
OpenMP Programming for

Parallel/Vector Computing

Lecture 1: Introduction to Intel CPUs

Mike Giles

Mathematical Institute

Mike Giles Lecture 1: Introduction to Intel CPUs 1 / 1

Overview

lecture 1: current Intel hardware

lecture 2: an introduction to OpenMP,
with application to a simple PDE solver

lecture 3: more advanced OpenMP,
with application to a Monte Carlo solver

Mike Giles Lecture 1: Introduction to Intel CPUs 2 / 1

System view

A typical server has 2 multi-core Intel Xeon server chips, connected
to a large amount of memory (DDR4) as well as network cards and
perhaps a graphics card or two.

DDR4
memory

DDR4
memory

Xeon
CPU

Xeon
CPU

PCIe lanes to
network or

graphics card

motherboard

6

UPI

-memory
channels

Mike Giles Lecture 1: Introduction to Intel CPUs 3 / 1

CPU view

Example: 12-core Intel Xeon 4310 processor (list price around $500)

Core Core Core Core Core Core

Core Core Core Core Core Core

shared L3 cache
(1.5 MB/core)

UPI

memory
channels

PCIe
lanes

https://en.wikipedia.org/wiki/Ice Lake (microprocessor)

Mike Giles Lecture 1: Introduction to Intel CPUs 4 / 1

Core view

private L2 cache (1.25 MB)

private L1 cache (48KB)

scalar/vector registers

lots of functional units
(load / store / calculate), plus

”command-and-control” circuitry

Mike Giles Lecture 1: Introduction to Intel CPUs 5 / 1

Core

Each core is

superscalar

with multiple pipelined functional units,

including AVX512 vector units,

with out-of-order execution

and branch prediction

and optional hyperthreading

Now to explain all of those buzzwords . . .

Mike Giles Lecture 1: Introduction to Intel CPUs 6 / 1

Superscalar

This just means that more than one instructions can be issued
(started) every clock cycle.

I think the cores in current Intel Xeon CPUs can issue up to 5
different instructions each clock cycle, including a combination of

two or three load/store operations (moving data between caches
and registers)

one or two floating point operations (scalar or vector)

one or two integer operations (scalar or vector)

https://en.wikipedia.org/wiki/Sunny Cove (microarchitecture)

Mike Giles Lecture 1: Introduction to Intel CPUs 7 / 1

AVX512 vector units

The latest Xeon server cores have 32 AVX512 vector registers,
each of which can hold 8 double or 16 float variables.

The AVX512 vector unit can add two vector registers to give

c := a + b

where all three are vectors, not scalars – multiplication is similar.

It can even do a fused multiply-add (FMA)

c := (a ∗ b) + c

so you get two vector operations in one instruction

(It can also use a mask, e.g. to only add elements 0, 1, 3, 4, 6)

Mike Giles Lecture 1: Introduction to Intel CPUs 8 / 1

Pipelined units

scalar and vector operations are performed in multiple stages
(3-5 for most floating point operations?) with overlapping
execution

-

time1 2 3 4-
- -

1 2 3 4-
- -

1 2 3 4-
- -

1 2 3 4-
- -

latency is number of cycles for first instruction;
throughput is number of additional cycles for next

note that this may require later instructions to wait for inputs
from earlier instructions

Mike Giles Lecture 1: Introduction to Intel CPUs 9 / 1

Hyperthreading

this is an optional operating system setting which leads to two
hardware threads per core, operating on alternate clock cycles

each has their own set of registers, but they have to share
the L1 and L2 cache

the possible benefit is better use of pipelined units
-

time1 2 3 4-
- -

1 2 3 4-
- -

1 2 3 4-
- -

1 2 3 4-
- -

thread 0

thread 1

an output is available as an input to the next-but-one instruction
from the same thread

Mike Giles Lecture 1: Introduction to Intel CPUs 10 / 1

Out-of-order execution

Because of pipelines, clock cycles may be wasted if a previous
instruction has not yet finished.

Much worse than this, a load operation may take 100’s of cycles to
fetch data from the main memory – potentially a huge waste of
computation.

In out-of-order execution the core’s control unit looks at a “window”
of about 200 instructions, and will execute them in a different order if
it’s valid and the inputs are ready.

This adds hugely to the complexity of the core.

Mike Giles Lecture 1: Introduction to Intel CPUs 11 / 1

Branch prediction

Because of pipelining, code branching due to conditional tests can
be expensive, since the test has to be evaluated to know what to do
next.

Branch prediction remembers what happened last time at this branch,
guesses it will be the same this time, and works on that assumption.

There’s some cleanup if the guess was wrong.

This improves performance, but again adds to the complexity of the
core. The “command-and-control” circuitry is much more extensive
than the floating point calculation hardware, but that balance has
improved with the long AVX512 vector units.

