. The hyperelliptic involution of C/P1 induces involutions τ0, . . . , τn−1 on D/P1. Besides

these, we have 〈ζ〉 = Aut(D/C) ⊂ Aut(D/P1). We see that Aut(D/P1) is the dihedral group of order 2n.

We label the τi so that τi+1 = ζ ◦ τi, where the indices should be taken modulo n.

We have subcovers Fi = D/〈τi〉. Note that τi+2 = ζ ◦ τi ◦ ζ−1, so if n is odd, then all τi are conjugate and

if n is even, then the τi fall in one of two conjugacy classes, depending on the parity of i. The automorphism

D
ζ→ D induces an isomorphism Fi → Fi+2. Furthermore, we see that τi and τi+1 generate Aut(D/P1), as

do ζ and τi. From [15, Theorem C], it follows that

Jac(D) ∼K Jac(C)× Jac(Fi)× Jac(Fi+1), for i = 0, . . . , n− 2.

Returning now to the special case of C given by (1) and Dδ given by (2), with n = genus(C) + 1, we shall

in the next lemma make this decomposition explicit. Furthermore, we shall show that, for n odd, the Fi can

be defined and are isomorphic over the base field.

Lemma 2. Let Dδ be as in (2). Define Sn(s, t) ∈ Z[s, t] by un + vn = Sn(u + v, uv), let c0 ∈ K be a fixed

nth root of −k/δ2, let ζ ∈ K be a fixed primitive nth root of unity, and let ci = ζic0, for i = 0, . . . , n − 1.

Then, for any 0 ≤ i ≤ n − 1, the map φi : (X, U) 7→ (X, V ), where V = U + ciH(X)/U , gives Dδ as a

degree 2 cover of the genus g(g − 1)/2 curve:

(3) Fδ,ci
: 2G(X) = δSn(V, ciH(X)).

When n is odd, the map φ′i : (X, U) 7→ (X, W ), where W = −c
(n−1)/2
i δV , gives Dδ as a degree 2 cover of the

genus g(g − 1)/2 curve defined over K:

(4) F : 2(−k)(n−1)/2G(X) = Sn(−W,−kH(X)).
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Furthermore, whether n is even or odd, Jac(Dδ) is isogenous over K to Jac(C)× Jac(F)× Jac(F).

Proof On dividing through by δUn, equation (2) can be rewritten as 2G(X) = δ(Un +(−k/δ2)H(X)n/Un),

and so

(5) 2G(X) = δ(Un + (ciH(X)/U)n) = δSn(V, ciH(X)),

giving (3), since U + ciH(X)/U = V and UciH(X)/U = ciH(X). For odd n, multiplying both sides

by δn−1c
n(n−1)/2
i = (−k)(n−1)/2 gives 2(−k)(n−1)/2G(X) = (c(n−1)/2

i δU)n + (c(n+1)/2
i δH(X)/U)n, from

which (4) follows.

When n is even, the map φi is ramified at the points (Xk,±Uk), for k = 1, . . . , n, where the Xk are the

roots of G(X)−δc
n/2
i H(X)n/2, and each U2

k = ciH(X). When n is odd, φi is ramified at the points (Xk, Uk),

for k = 1, . . . , 2n, where the Xk are the roots of F (X) in (1), and each Uk = G(Xk)/(δc(n−1)/2
i H(X)(n−1)/2).

In either case, φi is ramified at 2n = 2g + 2 points P1, . . . , P2g+2, and the ramificiation index ePk
(φi) is 2 at

each of these points. Again applying the Hurwitz formula

(6) 2(genus(Dδ)− 1) = 2deg(φi)(genus(Fδ,ci
)− 1) +

2g+2∑
k=1

(ePk
(φi)− 1),

gives 2(g2 − 1) = 2 · 2(genus(Fδ,ci
)− 1) + 2g + 2 so that Fδ,ci

, and hence F , has genus g(g − 1)/2.

We now have the following diagram of maps between curves over K, together with the corresponding

Galois diagram.

Dδ 〈1〉

Fδ,ci Z/2Z

C Z/nZ

P1 Z/nZ o Z/2Z

φ

φi

X

X

Consider the automorphisms τi : (X, U) 7→ (X, ciH(X)/U) and ζi : (X, U) 7→ (X, ζiU), which are both in

Aut(Dδ/P1). We see from degrees that 〈τi, ζ
i〉, which is isomorphic to the Dihedral group Dn = Z/nZoZ/2Z,

is the Galois group of Dδ/P1 and that Dδ/P1 is indeed Galois. Furthermore C = 〈ζ〉\Dδ and Fδ,i = 〈τi〉\Dδ.

