
THE HASSE PRINCIPLE AND THE BRAUER-MANIN OBSTRUCTION FOR
CURVES

E.V. FLYNN

Abstract. We discuss a range of ways, extending existing methods, to demonstrate violations of the Hasse

principle on curves. Of particular interest are curves which contain a rational divisor class of degree 1, even

though they contain no rational point. For such curves we construct new types of examples of violations
of the Hasse principle which are due to the Brauer-Manin obstruction, subject to the conjecture that the

Tate-Shafarevich group of the Jacobian is finite.

1. Introduction

Let K be a number field and let AK denote the adèles of K. Suppose that X is a smooth projective

variety over K violating the Hasse principle; that is, X (K) = ∅ even though X (AK) 6= ∅. Global reciprocity

applied to the Brauer-Grothendieck group Br(X ) defines a certain subset X (AK)Br ⊂ X (AK) which contains

the diagonal image of X (K) (see [27], p.101). When X (AK)Br = ∅ we say that the violation of the Hasse

principle is explained by the Brauer-Manin obstruction. When X is a surface, examples have been constructed

(see [27], §8) where X violates the Hasse principle in a way not explained by the Brauer-Manin obstruction.

When X is a curve C it is an open question whether the Brauer-Manin obstruction is the only obstruction

to the Hasse principle. When X is of genus 1, we have the following result of Manin (see [27], p.114).

Lemma 1. Let C be a smooth proper curve of genus 1 defined over K, with Jacobian E. Suppose that the

Tate-Shafarevich group X(E) is finite. Then the Brauer-Manin obstruction is the only obstruction to the

Hasse principle for C. That is, if C(K) = ∅ and C(AK) 6= ∅ then C(AK)Br = ∅.

Regardless of the genus of C, we also have the following result (see [27], Cor. 6.2.5).

Lemma 2. Let C be a smooth proper curve defined over K, with Jacobian J , and suppose that X(J )

is finite. If C has no K-rational divisor class of degree 1 then the Brauer-Manin obstruction is the only

obstruction to the Hasse principle for C.

For simplicity throughout, we shall write our curves in affine form, but will always mean the corresponding

smooth projective curve. Isolated examples of Lemma 2 are known: there are three such curves over K = Q,

including X4 + Y 4 = 2412, given in [9], and a curve over K = Q(
√
−13) given in [26]. All of these are

of genus 3 and have reducible Jacobians, with maps to elliptic curves. There is also the genus 2 curve

Y 2 = −37(X2 + 1)(5X2 − 32)(32X2 − 5), given in Prop. 28 of [22], which has reducible Jacobian J ; it
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has points everwhere locally, but Pic1
C is nontrivial in X(J ). The previous rarity of genus 2 examples is

explained by the following result (see [24]).

Lemma 3. Let C be a smooth proper curve of genus g defined over Q with points everywhere locally. Let J

be the Jacobian of C, and suppose that X(J )[p] = 0 for each prime p ≤ 2g − 2. Then C has a Q-rational

divisor class of degree 1.

Proof Since C has points everywhere locally, Pic1
C represents an element of X(J ). If C does not have a

rational divisor class of degree 1, then this element is nonzero. On the other hand, this element is killed

by 2g − 2, since the canonical class makes Pic2g−2
C a trivial homogeneous space for J . �

In genus 2, this means that any potential example of Lemma 2 must have nontrivial 2-part of X(J ).

Since, as we shall see, the main available technique for testing whether there exists a rational divisor class

of degree 1 requires an initial computation of the rank of J (Q), and since there are currently no methods of

second descent available, it is difficult to find such an example. One conceivable method is to try to show

analytically that the rank is 0 or 1 assuming the conjectures of Birch and Swinnerton-Dyer; a 2-descent

could then give examples with nontrivial 2-torsion in X(J ). However, we shall instead shortly explain an

alternative and unconditional way this can be overcome in the case where the Jacobian admits a rational

Richelot isogeny.

When such a divisor class exists, we can embed the curve in its Jacobian and gain some insight into the

Brauer-Manin obstruction. Note that all of the curves we shall consider here have points everywhere locally;

for such curves, every K-rational divisor class contains a K-rational divisor, by the local-global principle

for the Brauer group [13]; therefore, in the statement of the following theorem (which is a consequence of

Proposition 6.2.4 of [27]; see also p.36 of [23]), the existence of a K-rational divisor class R of degree 1 is

sufficient.

Theorem 1. Let C be a smooth proper curve defined over K, with Jacobian J . Suppose that X(J ) is

finite and that C has a K-rational divisor A of degree 1. Define the embedding ζ : C → J : P 7→ [P ] − R,

where R = [A] and where [ ] denotes class modulo linear equivalence.1 Then inside the group
∏

pH
0(Kp,J )

we have

(1) C(K) ∼= ζ
(∏

p

C(Kp)
)
∩ J (K) ⊂ ζ

(∏
p

C(Kp)
)
∩ J (K) ∼= C(AK)Br,

where the product is taken over the set of all places of K, and J (K) denotes the topological closure of J (K).

For the special case when J (K) has rank 0, we have that J (K) is finite and so J (K) = J (K). This

forces the above to be an equality, giving the following result of Scharaschkin (see p.37 of [23] or p. 127

of [27]).

1We shall typically use the letter A to denote a divisor, and D, E, R to denote divisor classes.
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Corollary 1. Let C be a smooth proper curve over K, with Jacobian J , and suppose that X(J ) is finite.

If C has a K-rational divisor class R of degree 1 and J (K) is finite then the Brauer-Manin obstruction is

the only obstruction to the Hasse principle for C.

Only a few examples have been computed where there exists a rational divisor class of degree 1, such as

the curve 3X4 + 4Y 4 = 19 (discussed in [3], on p.48 of [23], and on p.128 of [27]), which again has reducible

Jacobian, with maps to elliptic curves; the arguments are only applicable to this special situation. Similarly,

the discussion in [13] and [25], which considers the genus 2 curve Y 2 = 2(X3 +7)(X3− 7), is only applicable

to curves with reducible Jacobians and maps to elliptic curves, as are the techniques in [2].

The aim here is to contribute to work on these themes in several ways. First, in Section 2 we present

a straightforward way of deciding whether a genus 2 curve has a rational divisor class of degree 1, once

generators for J (Q) are known; this allows the computation of many violations of the Hasse principle due

to the Brauer-Manin obstruction in the case where there does not exists such a divisor class, with a style of

proof more widely applicable than those for the isolated examples mentioned above. Second, in Sections 3,4,

we shall extend the range of techniques available for proving that a given curve has no Q-rational points, by

combining the ‘flat’ and ‘deep’ information rather than the standard procedure of considering each separately,

and – when available – by using a rational divisor class of degree 1 to embed the curve in its Jacobian; we shall

derive some associated algebra to assist others who may wish to perform similar computations. Furthermore,

we shall present examples (again due to the Brauer-Manin obstruction) of a new type, where the Jacobian

is simple (the previous literature having concentrated on cases where the Jacobian is reducible, with maps

to elliptic curves) and where there does exist such a divisor class; we shall include cases when J (Q) is

finite (and so are automatically due to to the Brauer-Manin obstruction), and cases when J (Q) has nonzero

rank (when our new techniques must be applied). In all cases, the proofs that C(Q) = ∅ are unconditional,

but the results that they are due to the Brauer-Manin obstruction are subject to the conjecture that the

Tate-Shafarevich group of the Jacobian is finite. Finally, as the techniques presented here are amenable to

the mass production of examples, we take the opportunity to perform some rather heavy computations on

a large number of curves. This should be viewed as a first step towards gaining statistical insight as to the

rarity of any violations of the Hasse principle that might not be due to the Brauer-Manin obstruction.

Theorem 1 gives rise to the computational procedure which will be used in our examples, as follows. Note

that, if we project from Kp to the residue field kp in (1) then we are led to consider τ−1
(
ζ(

∏′
p C(kp))

)
∩J (K),

where
∏′

p is over primes p of good reduction and τ is the natural map from J (AK) to
∏′

p(J (kp)). For

computational purposes, it is helpful to use the fact that J (K) is the same as the profinite completion

of J (K). Suppose we have found generators D1, . . . , Dr of the free part of J (K) so that any member

of J (K) can be written as D = T + n1D1 + . . . nrDr, for some T ∈ J (K)tors and n1, . . . , nr ∈ Z. Then,

for each p, the mod p component of the requirement that τ−1
(
ζ(

∏′
p C(kp))

)
∩J (K) 6= ∅ induces congruence

conditions on (n1, . . . , nr) modulo (N (p)
1 , . . . , N

(p)
r ), where each N

(p)
i is the order of the reduction of Di

modulo p. This is the ‘flat’ information which will be used in the majority of our examples; when (for
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each T ) the information for several p give contradictory congruences, then we have a proof that C(K) = ∅.

We shall also illustrate in Example 7 how the deeper p-adic part of the obstruction can be used.

Each of our test curves was of genus 2 with coefficients in Z,

(2) C : Y 2 = F (X) = f6X
6 + f5X

5 + f4X
4 + f3X

3 + f2X
2 + f1X + f0.

Let J denote the Jacobian of C. We first ran through all such curves for which f0 was in the range −3, . . . , 2,

and each of f1, . . . , f6 was in the range −2, . . . , 2. We then ran through all curves for which f6 was in the

range −2, . . . , 2, each of f2, . . . , f5 was in the range −5, . . . , 5, and f1 = f3−f5 +2, f0 = f6−f4 +2, ensuring

that the point (i, 1 + i) was on the curve. This was with the idea of encouraging the rank upwards while

having control over one of the members of J (Q), namely [(i, 1+ i)+ (−i, 1− i)−∞+−∞−], where ∞+,∞−

denote the points on the non-singular curve that lie over the singular point at infinity. Similarly, we ran

through all curves for which f6 was in the range −2, . . . , 2, each of f2, . . . , f5 was in the range −5, . . . , 5,

and f1 = −4f5 − 2f3, f0 = −8f6 − 4f4 − 2f2 + 1, ensuring that the point (
√

2, 1) was on the curve. This

gave 210878 curves in total. We concentrated on the curves which had points everywhere locally, but had no

Q-rational points with x-coordinate n/d for n, d in the range −1000, . . . , 1000. We then, over several months,

tried to compute the rank of J (Q) in each case, using the magma [20] routines written by Michael Stoll [30].

For some of the curves, even after 4 hours of computer time per curve on a Sparcstation, we were unable to

compute the Selmer bound or were unable to find sufficient independent members of J (Q) to achieve the

rank bound; such cases were discarded. These could be due either to the Selmer bound not equalling the

rank, or to the generators of J (Q) being large in height. After checking for birational equivalence over Q,

we were finally left with a selection of 134 inequivalent curves, which we proved to have points everywhere

locally, and for which the rank of J (Q) was found; of these, 10, 38, 73, 13 were of rank 0, 1, 2, 3, respectively.