Mike Giles Lecture 1: Introduction to Intel CPUs 12 / 1

Potential Performance
The Xeon 4310 CPU has 12 cores, each with 2 AVX512 units,
running at 2.1GHz, so the peak double precision (DP) performance is:

12︸︷︷︸
#cores

× 2︸︷︷︸
#AVXs/core

× 8︸︷︷︸
vector length

× 2︸︷︷︸
2 ops/cycle

× 2.1GHz︸ ︷︷ ︸
clock freq

≈ 800GFlops

Much faster than the top supercomputer 20 years ago, but requires
use of all the cores, and all of the vector units

The corresponding bandwidth from L1 cache into vector registers is

12︸︷︷︸
#cores

× 2︸︷︷︸
#loads/cycle

× 64︸︷︷︸
register size

× 2.1GHz︸ ︷︷ ︸
clock freq

≈ 3.2TB/s

https://ark.intel.com/content/www/us/en/ark/products/215277/

intel-xeon-silver-4310-processor-18m-cache-2-10-ghz.html

Mike Giles Lecture 1: Introduction to Intel CPUs 13 / 1

Recap

There are many levels of parallelism here:

multiple CPU chips

multiple cores in each CPU chip

multiple functional units (superscalar)

pipelines (overlapping execution)

vector units

hyperthreading

The compiler and the hardware will take care of most things, but to
get close to full performance the programmer has to help too, and
has to understand to some extent what is going on in the hardware.

Mike Giles Lecture 1: Introduction to Intel CPUs 14 / 1

Moving data

So far we have focussed on performing calculations (e.g. addition and
multiplication).

Increasingly, this is an old-fashioned view. Now, the focus is on
moving the required data.

In terms of both time and energy consumption, moving data usually
costs more than performing calculations, and modern algorithms are
being designed to minimise the amount of data movement.

Understanding data movement is very important to achieving good
OpenMP performance.

Mike Giles Lecture 1: Introduction to Intel CPUs 15 / 1

Memory Hierarchy

?
faster

more expensive
smaller

32–128 GBMain memory

12–30 MB totalShared L3 Cache

L1/L2 Cache 48KB + 1.25MB per core

registers

200+ cycle access, 100–200GB/s total

25–35 cycle access, 25–50GB/s

5–12 cycle access, 100–200GB/s

?

6

??
66

???
666

Mike Giles Lecture 1: Introduction to Intel CPUs 16 / 1

Memory Hierarchy

Execution speed relies on exploiting data locality

temporal locality: a data item just accessed is likely to be used
again in the near future, so keep it in the cache

spatial locality: neighbouring data is also likely to be used soon,
so load them into the cache at the same time using a ‘wide’ bus
(like a multi-lane motorway)

This wide bus is only way to get high bandwidth

Mike Giles Lecture 1: Introduction to Intel CPUs 17 / 1

Caches

The cache line is the basic unit of data transfer; standard size is
64 bytes ≡ 512 bits ≡ 8 double or 16 float items.

With a single cache, when the CPU loads data into a register:

it looks for line in cache

if there (hit), it gets data

if not (miss), it gets entire line from main memory, displacing
an existing line in cache (usually least recently used)

When the CPU stores data from a register:

same procedure

There is a natural generalisation to multiple levels of cache

Mike Giles Lecture 1: Introduction to Intel CPUs 18 / 1

Importance of Locality

Typical server:

1 TFlops (assuming full vectorisation)

128 GB/s bandwidth to main memory

64 bytes/line

128GB/s ≡ 2G line/s ≡ 16G double/s

At worst, each flop requires 2 inputs and has 1 output, forcing
loading of 3 lines =⇒ 700 Mflops

If all 8 variables/line are used, then this increases to around 5 Gflops.

To get up towards 1TFlops needs temporal locality, re-using data
already in the cache.

Mike Giles Lecture 1: Introduction to Intel CPUs 19 / 1

Importance of Locality

Data reuse matters even within a single core.

Typical core:

50 GFlops core (assuming full vectorisation)

128 GB/s bandwidth to L2 cache

64 bytes/line

Same bandwidth as before, but no longer shared so each core has
128 GB/s bandwidth to its private L2 cache.

As before, if all 8 variables/line are used, then achieve 5 Gflops
if data is in L2 cache

To get up to 50GFlops needs reuse of data in L1 cache or registers.

Mike Giles Lecture 1: Introduction to Intel CPUs 20 / 1

Additional info

Complexities: 1) where can a particular line reside in cache?