For any i, j, let (τi)∗ and (τj)∗ denote, respectively, the action on Jac(Dδ) given by τi and τj pointwise on

divisors. Map Jac(C) to Jac(Dδ) by φ∗. The image of φ∗ in Div(Dδ) is spanned by the
∑n−1

i=0 ζi(P ) for P

on Dδ. If a divisor class D is mapped to zero in both Jac(Fδ,ci
) and Jac(Fδ,cj

) then we must have that

(τi)∗(D) = −D and (τj)∗(D) = −D; in other words, D = (τi)∗(τj)∗(D). Furthermore, (τi)∗(τj)∗ = ζ(i−j).

Therefore, if i− j generates Z/nZ then D = ζ(D). Since ζ is unramified, all points have an orbit of size n.

Therefore, D is a linear combination of divisor classes of the form the [
∑

i ζi(P )]. Consequently, D is a

pullback from Jac(C). It is clear that Jac(C) indeed maps to 0 in Jac(Fδ,ci
)× Jac(Fδ,cj

) and so the following
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sequence

Jac(C)
φ∗−−−−→ Jac(Dδ)

(φi)∗×(φj)∗−−−−−−−−→ Jac(Fδ,ci)× Jac(Fδ,cj ) −−−−→ 0

is exact, and Jac(Dδ) is isogeneous over K to Jac(C) × Jac(Fδ,ci
) × Jac(Fδ,cj

). When n is odd, the map

(X, V ) 7→ (X, W ) is a birational transformation over K(ci) from Fδ,ci to F , and similarly for n even, it gives

a birational transformation over K(c1/2
i ). In either case, F and all Fδ,ci

are birationally equivalent over K,

so that Jac(Dδ) is isogeneous over K to Jac(C)× Jac(F)× Jac(F). �

As an aside, note that, if we let φ∗ : Jac(C) → Jac(Dδ) and φ∗ : Jac(Dδ) → Jac(C) be the maps on

Jacobians induced by the map φ : Dδ → C of Lemma 1, then φ∗φ
∗ is the multiplication by n map on Jac(C),

and Dδ is geometrically a pullback of an embedding of C in Jac(C) via the restriction of φ∗ to imφ∗.

Note that the hyperelliptic involution on C acts on Jac[n] and therefore on H1(K, Jac[n]), part of which

classifies the twists Dδ. The induced involution on the the covers Dδ is given by δ 7→ k/δ. This has a

computational benefit that, apart from at most one value of δ invariant under δ 7→ k/δ, the number of

curves Dδ to be considered can be cut in half.

2. Application in Genus 2

In the special case where n = 3 and g = 2 in (1), the curve Dδ of Lemma 2 has genus 4. The following

lemma constrains the possible images of the maps φ′i of Lemma 2.

Corollary 1. Let (X, Y ) be a K-rational point on the genus 2 curve C : Y 2 = F (X) = G(X)2 + kH(X)3,

where G(X),H(X) are cubic and quadratic polynomials in X, respectively, and let K(S, 3) be as described

in Lemma 1. Then, for some δ ∈ K(S, 3), there exists U ∈ K such that (X, U) is a K-rational point on

the genus 4 curve Dδ : 2δU3G(X) = δ2U6 − kH(X)3, and there exists W ∈ L = K((kδ)1/3) such that

(X, W ) is an L-rational point on the genus 1 curve F : 2kG(X) = W 3 + 3kH(X)W . Let φ′0, φ
′
1, φ

′
2 be

as in Lemma 2, and (X, Y ), (X0, Y0) ∈ C(K); then
∑2

i=0[φ
′
i(X, Y ) − φ′i(X0, Y0)] is the identity element in

Jac(F)(L). If t3 − kδ is irreducible in K[t] and if (X, W ), (X0,W0) are the members of F(L) corresponding

to (X, Y ), (X0, Y0) in C(K) under any choice of φ′i, then TraceL/K [(X, W )−(X0,W0)] is the identity element

in Jac(F)(L).