For each of these curves the known generators of J (Q)/2J (Q) were shown to be actual generators of J (Q)

using the methods of [29],[31]. These curves are listed in the appendix, indexed by a number and a letter,

the number indicating the rank of J (Q); for example, the curve C3a has J3a(Q) of rank 3. One of the curves,

C2T has reducible Jacobian; all of the other 133 curves were shown to have absolutely simple Jacobian, using

the method in [28].

Since these 134 examples have no nontrivial 2-part of X(J ), they must each have a Q-rational divisor

class of degree 1, and so Lemma 3 tells us that none are examples of Lemma 2. In order to construct

examples of Lemma 2, we require curves where X(J )[2] 6= 0. Even though generally applicable second

descent techniques have not been developed in genus 2, there remains the option (suggested by Nils Bruin)

of using a Richelot isogeny and comparing the ranks obtained for the Jacobians of the original curve and

that of the Richelot isogenous curve. We remind the reader of the type of curve to which this applies.

(3) C : Y 2 = G1G2G3 = (g12X2 + g11X + g10)(g22X2 + g21X + g20)(g32X2 + g31X + g30).

The curve with 4-isogenous Jacobian (see [1] for a description of the isogeny) is

(4) D : ∆Y 2 = (G′
2G3 −G2G

′
3)(G

′
3G1 −G3G

′
1)(G

′
1G2 −G1G

′
2),
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where ∆ = det(gij). If one obtains differing 2-Selmer bounds on the Q-ranks of the Jacobians of C and D,

then this demonstrates members of the 2-part of X, giving potential examples of Lemma 2. We have

included 11 examples of this type in our list. Since these few curves were specifically hand picked and

constructed to provide examples of this type, we shall not include them in our final summary.

The author acknowledges the helpful advice of Nils Bruin, Victor Scharaschkin and Michael Stoll.

2. Constructing a rational divisor class of degree 1 or proving its non-existence

Let C be a curve of genus 2 of the form (2), with Jacobian J . We shall adopt the customary shorthand

notation {P1, P2} to denote the divisor class [P1 + P2 − ∞+ − ∞−], which is in J (K) when P1, P2 are

points on C and either P1, P2 are both K-rational or P1, P2 are quadratic over K and conjugate. We

regard ∞+,∞− ∈ C(K) when the coefficient of X6 is a square in K. Suppose that we have found the rank

of J (K) and generators for J (K)/2J (K), using the methods described in [30]. Let F (X) = F1(X) . . . Fm(X)

be the factorisation of F (X) into irreducible polynomials over K; for each i, let θi be a root of Fi(x) and let

Li = K(θi). Following p.49 of [10], we define the homomorphism

(5) µ : J (K) →
(
L∗1/(L

∗
1)

2 × . . .× L∗m/(L
∗
m)2

)
/˜,

: {(x1, y1), (x2, y2)} 7→ [(x1 − θ1)(x2 − θ1), . . . , (x1 − θm)(x2 − θm)],

where the equivalence relation ˜ is defined by

(6) [a1, . . . , am]˜[b1, . . . , bm] ⇐⇒ a1 = wb1, . . . , am = wbm, for some w ∈ K∗.

Since µ is a map to a Boolean group, its kernel clearly contains 2J (K). It also contains members of W given

by the following definition (see p.58 of [10]).

Definition 2. Let C : Y 2 = F (X) be as in (2) defined over K, with Jacobian J , and let O denote the

canonical divisor class on C, which is of degree 2. LetW denote the set of elements {P1, P2} in J (K) with the

following property: there is an effective divisor A0 of degree 3 which is either defined over K or defined over

a quadratic extension of K and linearly equivalent to its conjugate A′
0 and such that P1 +P2 +A0 +A′

0 ∈ 4O.

The following lemma is also from [10], pp.53–55, and describes the kernel of µ.

Lemma 4. Let µ be as in (5) and C,J ,W be as in Definition 2. The difference of any two members of W

is in 2J (K) and the kernel of µ consists precisely of the union of 2J (K) and W. The index of 2J (K) in

the kernel of µ is either 1 or 2. Suppose that W is not empty. Then W ⊂ 2J (K) precisely when at least

one of the following holds:

(i) F (X) has a root θ ∈ K.

(ii) The roots of F (X) can be divided into two sets of three roots, where the sets are either defined

over K (as wholes) or defined over a quadratic extension and conjugate over K.

It is easy to decide whether Criterion (i) of Lemma 4 is satisfied. There is a useful method for deciding

whether the more subtle Criterion (ii) is satisfied; namely, to construct the polynomial (see p.56 of [10])
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h(X) =
∏

(X − θiθjθk − θ`θmθn), where the product is taken over the ten unordered partitions of the six

roots θ1, . . . , θ6 of F (X) into two sets of three. Provided that h(X) is square free, Criterion (ii) of Lemma 4

is satisfied exactly when h(X) has a root in K. If h(X) is not square free, then one can compute F (x+ c)

for some c ∈ Z and derive the resulting new h(X); for some c = 1, . . . 45 this guarantees to give at least

one instance where h(X) is square free. It is therefore straightforward in practice to determine whether

Criterion (i) or (ii) is satisfied (see p.258 of [30]).

We now wish to establish a connection between the above theory and K-rational divisor classes of degree 1.

We first consider the easiest case, when Criterion (i) or (ii) of Lemma 4 is satisfied.

Lemma 5. Let C : Y 2 = F (X) be as in (2) defined over K, with Jacobian J , and suppose that either

Criterion (i) or (ii) of Lemma 4 is satisfied. Then there exists a K-rational divisor class of degree 1 on C.

Proof If Criterion (i) is satisfied then [(θ, 0)] is a K-rational divisor class of degree 1. If Criterion (ii) is

satisfied, then we can divide the roots of F (X) into {θ1, θ2, θ3} and {θ4, θ5, θ6}, where either both sets are

defined over K or they are defined over a quadratic extension K(
√
d) and conjugate. On the former case, the

divisor (θ1, 0)+(θ2, 0)+(θ3, 0) is defined overK, as must therefore be the divisor class [(θ1, 0)+(θ2, 0)+(θ3, 0)].

In the latter case, the divisors (θ1, 0) + (θ2, 0) + (θ3, 0) and (θ4, 0) + (θ5, 0) + (θ6, 0) are linearly equivalent,

since their difference is (θ1, 0)+(θ2, 0)+(θ3, 0)+(θ4, 0)+(θ5, 0)+(θ6, 0)−2(θ4, 0)−2(θ5, 0)−2(θ6, 0), which

is linearly equivalent to (θ1, 0) + (θ2, 0) + (θ3, 0) + (θ4, 0) + (θ5, 0) + (θ6, 0)− 3O, which is the divisor of the

function Y ; hence [(θ1, 0) + (θ2, 0) + (θ3, 0)] is equal to its K(
√
d) : K-conjugate [(θ4, 0) + (θ5, 0) + (θ6, 0)],

and so again [(θ1, 0)+ (θ2, 0)+ (θ3, 0)] is defined over K. In either case, [(θ1, 0)+ (θ2, 0)+ (θ3, 0)]−O is then

a K-rational divisor class of degree 1. �

Example 1. The curves C0j : Y 2 = (X3 +X + 1)(2X3 − 1) and C1b : Y 2 = −(X3 +X + 1)(X3 + 2X2 − 2)

have Q-rational divisor class of degree 1 given by

(7) R = [(θ1, 0) + (θ2, 0) + (θ3, 0)−∞+ −∞−], where θ1, θ2, θ3 are the roots of X3 +X + 1.

Since J0j(Q) has rank 0 and no nontrivial torsion, we have that C0j violates the Hasse principle.

Proof If there existed P ∈ C0j(Q), then [P ]− R would give a member of J0j(Q) distinct from the identity

element, a contradiction. �

The same argument applies to any of the 10 curves C0a, . . . , C0j listed at the beginning of Table 1 in the

appendix. Already we therefore have examples of Corollary 1.

Corollary 2. There exist, in genus > 1, absolutely simple examples of Corollary 1. Specifically, there exist

curves C of genus 2 defined over Q, which violate the Hasse principle, which have Q-rational divisor classes of

degree 1, and whose Jacobians J are absolutely simple and of Q-rank 0. If X(J ) is finite then C(AQ)Br = ∅

and so the Brauer-Manin obstruction explains the violations of Hasse principle for these curves.

We shall see in Sections 3,4 how to deal with curves like C1b, where the Jacobian has nonzero Q-rank.
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When neither (i) nor (ii) is satisfied, the existence or otherwise of a K-rational divisor class of degree 1 is

determined by whether or not the kernel of µ is larger than 2J (K).

Lemma 6. Let C : Y 2 = F (X) be as in (2) defined over K, with Jacobian J , and suppose that neither

Criterion (i) nor (ii) of Lemma 4 is satisfied. If the kernel of µ is 2J (K) then there does not exist a

K-rational divisor class of degree 1 on C. In particular, C(K) = ∅.

Proof Imagine there were a K-rational divisor class R of degree 1 on C. Then R + R − O ∈ J (K) is

clearly in the kernel of µ. However, the 16 members S of J (K) satisfying 2S = R +R −O are of the form

R + [(θi, 0)]−O or R + [(θi, 0) + (θj , 0) + (θk, 0)]− 2O, where θi, θj , θk are distinct roots of F (X). Neither

of these can be defined over K since neither Criterion (i) nor (ii) is satisfied; this gives that R + R − O is

not in 2J (K) even though it is in the kernel of µ, a contradiction. �

The above gives a slick way of showing in many cases that C(K) = ∅, once generators for J (K)/2J (K)

have been found. One merely has to run through all members of the finite set J (K)/2J (K) and check

whether any are in the kernel of µ (it is described in [30] how to check whether a given member of J (K) is

in the kernel of µ). If only the identity element is in the kernel of µ then we can immediately deduce the

nonexistence of a K-rational divisor class of degree 1 and that C(K) = ∅; if C(K) also has points everywhere

locally, then we can further deduce a violation of the Hasse principle which is due to the Brauer-Manin

obstruction – subject, as usual, to the finiteness of X(J ).

Example 2. The curve C3p : Y 2 = F3p(X) = −3(2X2 − 19)(2X2 + 4X + 5)(X2 + 8) has no Q-rational

divisor class of degree 1 and so C3p(Q) = ∅. The Jacobian J3p has Q-rank 3.