Fully associative:

each line can be anywhere

hard to implement quickly if cache is large

Direct mapped:

each line has only one possible location

very rapid

displaced lines may still be needed, resulting in more cache
misses for a given cache size

Mike Giles Lecture 1: Introduction to Intel CPUs 21 / 1

Additional info
Usual compromise: set associative cache in which each line can be
anywhere within a subset of the cache

Intel uses 12-way set associative for L1, 8-way for L2, 16-way for L3
https://en.wikichip.org/wiki/intel/microarchitectures/sunny cove

6

set of possible locations for a particular cache line

Mike Giles Lecture 1: Introduction to Intel CPUs 22 / 1

Additional info
Complexities: 2) what happens when a cache line is modified?

Write-through cache:

modified line is immediately written to higher level (cache or
main memory)

higher level stays up-to-date

generates lots of memory traffic

Write-back cache:

modified line is only written to higher level (cache or main
memory) when it gets displaced from the cache

much less memory traffic

main memory may not have latest values – potential problem for
parallel computing

Intel uses write-back caches at all levels.
Mike Giles Lecture 1: Introduction to Intel CPUs 23 / 1

Multithreaded execution

New problem due to write-back caches: cache coherency

CPU 0 CPU 1

L2 L2

Core
2

Core
6

Suppose a thread on Core 2 of CPU 0 loads and modifies variable X
in its level 2 cache, and then a thread on Core 6 of CPU 1 loads X?

There is a special link (Snoop Filter) between all of the caches so
that the Core 2/CPU 0 cache controller spots the request and
responds instead of the main memory. There are major problems
with maintaining this cache coherency as core counts increase.

Mike Giles Lecture 1: Introduction to Intel CPUs 24 / 1

MESI cache coherency protocol
A cache line can be in one of 4 states:

Modified: sole owner of modified line

Exclusive: sole owner, not modified

Shared: shared ownership, not modified

Invalid: incorrect data

���� ����

��������

M E

SI �

�

?@
@

@
@

@
@

@I@
@
@
@
@
@
@R

write

write

write
by other

read by otherread by other

write

Mike Giles Lecture 1: Introduction to Intel CPUs 25 / 1

MESI cache coherency protocol

This ensures that a read obtains the latest version of the data,
but it doesn’t solve the following problem.

Suppose Core 0 and Core 1 add to X at roughly the same time.
We can get the following situation:

?

time
Thread/Core 0 Thread/Core 1

load X into register R
load X into register Radd to register R
add to register R

store R back to X
store R back to X

In the end, the contribution from Core 0 has been lost. It is the
responsibility of the programmer to avoid this!

Fortunately, OpenMP will help a lot with this.

Mike Giles Lecture 1: Introduction to Intel CPUs 26 / 1

MESI cache coherency protocol

There’s another very annoying problem, sometimes referred to
as false sharing.

What happens if Core 0 repeatedly updates X , and Core 1
repeatedly updates Y ?

It doesn’t look like a problem, but if they are in the same cache
line then the two cores will fight over ownership; each needs it
(temporarily) to modify its variable.

This can lead to very poor performance, and again the programmer
is responsible for avoiding this. However, in this case there is no help
from OpenMP.

Mike Giles Lecture 1: Introduction to Intel CPUs 27 / 1

Why bother with parallel programming?

Suppose you have 72 cores, and 1 program to run – parallel
programming will give you the answer in the shortest time

Now suppose you have 72 cores, and you have 72 programs to run.

You have two extreme choices

run all 72 jobs at the same time, each one using 1 core

run the 72 jobs sequentially, one after another, using 72 cores in
parallel for each job

plus various options in between.

What should you do, and why?

Mike Giles Lecture 1: Introduction to Intel CPUs 28 / 1

Why bother with parallel programming?

A helpful experiment: compare time for 1 job to time for 72 jobs
running at same time.

If the 72 jobs run in the same time, this is probably your best option.

But they probably won’t, because they are sharing

main memory

L3 cache

The first of these may be the most significant; DDR4 memory is
expensive, and there may not be enough to run 72 programs each
with a lot of data.

The downside is the hassle of parallel programming, and the
overheads of handling multiple threads.

Mike Giles Lecture 1: Introduction to Intel CPUs 29 / 1

Final comments

the latest Intel Xeon server chips are very powerful

to achieve the best performance, code has to be multithreaded
(to use multiple cores) and vectorised (to use AVX512 units)

we will see that OpenMP helps with both of these, but there are
major pitfalls to be avoided on the data access side

the danger is that performance is severely limited by data
bandwidth in the cache hierarchy and to/from main memory

some key weblinks:
https://en.wikipedia.org/wiki/Ice Lake (microprocessor)

https://en.wikipedia.org/wiki/Sunny Cove (microarchitecture)

https://en.wikichip.org/wiki/intel/microarchitectures/sunny cove

see course webpage for other links to further information

Mike Giles Lecture 1: Introduction to Intel CPUs 30 / 1