Proof When n = 3, g = 2, the curves (1), (2) and (4) become the curves C, Dδ and F above, on noting that

Sn(s, t), defined in Lemma 2, becomes S3(s, t) = s3 − 3st. Finally, note that the three images (X, W ) under

φ′0, φ
′
1, φ

′
2 in Lemma 2 all have the same X-coordinate, since X is K-rational, and so are collinear, as are

the three images (X0,W0) under φ′0, φ
′
1, φ

′
2, giving that

∑2
i=0[φ

′
i(X, Y )− φ′i(X0, Y0)] is the identity element

in Jac(F)(L). If t3 − kδ is irreducible in K[t], then the φ′i(X, Y ) are all in the same Galois orbit, as are the

φ′i(X0, Y0)); hence
∑2

i=0[φ
′
i(X, Y )− φ′i(X0, Y0)] is the same as TraceL/K [(X, W )− (X0,W0)], which again is

the identity element in Jac(F)(L). �

This gives a new approach for trying to find all points on a genus 2 curve in the form of C above. For each

δ ∈ K(S, 3) one first tries to show by a local argument that no such (X, U) exist on the genus 4 curve Dδ.
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There is a second chance to deal with a given δ by analysing the trace 0 points which, modulo 3-torsion,

are contained in Jac(F)(L)/Jac(F)(K). If the rank of Jac(F)(L) is at most 1 greater than the rank of

Jac(F)(K), then there is a chance to bound the number of solutions using local power series in the style of

[1],[2],[12], [14], using the arithmetic restriction that X ∈ K. Things become simpler if F is an elliptic curve

over K, since we can then use F itself, or an easily derived Weierstrass equation E , as a model for Jac(F);

our worked example below will be of this type. As will be apparent in our example, the arguments will

differ slightly from those in the literature, since X is an odd degree function on F , whereas the techniques in

[1],[2],[12],[14] use the multiplication by 2 map and even degree functions, and since we shall need to describe

the trace 0 group for our elliptic curve.

Example 1. Let C : Y 2 = F (X) = G(X)2 + kH(X)3, where G(X) = X3 + 2, H = X2 + X + 1 and k = 1.

Then C(Q) = {(1,±6)}.

Proof Using the standard techniques in [6],[11] and (as a check) the MAGMA implementation of [18], we

find that the rank of Jac(C)(Q) is exactly 2, with divisor classes of infinite order given by [2(1, 6)−∞+−∞−]

and [(− 3
2 +

√
5

2 , 11− 4
√

5) + (− 3
2 −

√
5

2 , 11 + 4
√

5)−∞+−∞−], which are independent in Jac(C)(Q) modulo

torsion. Therefore, we cannot apply directly to C the Chabauty techniques in [7],[10], which require the rank

of Jac(C)(Q) to be less than the genus of C.

We first compute resultant(2G(X), kH(X)) = 36, and so by Lemma 1 we need only consider δ ∈ 〈2, 3〉

in Q∗/(Q∗)3, that is: δ = 1, 2, 3, 4, 6, 9, 12, 18, 36. For δ = 1, 2, 4, we find that Dδ of Corollary 1 has no Q3-

rational points, and for δ = 6, 12, 18, 36, we find that Dδ has no Q2-rational points, leaving only δ = 3, 9 to be

considered. For δ = 3, there is the point (X0, U0) = (1,−1) ∈ D3(Q), which is a preimage of (1,−6) ∈ C(Q)

under the map φ of Lemma 1. In Lemma 2, we can see that (1,−1) maps to (X0,W0) = (1, α2−α) ∈ F(L),

where L = Q(α) and α = 31/3; in this example, (4) is the genus 1 curve

(7) F : 2(X3 + 2) = W 3 + 3(X2 + X + 1)W.

Similarly, for δ = 9, there is the point (1,−1) ∈ D9(Q), which is a preimage of (1, 6) ∈ C(Q) under the map φ

of Lemma 1. This maps to the same point on F as before. Since the hyperelliptic involution on C swaps

δ = 3 and δ = k/3 = 9 in Q∗/(Q∗)3, it is sufficient to solve the case δ = 3.

In view of Corollary 1, it is sufficient to show that (X, W ) = (1, α2−α) is the only member of F(L) with

TraceL/Q[(X, W )− (X0,W0)] = 0 and X ∈ Q. There is also the Q-rational point (0, 1) on F , and by taking

this as a base point (using the technique in [5], p.35) we map F over Q to the Weierstrass form

(8) E : y2 = x3 + 1485x− 75762.