Proof First note that, after performing a 2-descent directly on J3p, one merely obtains a 2-Selmer bound

of 5 for the rank of J3p(Q), and one finds

(8)

T1 = {(
√

19
2 , 0), (−

√
19
2 , 0)}, T2 = {(

√
−8, 0), (−

√
−8, 0)},

D1 = {(i, 42 + 21i), (−i, 42− 21i)}, D2 = {(
√

2, 60 + 15
√

2), (−
√

2, 60− 15
√

2)},

D3 = {(
√

11
3 ,

70
3 + 35

√
11
3 ), (−

√
11
3 ,

70
3 − 35

√
11
3 )},

where T1, T2 generate the torsion group of J3p(Q), and D1, D2, D3 are independent points of infinite order

in J3p(Q), giving that 3 ≤ rank of J3p(Q) ≤ 5. On the other hand, applying (4) to C3p gives the curve

D3p : Y 2 = 3 · 8402X(2X2 + 24X + 19)(2X2 − 11X − 16); applying a 2-descent gives a 2-Selmer bound of 3

for the Q-rank of the Jacobian of D3p. Since this is Richelot-isogenous over Q to J3p, the rank of J3p must

also be 3 (and so #X(J3p)[2] > 1), with T1, T2, D1, D2, D3 generating all of J3p(Q)/2J3p(Q). Applying

the map µ of (5) to n1T1 + n2T2 + n3D1 + n4D2 + n5D3, for all 32 choices of ni = 0, 1, we find that only

the case n1 = n2 = . . . = n5 = 0 is mapped by µ to the identity, and so the kernel of µ is 2J3p(Q). Since

clearly the roots of F3p(X) satisfy neither Criterion (i) nor (ii) of Lemma 4, we can deduce from Lemma 6

that there does not exist a Q-rational divisor class of degree 1 on C3p, and so C3p(Q) = ∅. �
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The same argument applies to all of the rank 1 cases C1M , C1N , C1O, C1P , the rank 2 cases C2ϕ, C2χ, C2ψ, C2ω,

and the rank 3 cases C3n, C3o, C3p, given at the end of Tables 1, 3, 4 in the appendix. As with all of our curves,

these have been checked to have points everywhere locally. This gives us nontrivial examples of Lemma 2.

Corollary 3. There exist, in genus > 1, absolutely simple examples of Lemma 2. Specifically, there exist

curves C of genus 2 defined over Q, which violate the Hasse principle, which do not have Q-rational divisor

classes of degree 1, and whose Jacobians J are absolutely simple and of Q-ranks 1, 2 and 3. If X(J ) is

finite then C(AQ)Br = ∅ and so the Brauer-Manin obstruction explains the violations of the Hasse principle

for these curves.

The reverse direction of Lemma 6 is also straightforward.

Lemma 7. Let C : Y 2 = F (X) be as in (2) with Jacobian J , and suppose that neither Criterion (i) nor (ii)

of Lemma 4 is satisfied. If the kernel of µ is larger than 2J (K) then there exists a K-rational divisor class

of degree 1 on C.

Proof Let D ∈ J (K) be in the kernel of µ, but not in 2J (K). It follows from Lemma 4 that D ∈ W,

where W is as described in Definition 2, and so there must exist an an effective divisor A0 of degree 3 which is

either defined over K or defined over a quadratic extension of K and linearly equivalent to its conjugate A′
0.

Then R = [A0]−O is a K-rational divisor class of degree 1. �

In practice, given D in the kernel of µ but not in 2J (K), finding A0 is quite hard, and so the above

proof does not tell us how to find R, a K-rational divisor class of degree 1. Suppose that D = {P0, P
′
0},

where P0, P
′
0 ∈ C(K(

√
d)) for some quadratic extension K(

√
d) of K, and where P0 and P ′

0 are conjugates

over K. In this case, it is helpful first to consider the twist

(9) Ctw : Y 2 = dF (X), with Jacobian J tw.

Then there is the map

(10) tw : C → Ctw : (x, y) 7→ (x, y)tw = (x,
√
d y)

and the induced map on the Jacobian

(11) tw : J → J tw : {(x1, y1), (x2, y2)} 7→ {(x1, y1), (x2, y2)}tw = {(x1,
√
d y1), (x2,

√
d y2)}.

We note in passing that, for anyD ∈ J (K(
√
d)), we have (D+D′, (D−D′)tw) ∈ J (K)×J tw(K). Conversely,

for any (E1, E2) ∈ J (K) × J tw(K) we have E1 + Etw−1

2 ∈ J (K(
√
d)). Since the composition of these, in

either order, is duplication, we have that

(12) rank
(
J (K(

√
d))) = rank

(
J (K)) + rank

(
J tw(K)).

In order to compute the divisor class R, the following version of Lemma 7 was pointed out by Michael Stoll,

which gives a construction, provided that J (K)/2J (K) has been found and #J (K)[2] = 1.
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Lemma 8. Let C : Y 2 = F (X) be as in (2) defined over K, with Jacobian J . Suppose that #J (K)[2] = 1

and that there exists D which is in the kernel of µ but is not in 2J (K). When D = {P1, P2}, where

P1, P2 ∈ C(K), then R = [P1] or [P2] is a K-rational divisor class of degree 1. Otherwise D = {P0, P
′
0},

where P0, P
′
0 ∈ C(K(

√
d)) for some quadratic extension K(

√
d) of K, and where P0 and P ′

0 are conjugates.

In this case, {P−
0 , P

′
0}tw ∈ 2J tw(K) and {P−

0 , P
′
0}tw = 2E0 for some E0 ∈ J tw(K), where P−

0 denotes the

image of P0 under the hyperelliptic involution (x, y) 7→ (x,−y). Let D0 = Etw−1

0 . Then R = [P0] +D0 is a

K-rational divisor class of degree 1.

Proof The case D = {P1, P2}, where P1, P2 ∈ C(K), is trivial. Suppose now that we are in the second

situation D = {P0, P
′
0}, where P0, P

′
0 ∈ C(K(

√
d)) and are conjugates over K. It follows from Lemma 4

that D ∈ W, where W is as described in Definition 2, and so D ∈ Wd, where Wd is the same as W but

for the field K(
√
d). Also, {P0, P0} ∈ Wd and so, again by Lemma 4, the difference {P0, P

′
0} − {P0, P0} =

{P−
0 , P

′
0} ∈ 2J (K(

√
d)). Hence {P−

0 , P
′
0} = 2D0 for some D0 ∈ J (K(

√
d)). Now,

(13) ({P−
0 , P

′
0}tw)′ = {((P−

0 )tw)′, ((P ′
0)

tw)′} = {(P ′
0)

tw, (P−
0 )tw} = {P−

0 , P
′
0}tw,

so that {P−
0 , P

′
0}tw, and so also E0 = Dtw

0 , are in J tw(K), given that #J tw(K)[2] = #J (K)[2] = 1

and {P−
0 , P

′
0}tw = 2E0. Now, let R = [P0] +D0. Then D′

0 = (Etw−1

0 )′ = −(E′
0)

tw−1
= −D0, so that

(14) R′ = [P ′
0] +D′

0 = [P ′
0]−D0 = [P ′

0]− 2D0 +D0 = [P ′
0]− {P−

0 , P
′
0}+D0 = R,

so that R is defined over K, as required. �

Example 3. The curve C2U : Y 2 = F2U (X) = −2X6 − 2X5 + 2X4 +X3 − 2X2 −X + 2 has a Q-rational

divisor class of degree 1 given by

(15) R = [P0 + (0,
√

2)− (−1,−
√

2)], where P0 = (
7
17

+
4
17

√
2,−1888

4913
+

3465
4913

√
2).

Proof The Jacobian J2U has no nontrivial torsion over Q, and has Q-rank 2, with J2U (Q) generated by

(16)
D1 = {(− 1

6 + 1
6

√
13,− 7

54 + 19
54

√
13), (− 1

6 −
1
6

√
13,− 7

54 −
19
54

√
13)},

D2 = {(− 3
2 + 1

6

√
−3,− 13

6 −
13
18

√
−3), (− 3

2 −
1
6

√
−3,− 13

6 + 13
18

√
−3)}.

Applying the map µ of (5) toD1, D2, D1+D2, one finds that the kernel of µ containsD = D1+D2 = {P0, P
′
0},

where P0 is as in (15). Following the proof of Lemma 8, we define the curve Ctw
2U : Y 2 = 2F2U (X), with

Jacobian J tw
2U , and the maps tw : C2U → Ctw

2U and tw : J2U → J tw
2U as given in (9),(11) with d = 2.

Then {P−
0 , P

′
0}tw ∈ 2J tw

2U (Q) and one can either use a search or the inverse image of the morphism of mul-

tiplication by 2 to obtain E0 = {(0, 2), (−1, 2)} ∈ J tw
2U (Q) which satisfies {P−

0 , P
′
0}tw = 2E0. Furthermore,

E0 = Dtw
0 , where D0 = {(0,

√
2), (−1,

√
2)} ∈ J2U (Q(

√
2)) satisfies {P−

0 , P
′
0} = 2D0. Then, by (14) we see

that R = [P0] +D0 is defined over Q. Finally, R = [P0] +D0 = [P0 +(0,
√

2)+ (−1,
√

2)−∞+−∞−], which

is the same divisor class as [P0 + (0,
√

2)− (−1,−
√

2)]. �

If we are able to find J (K)/2J (K) and if #J (K)[2] = 1, then the above discussion gives an effective

procedure which either finds a K-rational divisor class of degree 1 or proves its nonexistence. First, one
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checks whether Criterion (i) or (ii) of Lemma 4 is satisfied, in which case one easily constructs a K-rational

divisor class of degree 1 using the roots F (X). If neither criterion is satisfied and the kernel of µ is the same

as 2J (K), then there is no such divisor class by Lemma 6. If neither criterion is satisfied and the kernel of µ

is larger than 2J (K), then there is such a divisor class, and Lemma 8 gives a way of constructing it. Note

that the step of the above proof where one finds E0 ∈ J tw(K) such that {P−
0 , P

′
0}tw = 2E0, can clearly be

effectively performed, either by finding the inverse images of E0 under the morphism of multiplication by 2,

or by using the explicit theory of heights in [14],[16],[29],[31]. We suppose that a modification of the proof

of Lemma 8 can be made to deal with the existence of nontrivial 2-torsion, but this was not required for any

of our examples.

3. The map P 7→ {P, P} = [P + P −∞+ −∞−]

Given a genus 2 curve C of the form (2) which is a suspected violation of the Hasse principle, one option is

to use the map P 7→ {P, P} = [P +P −∞+−∞−] from C to its Jacobian J . This is not quite an embedding,

since all Weierstrass points are mapped to the identity; one first needs to perform a straightforward check

that F (X) has no roots in K. If so, then determining C(K) is the same as finding all members of J (K) of

the form {P, P}. In the context of Chabauty’s Theorem (see [11],[12],[21]), where the rank of J (K) is 1, this

is discussed in [15]. We shall briefly discuss here the generalisation in arbitrary rank. Suppose that J (K)

has rank r with generators D1, . . . , Dr of the free part of J (K), so that any D ∈ J (K) can be written

(17) D = T + n1D1 + . . .+ nrDr,

for some T ∈ J (K)tors, the torsion group of J (K). First, fix a place of good reduction p and let kp be the

residue field of Kp; further, let J̃ and D̃i represent, respectively, the reductions mod p of J and Di. Define

(18) N
(p)
i = order of D̃i in J̃ (kp), E

(p)
i = N

(p)
i Di, i = 1, . . . r,

so that each E
(p)
i ∈ J (K) is in the kernel of the reduction map from J (K) to J̃ (kp). Suppose there

exists D = {(x1, y1), (x2, y2)} in the image of our map, so that D = {P, P}, for some P ∈ J (K). Then the

elements x1 + x2, x1x2 ∈ K satisfy

(19) (x1 + x2)2 − 4x1x2 = 0,

as do the x̃1, x̃2 of D̃. For each T ∈ J (K)tors, one can then see when this is satisfied for all possibilities

of (n1, . . . , nr) modulo (N (p)
1 , . . . , N

(p)
r ), giving a set of congruence conditions of the form

(20) (n1, . . . , nr) ∈ {(b(p)
1j
, . . . , b(p)

rj
) : j = 1, . . . , J (p)} mod (N (p)

1 , . . . , N (p)
r ).

If it turns out, for every T ∈ J (K)tors, that there exists a set of places p such that these congruences are

contradictory, then we can conclude that C(K) = ∅

Example 4. The curve C2ζ : Y 2 = 2X6 − 2X4 − X3 + X2 + X − 2 violates the Hasse principle and has

Jacobian J2ζ of Q-rank 2.
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Proof There is no nontrivial torsion in J2ζ(Q), and generators of J2ζ(Q) are given by

(21)
D1 = {(− 1

2 −
1
2 i,

3
2 i), (−

1
2 + 1

2 i,−
3
2 i)},

D2 = {( 19
34 + 1

34

√
−217,− 435

4913 −
639
9826

√
−217), ( 19

34 −
1
34

√
−217,− 435

4913 + 639
9826

√
−217)},

so that any D ∈ J2ζ(Q) satisfies D = n1D1 + n2D2 for some n1, n2 ∈ Z. Let C̃2ζ and J̃2ζ be the reductions

of C2ζ and J2ζ modulo 3. Then D1 and D2 reduce modulo 3 to D̃1 = D̃2 = {(1 + i, 0), (1− i, 0)} ∈ J̃2ζ(F3).

The orders of D1 and D2 are therefore N (3)
1 = N

(3)
2 = 2. It follows that any D = n1D1 + n2D2 ∈ J2ζ(Q)

must reduce modulo 3 either to the identity element when n1 + n2 is even, or to {(1 + i, 0), (1− i, 0)} when

n1 + n2 is odd. Now imagine that there exists P ∈ C2ζ(Q), which must reduce modulo 3 to P̃ = (0, 1)

or P̃ = (0, 2), since these are the only members of C̃2ζ(F3). Then {P, P} ∈ J2ζ(Q) would have to reduce

modulo 3 either to {(0, 1), (0, 1)} or to {(0, 2), (0, 2)} in J̃2ζ(F3), neither of which is the identity element

or {(1 + i, 0), (1− i, 0)}, a contradiction. Hence, no such P exists, giving that C2ζ(Q) = ∅, as required. �

It was fortunate in the above example that reduction modulo a single prime gave an immediate contra-

diction (that is, in the notation of (20), the set of congruences corresponding to the prime 3 was the empty

set); normally, it is necessary to combine information from different primes. A more typical example will be

given in the next section.

When finite field reductions fail to show the nonexistence of rational points on C, we can make use of

deeper local information by describing locally the multiples of E(p)
1 , . . . , E

(p)
r . We first write each ni as

ñ
(p)
i + m

(p)
i N

(p)
i , where ñ(p)

i denotes the reduction of ni mod N
(p)
i , so that any D ∈ J (K) can now be

written

(22) D = T + ñ
(p)
1 D1 + . . .+ ñ(p)

r Dr +m
(p)
i E

(p)
1 + . . .m(p)

r E(p)
r .

Since E(p)
1 , . . . , E

(p)
r are in the kernel of reduction, one can use the formal group (as in [15]) to find, for each

choice of T ∈ J (K)tors and ñ(p)
1 , . . . , ñ

(p)
r , a triple of power series,

(23) (ψ(p)
1 (m(p)

1 , . . . ,m(p)
r ), ψ(p)

2 (m(p)
1 , . . . ,m(p)

r ), ψ(p)
3 (m(p)

1 , . . . ,m(p)
r )),

equal to (1 : x1 + x2 : x1x2) for D in (22). Combining this with (19) gives a power series

(24) ψ
(p)
2 (m(p)

1 , . . . ,m(p)
r )2 − ψ

(p)
1 (m(p)

1 , . . . ,m(p)
r ) ψ(p)

3 (m(p)
1 , . . . ,m(p)

r ) = 0,

which gives conditions on m
(p)
1 , . . . ,m

(p)
r modulo ps, where p = char(kp) is a rational prime. These induce

congruence conditions of the form

(25) (n1, . . . , nr) ∈ {(`(p)
1j
, . . . , `(p)

rj
) : j = 1, . . . , J (p)} mod (ps, . . . , ps),

where s can be made arbitrarily large, depending on the accuracy our computations. For s ≥ 1 we can regard

this as ‘deep’ information for a particular prime, as opposed to the ‘flat’ information of (20). In the special

case when r = 1 Chabauty’s theorem applies and this gives us a bound on #C(K), as described in [15].

It is clear that no two deep conditions of the form (25) can ever give a contradiction for different primes,

whereas several flat conditions might do so. A more subtle idea is that the flat and deep information might
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be usefully combined, when the N (p)
i for one prime has a prime factor at the place of the deep information.

We shall give examples of these types in the next section.

4. The embedding P 7→ [P ]−R, where R is a rational divisor class of degree 1

The map of the previous section has clear inefficiencies due to the fact that it is not an embedding. In

particular, any set of primes modulo which there are Weierstrass points can never show C(K) to be empty,

since the identity element in J (K) will be of the form {P, P} modulo all such primes. This can often mean

that one needs to compute modulo much higher primes than are computationally viable. Furthermore, for

the purposes of investigating the Brauer-Manin obstruction and applying Theorem 1, we wish to use an

actual embedding of C in J . Embeddings that have previously been employed in the literature are either

of the form P 7→ [P ] − [P0], for some fixed P0 ∈ C(K) or they rely on J being reducible and having an

elliptic curve as a factor [23]. Neither of these are available in our case, since we wish our methods to apply

when C(K) is empty and when J is absolutely simple. If the methods in Section 2 establish that there

is no K-rational divisor class of degree 1; then, as we have seen, C(K) is empty and the Brauer-Manin

obstruction is the only obstruction to the Hasse principle. Suppose instead that the methods of Section 2

establish that there does exist a K-rational divisor class R of degree 1 and compute it. Then we can use

P 7→ [P ] − R to embed C into J . We mention the following trivial result merely to clarify why such an

embedding is guaranteed to be at least as strong as that of the last section.

Lemma 9. Let R be a K-rational divisor class of degree 1. Suppose that D ∈ J (Kp) is of the form [P ]−R,

for some P ∈ C(Kp). Then 2D + 2R−O is of the form {P, P}.

Proof Since D = [P ]−R, we must have 2D + 2R−O = [P + P ]−O = {P, P}. �

The above tells us that a genuine embedding like P 7→ [P ]−R will be at least as successful as the methods

of the previous section; as we shall soon see, in many cases it is an improvement. We first need to describe

the embedding explicitly, which is simply a matter of algebra. One takes a general point P = (u, v) and

performs the group law in J (K) to compute the representative of the degree 0 divisor class [P ]− R in the

form D = {(x1, y1), (x2, y2)}, giving x1, y1, x2, y2 as functions of u, v. This induces a polynomial relation

satisfied between x1, y1, x2, y2, which will perform the same role as (19) in the previous section.

To give a general idea of the algebra involved, we illustrate this first for the simplest case, when our

curve C : Y 2 = F (X) is such that F (X) is the product of conjugate cubics. In this case, Criterion (ii) of

Lemma 4 is satisfied, and so C has a K-rational divisor class.

Lemma 10. Let C be a curve of genus 2 of the form

(26) C : Y 2 = G(X)H(X) = (g3X3 + g2X
2 + g1X + g0)(h3X

3 + h2X
2 + h1X + h0),

where G(X),H(X) are either both defined over K or are quadratic and conjugate over K, so that the

divisor class R = [(θ1, 0) + (θ2, 0) + (θ3, 0) − ∞+ − ∞−] is K-rational and of degree 1, where θ1, θ2, θ3
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are the roots of G(X). Let ζ be the embedding of C into J defined by (u, v) 7→ [(u, v)] − R, and suppose

that D = {(x1, y1), (x2, y2)} ∈ ζ(C(K)). Then x1, x2 satisfy

(27)
(g3h2 − g2h3)(x1x2)2 + (g3h1 − g1h3)x1x2(x1 + x2) + (g3h0 − g0h3)(x1 + x2)2

+(g2h1 − g1h2 + g0h3 − g3h0)x1x2 + (g2h0 − g0h2)(x1 + x2) + (g1h0 − g0h1) = 0.

Proof Let D = ζ(P ), where P = (u, v) ∈ C(K). Then D = {(u, v), (θ1, 0)} + {(θ2, 0), (θ3, 0)}. First note

that the function G(u)Y − vG(X) intersects C at (u, v), (θ1, 0), (θ2, 0), (θ3, 0), and at the roots x1, x2 of the

quadratic in X given by q2(u)X2 + q1(u)X + q0(u), where

(28)
q2(u) = (g3h2 − g2h3)u2 + (g3h1 − g1h3)u+ g3h0 − g0h3,
q1(u) = (g3h1 − g1h3)u2 + (g3h0 − g0h3 + g2h1 − g1h2)u+ g2h0 − g0h2,
q0(u) = (g3h0 − g0h3)u2 + (g2h0 − g0h2)u+ g1h0 − g0h1.

From these, we obtain x1 + x2 = −q1(u)/q2(u) and x1x2 = q0(u)/q2(u). The relation (27) is then obtained

by taking the resultant of (x1 + x2)q2(u) + q1(u) and (x1x2)q2(u)− q0(u) with respect to u. �

Note that (27) is weaker than the condition that D ∈ ζ(C(K)); the condition equivalent to D ∈ ζ(C(K))

combines (27) with equations involving y1, y2. When the K-rational degree 1 divisor class has been obtained

using Lemma 8, the same idea applies for describing the embedding explicitly.

Example 5. Let C2U and R be as in Example 3, and let J2U be the Jacobian of C2U . Define the embedding

ζ : C2U −→ J2U : P 7→ [P ]−R. Then

(29)

ζ
(
(u, v)

)
= {(x1, y1), (x2, y2)}, where x1, x2 are the roots of
(4u4+8u3−8u2−12u+17)X2 + (4u4+2u3−12u2+7u−4v+10)X − (6u4+10u3−15u2+4uv−12u+4v+7),
and y1 = L(x1), y2 = L(x2), where

L(X) = 32u8+64u7−24u5v−40u5−40u4v−96u4+128u3v+48u3+88u2v+48u2−158uv−122u+50v+62
16u8+64u7−224u5+8u4+464u3−128u2−408u+289

X

+−16u8+32u7+160u6+8u5v−120u5+20u4v−284u4−40u3v+88u3+96u2v−16u2+198uv−94u−239v+62
16u8+64u7−224u5+8u4+464u3−128u2−408u+289

.