The birational transformation over Q from F to E and its inverse are described by

(9)

x(X, W ) = (39X2 + 48X + 96− 12XW + 24W + 24W 2)/X2,
y(X, W ) = (−288X3 − 720X2 − 576X − 1152 + 108X2W + 144XW − 288W − 288W 2)/X3,
X(x, y) = (4104x + 47304− 12xy − 468y)/(x3 + 27x2 + 675x− 137079),
W (x, y) = (x3 − 27x2 − 729x + 134595 + 6xy − 810y)/(x3 + 27x2 + 675x− 137079).
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Note that we have mapped (0, 1) on F to ∞ on E . It is straightforward to show that both Jac(E)(Q) and

Jac(E)(L) have trivial torsion, and that Jac(E)(Q) has rank 2, with generators [(x, y) −∞] = [(31, 8) −∞]

and [(43, 260)−∞]. Standard techniques, as in [2],[3],[8], show that the rank of Jac(E)(L) is bounded above

by 3, using the 2-Selmer bound, a computation which requires working in the degree 9 field L(β), where β

is a root of x3 + 1485x − 75762. There are now several places in the literature describing how to compute

2-Selmer bounds on ranks of elliptic curves over number fields (for example, [2],[3],[8],[9]), and so we do not

give the details here; they descibed in the file covdeg3.g, available at [4].

The image of our known point P0 = (X0,W0) = (1, α2 − α) ∈ F(L) maps under the birational trans-

formation (9) to the point P0 = (36α2 + 60α + 39,−324α2 − 828α − 1008) ∈ E(L). This gives a third

independent member [P0 −∞] ∈ Jac(E)(L) of infinite order, and so the rank of Jac(E)(L) is 3. It is suf-

ficient to find all (x, y) ∈ E(L) such that [(x, y) − P0] has trace 0 and such that X(x, y) ∈ Q. Note that

[(x, y)−P0] = [(x, y)−∞]− [P0−∞]. From now on, we shall use the standard identification between Jac(E)

and E by using (x, y) on E as the standard abbreviation for [(x, y)−∞] in Jac(E). So, it is now sufficient to

find all (x, y) ∈ E(L) such that (x, y) = P0 + P, where P ∈ E(L) has trace 0, and such that X(x, y) ∈ Q.

A member of E(Q) can only have trace 0 if it is 3-torsion; since E(Q) has only trivial torsion, it follows

that the trace 0 group of E(L) is described by E(L)/E(Q). We can compute that

(10) TraceL/QP0 = (3823/9,−237232/27) = −(31, 8) + (43, 260) 6∈ 3E(Q).

If (31, 8), (43, 260), P0 were generators for E(L), this would show that

(11)
R1 = 3P0 − TraceL/QP0

=
(

265305648
46471489 − 902606639

139414467α + 2769472739
139414467 α2,− 48831440094572

950388421539 + 8488112833156
316796140513 α− 26044121637556

316796140513 α2
)

is a generator of the trace 0 group, and that any P ∈ E(L) of trace 0 satisfies P = MR1 for some

M ∈ Z. This would require a substantial height computation which we have not attempted. Note that

TraceL/Q(〈(31, 8), (43, 260), R1〉) = 〈3(31, 8), 3(43, 260)〉. Any P ∈ E(L) satisfies dP ∈ 〈(31, 8), (43, 260), R1〉

for some d ∈ Z and if P is of trace 0 then dP = mR1, for some m ∈ Z. We cannot have |m/d|17 > 1

since 16R1 is in the kernel of reduction modulo either prime above 17, and the local parameter s(16R1) =

−x(16R1)/y(16R1) has valuation 1 at either prime above 17. We can now say that any P ∈ E(L) of trace 0

satisfies P = MR1 for some M ∈ Z17, which is sufficient for our purposes, since our remaining argument is

17-adic.

The following general type of argument has appeared before in the 2-covers literature (see [2],[12],[13],[14]),

but we shall nevertheless give some details, to illustrate how to deal with the arithmetic restriction on the

function X, which is not even. We first recall the standard local power series associated to an elliptic

curve of the form y2 = g3x
3 + g2x

2 + g1x + g0. Imitating Chapter IV of [17], we introduce the variables

s = −x/y,w = −1/y. Then w = g3s
3 + g2s

2w + g1sw
2 + g0w

3, and recursive substitution gives w = w(s), a

power series in the local parameter s, with initial term g3s
3. If (x0, y0) is any point on E , then the x and y
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coordinates of (x0, y0) + (x, y) are power series in s over Z[g0, g1, g2, g3, x0, y0].