Proof Recall that R = [P0 + (0,
√

2) − (−1,−
√

2)], where P0 is as in (15). So, our embedding is given

by ζ((u, v)) = [(u, v)] − R = {(u, v), (−1,−
√

2)} + {P−
0 , (0,−

√
2)}, where as usual P−

0 is the hyperelliptic

involute of P0. One now merely performs the group law on J2U , as follows. Let Γ(X) be the unique cubic

polynomial such that Y = Γ(X) passes through (u, v), (−1,−
√

2), P−
0 , (0,−

√
2). Then Y = Γ(X) and C2U

have six points of intersection, namely (u, v), (−1,−
√

2), P−
0 , (0,−

√
2) and two further points Q1, Q2. The

points (x1, y1), (x2, y2) in (29) are then the hyperelliptic involutes of Q1, Q2. �

The techniques available, both for using finite fields to obtain congruence conditions (the flat information)

and for working with local power series (the deep information) are now precisely the same as described in

the previous section, but adapted so that equations such as (27) now perform the role previously performed

by (19). The appendix provides pointers to the programs written to adapt these techniques. Armed with

our explicit descriptions of the Q-rational degree 1 divisor class R and the embedding ζ : P 7→ [P ]− R, we

are now in a position to perform applications of the Brauer-Manin Obstruction, using the description (1)

in Theorem 1. The following example shows how using a genuine embedding of the form P 7→ [P ]− R can

strictly improve on the P 7→ {P, P} = [P + P −∞+ −∞−] map of the previous section.

Example 6. Let C2U and R be as in Example 3, and let J2U be the Jacobian of C2U . Then J2U (Q) has

rank 2 and C2U (Q) = ∅.
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Proof Recall from Example 3 that the Jacobian J2U has no nontrivial torsion over Q, and has Q-rank 2,

with J2U (Q) generated by the D1, D2 given in (16). Let R be the Q-rational degree 1 divisor class given

in (15), and as usual define the embedding ζ : C2U −→ J2U : P 7→ [P ] − R. Since ζ is defined over Q,

any P ∈ C2U (Q) must map to ζ(P ) ∈ J2U (Q), and so ζ(P ) = n1D1 + n2D2, for some n1, n2 ∈ Z.

First, let C̃2U , J̃2U , D̃1, D̃2, R̃, ζ̃ be the reductions of C2U ,J2U , D1, D2, R, ζ modulo 3, in particular, the divi-

sor class R̃ = [(−1− i, 1)+(0, i)− (−1,−i)]. Then C̃2U (F3) contains only the points: (1, 1), (1,−1),∞+,∞−,

where the points ∞+,∞− refer to the branches at infinity where Y/X3 is 1,−1, respectively, modulo 3.

Any P ∈ C2U (Q) must have P̃ equal to one of these, and so the possibilities for ζ̃(P ) = ζ̃(P̃ ) = [P̃ ] − R̃

can be obtained by computing ζ̃((1, 1)), ζ̃((1,−1)), ζ̃(∞+) and ζ̃(∞−). For example, the image of (1, 1)

can be computed as ζ̃((1, 1)) = [(1, 1)] − R̃ = {(1, 1), (−1 − i,−1)} + {(0,−i), (−1,−i)} in J̃2U (F3). We

perform this sum in J̃2U (F3) by finding y = −(x3 + (1 + i)x2 + ix+ i), defined over F3(i), which meets C̃2U

at the points (1, 1), (−1 − i,−1), (0,−i), (−1,−i), together with the additional two points (1, 1),∞−. It

follows that {(1, 1), (−1 − i,−1)} + {(0,−i), (−1,−i)} + {(1, 1),∞−} is the identity in J̃2U (F3) and so

ζ̃((1, 1)) = −{(1, 1),∞−} = {(1,−1),∞+}. Similarly, one can compute ζ̃((1,−1)) = {(−1+i, 1), (−1−i, 1)},

ζ̃(∞+) = {(1 + i,−i), (1− i, i)}, and ζ̃(∞−) = {(1,−1), (1,−1)}. In summary, any P ∈ C2U (Q) must satisfy

(30) ζ̃(P ) = {(1,−1),∞+}, {(−1 + i, 1), (−1− i, 1)}, {(1 + i,−i), (1− i, i)} or {(1,−1), (1,−1)}.

Further, the reductions of D1 and D2 modulo 3 are D̃1 = {(1, 1),∞+} and D̃2 = {∞+,∞+}. On taking

multiples of D̃1, D̃2, we find that 13D̃1 and 13D̃2 are the identity in J̃2U (F3), so that the orders of D̃1 and D̃2

are N (3)
1 = N

(3)
2 = 13. The other multiples of D̃2 are

1D̃2 = {∞+,∞+}, 2D̃2 = {(−1 + i,−1), (−1− i,−1)}, 3D̃2 = {(1,−1),∞−},

4D̃2 = {(1,−1),∞+}, 5D̃2 = {(1 + i, i), (1− i,−i)}, 6D̃2 = {(1, 1), (1, 1)},

7D̃2 = {(1,−1), (1,−1)}, 8D̃2 = {(1 + i,−i), (1− i, i)}, 9D̃2 = {(1, 1),∞−},

10D̃2 = {(1, 1),∞+}, 11D̃2 = {(−1 + i, 1), (−1− i, 1)}, 12D̃2 = {∞−,∞−}.

The only overlap between the above list and (30) are the multiples 4D̃2, 7D̃2, 8D̃2, 11D̃2. Since we also

have D̃1 = 10D̃2, we see that n1D̃1+n2D̃2 is a member of (30) exactly when 10n1+n2 ≡ 4, 7, 8 or 11 (mod 13).

Since ζ(P ) = n1D1 + n2D2 for some n1, n2 ∈ Z, we must also have that ζ̃(P ) = n1D̃1 + n2D̃2, and so we

need only consider n1, n2 satisfying this condition. Unlike Example 4 we have not shown an immediate

contradiction, but we have found congruence conditions which must be satisfied by n1, n2.

(31) P ∈ C2U (Q) ⇒ ζ(P ) = n1D1 + n2D2, some n1, n2 ∈ Z with 10n1 + n2 ≡ 4, 7, 8 or 11 (mod 13).

If we now perform the above process, but with reductions modulo 19, we find that D̃1 has order 26 and D̃2

has order 104, with D̃1 = 36D̃2. The only multiples of D̃2 which intersect with the possible values of ζ̃(P )

are 23D̃2, 44D̃2, 83D̃2, 88D̃2, so that

(32) P ∈ C2U (Q) ⇒ ζ(P ) = n1D1 + n2D2, some n1, n2 ∈ Z with 36n1 + n2 ≡ 23, 44, 83 or 88 (mod 104).
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However, reducing this last equation modulo 13 gives that 10n1 + n2 must be 5 or 10 (mod 13), which

contradicts (31). Hence C2U (Q) = ∅, as required. �

It is apparent in combining the above sets of congruences that not all of the information is needed,

merely the information after reducing all sets of congruences modulo 13, which we refer to as smoothness

bound B(13). For example, in Table 3 in the appendix, we summarise the entry for C2U as: Fl(3, 19),B(13),

to indicate that the congruence information obtained at J̃2U (F3) and J̃2U (F19) is sufficient, even after further

reducing all sets of congruences modulo 13. This can be important for examples such as C2T , C2µ and C2φ,

where five primes are required, and where computing the intersections of the congruence sets would be time

consuming without a smoothness bound. In writing the programs associated to these computations, care

has been taken to quotient out redundant information iteratively as the sets of congruence conditions are

intersected.

Example 6 illustrates how the genuine injection ζ can improve upon the P 7→ {P, P}map of Section 3. Had

we applied the technique of Example 4 to the curve C2U the congruence conditions obtained from J̃2U (F3)

and J̃2U (F19) would not have been contradictory. Indeed, the collection of congruence conditions using all

primes of good reduction below 100 would still be insufficient. Of the 67 curves resolved by this method,

the improvement using ζ was computationally crucial for 24 curves, in the sense that their status could be

changed from Unresolved to Resolved using primes of good reduction up to 100. Even for the remaining 43

curves solved by either approach, using ζ reduced the size of the primes required for a further 13 curves.

The same argument as in Example 6 applies to any of the 38 curves C1a, . . . , C1L in Table 1, each with

Jacobian of Q-rank 1, the 28 curves C2T , . . . , C2φ in Table 3, each with Jacobian of Q-rank 2, and the curve

C3m in Table 4 with Jacobian of Q-rank 3, given in the appendix. Since, as always, we have checked that all

of these curves have points everywhere locally and have absolutely simple Jacobians, we now have nontrivial

examples of Theorem 1.

Corollary 4. There exist, in genus > 1, absolutely simple examples of Theorem 1 using (1) to show

that C(Q) = ∅. Specifically, there exist curves C of genus 2 defined over Q, which violate the Hasse prin-

ciple, which have Q-rational divisor classes of degree 1, and whose Jacobians J are absolutely simple and

of Q-rank 1, 2 and 3. If X(J ) is finite then C(AQ)Br = ∅ and so the Brauer-Manin obstruction explains

the violations of Hasse principle for these curves.

Note that in Example 6, we have only used the flat information, by which we mean the information

obtained from (1) after projecting to the residue fields kp of Kp at the finite places. Of course, useful

information can also be obtained p-adically beyond that of merely the projection to the residue fields – that

is to say, the deep information. Indeed, one can sometimes combine flat information from one prime and the

deep information from another prime. This is done the following example at two primes, where merely the

flat information would be insufficient.
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Example 7. Let C1b and R be as in Example 1, and let J1b be the Jacobian of C1b. Then J1b(Q) has rank 1

and C1b(Q) = ∅.

Proof The Jacobian J1b has no nontrivial torsion over Q, and has Q-rank 1, with J1b(Q) generated by

D1 = {(− 13
34 + 1

34

√
101, 7207

9826 + 599
9826

√
101), (− 13

34 −
1
34

√
101, 7207

9826 −
599
9826

√
101)}. Let R be the Q-rational

degree 1 divisor class given in (7), and as usual define the embedding ζ : C1b −→ J1b : P 7→ [P ]−R. Since ζ

is defined over Q, any P ∈ C1b(Q) must map to ζ(P ) ∈ J1b(Q), and so ζ(P ) = n1D1, for some n1 ∈ Z.

First, let C̃1b, J̃1b, D̃1, R̃, ζ̃ be the reductions of C1b,J1b, D1, R, ζ modulo 3, in particular, the divisor class

R̃ = [(1, 0) + (1 + i, 0) − (1 − i, 0)]. Then C̃1b(F3) contains only the point: (1, 0); any P ∈ C1b(Q) must

have P̃ = (1, 0), and so the only possibility for ζ̃(P ) = ζ̃(P̃ ) = [P̃ ] − R̃ is ζ̃((1, 0)) = {(1 + i, 0), (1 − i, 0)}.

In summary, any P ∈ C1b(Q) must satisfy

(33) ζ̃(P ) = {(1 + i, 0), (1− i, 0)} in J̃1b(F3).

Further, the reduction of D1 modulo 3 is D̃1 = {(−1 + i, 1− i), (−1− i, 1 + i)}, with multiples given by

1D̃1 = {(−1 + i, 1− i), (−1− i, 1 + i)}, 2D̃1 = {(1 + i, 0), (1− i, 0)},

3D̃1 = {(−1 + i,−1 + i), (−1− i,−1− i)}, 4D̃1 = identity,

so that the order of D̃1 is N (3)
1 = 4. The only overlap between the above list and (33) is 2D̃1, giving

(34) P ∈ C1b(Q) ⇒ ζ(P ) = n1D1, some n1 ∈ Z with n1 ≡ 2 (mod 4).

If we now perform the above process, but with reductions modulo 37, we find that the reduction of D1

modulo 37 has order N (37)
1 = 27, and imitating the above computations gives

(35) P ∈ C1b(Q) ⇒ ζ(P ) = n1D1, some n1 ∈ Z with n1 ≡ 7 or 20 (mod 27).

Unlike Example 6 we do not have a contradiction from the above flat information at our two primes p = 3, 37,

and indeed no contradiction was ever possible since the orders of the reductions of D1 are 4 and 27, which

are coprime. However, the latter order suggests that we should now go back to the case p = 3, and consider

the deep information there. From (34), we know that n1 = 2 + 4m1, for some m1 ∈ Z. Let E1 = 4D1.

Then E1 is in the kernel of reduction modulo 3, and so the formal group of J1b can be used to describe

n1D1 = (2+4m1)D1 = 2D1 +m1E1 in terms of power series in m1 defined over Z3, using the method in [15].

Computing (23) modulo 34 gives the following initial parts of the power series.

(36)
There exist ψ1(m1), ψ2(m1), ψ3(m1) ∈ Z3[[m1]], congruent (mod 81), respectively, to
2 + 72m1 + 54m2

1 + 54m3
1, 58 + 27m1 + 18m2

1 + 54m3
1, 37 + 45m2

1, such that, for all m1 ∈ Z,
(2 + 4m1)D1 = {(x1, y1), (x2, y2)} ⇒ (ψ1(m1), ψ2(m1), ψ3(m1)) = (1, x1 + x2, x1x2).

To be in ζ(C1b(Q)), we know that (1, x1 + x2, x1x2) satisfy (27) which, for our curve C1b specialises to

the equation −2(x1x2)2 + x1x2(x1 + x2) + 3(x1 + x2)2 − x1x2 + 2(x1 + x2) + 2 = 0, and so our ψi(m1)

must satisfy −2ψ3(m1)2 + ψ2(m1)ψ3(m1) + 3ψ2(m1)2 − ψ1(m1)ψ3(m1) + 2ψ1(m1)ψ2(m1) + 2ψ1(m1)2 = 0.

Substituting (36) into this last equation and reducing modulo 81 gives 27(1 +m2
1 +m3

1) ≡ 0 (mod 81). In
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summary, the deep information at p = 3 tells us that

(37) P ∈ C1b(Q) ⇒ ζ(P ) = n1D1, some n1 = 2 + 4m1 with m1 ∈ Z and 27(1 +m2
1 +m3

1) ≡ 0 (mod 81).

Now, this last equation implies 1 +m2
1 +m3

1 ≡ 0 (mod 3), which is only satisfied when m1 ≡ 1 (mod 3), and

so n1 = 2 + 4m1 ≡ 0 (mod 3). But this contradicts (35), and so the deep information at p = 3 contradicts

the flat information at p = 37. Hence C1b(Q) = ∅, as required. �

5. Summary of results

As has been mentioned, an open question (see [27], p.133) in this context is as follows.

Question 1. Is the Brauer-Manin obstruction the only obstruction to the Hasse principle for smooth pro-

jective curves?

We do not intend to claim any evidence in either direction; our aim here has been methodological: to

show how to implement the obstruction in practice, and to find new types of examples with absolutely simple

Jacobians, proving Corollaries 2,3,4. However, it is worth making a few general observations based on these

experimentations. The use of only flat information (as in Example 6) places us at the mercy of whether

there are nontrivial common factors between the orders of the generators modulo different primes; the above

Example 7 shows the potential benefit of combining flat and deep information, since there is a guarantee

that we can construct sets of congruence conditions whose moduli have nontrivial common factors. In that

example, the order of the reduction of D1 at p = 37 was 27, which was guaranteed in advance to have a

nontrivial common factor with the modulus of the deep information at p = 3. However it should also be

confessed that for none of our examples did the use of deep information change the status of the curve; even

curve C1b in Example 7 can be resolved with purely flat information at the prime p = 5. This gives rise to

an associated question.

Question 2. Is the flat information of the Brauer-Manin obstruction the only obstruction to the Hasse

principle for smooth projective curves?

By this we mean, when there does exist a rational divisor class of degree 1, is the technique used in

Example 6 always sufficient? In our computations, this was certainly the case for all rank 1 examples, and so

we can claim some mild evidence for Question 2, at least for genus 2 and rank 1. For these 38 cases, there was

a strong bias towards success using small primes, with 34 of the 38 curves requiring only the flat information

from primes up to 20. The remaining 4 stubborn curves C1L, C1s, C1y, C1p then required the information

up to 23, 29, 53, 67, respectively. The rank 2 cases also showed a similar reduced benefit per prime as the

size of the primes increase. It is difficult to know to what extent our remaining unresolved examples might

constitute evidence against Question 1; the mere fact that we are not able to resolve a given curve using

Brauer-Manin obstruction information from primes up to some bound, tells us nothing. It is always possible

that the use of a further prime beyond our bounds of computation might show that C(Q) = ∅. It is also
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possible in principle that C(Q) 6= ∅ for some of our unresolved curves; however, since we know generators

for J (Q) in each case, we were able to run through linear combinations of generators (whose heights increase

exponentially in the multiples) and check that these are not in the image of ζ. One can then check that there

are no members of C(Q) up to a much larger naive height bound than a direct search on the curve. In this

way, it can easily be checked that none of our unresolved curves have a Q-rational point (x, y), with x = a/b,

a, b ∈ Z, gcd(a, b) = 1 and |a|, |b| < 1030.

If it turns out that the Brauer-Manin obstruction does not explain all violations of the Hasse principle on

curves, then it is natural to ask what other obstructions might be available which are stronger. One possibility

is in the covers literature, such as [5],[6],[7], where techniques to try to find all of C(Q) are described,

which involve towers of 2-covers, some abelian and some nonabelian. If, on further more comprehensive

experimentations, there seem to arise likely negative examples to Question 1, then the techniques in [5],[6],[7]

(also applied in [17],[18],[19]) provide an alternative route for resolving such curves; in such cases, the hard

part of the problem would then be to prove that the Brauer-Manin obstruction fails. This contrasts with

the literature on diagonal surfaces (such as [4],[32]), where the computation of at least the arithmetic part

of the Brauer-Manin obstruction is a finite problem.

Appendix: Tables of curves

The following tables give the current status of our 145 curves of genus 2. For each curve, it was checked

directly that there exists a point over R and Qp, for every prime p < 13 and every prime of bad reduction.

For any prime p ≥ 13 of good reduction, the Hasse-Weil bound |#C̃(Fp) − (p + 1)| ≤ 2g
√
p, where g = 2 is

the genus [33], shows that there is automatically at least one point over the finite field Fp, which by Hensel’s

Lemma must lift to a point on C over Qp. Therefore, all of the following curves have been checked to have

points everywhere locally. Furthermore, all of the curves have been checked not to have any Q-rational

point (x, y), with x = a/b, a, b ∈ Z, gcd(a, b) = 1 and |a|, |b| < 1030.

The Jacobian of the curve C2T in Table 3 is not absolutely simple, since there is a map

(X,Y ) 7→ (−((X + i)/(X − i))2, 8Y/(X − i)3)

from C2T to the elliptic curve Y 2 = (4− 3i)X3 +(60− 23i)X2 +(60+23i)X +(4+3i). The Jacobian of C2T

is isogenous to the Weil restriction of scalars from Q(i) to Q of this elliptic curve. For the other curves,

the technique in [28] tells us that the Jacobian is absolutely simple if any prime p of good reduction can be

found such that a2
p− 4(bp− 2p) is not a square in Q and X4− bp−2p

p X3 + a2
p−2bp+2p

p X2− bp−2p
p X +1 6= 0 for

all X equal to an nth root of unity, for n ∈ {1, 2, 3, 4, 5, 6, 8, 10, 12}. Here, ap and bp represent the standard

quantities ap = p+ 1−#C̃(Fp) and bp = 1
2#C̃(Fp2) + 1

2 (#C̃(Fp))2 − (p+ 1)#C̃(Fp) + p. We found that, for

all curves except C2T , this condition was satisfied for at least one of p = 3, 5, 7, 11, 13, 17, 19. Therefore, all

curves except C2T have been proved to have Jacobians which are absolutely simple, that is to say, which are

geometrically non-isogenous to the product of elliptic curves.
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The tables are sorted in order of increasing rank of J (Q). In each row, the left hand entry gives the

name of the curve; this is followed by the equation of the curve, the rank of J (Q) and the status of the

curve. When the status is listed as Unresolved we do not know whether there exists a member of C(Q).

The status #J (Q) = 1 ⇒ C(Q) = ∅ means that the rank of J (Q) is 0 and there is no nontrivial torsion;

it can then be shown that C(Q) = ∅, using the same argument given for C0j in Example 1. The status No

Deg-1-Div-Class/Q ⇒ C(Q) = ∅, means that C(Q) has been proved to be empty by showing the nonexistence

of a Q-rational divisor class of degree 1, in the style of Example 2. When the status is listed in the form

Fl(p1, . . . , pk),B(N) ⇒ C(Q) = ∅, this means that there does exist a Q-rational divisor class R of degree 1,

and that the flat information from ζ : P 7→ [P ] − R at p1, . . . , pk proves that C(Q) = ∅, in the style

of Example 6. The entry B(N) gives a smoothness bound which eases the computations; it indicates that

the combined flat congruence information is sufficient even after reducing all sets of congruences modulo N .

Of course, the choice of R is not unique; however, any two Q-rational divisors classes R,R′ of degree 1

satisfy R − R′ ∈ J (Q). Replacing R by R′ in the definition of ζ merely translates the computations by a

fixed member of J (Q) and does not affect whether the resulting congruences are contradictory. Therefore,

the choice of R does not affect the result of the computation.

More details of the computations have been placed in files available at

www.maths.ox.ac.uk/̃ flynn/genus2/manin/

These include more information about each curve, such as sets of generators for each J (Q), and a range of

programs written in magma [20], which perform computations such as those in Example 6. Some attempts

at efficiency have been made in these programs, since a purely naive combining of the sets of congruence

information would rapidly explode. In particular, out of our entire set S of congruences, we iteratively focus

on the current highest prime power pr which occurs as a factor of more than one modulus, and combine the

associated subset T of congruences (whose moduli are divisible by pr) into a single congruence modulo m,

say; once this has been completed, it is safe to reduce this congruence modulo m/p, since no other modulus

will now be divisible by pr. We then adjust S by replacing all of T by this single congruence. The new

version of S will not have congruences with moduli divisible by pr and so we can repeat the process, but

concentrating on the new (and smaller) largest prime power dividing more than one modulus.