(12)
x-coord of

(
(x0, y0) + (x, y)

)
= x0 + 2y0s + (3g3x

2
0 + 2g2x0 + g1)s2 + O(s3),

y-coord of
(
(x0, y0) + (x, y)

)
= y0 + (3g3x

2
0 + 2g2x0 + g1)s + 2(3g3x0 + g2)y0s

2 + O(s3)

If (s, w(s)), (t, w(t)) are two points in s-w coordinates then the s-coordinate of the sum can be written as

F(s, t) ∈ Z[g0, g1, g2, g3][[s, t]], the formal group. There are then power series

(13) log(t) = t +
1
3
g2t

3 +
1
5
(g2

2 + 2g1g3)t5 + O(t7) ∈ Q[g0, g1, g2, g3][[t]],

(14) exp(t) = t− 1
3
g2t

3 +
1
15

(2g2
2 − 6g1g3)t5 + O(t7) ∈ Q[g0, g1, g2, g3][[t]],

satisfying log(F(s, t)) = log(s)+log(t), F(exp(s), exp(t)) = exp(s+t). In either power series, the denominator

of the coefficient of tk divides k!.

Let γ be the unique member of Q17 such that γ3 = 3, and let ω be such that ω2 + ω + 1 = 0. Embed

L = Q(α) into Q17(ω) via α 7→ γω. Then, one finds that R = 16R1 is in the kernel of reduction and so s(R) =

−x(R)/y(R) ≡ 3315 + 2244ω (mod 173) is divisible by 17. Standard arguments (see the file covdeg3.g in

[4]) show that we can disregard all M 6≡ 0 (mod 16); that is, it is sufficient to find all N ∈ Z17 such that

X(P0 + NR) ∈ Q. We can compute s(NR), the s-coordinate of NR, using (13),(14), as exp(N log(s(R))),

which is a power series in N . Substituting this power series for s, and substituting x(P0), y(P0) for x0, y0

in (12), gives x(P0 + NR) and y(P0 + NR) as members of Z17[ω][[N ]].

(15)
x(P0 + NR) ≡ 638 + 561N + 1734N2 + (662 + 3434N + 867N2)ω (mod 173)
y(P0 + NR) ≡ 3427 + 3281N + 289N2 + (2583 + 1700N + 2601N2)ω (mod 173)

It is clear, from the standard estimate |k!|p ≥ p−(k−1)/(p−1) for any prime p, that the coefficients of the Nk

in the above power series are indeed in Z17[α], and converge to 0 as k →∞. Substituting these powers series

for x, y into the third equation of (9) gives

(16) X(P0 + NR) =
(
θ1(N) + θ2(N)ω

)
/
(
θ3(N) + θ4(N)ω

)
,

where θi(N) ∈ Z17[[N ]] for each i and

(17)
θ1(N) ≡ 1584 + 1207N + 4046N2, θ2(N) ≡ 599 + 3298N + 2312N2,
θ3(N) ≡ 1584 + 3332N + 2601N2, θ4(N) ≡ 599 + 4811N + 867N2 (mod 173).

Any N ∈ Z17 such that X(P0 + NR) ∈ Q ⊂ Q17 must then be a root of

(18) θ(N) = θ1(N)θ4(N)− θ2(N)θ3(N) ≡ 3553N + 2601N2 ≡ 11 · 17 · 19N + 32 · 172N2 (mod 173).

Since X(P0) ∈ Q, we know that N = 0 is a root of θ(N) and so the constant term of θ(N) is genuinely 0, not

merely 0 modulo 173. Furthermore, the 17-adic norm of leading coefficient has 17-adic norm strictly greater

than all subsequent coefficients, so that N = 0 is the only root. Therefore, N = 0 is the only N ∈ Z17 such

that X(P0 + NR) ∈ Q, as required. �

In principle, we could have tried to apply a standard 2-cover, as in [2],[14]; but then, since Gal(G(X)2 +

kH(X)3) = Sym(6), a number field of degree 45 (a cubic extension of a degree 15 number field) would be

required to define the elliptic curves associated to those techniques and to perform a 2-descent on them. The

class field information would have been unobtainable, and so standard 2-covers are not viable for examples of

the above type, where F (X) has full Galois group. Therefore, the 3-covering technique used above genuinely
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provides a line of attack for some curves which would be computationally too difficult for 2-covers. Any

curve of genus 2 can be written in the form C : Y 2 = F (X) = G(X)2 + kH(X)3 of Corollary 1 over an

extension of the ground field for which Jac(C) contains a point of order 3, so that the 3-covering method

applied to the above example is, in principle, applicable to any curve of genus 2. In practice, for each curve,

it will depend on the smallest field over which a point of order 2 or 3 is defined as to whether conventional

2-covers as in [2],[14] or the 3-covers presented here will be computationally superior.

We thank Armand Brumer and Jaap Top for drawing our attention to [15] and [16]. We thank Joe

Wetherell for many helpful discussions.
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