There are also independent subroutines available at the above site, which perform the prerequisite pro-

cesses – for example, computing a Q-rational divisor class R of degree 1, when given D ∈ kerµ which is not

in 2J (Q), as in Example 3, and computing the corresponding map ζ, as in (29). Examples are given in

the files where the programs are used to show that C(Q) = ∅ by computing the Brauer-Manin information.

By imitating these, it should be straightforward for readers to use these programs to compute their own

examples. The programs make regular use of routines (such as CosetIntersection) by Nils Bruin, which will

appear in Magma 2.11, and are included in the routine library [8].
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C Equation Rk Status
C0a Y 2 = −(X3 +X2 + 1)(2X3 +X − 2) 0 #J0a(Q) = 1 ⇒ C0a(Q) = ∅
C0b Y 2 = −(X3 +X2 + 1)(2X3 −X − 2) 0 #J0b(Q) = 1 ⇒ C0b(Q) = ∅
C0c Y 2 = −(X3 +X2 + 1)(X3 +X2 +X − 2) 0 #J0c(Q) = 1 ⇒ C0c(Q) = ∅
C0d Y 2 = −(X3 −X − 1)(X3 + 2X2 + 2) 0 #J0d(Q) = 1 ⇒ C0d(Q) = ∅
C0e Y 2 = −(X3 +X2 − 1)(X3 −X + 2) 0 #J0e(Q) = 1 ⇒ C0e(Q) = ∅
C0f Y 2 = −(X3 +X2 + 1)(X3 −X − 2) 0 #J0f (Q) = 1 ⇒ C0f (Q) = ∅
C0g Y 2 = (X3 − 2X − 2)(2X3 − 2X2 + 2X − 1) 0 #J0g(Q) = 1 ⇒ C0g(Q) = ∅
C0h Y 2 = (X3 −X2 − 1)(2X3 −X + 2) 0 #J0h(Q) = 1 ⇒ C0h(Q) = ∅
C0i Y 2 = (X3 −X2 − 1)(2X3 +X2 −X + 1) 0 #J0i(Q) = 1 ⇒ C0i(Q) = ∅
C0j Y 2 = (X3 +X + 1)(2X3 − 1) 0 #J0j(Q) = 1 ⇒ C0j(Q) = ∅
C1a Y 2 = −(X2 +X − 1)(X4 +X3 +X2 +X + 2) 1 Fl(3),B(2) ⇒ C1a(Q) = ∅
C1b Y 2 = −(X3 +X + 1)(X3 + 2X2 − 2) 1 Fl(5),B(3) ⇒ C1b(Q) = ∅
C1c Y 2 = −X6 −X5 − 2X4 − 2X3 −X2 + 2X + 2 1 Fl(7, 13),B(77) ⇒ C1c(Q) = ∅
C1d Y 2 = −X6 −X5 − 2X4 − 2X3 +X2 − 2X + 2 1 Fl(3, 11),B(7) ⇒ C1d(Q) = ∅
C1e Y 2 = −(X3 +X2 + 2)(X3 +X − 1) 1 Fl(5, 7, 19),B(30) ⇒ C1e(Q) = ∅
C1f Y 2 = −X6 −X5 −X4 +X2 −X + 2 1 Fl(11),B(20) ⇒ C1f (Q) = ∅
C1g Y 2 = −X6 −X5 −X3 −X2 −X + 2 1 Fl(3),B(2) ⇒ C1g(Q) = ∅
C1h Y 2 = −X6 −X5 +X4 +X3 + 2X2 −X + 2 1 Fl(19),B(11) ⇒ C1h(Q) = ∅
C1i Y 2 = −X6 −X4 − 2X3 − 2X2 +X + 2 1 Fl(19),B(11) ⇒ C1i(Q) = ∅
C1j Y 2 = −(X3 +X − 1)(X3 + 2) 1 Fl(5, 13),B(3) ⇒ C1j(Q) = ∅
C1k Y 2 = 2X6 − 2X5 − 2X4 +X3 +X2 −X − 1 1 Fl(5, 7),B(19) ⇒ C1k(Q) = ∅
C1l Y 2 = (2X3 − 2X2 + 1)(X3 −X − 1) 1 Fl(3, 5),B(4) ⇒ C1l(Q) = ∅
C1m Y 2 = 2X6 − 2X5 − 2X4 +X3 + 2X2 + 2 1 Fl(11, 13),B(3) ⇒ C1m(Q) = ∅
C1n Y 2 = (X3 −X2 + 1)(2X3 −X − 2) 1 Fl(3, 5),B(4) ⇒ C1n(Q) = ∅
C1o Y 2 = 2X6 − 2X5 − 2X3 + 2X2 − 2X − 2 1 Fl(19),B(5) ⇒ C1o(Q) = ∅
C1p Y 2 = 2X6 − 2X5 +X4 − 2X3 − 2X2 − 2X − 2 1 Fl(67),B(250) ⇒ C1p(Q) = ∅
C1q Y 2 = (X3 −X2 − 1)(2X3 +X + 2) 1 Fl(3, 13),B(8) ⇒ C1q(Q) = ∅
C1r Y 2 = 2X6 − 2X5 + 2X4 − 2X3 −X2 −X − 1 1 Fl(5, 11),B(11) ⇒ C1r(Q) = ∅
C1s Y 2 = 2X6 −X5 − 2X4 − 2X3 + 2X2 −X − 1 1 Fl(29),B(28) ⇒ C1s(Q) = ∅
C1t Y 2 = (X2 +X + 1)(2X4 − 2X3 −X2 + 2X − 2) 1 Fl(11),B(10) ⇒ C1t(Q) = ∅
C1u Y 2 = 2X6 −X4 −X3 +X2 −X − 1 1 Fl(13),B(12) ⇒ C1u(Q) = ∅
C1v Y 2 = 2X6 +X4 −X3 − 2X2 − 2X − 1 1 Fl(3, 5),B(3) ⇒ C1v(Q) = ∅
C1w Y 2 = 2X6 − 2X5 + 2X − 3 1 Fl(7),B(17) ⇒ C1w(Q) = ∅
C1x Y 2 = 2X6 −X5 −X2 + 2X − 3 1 Fl(3),B(1) ⇒ C1x(Q) = ∅
C1y Y 2 = 2X6 −X5 + 2X4 − 2X3 −X2 − 2X − 3 1 Fl(17, 53),B(87) ⇒ C1y(Q) = ∅
C1z Y 2 = 2X6 −X4 − 2X3 − 2X2 + 2X − 3 1 Fl(5),B(3) ⇒ C1z(Q) = ∅
C1A Y 2 = 2X6 − 2X3 + 2X2 − 2X − 3 1 Fl(3),B(4) ⇒ C1A(Q) = ∅
C1B Y 2 = −(X3 +X + 1)(2X3 − 3X2 − 3) 1 Fl(5),B(3) ⇒ C1B(Q) = ∅
C1C Y 2 = −(2X3 − 2X2 +X − 2)(X3 −X2 +X + 1) 1 Fl(5),B(9) ⇒ C1C(Q) = ∅
C1D Y 2 = −X6 − 2X5 − 5X4 − 4X3 +X2 + 5 1 Fl(3, 13, 17),B(21) ⇒ C1D(Q) = ∅
C1E Y 2 = −(X3 +X2 + 2X + 1)(X3 −X2 +X − 3) 1 Fl(7),B(14) ⇒ C1E(Q) = ∅
C1F Y 2 = −(X3 −X2 − 1)(X3 +X2 +X + 3) 1 Fl(7, 19),B(3) ⇒ C1F (Q) = ∅
C1G Y 2 = −(X3 − 2X2 −X − 2)(X3 +X + 1) 1 Fl(5),B(15) ⇒ C1G(Q) = ∅
C1H Y 2 = (X3 −X2 +X + 1)(2X3 + 2X2 + 3X + 2) 1 Fl(5),B(3) ⇒ C1H(Q) = ∅
C1I Y 2 = (X3 +X2 +X + 3)(2X3 − 2X2 + 3X − 2) 1 Fl(5),B(7) ⇒ C1I(Q) = ∅
C1J Y 2 = (2X3 + 2X − 1)(X3 +X2 −X + 1) 1 Fl(3, 19),B(2) ⇒ C1J(Q) = ∅
C1K Y 2 = (X3 +X − 1)(2X3 + 3X2 + 3) 1 Fl(5),B(7) ⇒ C1K(Q) = ∅
C1L Y 2 = −(X3 + 3)(X3 +X2 − 5) 1 Fl(7, 11, 23),B(18) ⇒ C1L(Q) = ∅
C1M Y 2 = −2(X2 +X + 1)(X2 + 15)(X2 − 13) 1 No Deg-1-Div-Class/Q ⇒ C1M (Q) = ∅
C1N Y 2 = −2(X2 +X + 1)(X2 − 21)(X2 + 23) 1 No Deg-1-Div-Class/Q ⇒ C1N (Q) = ∅
C1O Y 2 = −2(X2 +X + 1)(X2 + 40)(X2 − 38) 1 No Deg-1-Div-Class/Q ⇒ C1O(Q) = ∅
C1P Y 2 = −2(X2 +X + 1)(X2 − 54)(X2 + 56) 1 No Deg-1-Div-Class/Q ⇒ C1P (Q) = ∅

Table 1. All Rank 0 and 1 Examples
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C Equation Rk Status
C2a Y 2 = −(2X3 +X + 2)(X3 +X2 − 1) 2 Unresolved
C2b Y 2 = −2X6 − 2X5 +X4 − 2X3 −X2 +X + 2 2 Unresolved
C2c Y 2 = −2X6 − 2X5 +X4 −X3 −X2 +X + 2 2 Unresolved
C2d Y 2 = −2X6 − 2X5 + 2X4 −X3 − 2X + 2 2 Unresolved
C2e Y 2 = −2X6 −X5 − 2X4 − 2X3 −X + 2 2 Unresolved
C2f Y 2 = −2X6 −X5 −X4 + 2X3 +X2 + 2X + 2 2 Unresolved
C2g Y 2 = −X6 − 2X5 − 2X4 −X3 +X2 − 2X + 2 2 Unresolved
C2h Y 2 = −X6 − 2X5 −X4 −X3 + 2 2 Unresolved
C2i Y 2 = −X6 − 2X5 −X4 −X3 +X2 − 2X + 2 2 Unresolved
C2j Y 2 = −X6 − 2X5 − 2X3 −X + 2 2 Unresolved
C2k Y 2 = −X6 − 2X5 −X3 −X2 + 2 2 Unresolved
C2l Y 2 = −X6 − 2X5 +X4 −X3 +X2 −X + 2 2 Unresolved
C2m Y 2 = −X6 − 2X5 − 2X4 −X3 −X + 2 2 Unresolved
C2n Y 2 = −X6 −X5 + 2X4 − 2X3 −X + 2 2 Unresolved
C2o Y 2 = −X6 −X5 + 2X4 − 2X2 −X + 2 2 Unresolved
C2p Y 2 = −X6 + 2X4 −X3 +X + 2 2 Unresolved
C2q Y 2 = 2X6 − 2X5 +X3 −X − 1 2 Unresolved
C2r Y 2 = 2X6 − 2X5 + 2X4 − 2X2 +X + 2 2 Unresolved
C2s Y 2 = 2X6 −X5 − 2X4 + 2X3 − 2X − 2 2 Unresolved
C2t Y 2 = 2X6 − 2X4 −X3 +X2 −X − 1 2 Unresolved
C2u Y 2 = 2X6 −X3 + 2X2 + 2 2 Unresolved
C2v Y 2 = 2X6 −X3 + 2X2 +X − 1 2 Unresolved
C2w Y 2 = −2X6 − 2X5 − 4X4 + 4X3 + 3X2 + 8X + 5 2 Unresolved
C2x Y 2 = −2X6 −X5 − 5X4 −X2 + 3X + 2 2 Unresolved
C2y Y 2 = −2X6 − 3X4 + 4X2 + 2X + 5 2 Unresolved
C2z Y 2 = −2X6 − 3X4 + 4X3 + 4X2 + 6X + 5 2 Unresolved
C2A Y 2 = −(X3 −X2 +X − 3)(2X3 + 2X2 + 3X + 2) 2 Unresolved
C2B Y 2 = −2X6 + 2X5 − 4X4 + 4X3 + 3X2 + 4X + 5 2 Unresolved
C2C Y 2 = −2X6 + 4X5 − 3X4 − 4X3 + 4X2 − 6X + 5 2 Unresolved
C2D Y 2 = −X6 − 2X5 − 3X4 − 5X3 −X + 2 2 Unresolved
C2E Y 2 = −X6 + 3X3 + 3X2 + 5X + 2 2 Unresolved
C2F Y 2 = 2X6 − 4X5 +X4 + 5X3 + 5X2 + 11X + 6 2 Unresolved
C2G Y 2 = 2X6 − 2X5 − 3X4 − 2X3 + 3X2 + 2X + 8 2 Unresolved
C2H Y 2 = 2X6 − 2X5 + 3X4 −X3 − 5X2 + 3X − 6 2 Unresolved
C2I Y 2 = 2X6 − 4X4 + 2X2 + 2X + 8 2 Unresolved
C2J Y 2 = 2X6 + 5X4 + 3X3 +X2 + 5X − 2 2 Unresolved
C2K Y 2 = 2X6 + 5X4 + 4X3 + 6X − 3 2 Unresolved
C2L Y 2 = 2X6 + 4X5 − 4X4 + 2X2 − 2X + 8 2 Unresolved
C2M Y 2 = 2X6 + 4X5 − 3X4 −X3 +X2 − 3X + 6 2 Unresolved
C2N Y 2 = 2X6 + 4X5 +X3 − 3X2 −X − 1 2 Unresolved
C2O Y 2 = 2X6 + 4X5 +X4 + 4X3 − 3X2 + 2X − 2 2 Unresolved
C2P Y 2 = (2X3 + 2X2 +X + 2)(X3 +X2 +X − 1) 2 Unresolved
C2Q Y 2 = −X6 − 2X5 − 2X4 −X3 +X2 + 10X + 15 2 Unresolved
C2R Y 2 = −X6 −X5 − 5X4 − 2X3 + 4X2 + 8X + 21 2 Unresolved
C2S Y 2 = −X6 + 3X5 + 3X4 − 4X3 − 4X2 − 4X + 5 2 Unresolved

Table 2. Unresolved Rank 2 Examples
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C Equation Rk Status
C2T Y 2 = −2X6 − 2X5 −X3 − 2X + 2 2 Fl(3, 13, 17, 37, 41),B(90) ⇒ C2T (Q) = ∅
C2U Y 2 = −2X6 − 2X5 + 2X4 +X3 − 2X2 −X + 2 2 Fl(3, 19),B(13) ⇒ C2U (Q) = ∅
C2V Y 2 = −2X6 −X5 − 2X4 − 2X3 −X2 + 2X + 2 2 Fl(5),B(9) ⇒ C2V (Q) = ∅
C2W Y 2 = −X6 − 2X5 +X4 + 2X3 + 2X2 +X + 2 2 Fl(79),B(80) ⇒ C2W (Q) = ∅
C2X Y 2 = −(X2 + 1)(X4 + 2X3 +X2 −X − 2) 2 Fl(3),B(20) ⇒ C2X(Q) = ∅
C2Y Y 2 = −X6 − 2X5 − 2X4 +X3 + 2X2 −X + 2 2 Fl(3, 19, 43),B(30) ⇒ C2Y (Q) = ∅
C2Z Y 2 = −X6 −X5 − 2X4 − 2X3 + 2X2 −X + 2 2 Fl(7),B(11) ⇒ C2Z(Q) = ∅
C2α Y 2 = −X6 + 2X5 −X3 +X + 2 2 Fl(7),B(8) ⇒ C2α(Q) = ∅
C2β Y 2 = 2X6 − 2X5 −X4 −X3 −X + 2 2 Fl(5),B(9) ⇒ C2β(Q) = ∅
C2γ Y 2 = 2X6 − 2X5 −X3 +X2 −X − 1 2 Fl(11),B(17) ⇒ C2γ(Q) = ∅
C2δ Y 2 = 2X6 − 2X5 +X4 −X3 −X2 +X − 1 2 Fl(3, 5, 7, 19),B(15) ⇒ C2δ(Q) = ∅
C2ε Y 2 = 2X6 − 2X5 + 2X4 −X3 −X − 1 2 Fl(3),B(3) ⇒ C2ε(Q) = ∅
C2ζ Y 2 = 2X6 − 2X4 −X3 +X2 +X − 2 2 Fl(3),B(2) ⇒ C2ζ(Q) = ∅
C2η Y 2 = 2X6 − 2X3 + 2X2 +X + 2 2 Fl(5),B(8) ⇒ C2η(Q) = ∅
C2θ Y 2 = 2X6 −X3 −X2 −X − 1 2 Fl(3),B(4) ⇒ C2θ(Q) = ∅
C2ι Y 2 = −2X6 + 2X5 − 2X4 − 3X3 + 3X2 − 3X + 3 2 Fl(29),B(149) ⇒ C2ι(Q) = ∅
C2κ Y 2 = −X6 − 2X5 − 4X4 + 5X2 + 4X + 8 2 Fl(7),B(11) ⇒ C2κ(Q) = ∅
C2λ Y 2 = −(X3 −X2 +X − 2)(X3 +X2 + 3X + 1) 2 Fl(3, 11, 13, 37),B(380) ⇒ C2λ(Q) = ∅
C2µ Y 2 = −(X3 −X2 −X − 1)(X3 +X2 +X + 2) 2 Fl(7, 19, 23, 53, 67),B(308) ⇒ C2µ(Q) = ∅
C2ν Y 2 = −X6 + 2X5 − 4X4 + 4X3 + 4X + 3 2 Fl(13),B(16) ⇒ C2ν(Q) = ∅
C2ξ Y 2 = 2X6 − 4X5 − 3X4 + 6X + 5 2 Fl(53),B(40) ⇒ C2ξ(Q) = ∅
C2π Y 2 = 2X6 − 4X5 +X4 − 4X3 + 5X2 + 2X + 6 2 Fl(11),B(29) ⇒ C2π(Q) = ∅
C2ρ Y 2 = 2X6 −X5 + 2X4 + 4X3 − 3X2 + 7X − 3 2 Fl(5),B(3) ⇒ C2ρ(Q) = ∅
C2σ Y 2 = 2X6 + 2X5 + 2X4 − 5X3 + 3X2 − 5X + 3 2 Fl(11, 31, 59),B(6) ⇒ C2σ(Q) = ∅
C2ς Y 2 = −X6 − 3X5 − 4X4 + 2X3 −X2 + 8X + 27 2 Fl(3, 13, 41),B(18) ⇒ C2ς(Q) = ∅
C2τ Y 2 = −X6 − 4X4 − 2X3 + 5X2 + 4X + 15 2 Fl(3, 19, 23),B(70) ⇒ C2τ (Q) = ∅
C2υ Y 2 = −X6 − 3X4 − 4X3 +X2 + 8X + 19 2 Fl(11, 13),B(7) ⇒ C2υ(Q) = ∅
C2φ Y 2 = −X6 − 2X4 −X3 + 5X2 + 2X + 7 2 Fl(3, 29, 43, 47, 59),B(396) ⇒ C2φ(Q) = ∅
C2ϕ Y 2 = −2(X2 +X + 1)(X2 − 20)(X2 + 22) 2 No Deg-1-Div-Class/Q ⇒ C2ϕ(Q) = ∅
C2χ Y 2 = −(7X2 + 34)(2X2 + 4X + 5)(X2 − 26) 2 No Deg-1-Div-Class/Q ⇒ C2χ(Q) = ∅
C2ψ Y 2 = −3(4X2 − 29)(2X2 + 4X + 5)(X2 + 12) 2 No Deg-1-Div-Class/Q ⇒ C2ψ(Q) = ∅
C2ω Y 2 = (2X2 + 4X + 5)(11X2 + 20)(4X2 + 13) 2 No Deg-1-Div-Class/Q ⇒ C2ω(Q) = ∅

Table 3. Resolved Rank 2 Examples

C Equation Rk Status
C3a Y 2 = −2X6 − 2X5 −X4 −X3 −X + 2 3 Unresolved
C3b Y 2 = −2X6 − 2X5 −X3 + 2X2 − 2X + 2 3 Unresolved
C3c Y 2 = −2X6 −X4 −X3 − 2X2 −X + 2 3 Unresolved
C3d Y 2 = −X6 − 2X4 −X3 − 2X2 + 2 3 Unresolved
C3e Y 2 = −X6 −X3 −X2 −X + 2 3 Unresolved
C3f Y 2 = 2X6 − 2X5 − 2X4 − 2X3 − 2X2 −X + 2 3 Unresolved
C3g Y 2 = 2X6 + 2X5 + 2X4 +X3 − 2X2 −X + 2 3 Unresolved
C3h Y 2 = 2X6 − 2X5 − 2X4 + 2X3 − 2X2 +X − 3 3 Unresolved
C3i Y 2 = 2X6 −X5 − 2X4 + 2X3 − 2X2 − 3 3 Unresolved
C3j Y 2 = 2X6 −X5 + 2X3 − 2X2 − 3 3 Unresolved
C3k Y 2 = 2X6 −X5 + 2X4 − 2X3 − 2X − 3 3 Unresolved
C3l Y 2 = 2X6 −X5 + 2X4 + 2X3 −X2 + 2X − 3 3 Unresolved
C3m Y 2 = 2X6 −X4 −X3 −X2 −X − 3 3 Fl(3),B(10) ⇒ C3m(Q) = ∅
C3n Y 2 = −2(2X2 + 4X + 5)(X2 − 17)(2X2 + 11) 3 No Deg-1-Div-Class/Q ⇒ C3m(Q) = ∅
C3o Y 2 = (2X2 + 4X + 5)(7X2 + 16)(2X2 + 11) 3 No Deg-1-Div-Class/Q ⇒ C3o(Q) = ∅
C3p Y 2 = −3(2X2 − 19)(2X2 + 4X + 5)(X2 + 8) 3 No Deg-1-Div-Class/Q ⇒ C3n(Q) = ∅

Table 4. All Rank 3 Examples
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